

Increasing the number of open data streams
on the Web

Bachelor Thesis in Business Informatics

Department of Informatics

University of Zurich

Prof. Abraham Bernstein, Ph.D.

Advisor

Dr. Daniele Dell’Aglio

Author

Patrick Muntwyler

Wohlen, AG, Switzerland

Student-ID 14-711-337

Zurich, 26.07.2017

Patrick Muntwyler / Open data streams on the Web

Bachelor Thesis, University of Zurich, 2017 i

Acknowledgments
I would like to thank Dr. Daniele Dell’Aglio for his support during this thesis. I appreciate the time he
took for all the meetings. I am grateful that I had the chance to work with him and learn from him. He
showed me what it means to write a thesis and that it can also be fun. I am thankful for his inputs, rec-
ommendations and advices. Also, I would like to thank him for reviewing my thesis.
I am grateful for the support of my friends. They motivated me and always had time to talk when I
needed it. Especially, I would like to thank Timon and Christoph for their help.
Finally, I am truly grateful for the help provided by my family. Because of their support I was able to
fully concentrate on working on my thesis. They made it possible for me to work under the best condi-
tions.

Patrick Muntwyler / Open data streams on the Web

Bachelor Thesis, University of Zurich, 2017 iii

Abstract
Open data describes data which are available for everyone and often can be used for any purpose. The
term open data does not only stand for this type of data, but also for the movement which supports it.
The idea behind open data is to create more transparency and other advantages for society. Especially
the data owned by governments can increase the quality of living when made accessible to the public.
The associated term is called Open Government Data. Open Government Data can increase the public
confidence and enables the development of new services which use these Open Government Data to
ease the everyday life of citizens. Thus in recent times, the number of governments increases, which
support this trend and publish their data.
Linked Data was invented to increase the value of data, which are published on the Web. Linked Data
uses a specific format, which enables to link data from different data sources. Therefore, machine pro-
cesses can gather data from different sources, which can lead to better results. TripleWave is a frame-
work, that applies the concept of Linked Data to streaming data. TripleWave can transform existing
streams into Linked Data streams.
However, it lacks a prototype, which shows how TripleWave can be used to publish Open Government
Data as Linked Data streams. Such an approach would combine the advantages and characteristics of
the areas Open Government Data, Linked Data and streaming data.
In the context of this Bachelor Thesis we increase the number of open data streams on the Web. First,
we examine the available Open Government Data portals and search for data sets that are suitable to be
streamed on the Web. Only data sets, which are updated frequently and have a time reference, are suit-
able to be transformed and streamed. Then we develop an application, which fetches and transforms
several Open Government Data sets and finally publishes them as Linked Data streams on the Web.

Patrick Muntwyler / Open data streams on the Web

Bachelor Thesis, University of Zurich, 2017 iv

Kurzfassung
Open Data steht für Daten, die für alle zugänglich sind und oft für jegliche Zwecke benutzt werden
dürfen. Der Begriff Open Data steht jedoch nicht nur für diese Art von Daten, sondern auch für die
dahinterstehende Bewegung, die Open Data unterstützt. Die Idee hinter Open Data ist, dass mehr Trans-
parenz und weitere Vorteile für die Zivilgesellschaft geschaffen werden. Besonders Regierungen besit-
zen Daten, die die Lebensqualität der Einwohner erhöhen kann, wenn sie veröffentlicht werden. Der
dazugehörende Begriff heisst Open Government Data. Open Government Data kann das öffentliche
Vertrauen in die Regierung verbessern und ermöglicht die Entwicklung von neuen Dienstleistungen, die
auf diesen Daten beruhen und das Alltagsleben der Einwohner vereinfachen. In jüngster Zeit steigt daher
die Anzahl an Regierungen, die diesen Trend unterstützen und ihre Daten veröffentlichen.
Linked Data wurde entwickelt um den Wert von Daten zu erhöhen, die im Internet veröffentlicht wer-
den. Linked Data benutzt ein spezifisches Format, das es ermöglicht, Daten aus verschiedenen Quellen
zu verbinden. Dadurch wird es maschinellen Prozessen ermöglicht, Daten aus verschiedenen Quellen
zu benutzen, um bessere Resultate zu erzielen. TripleWave ist ein Framework, welches das Konzept
von Linked Data auf Streaming-Daten anwendet. TripleWave kann existierende Streams in Linked Data
Streams transformieren.
Es fehlt jedoch ein Prototyp, der zeigt, wie man mit TripleWave Open Government Data als Linked
Data Streams veröffentlichen kann. Ein solcher Ansatz würde die Vorteile und Charakteristiken aus den
Gebieten Open Government Data, Linked Data und Streaming-Daten vereinen.
Im Rahmen dieser Bachelorarbeit erhöhen wir die Anzahl von Open Data Streams im Web. Zuerst un-
tersuchen wir die verfügbaren Open Government Data Portale und suchen nach Datensets, die sich dazu
eignen, als Streams im Web veröffentlicht zu werden. Nur Datensets, die häufige Änderungen erfahren
und eine zeitliche Komponente beinhalten, eignen sich transformiert und gestreamt zu werden. Dann
entwickeln wir eine Applikation, die mehrere Open Government Datensets abholt, transformiert und sie
zum Schluss im Web als Linked Data Streams veröffentlicht.

Patrick Muntwyler / Open data streams on the Web

Bachelor Thesis, University of Zurich, 2017 v

Contents

Acknowledgments	...	i	

Abstract	..	iii	

Kurzfassung	...	iv	

List	of	Figures	...	vii	

List	of	Tables	...	viii	

1	 Introduction	..	1	

2	 Related	Work	..	4	
2.1	 Open	Data	..	4	
2.2	 Linked	Data	..	5	
2.3	 Streaming	Linked	Data	...	8	
2.4	 Kafka	and	Thrift	..	10	

3	 A	survey	of	streaming	data	in	German-language	Open	Government	Data	12	
3.1	 5-Star	open	data	...	12	
3.2	 Available	streaming	data	in	German-language	Open	Government	Data	13	

3.2.1	 Approach	of	searching	thoroughly	the	Open	Government	Data	portals	13	
3.2.2	 Description	of	the	survey	table	...	15	
3.2.3	 Analysis	of	the	survey	table	...	23	

4	 Transforming	data	into	RDF	...	26	
4.1	 Input	Kafka	&	TripleWave	..	28	

4.1.1	 Input	using	WebSockets	..	28	
4.1.1.1	 Input	Kafka	using	WebSockets	..	28	
4.1.1.2	 Input	TripleWave	using	WebSockets	..	29	

4.1.2	 Input	using	SSE/EventSource	...	30	
4.1.2.1	 Input	Kafka	using	SSE/EventSource	..	30	
4.1.2.2	 Input	TripleWave	using	SSE/EventSource	...	31	

4.1.3	 Input	through	fetching	data	sets	...	31	
4.1.3.1	 SMNRCH	Connector	..	32	
4.1.3.2	 TCZH	Slow	Connector	...	33	
4.1.3.3	 TCZH	Fast	Connector	..	34	
4.1.3.4	 CPZH	Connector	..	35	
4.1.3.5	 CPBDE	Connector	..	36	
4.1.3.6	 ZR	Connector	..	37	
4.1.3.7	 CPMDE	Connector	..	38	

4.2	 Output	Kafka	..	38	
4.2.1	 Output	Kafka	using	WebSockets	...	38	
4.2.2	 Output	Kafka	using	SSE/EventSource	..	39	
4.2.3	 Output	Kafka	using	Apache	Thrift	...	39	

4.3	 Increasing	the	number	of	stars	...	41	
4.3.1	 TCZH	Mapping	...	41	
4.3.2	 CPZH	Mapping	...	42	
4.3.3	 CPBDE	Mapping	...	42	
4.3.4	 ZR	Mapping	..	43	

Patrick Muntwyler / Open data streams on the Web

Bachelor Thesis, University of Zurich, 2017 vi

4.3.5	 CPMDE	Mapping	..	43	
4.4	 Implementing	the	use	case	...	43	

5	 Evaluation	...	45	
5.1	 Latency	...	45	
5.2	 Scalability	and	throughput	...	47	
5.3	 Time	performance	of	Kafka	and	TripleWave	...	51	
5.4	 Data	exchange	comparison	...	53	

6	 Conclusion	...	55	

7	 Bibliography	..	57	

Appendix	A:	Detailed	experimental	results	...	59	

Appendix	B:	How	to	run	...	61	

Appendix	C:	How	to	connect	to	the	RDF	streams	..	64	

Appendix	D:	Content	of	the	CD	...	65	
	
	 	

Patrick Muntwyler / Open data streams on the Web

Bachelor Thesis, University of Zurich, 2017 vii

List of Figures

Figure	1:	5-star	open	data	rating	system	illustrated	as	an	image,	source:	(Hausenblas,	2015)	13	
Figure	2:	Origin	of	the	data	sets	..	24	
Figure	3:	Number	of	records	..	24	
Figure	4:	Publication	frequency	...	25	
Figure	5:	Representation	...	25	
Figure	6:	Overview	of	all	implemented	components	...	27	
Figure	7:	Components	run	on	the	University	server	..	44	
Figure	8:	Setup	of	our	cluster	for	latency	test	...	45	
Figure	9:	Setup	of	TripleWave	for	latency	test	..	46	
Figure	10:	Illustration	of	latency	test	results	...	47	
Figure	11:	Throughput	with	one	TripleWave	(TW)	instance	..	48	
Figure	12:	Throughput	with	two	TripleWave	(TW)	instances	..	48	
Figure	13:	Throughput	with	three	TripleWave	(TW)	instances	..	49	
Figure	14:	Throughput	with	one	TripleWave	(TW)	instance	with	averages	..	49	
Figure	15:	Throughput	with	two	TripleWave	(TW)	instances	with	averages	..	50	
Figure	16:	Throughput	with	three	TripleWave	(TW)	instances	with	averages	..	50	
Figure	17:	Setup	of	time	performance	evaluation	...	51	
	

Patrick Muntwyler / Open data streams on the Web

Bachelor Thesis, University of Zurich, 2017 viii

List of Tables

Table	1:	Survey	Table	Part	1	..	16	
Table	2:	Survey	Table	Part	2	..	17	
Table	3:	Survey	Table	Part	3	..	18	
Table	4:	Survey	Table	Part	4	..	19	
Table	5:	Survey	Table	Part	5	..	20	
Table	6:	Survey	Table	Part	6	..	21	
Table	7:	Overview	Connectors	...	32	
Table	8:	TCZH	Mapping	...	41	
Table	9:	CPZH	Mapping	...	42	
Table	10:	CPBZH	Mapping	...	42	
Table	11:	ZR	Mapping	...	43	
Table	12:	CPMDE	Mapping	..	43	
Table	13:	Results	of	latency	tests	..	46	
Table	14:	Throughput	averages	...	51	
Table	15:	Results	of	time	performance	test	...	52	
Table	16:	Package	sizes	...	53	
Table	17:	Records	per	second	for	throughput	evaluation	...	60	

Patrick Muntwyler / Open data streams on the Web

Bachelor Thesis, University of Zurich, 2017 1

1 Introduction
The open data movement1 expends effort for spreading the concepts of open data and open knowledge.
Open data defines data which are available for everyone and which often has no restrictions concerning
its usage. Open knowledge is created when open data is appropriately used. The members of this move-
ment want the people to be aware of the advantages of open data for the civil society. They help organ-
isations and governments to publish and use open data so that the benefit for the society is as big as
possible. Their vision is a world where open knowledge is an essential element in the life of everyone.
An important institution for open data are governments as they own a lot of data and information about
structures, processes and inhabitants of countries or municipalities. If these data and information are
made available to the community, new services can be generated and the quality of living can increase.
The open data movement has a Working Group on Open Government Data2 which supports the publi-
cation of government data.
There is a lot of progress in the field of Open Government Data. Several countries and big cities publish
their data on open data portals. For example, there are open data portals available for the city of Zurich3,
Switzerland4, Germany5 and Austria6, mentioning some portals of the German-language area.
To increase the value of data, one can publish data sets following the Linked Data Principles (Bizer,
Heath & Berners-Lee 2009). The Linked Data Principles describe an approach of how data sets can be
interlinked in the Web using a format called Resource Description Framework (RDF) (Cyganiak, Wood
& Lanthaler 2014). Linking data across different data sources according to the Linked Data Principles
enables machine processes to query several data sets as in a distributed database. Thus the results of
these machine processes can contain more precise information. One of the biggest achievements of the
Linked Data movement is the Linking Open Data cloud7 where more than one thousand open data sets
are published and interlinked, also including Open Government Data portals.
Many organisations and research projects use the Linked Data approach to increase their value or utility.
Shadbolt et al. (2012) apply the Linked Data Principles to several related data sets from the open data
portal of the United Kingdom. Their goal is to increase the value of those data sets and make them
available through an application which eases the analyzation and visualization of the data. A non-profit
project which applies the Linked Data Principles is Wikidata (Vrandencic & Krötzsch 2014). The enti-
ties which are stored in Wikidata have unique identifiers. Thus other data sets can link to entities on
Wikidata. Kobilarov et al. (2009) use the Linked Data Principles to reorganize and increase the informa-
tive content of the BBC Web sites.
Current efforts target mainly static data. But as the amount of data which are daily produced drastically
increases, the need for data streams grows. Data streams are transient and no persistent storage is needed
for processing. Especially as sensor data and the Internet of Things become popular, the need for tran-
sient data processing increases.

1 https://okfn.org/about/ (accessed 11.7.2017)
2 https://opengovernmentdata.org/ (accessed 11.7.2017)
3 https://data.stadt-zuerich.ch/ (accessed 11.7.2017)
4 https://opendata.swiss/en/ (accessed 11.7.2017)
5 https://www.govdata.de/ (accessed 11.7.2017)
6 https://www.data.gv.at/ (accessed 11.7.2017)
7 http://lod-cloud.net/ (accessed 11.7.2017)

Patrick Muntwyler / Open data streams on the Web

Bachelor Thesis, University of Zurich, 2017 2

W3C has a community group which works on defining and processing Linked Data streams8. There are
efforts made to enhance the publication of Linked Data as streams and to continuously querying them.
Barbieri & Della Valle (2010) present a proposal about how to publish Linked Data as streams. In con-
trast to other papers which cover the topic of Linked Data streams, they propose an approach which
considers the characteristics of data streams, especially that streaming data are transient and not persis-
tent.
Mauri et al. (2016) have built a framework called TripleWave, based on the proposal of Barbieri & Della
Valle (2010) and real-world use cases. TripleWave can transform non-RDF streams and RDF data sets
which contain time stamps into RDF streams. The resulting output stream can easily be consumed
through pull-based and push-based mechanisms. Mauri et al. (2016) have thus created a simply usable
framework for publishing Linked Data streams.
But there are no guidelines and prototypes which show how open data sets can be published as Linked
Data streams using TripleWave. Such guidelines would simplify the work for other studies in the field
of Linked Open Data streams. A prototype would show how the steps can be implemented which are
needed for fetching, transforming and publishing open data sets as RDF streams.
The goal of this project is to increase the number of Linked Open Data streams on the Web (using
TripleWave). We present the challenges of our implementation and show how we met them. The result
of our work is a prototype which combines TripleWave and Apache Kafka9, a framework which is used
for streaming activities in several big companies. Combining these two frameworks enables us to create
a scalable and modular prototype, which can easily be extended. The cluster fetches non-RDF open data
sets through pull-based mechanisms, transforms them and finally publishes them as RDF streams
through push-based mechanisms.
The development of this thesis is split into three parts. In the first part, we survey open data sets which
are suitable to be transformed into streams. We focus on German-language open data portals, and in
particular, the open data portals of Zurich and of Switzerland. The survey is then complemented by data
sets from Swiss public transportation portals and from examples from the open data portals of Germany
and Austria.
The second part consists of implementing the needed components for our prototype. We need compo-
nents which fetch the data sets and feed our cluster. Then components are required to connect Kafka and
TripleWave. We use them also to publish the final RDF streams. For the transformation of the open data
sets into RDF streams, we need specific mappings, one for each data set. Finally, we mention some
rudimentary example client applications which consume the RDF streams. We publish the output
streams through three different mechanisms: WebSockets (Fette & Melnikov 2011), Server Sent Events
(Hickson 2015) and Apache Thrift10.
In the last part of this thesis we evaluate our prototype. We measure the latency of our prototype in
different setups and measure the processing times. We study the scalability by measuring the throughput
for different setups. Finally, we compare the package sizes of output stream objects for different push-
based mechanisms.
The thesis is structured as follows: in Chapter 2 we present the related work. In Chapter 3 we first present
the 5-star open data scheme11, which describes the different levels of open data. Then we describe how
we create the survey of available open data sets which are suitable for being transformed into RDF
streams. Afterwards we present the results of our survey. Chapter 4 presents the implemented compo-
nents, introduces the mappings, which we created to transform the data into Linked Data and finally

8 https://www.w3.org/community/rsp/ (accessed 11.7.2017)
9 https://kafka.apache.org/ (accessed 11.7.2017)
10 https://thrift.apache.org/ (accessed 23.7.2017)
11 https://www.w3.org/DesignIssues/LinkedData.html (accessed 11.7.2017)

Patrick Muntwyler / Open data streams on the Web

Bachelor Thesis, University of Zurich, 2017 3

describes the prototype which we run on the University server. In Chapter 5 we present our evaluation
results. Finally, Chapter 6 contains the conclusions and some final remarks.

Patrick Muntwyler / Open data streams on the Web

Bachelor Thesis, University of Zurich, 2017 4

2 Related Work
In this section we present the related work. We begin with an introduction into open data and Open
Government Data. After that, we explain the term Linked Data and illustrate it with some examples.
This is followed by a passage describing projects that implement Linked Data streams, including the
framework TripleWave, which is an important part of this thesis. Subsequently the framework Apache
Kafka is introduced followed by a section about Apache Thrift. Both, Apache Kafka and Apache Thrift,
are used in this work.

2.1 Open Data
The term open is described according to Open Knowledge International12. Intuitively, something that is
open, must be published under an open license or must be available in public domain. Public domain
means that there is no copyright or similar restrictions. An open license contains the following condi-
tions: A resource, that is provided under an open license must be free to be used, redistributed and
modified. This must also hold for only parts of that artefact or in some cases if it is merged with other
things that are published under an open license (e.g. under a share-alike license13). It must be ensured
that the license must not discriminate against any group or person. Something that is open must be
available for everyone. It must be available for no charge and in most cases for any purpose (a non-
commercial license forbids the use of the artefacts for commercial intention14). There are some accepta-
ble conditions an open license can make, for example that something that is published under an open
license should include the attribution of contributors, right holder, sponsors and creators or that derivated
artefacts of it must also happen under the same or a similar license. A detailed definition of the term
open can be found here15.
Open data refers to data that are published under conditions that fulfil the requirements of the term open:
“Open data are the building blocks of open knowledge. Open knowledge is what open data becomes
when it is useful, usable and used” (Open Knowledge International 2017a). As a summary, we can say
that knowledge “is open if anyone is free to access, use, modify, and share it — subject, at most, to
measures that preserve provenance and openness” (Open Knowledge International 2017b). The same
summary can be applied to open data because, as mentioned before, knowledge is nothing else as applied
data.
Open Government Data (OGD) are data that are “produced or commissioned by government or govern-
ment controlled entities” (Open Knowledge International 2017c) and fulfils the conditions defined by
the term open. Ideally, OGD creates transparency towards the citizens. Citizens can access, share and
reuse OGD and analyse what the government is doing. Additionally, this data contains a lot of social
and commercial value. By making this data accessible to the citizens, new and innovative applications
can be implemented, to create social and commercial value (Open Knowledge International 2017c).
A good example for OGD are the urban sensor data streams described by Boyle, Yates & Yeatman
(2013). Cities steadily grow and attract more people to try their luck for a good life in a city. To be
attractive for companies and smart people the cities must proceed scaling effectively. This goal can be
supported by information and communication technologies (ICT). But ICT must be fed with suitable
data so that they can contribute a positive development of a city by offering new and enhanced city
services. Boyle, Yates & Yeatman (2013) examine the available urban sensor data streams in London

12 http://opendefinition.org/od/2.1/en/ (accessed 11.7.2017)
13 https://creativecommons.org/licenses/by-sa/4.0/ (accessed 11.7.2017)
14 https://creativecommons.org/licenses/by-nc/4.0/ (accessed 11.7.2017)
15 http://opendefinition.org/od/2.1/en/ (accessed 31.5.2017)

Patrick Muntwyler / Open data streams on the Web

Bachelor Thesis, University of Zurich, 2017 5

in 2013 to provide better understanding for these streams so that they will be used by a broader commu-
nity.
Most of the examined urban sensor data streams origin from the mass transit and environment sectors.
Public transportation in London are subject to the Mayor’s Office with Transport of London (TfL) which
is responsible for most aspects. TfL is under the 2000 Freedom of Information Act and so most of the
information owned by TfL is made available to the public. One example is the information about Lon-
don’s Underground network, which is collected by the TrackerNet system. TfL worked together with
Microsoft to implement an open real-time data feed including information like train prediction, station
status or line status. London’s iBus system is another example for publishing real-time data by the gov-
ernment. London’s iBus system includes data about each bus: speed, direction, location and more. One
specific service which is built on London’s Open Transport Data, called Citymapper, helps to ease the
life of London’s public transport users (Scott 2015). Concerning the environmental sector, London has
open data streams available with data about weather observations and forecasts, London air quality or
information about water, like river levels or water quality generally (Boyle, Yates & Yeatman 2013).
Boyle, Yates & Yeatman (2013) mention that a lot of new open data streams will be implemented in
future. There is an initiative to measure Heathrow Airport’s air quality. There are also plans from the
bureau of the mayor to implement sensing systems concerning the water supply system. Therefore, leaks
in pipes could be easily observed or the water quality could be measured. Boyle, Yates & Yeatman
(2013) also mention Santander, a city in Spain, which was named Europe’s Smartest City in 2013,
largely due to the high number of sensors implemented in the city, monitoring a lot of things like envi-
ronmental or parking conditions.

2.2 Linked Data
Linked Open Data are the next level of open data. So we explain in the first part of this chapter the term
Linked Data. Afterwards the Linking Open Data Project is shortly presented, followed by some projects
which have implemented Linked Data on its top.
Bizer, Heath & Berners-Lee (2009) explain that Linked Data are data which are scattered over the Web
and there exist typed links between these distributed data sources. This is a contrast to the Hypertext
Web which uses untyped links to link Websites. Linked Data characteristics are: the data are published
in a machine-readable format; the content and its sense are defined explicitly; the data contain typed
links to other data or are referenced by other data. Documents which contain Linked Data use the Re-
source Description Framework (RDF) (Cyganiak, Wood & Lanthaler 2014). We give a short introduc-
tion into RDF below. Instead of linking such documents with untyped links, Linked Data uses RDF for
creating typed links. These typed links can link data about any entities in the world. As a result of this
approach, the so called Web of Data has been formed.
Berners-Lee (2006) defined a guideline for publishing Linked Data. This guideline includes the follow-
ing four rules which are also known as the Linked Data Principles:

• “Use URIs as names for things”
• “Use HTTP URIs so that people can look up those names”
• “When someone looks up a URI, provide useful information, using the standards (RDF*,

SPARQL)”
• “Include links to other URIs. [sic] so that they can discover more things”

Bizer, Heath & Berners-Lee (2009) mention that Linked Data are based on two technologies which are
crucial for the Web: Uniform Resource Identifiers (URIs) (Berners-Lee, Fielding & Masinter 2005) and
the HyperText Transfer Protocol (HTTP) (Fielding et al. 1999). More people are familiar with the term
URL than with URI. The difference between these two terms is that an URL is an address for documents
and other entities on the Web while an URI can be used as an ID for anything. Thus also real world
entities can be identified by URIs. If URIs are used in combination with the HTTP Protocol, then this

Patrick Muntwyler / Open data streams on the Web

Bachelor Thesis, University of Zurich, 2017 6

URI can be dereferenced and information about the entity which is identified by the corresponding URI
can be retrieved.
Both, URIs and HTTP are important parts of the RDF format. RDF is a graph-based data model that can
be used to link data and to define relations between data that give a description of entities in the world.
The RDF Format consists of triples: Subject – Predicate – Object. Subjects are always URIs which point
to an entity. The predicate is a relation between subject and the object and it is denoted by a URI. The
object can be a URI, which points to another entity or it can be a string literal, which represents a value
(Bizer, Heath & Berners-Lee 2009).
Bizer, Heath & Berners-Lee (2009, p. 4) give two examples for an RDF triple:
“Subject: http://dig.csail.mit.edu/data#DIG”
“Predicate: http://xmlns.com/foaf/0.1/member”
“Object: http://www.w3.org/People/Berners-Lee/card#i”
“Subject: http://data.linkedmdb.org/resource/film/77”
“Predicate: http://www.w3.org/2002/07/owl#sameAs”
“Object: http://dbpedia.org/resource/Pulp_Fiction_%28film%29”
In the first example the subject is the URI http://dig.csail.mit.edu/data#DIG, which can be dereferenced
and shows a description of the MIT Decentralized Information Group. The object is also an URI, which
points to the entity Tim Berners-Lee. The predicate is an URI which defines the link type member. The
statement of this triple is that Tim Berners-Lee is a member of the MIT Decentralized Information
Group. The second triple contains as subject and object two URIs which point to the movie Pulp Fiction
in two different data bases. The predicate is the URI http://www.w3.org/2002/07/owl#sameAs which is
used to create a link between these two entities in these two data bases. The predicate says that both
entities describe the same real-world entity. For example, a search engine can crawl one of these two
data bases and it will find a link to the other data base which means that it will be able to aggregate the
data from both data bases.
Bizer, Heath & Berners-Lee (2009) explain that vocabularies describe real-world entities and the rela-
tions between them. Vocabularies can be designed by using the RDF Vocabulary Definition Language
(RDFS) (Brickley & Guha 2014) and the Web Ontology Language (OWL) (McGuinness & van
Harmelen 2004). They allow defining classes and properties in RDF. Vocabularies can be linked to other
vocabularies by using RDF to describe the relation among each.
Bizer, Heath & Berners-Lee (2009) mention the Linking Open Data (LOD) Project which has been
launched by the W3C Sematic Web Education and the Outreach Group in 2007. The goal of this project
was to initiate the Web of Data. This was achieved by applying the Linked Data Principles to open
licensed data bases. The result is a huge network that links data from many different data bases. The
network has heavily grown since 2007. The graph of this network is too big for being printed properly
on one page but can be viewed here16. The big growth can be ascribed to the nature of Linked Data.
Everyone can help to increase the Web of Data by publishing open data following the Linked Data
Principles.
One example of broaden the Linked Data Web (LDW) is the project initialized by Shadbolt et al. (2012).
They took OGD sets from the United Kingdom’s (UK) OGD portal, called data.gov.uk, and have applied
the Linked Data Principles to them. On data.gov.uk thousands of data sets are published. Most of them
are available as CSV file or as spreadsheets. OGD sets are normally of high quality and thus are a good
choice for using them to broaden the LDW by transforming them into RDF.
According to Shadbolt et al. (2012) the process of converting OGD to RDF contains four important
research challenges. The first one is to find data sets which are useful for applications. There are services

16http://lod-cloud.net/ (accessed 05.06.2017)

Patrick Muntwyler / Open data streams on the Web

Bachelor Thesis, University of Zurich, 2017 7

which can help to find public sector information (PSI), like the data.gov.uk portal. But to create innova-
tive usage of PSI, sometimes there are data sets needed for example from different nations. This could
be the case when using meteorological data. But there are no such services which easily find related data
sets from different nations or different sources at all.
After finding useful data sets the second challenge is to integrate them into the LDW. Shadbolt et al.
(2012) have chosen six data sets. The goal is to link these data sets to generate more information. To
achieve that it is necessary to convert them to RDF. Shadbolt et al. (2012) recommend to use popular
ontologies, to reduce the effort of modelling as much as possible.
Once the ontologies are defined, the third challenge is to find the best join points (where the data can be
linked) in the distinct data sets. They decided to link the data sets over geographical similarities, because
on the one hand the LDW already contains a lot of geographical resources and on the other hand PSI
data often has a geographical dimension, as for example the allocation of a crime rate to a district.
The last challenge is to build an application, which a user can use to analyse and visualise the data.
Important for such an application is that the user can interact with it without having a lot of effort or
requiring a lot of knowledge in programming. With such an approach, more people are motivated to use
that application and to deal with the data.
A big project which also implements the Linked Data Principles is Wikidata. Vrandencic & Krötzsch
(2014) describe what Wikidata is and how it can influence the opportunities for many new applications.
Wikipedia contains more than 30 million articles in 287 languages. Thus it would be quite elaborate to
extract the needed data out of it. This is where Wikidata comes into play. Wikidata aims to create new
solutions of how this huge amount of data can be managed in a consistent way and therefore make it
easily accessible for users. Wikidata is influenced by the following design characteristics: Open Editing,
Community Control, Plurality, Secondary Data, Multilingual Data, Easy Access and Continuous Evo-
lution.
There are other free knowledge base projects available in the Web, but they all suffer from certain dis-
advantages compared to Wikidata. For example, Semantic MediaWiki is not able to create a knowledge
base for several languages which can include all Wikimedia projects. OpenCyc, another example, cannot
be edited by the publicity. DBPedia and Yago extract data directly from the Wikipedia pages. These
extracted data however are used in other projects like the “Google Knowledge Graph, Facebook’s Open
Graph, Wolfram Alpha Evi and IBM’s Watson” (Vrandencic & Krötzsch 2014, p. 80). Thus all these
applications would benefit from up-to-date and machine-readable data exports which will be enabled by
Wikidata (Vrandencic & Krötzsch 2014).
Vrandencic & Krötzsch (2014) mention a pleasant trend of the community’s people using external iden-
tifiers to link Wikidata items with objects of external data bases. In this way, the Wikidata entities can
be enriched by additional data. Every Wikidata entity has its own identifier in form of a URI. This URI
is resolvable and enables to fetch the corresponding item. This approach fulfils the Linked Data Princi-
ples. Thus Wikidata extends the LDW.
A further project which uses Linked Data to increase the value of an application, is the one of Kobilarov
et al. (2009). They worked together with BBC to make their online content more attractive. Kobilarov
et al. (2009) note that a user can find online a lot of content from BBC about several topics. There are
domain-specific microsites for several themes like news, music, food and programmes. The problem is
that the microsites are isolated among themselves and thus the information is not linked. For example,
one can look up who moderates a certain TV show, but it is not shown which other TV shows this person
has presented. The goal of that project is to connect the available information on the microsites to in-
crease the potential of the BBC resources.
Kobilarov et al. (2009) mention that BBC has a legacy auto-categorization system called CIS, which
was used to add annotations to local news. It contains terms about “proper names, subjects, brands, time
periods and places” (Kobilarov et al. 2009, p. 727). They decided to use CIS for annotating the BBC
programmes. CIS covers about 150’000 terms but it lacks of information about the relation of these

Patrick Muntwyler / Open data streams on the Web

Bachelor Thesis, University of Zurich, 2017 8

terms. For example, the relation between the terms Beijing and Beijing Olympics could not been ex-
plained by CIS.
To fix this and other lacks, Kobilarov et al. (2009) decided to search for a common set of web identifiers.
They decided to use DBpedia identifiers, given the popularity of this project and its central role in the
LOD cloud. Consequently, the vocabulary of DBpedia was used to connect the BBC domains. To match
the CIS terms with the DBpedia identifiers an algorithm was applied. Kobilarov et al. (2009) have an-
nounced to expand the successfully applied proceeding of the domain programmes to other BBC do-
mains to increase the connectivity of the microsites and thus to increase the potential of the BBC online
resources.

2.3 Streaming Linked Data
This chapter covers related work done in the field of streaming Linked Data. First of all, we present a
proposal for publishing data streams as Linked Data. This is followed by two projects done at the Uni-
versity of Ghent in Belgium. At the end of this chapter we introduce the framework TripleWave which
represents an important part of this Bachelor Thesis.
Barbieri & Della Valle (2010) mention that they are working on a query language, which can evaluate
continuous streams of RDF and static RDF graphs. The query language is called C-SPARQL. Barbieri
& Della Valle (2010) present in their position paper an extension of their C-SPARQL Engine. The C-
SPARQL Engine can stream Linked Data. The purpose of the extension is to make it easier for Web
applications to work with data streams.
The C-SPARQL Engine consumes data streams, RDF streams and RDF Graphs. Then a client can reg-
ister a continuous query, which evaluates over the incoming streams. It is even possible to remotely
register a query. Barbieri & Della Valle (2010) implemented a RESTful interface, which enables to
register new queries, start and stop them & to delete queries. The query results are published as Linked
Data by a special local C-SPARQL client named Streaming Linked Data Server. Thus the results can be
consumed by Linked Data clients (Barbieri & Della Valle 2010).
Barbieri & Della Valle (2010) also present a concept of how an RDF stream should be built. They
mention that an RDF stream consists of an ordered sequence of pairs. Every pair includes an RDF triple
and a time stamp. An RDF stream should be represented as named graphs. There are two sorts of named
graphs: the s-graphs (Stream Graphs) and the i-graphs (Instantaneous Graphs). An s-graph contains the
meta data about the current window of the stream. An i-graph represents the particular triples which
contain the same time stamp. In the proposal, they suggest how to build a named graph with the RDF
format. Moreover, they introduce a concept of how clients can define the different sorts of windows
(logical windows and physical windows) which should be used in the C-SPARQL query.
Barbieri & Della Valle (2010) note that the presented concepts better match the characteristics of streams
as other studies done in the field of streaming Linked Data. In particular the introduced concepts of the
windows and the representation of the named graphs as RDF suit the fact that streaming data are not
persistent but transient.
Heyvaert et al. (2016) present in their paper an approach of how linked sensor data can be generated by
using the RDF Mapping Language (RML) and a Triple Pattern Fragments (TPF) server. A special char-
acteristic of their approach is that it can be used for several data sources and the mapping is easily
reusable and modifiable. Heyvaert et al. (2016) describe the prototype as follows: An application con-
sumes the sensor data created by a Tessel module. RML mappings are stored on the TPF server, which
can be fetched by the application. Then the application uses the RML Mapper to apply the corresponding
RML mapping on the sensor data. As a result, the application receives the linked sensor data, which can
be forwarded to RDF-based applications.
Heyvaert et al. (2016) mention two challenges which their prototype can meet. The first challenge is to
find and use an RDF transformation which can handle different data sources in different data formats.
As sensor data normally originate from different sources with different data formats, it is important to

Patrick Muntwyler / Open data streams on the Web

Bachelor Thesis, University of Zurich, 2017 9

create a prototype which can handle this in a convenient way. RML makes that possible by “offering a
declarative way to define how data in multiple heterogeneous data sources is mapped to RDF triples”
(Heyvaert et al. 2016, p. 2). The second challenge they name is that requirements for applications can
change fast. To meet this challenge, the prototype must offer an easy way of how mappings for the
sensor streams can be changed. This is achieved by storing the RML mappings on the TPF server. This
means, that if changes are required, the user only must access the server and change the mapping. No
changes on the application itself are required due to the modularity of the prototype.
Taelman et al. (2016a) present an approach which builds on the above one. They describe an approach
of how sensor data can be consumed, converted to RDF, published and finally evaluated by a continuous
query. The sensor data are again generated by a Tessel sensor. The data can be easily readout because
Tessel offers a Node.js module for their sensors. This module returns the sensor data in the JSON format.
The transformation of the sensor data into linked sensor data as RDF is performed by the prototype
presented by Heyvaert et al. (2016).
In the third step, publishing the data, a time annotation is added to the linked sensor data. Thus the data
can be chronologically ordered. Taelman et al. (2016a) have decided to represent the data as RDF graph
because they have shown in a former paper (Taelman et al. 2016b) that this is the most efficient ap-
proach. A TPF server publishes these dynamic linked sensor data. One advantage of such a TPF server
is that a client application can easily set up a TPF Query Streamer. A TPF Query Streamer can evaluate
the data provided by a TPF server using a continuous query. Taelman et al. (2016a) also mention that
using a TPF server enables to store old linked sensor data, so that the history of the linked sensor data
can be analysed.
Mauri et al. (2016) present the framework TripleWave, which is used in this Bachelor Thesis and there-
fore plays an important role in it. TripleWave closes a gap by offering a flexible and generic solution
which is able to publish Linked Data streams on the Web. It was important for Mauri et al. (2016) that
their framework follows the Semantic Web standards, that the output data can be accessed in different
ways and that it is able to consider various data source configurations.
The requirements for TripleWave are influenced by real-world use cases. TripleWave can run in three
different modes. One mode allows TripleWave to consume a non-RDF stream which is then transformed
into an RDF stream. For example, the Wikimedia live stream, which shows the recent changes and is
available in JSON, can be taken as input. TripleWave then uses an easily customizable R2RML mapping
to transform the non-RDF input stream to an RDF stream serialized in the JSON-LD format17. The
second mode enables to stream out a static RDF data set which includes time annotations. The time
annotations are necessary to order the RDF data chronologically. Once the whole RDF data set is
streamed out, the execution of TripleWave has finished. The third mode streams out a static RDF data
set with time annotations in an endless loop. To do so, the time stamps of the RDF data are continually
increased and thus TripleWave can simulate an endless stream. This is especially useful for benchmark-
ing or testing applications.
Mauri et al. (2016) mention that the output stream of TripleWave is available as JSON-LD and follows
the Linked Data Principles. TripleWave follows the proposal of Barbieri & Della Valle (2010) men-
tioned above. This means that the RDF stream consists of a Stream Graph (s-Graph) and Instantaneous
Graphs (i-Graphs). The s-Graph can be accessed through an URL. The i-Graphs are the content of the
actual stream. The output stream of TripleWave is available in a push-based and a pull-based approach.
A push-based connection is established by using WebSockets. All these characteristics show that Tri-
pleWave is a flexible framework and therefore it can be used in various scenarios.

17 https://json-ld.org/ (accessed 11.7.2017)

Patrick Muntwyler / Open data streams on the Web

Bachelor Thesis, University of Zurich, 2017 10

2.4 Kafka and Thrift
The approaches we mention in Section 2.3 “Streaming Linked Data” are prototypes developed in re-
search projects. There are more solid frameworks which are used by companies for production services.
This section introduces Apache Kafka and Apache Thrift. Kafka is a well-known framework for pro-
cessing huge amounts of data in near real-time. We use Kafka to coordinate a cluster of several OGD
streams and thus is another important resource for this thesis. We use Apache Thrift as a JSON-LD
alternative to serialize RDF streams.
Kreps, Narkhede & Rao (2011) present Kafka, a framework used at LinkedIn for log processing. Kafka
was developed because the available messaging systems did not meet the requirements which LinkedIn
needed for real-time log processing. Applications like Cloudera’s Flume, Yahoo’s Data Highway or
Facebook’s Scribe were developed for collecting the log data from the client applications and then for-
ward them into Hadoop or data warehouses for offline evaluation. But LinkedIn wanted an application
which is able to not only make these huge amounts of log data available for offline consumption, but
also can provide these data in near real time to different applications. The result of implementing these
requirements is Kafka, a distributed and highly scalable framework for processing huge amounts of data.
Kreps, Narkhede & Rao (2011) express the Design Principle of Kafka as follows: streams of related
messages which pass Kafka are defined by topics. Producers are able to send messages to the Kafka
cluster associating them to certain topics. The Kafka cluster consists of servers (called brokers) which
store these messages. A partition is the smallest entity of parallelism in Kafka. A topic can be divided
into several partitions which then are distributed among the brokers. This enables to process data about
a certain topic in parallel over several brokers. A consumer or a consumer group is able to consume data
from the Kafka cluster through a pull mechanism by subscribing to the desired topic. A consumer group
consists of several consumers, which altogether consume the data of a certain topic. Design decisions
were made in a way such that messages require as few overhead as possible and that the Kafka cluster
has to do as few coordination as possible to achieve high throughput. For example, it was decided that
the brokers are stateless, meaning that the brokers do not coordinate the consumer or the consumer
groups. There is no central master node implemented. Instead, Kafka uses Zookeeper18 for coordinating
the components. Also the storage and the transfer of the data are kept as easy and efficient as possible
through certain design decisions.
Kreps, Narkhede & Rao (2011) decided that Kafka does not guarantee exactly-once delivery, as this
would require a two-phase commit. This would lead to more complexity which would decrease the
throughput. Kafka instead guarantees at-least-once delivery. Usually the data are delivered exactly-once.
Only if consumers crash there is the possibility that some messages are delivered twice. At the time
Kreps, Narkhede & Rao (2011) published their paper, LinkedIn processed every day hundreds of giga-
bytes of log data. The advantage of Kafka providing high scalability and high throughput outweighs the
fact that there is the chance some data can be duplicated.
Wang et al. (2015) present in their short paper the extension of Kafka into a replicated logging system.
Before this extension the data in Kafka were not replicated. If a Kafka broker crashed and its storage
was damaged, all the data which was not consumed was lost. To minimize this risk, Kafka was extended
into a replicated logging system.
To do so Wang et al. (2015) mention two needed requirements. First, a protocol is necessary which
keeps the replicated logs on the different severs consistent. That means, the replicated logs must have
the same content in the same order among the distributed servers. It was decided to implement message
log replication “with the key idea of separating the key elements of a consensus protocol such as leader
election and membership changes from log replication itself” (Wang et al. 2015, p. 1654). With such an
approach the log format is less complex and more flexibility is achieved. The second requirement names
a mechanism to truncate the replicated logs to prevent them from growing endlessly. Until this extension

18 https://zookeeper.apache.org/ (accessed 11.7.2017)

Patrick Muntwyler / Open data streams on the Web

Bachelor Thesis, University of Zurich, 2017 11

Kafka included only a truncation mechanism which based on time or space windows. These approaches
are not sufficient for key-based logs, since the system may need only the newest data. Therefore, in
Kafka 0.8.1 an additional mechanism was introduced which handles the truncation of replicated key-
based log entries.
Vineet & Xia (2017) compare in their paper the performance of the two distributed message brokers,
Kafka and RabbitMQ. One big difference between Kafka and RabbitMQ shall be remarked at this point.
In Kafka the design principles prefer throughput over reliability. In RabbitMQ, it is the opposite case.
RabbitMQ uses the AMPQ protocol which was designed for usage in the financial and banking sector.
Thus reliability takes priority in RabbitMQ because loosing financial transactions should not happen.
Vineet & Xia (2017) built a testbed which contained five similar nodes. They performed two different
kinds of benchmark tests. The first measured the performance of a single producer/consumer pair when
the number of nodes changes (from one to five). The workload in this test was constant. The other test
measured the performance using a constant number of nodes and changing the number of producer and
consumers. In each case the throughput and latency were measured. The results show that Kafka can
handle more throughput than RabbitMQ but RabbitMQ has generally the lower latency. The higher
throughput of Kafka is explained with certain design decisions made in Kafka like using the SendFile
API, the sequential disk writing and the out-of-the-box batching. All these characteristics support higher
throughput. RabbitMQ can achieve the lower latency because in the default configuration no disk writ-
ing is executed and the connection between the broker and consumer is established by a push model.
Vineet & Xia (2017) conclude that the characteristics throughput and reliability are crucial when choos-
ing one of these two systems. If an at-least-once delivery is sufficient, then they recommend choosing
Kafka. But if reliability is more important than throughput, then one should choose an application which
uses the AMPQ protocol like RabbitMQ.
Slee, Agarwal & Kwiatkowski (2007) introduce in their paper the framework Apache Thrift, which was
developed at Facebook. Thrift is a serialization, deserialization and RPC framework. Facebook has a lot
of services implemented in different programming languages. This created the challenge of implement-
ing high-performance connections between different languages. Because no satisfying framework was
available, Facebook decided to develop its own.
Slee, Agarwal & Kwiatkowski (2007) explain that in a thrift file one can define attributes, objects and
interfaces for functions. There are some basic types available which can be used to define attributes.
These types are usually available in any language. There are also lists, sets and maps available which
are called containers. Using these containers and base types, structs can be defined, which are like ob-
jects in object-oriented languages. The interfaces for functions are called services. Thrift also allows
creating exceptions. When a developer has defined the desired structs and services, the Thrift compiler
can be used to generate files in various languages which implement the defined structs and contain stubs
for the interfaces. Thrift supports now over 15 different programming languages19. Thrift handles the
serialization and deserialization of the data into the desired languages and also manages the transport
between the applications. An application developer only has to write the thrift file with the struct and
service definition, compile that file and implement the generated interfaces. All the rest is handled by
Thrift.
Slee, Agarwal & Kwiatkowski (2007) described that Thrift is used in several Facebook services like
Facebook search and logging, because the backend systems are written in languages like C++ and Py-
thon but the Frontend is written in PHP. Thrift allows the developer to focus on writing the applications
ignoring the challenge of connecting applications written in different languages. Other big companies
like Cloudera, Evernote, Siemens or Uber use Thrift in their production services20.

19 https://thrift.apache.org/lib/ (accessed 14.6.2017)
20 https://thrift.apache.org/about (accessed 14.6.2017)

Patrick Muntwyler / Open data streams on the Web

Bachelor Thesis, University of Zurich, 2017 12

3 A survey of streaming data in German-language Open Gov-
ernment Data

This chapter gives a survey of available streaming data in Swiss Open Government Data with some
extra data sets from German and Austrian OGD portals. The chapter is built as follows: in Section 3.1
there is a short introduction of the 5-star open data scheme proposed by Tim Berners-Lee. Section 3.2
describes our approach of how the data sets were found which are presented and analysed afterwards.
The result of this chapter is a survey with the identified data sets qualified as possible streaming data.

3.1 5-Star open data
In 2010, Tim Berners-Lee, who is known as the inventor of the Web, developed a 5-star open data
scheme. The higher an open data set is rated corresponding to this scheme, the more valuable the open
data set becomes. The different levels build on each other. This means that 2 stars’ open data must fulfil
the criteria for 1-star open data plus the additional criteria for the second star. The following description
of this 5-star open data rating system bases on Tim Berners-Lee’s rating system21 and we add examples
for better understanding:
1 star: the idea of the first level of this open data rating system is that the data provider publishes his

data under an open license. The format is not important; the main point is that the data are
published under an open license and thus can be used by any other user. As an example, let’s
consider the data set published at: https://www.govdata.de/web/guest/suchen/-/details/statis-
tisches-jahrbuch-2009-ulm (accessed 16.5.2017). This data set is available under an open li-
cense (CC-BY) and in the format of some PDFs. Therefore, it can be used by anyone but it is
not machine readable.

2 stars: the open data set gets a second star if it is published in a machine-readable way. For example,
if the data provider publishes tabular data in the format of an Excel file instead of an image scan
of the table, the document is a candidate for the second star. The data set published at the fol-
lowing link is an example for 2 stars’ open data: https://data.stadt-zuerich.ch/dataset/wir-
preise-zik-basis-dez2010 (accessed 16.5.2017).

3 stars: the meaning of this level is that the data are available in a non-proprietary format, so that the
data use is not depending on owning a certain program to read the data. This is the case if data
are for example published in a txt format instead of using a MS Word file. A good example for
a 3 stars’ open data set is following link: https://data.stadt-zuerich.ch/dataset/vbz_fahr-
plandaten_gtfs (accessed 16.5.2017).

4 stars: to raise open data to a 4 stars’ level, the data set must use URIs to label the entities which are
mentioned in the data set. There are open standards from the W3C (e.g. RDF) which describe
how this requirement can be implemented. At the best of our knowledge no German-language
Open Government Data files have this level of open data.

5 stars: this is the highest level of open data and provides the biggest benefits for the open data users.
To reach this level, the provider must link the data to other data to create context. If this is
done, the machine which uses the data has the possibility to access other data sets with related
information which are also linked to other data sets and is therefore able to produce results with
higher quality. An example is available at: https://opendata.swiss/de/dataset/bibliografische-
daten-rdf (accessed 16.5.2017).

The following image illustrates these five different levels of open data:

21 https://www.w3.org/DesignIssues/LinkedData.html (accessed 16.5.2017)

Patrick Muntwyler / Open data streams on the Web

Bachelor Thesis, University of Zurich, 2017 13

Figure 1: 5-star open data rating system illustrated as an image, source: (Hausenblas, 2015)

3.2 Available streaming data in German-language Open Government
Data

To select specific real-time streams or data sets to be streamed out to the Web, we must first analyse the
available OGD and then build a survey. The scope of the analysis is limited to the Swiss OGD with
some extra search performed in the German and Austrian OGD portals. In this section the results of
analysing the German-language OGD are presented. Section 3.2.1 describes how and which OGD por-
tals were examined. Section 3.2.2 shows and explains the survey table which is the result of the exami-
nation. In Section 3.2.3 we analyse the survey.

3.2.1 Approach of searching thoroughly the Open Government Data portals
This section describes how we examined the Open Government Data portals. As a result of this exami-
nation, we build a survey table which contains data sets that are characterized by high dynamicity. This
survey table is a valuable resource for further research in the areas of OGD and Stream Processing. To
not go beyond the scope of this Bachelor Thesis the searching for potential streaming data is mainly
restricted to the Swiss OGD portals with some additional search performed in the German and Austrian
OGD portals.
In the first step we examined the following two sites:

• https://data.stadt-zuerich.ch/ (accessed 15.5.2017)
• https://opendata.swiss/de/ (accessed 15.5.2017)

Data sets which are especially suitable for getting streamed out to the Web contain real-time data. To
find such data sets, we searched for the following keywords:

• real-time
• real time
• Echtzeit (real time)
• echtzeit (real time)
• live

Patrick Muntwyler / Open data streams on the Web

Bachelor Thesis, University of Zurich, 2017 14

We manually checked the data sets that we found, if they are suitable for getting used as streaming data.
That means, the data sets should change or be updated frequently. The resulting data sets are the follow-
ing ones (the characters in the brackets after the titles represent the short names of the data sets which
can be looked up in Table 1; after the brackets we give an English translation of the titles):

• Parkleitsystem: Echtzeitinformationen zu freien Parklplätzen in verschiedenen Parkhäusern
(CPZH) – Parking guidance system: real-time data about free parking spaces in different parking
facilities

• Verfügbarkeit der Velos von "Züri rollt" (real time) (ZR) – Availability of bicycles from "Züri
rollt" (real time)

• Wassertemperatur Freibäder (WTZH) – Water temperature of open air swimming pools
• Stündlich aktualisierte Luftqualitätsmessungen (HAQMZH) – Hourly updated air quality meas-

urements
• Echtzeitdaten am Abstimmungstag (VDZH) – Real-time data at voting days

Since we found only five data sets, we manually examined the two OGD sites. For the OGD portal of
Zurich we examined all data sets. For the OGD portal of Switzerland we did not examine all the data
sets because of the high number of available data sets. The focus of this manual examination was on
data sets which are updated frequently and contain records with time stamps. This is because data sets
which are not updated at all or are updated only rarely are not interesting for getting streamed out. Such
data sets rarely deliver new data if at all.
The time stamp is important to order the records in the data set. It came out that particularly data sets
from the categories mobility and environment fulfil these two criteria. We have found the following data
sets:

• Monatlich aktualisierte Luftqualitätsmessungen (seit 2012) (MAQMZH) – Monthly updated air
quality measurements (since 2012)

• Täglich aktualisierte Luftqualitätsmessungen (TAQMZH) – Daily updated air quality measure-
ments

• Daten der automatischen Fussgänger- und Velozählung – Viertelstundenwerte (TCZH) – Data
of automatic pedestrians and cyclists count – quarter-hourly values

• Fahrzeiten der VBZ im Soll-Ist-Vergleich (PTZH) – Target-actual comparison of VBZ’s travel
times

• Messwerte der Wetterstationen der Wasserschutzpolizei Zürich (WSZH) – Weather measure-
ments of Zurich Water Police

• «Züri wie neu» - Meldungen (ZWNZH) – «Züri wie neu» - reports
• Messdaten SMN Niederschlag (SMNRCH) – Measurement data SMN rainfall
• Messdaten SMN (SMNCH) – Measurement data SMN

To find more suitable data sets we spread the searching to the following two public transportation sites:
• https://opentransportdata.swiss/en/ (accessed 15.5.2017)
• https://data.sbb.ch/explore/?sort=modified (accessed 15.5.2017)

The number of published data sets on these two portals is not too big so we manually examined them
and without keywords. The focus was again on data sets which are updated frequently and which contain
time stamps. We found the following data sets:

• Trip forecast (TFCH)
• Departure / arrival display (DADCH)
• Actual Data (ADSBB)

Patrick Muntwyler / Open data streams on the Web

Bachelor Thesis, University of Zurich, 2017 15

• Actual Data – History (ADHSBB)
• Actual Data - Previous Day (ADPDSBB)

To find further Swiss data sets we looked for other OGD portals. The goal was to find portals which are
maintained by German-language cities in Switzerland. If Zurich maintains such a portal, then we hy-
pothesized that other cities do it as well. We searched for portals of German-language cities with more
than 30’000 inhabitants according to Wikipedia22 and for portals of the main cities of the German-lan-
guage Cantons of Switzerland. But we did not find additional useful OGD portals.
We then spread the examination for suitable data sets to some OGD sites of Germany and Austria. These
portals can be viewed by calling the following links:

• https://www.govdata.de/ (accessed 15.5.2017)
• https://www.data.gv.at/ (accessed 15.5.2017)

We repeated the search by the following keywords:
• real-time
• real time
• Echtzeit (real time)
• Echtzeit (real time)
• live

We have found 22 data sets and we manually checked them. The resulting data sets are the following
ones:

• Stadt Moers: Parkleitsystem Moers (CPMDE) – City of Moers: Parking guidance system Moers
• Stadt Bonn: Parkhäuser (Parkhausbelegung) (CPBDE) – City of Bonn: Car parks (car park

occupancy)
• Stadt Bonn: aktuelle Strassenverkehrslage (CTBDE) – City of Bonn: current road situation
• Lufttemperatur T (ATDE) – Air temperature T
• Wiener Linien – Echtzeitdaten (WPTAU) – Vienna’s public transportation routes – real-time

data
• Parkplätze in der Stadt Salzburg (CPSAU) – Car parks in the city of Salzburg

The survey table shows after this step a reasonable number of potential streaming data sets. So we did
not do further manual examination. We did also not search for further OGD portals of German or Aus-
trian cities. This would go beyond the scope of this Bachelor Thesis. As written above not all OGD
portals were fully examined thus the survey table (see Tables 1-6) is non-exhaustive. It is a solid starting
point for further research and can or should be extended if needed.

3.2.2 Description of the survey table
This section presents the results of our survey. A tabular representation is available in Tables 1-6. We
describe the columns of the tables and give comments to certain data sets if necessary.
The first column is called Title. It contains the title of the found data sets. If the title is used to search
for the corresponding data set on the corresponding portal, then the user will be redirected to this data
set.

22 https://de.wikipedia.org/wiki/Liste_der_St%C3%A4dte_in_der_Schweiz (accessed 15.5.2017)

Patrick Muntwyler / Open data streams on the Web

Bachelor Thesis, University of Zurich, 2017 16

Table 1: Survey Table Part 1

Short	name Title
Swiss	Open	Government	Data:
CPZH Parkleitsystem:	Echtzeitinformationen	zu	freien	Parklplätzen	in	verschiedenen	Parkhäusern
ZR Verfügbarkeit	der	Velos	von	"Züri	rollt"	(real	time)
WTZH Wassertemperatur	Freibäder
MAQMZH Monatlich	aktualisierte	Luftqualitätsmessungen	(seit	2012)
TAQMZH Täglich	aktualisierte	Luftqualitätsmessungen
HAQMZH Stündlich	aktualisierte	Luftqualitätsmessungen
TCZH Daten	der	automatischen	Fussgänger-	und	Velozählung	-	Viertelstundenwerte
PTZH Fahrzeiten	der	VBZ	im	Soll-Ist-Vergleich
WSZH Messwerte	der	Wetterstationen	der	Wasserschutzpolizei	Zürich
ZWNZH «Züri	wie	neu»	-	Meldungen
VDZH Echtzeitdaten	am	Abstimmungstag
SMNRCH Messdaten	SMN	Niederschlag
SMNCH Messdaten	SMN
TFCH Trip	forecast
DADCH Departure	/	arrival	display
ADSBB Actual	Data
ADHSBB Actual	Data	-	History
ADPDSBB Actual	Data	-	Previous	Day
German/Austrian	Open	Government	Data:
CPMDE Stadt	Moers:	Parkleitsystem	Moers
CPBDE Stadt	Bonn:	Parkhäuser	(Parkhausbelegung)
CTBDE Stadt	Bonn:	aktuelle	Strassenverkehrslage
ATDE Lufttemperatur	T
WPTAU Wiener	Linien	-	Echtzeitdaten
CPSAU Parkplätze	in	der	Stadt	Salzburg
Outlook:
GTFSR GTFS	Realtime

Patrick Muntwyler / Open data streams on the Web

Bachelor Thesis, University of Zurich, 2017 17

Table 2: Survey Table Part 2

Short	name Provider License
Swiss	OGD:
CPZH Open	Data	Zürich Creative	Commons	CCZero
ZR Open	Data	Zürich Creative	Commons	CCZero
WTZH Open	Data	Zürich Creative	Commons	CCZero
MAQMZH Open	Data	Zürich Creative	Commons	CCZero
TAQMZH Open	Data	Zürich Creative	Commons	CCZero
HAQMZH Open	Data	Zürich Creative	Commons	CCZero
TCZH Open	Data	Zürich Creative	Commons	CCZero
PTZH Open	Data	Zürich Creative	Commons	CCZero
WSZH Open	Data	Zürich Creative	Commons	CCZero
ZWNZH Open	Data	Zürich Creative	Commons	CCZero
VDZH Statistisches	Amt	Kanton	Zürich https://opendata.swiss/en/terms-of-use/
SMNRCH Bundesamt	für	Meteorologie	und	Klimatologie	MeteoSchweiz https://opendata.swiss/en/terms-of-use/
SMNCH Bundesamt	für	Meteorologie	und	Klimatologie	MeteoSchweiz https://opendata.swiss/en/terms-of-use/
TFCH opentransportdata.swiss https://opentransportdata.swiss/en/terms-of-use/
DADCH opentransportdata.swiss https://opentransportdata.swiss/en/terms-of-use/
ADSBB opentransportdata.swiss https://opentransportdata.swiss/en/terms-of-use/
ADHSBB SBB https://data.sbb.ch/page/licence/
ADPDSBB SBB https://data.sbb.ch/page/licence/
DE/AU	OGD:
CPMDE Stadt	Moers CC	BY-NC-SA	4.0
CPBDE Stadt	Bonn cc-by-nc
CTBDE Stadt	Bonn Creative	Commons	Namensnennung	(CC-BY)
ATDE Landesamt	für	Natur,	Umwelt	und	Verbraucherschutz	NRW Datenlizenz	Deutschland	Namensnennung	2.0
WPTAU Stadt	Wien Creative	Commons	Namensnennung	3.0	Österreich
CPSAU Stadt	Salzburg Creative	Commons	Namensnennung	3.0	Österreich
Outlook:
GTFSR opentransportdata.swiss https://opentransportdata.swiss/en/terms-of-use/

Patrick Muntwyler / Open data streams on the Web

Bachelor Thesis, University of Zurich, 2017 18

Table 3: Survey Table Part 3

Short	name Link
Swiss	OGD:
CPZH https://data.stadt-zuerich.ch/dataset/parkleitsystem

ZR https://data.stadt-zuerich.ch/dataset/mietvelo-verfuegbarkeit

WTZH https://data.stadt-zuerich.ch/dataset/wassertemperaturen-freibaeder

MAQMZH https://data.stadt-zuerich.ch/dataset/luftqualitaet-historisierte-messungen

TAQMZH https://data.stadt-zuerich.ch/dataset/luftqualitaet-tages-aktuelle-messungen

HAQMZH https://data.stadt-zuerich.ch/dataset/luftqualitaet-stunden-aktuelle-messungen

TCZH https://data.stadt-zuerich.ch/dataset/verkehrszaehlungen-werte-fussgaenger-velo

PTZH https://data.stadt-zuerich.ch/dataset/vbz-fahrzeiten-ogd

WSZH https://data.stadt-zuerich.ch/dataset/sid_wapo_wetterstationen

ZWNZH https://data.stadt-zuerich.ch/dataset/zueriwieneu-meldungen

VDZH https://opendata.swiss/de/dataset/echtzeitdaten-am-abstimmungstag

SMNRCH https://opendata.swiss/de/dataset/messdaten-smn-niederschlag-swissmetnet

SMNCH https://opendata.swiss/de/dataset/messdaten-smn-swissmetnet

TFCH https://opentransportdata.swiss/en/dataset/fahrtprognose

DADCH https://opentransportdata.swiss/en/dataset/aaa

ADSBB https://opentransportdata.swiss/en/dataset/istdaten

ADHSBB https://data.sbb.ch/explore/dataset/ist-daten-history/

ADPDSBB https://data.sbb.ch/explore/dataset/actual-data-sbb-previous-day/

DE/AU	OGD:
CPMDE https://www.govdata.de/web/guest/suchen/-/details/parkleitsystem-moers-odp

CPBDE https://www.govdata.de/web/guest/suchen/-/details/parkhaeuser-bn

CTBDE https://www.govdata.de/web/guest/suchen/-/details/aktuelle-strassenverkehrslage-innenstadt-bn

ATDE https://www.govdata.de/web/guest/suchen/-/details/kontiluqs-t

WPTAU https://www.data.gv.at/katalog/dataset/add66f20-d033-4eee-b9a0-47019828e698

CPSAU https://www.data.gv.at/katalog/dataset/9087fe9a-1dd4-49a1-98b4-8a8c659eb64f

Outlook:
GTFSR https://opentransportdata.swiss/en/dataset/gtfsrt

Patrick Muntwyler / Open data streams on the Web

Bachelor Thesis, University of Zurich, 2017 19

Table 4: Survey Table Part 4

Short	name Real-time Publication	Frequency	of	Data	Set Update	Frequency	of	Data	Set Precision	of	Time	Stamp
Swiss	OGD:
CPZH yes continuous continuous second
ZR yes continuous continuous no
WTZH no at	least	2	times	a	day at	least	2	times	a	day minute
MAQMZH no monthly daily day
TAQMZH no daily daily day
HAQMZH no hourly hourly minute
TCZH no weekly every	15	minutes second
PTZH no weekly n/A second
WSZH no every	10	minutes every	10	minutes second
ZWNZH no weekly n/A day
VDZH yes continuous continuous no
SMNRCH no every	10	minutes every	10	minutes minute
SMNCH no every	10	minutes every	10	minutes minute
TFCH yes continuous continuous second
DADCH yes continuous continuous second
ADSBB no daily n/A second
ADHSBB no daily n/A second
ADPDSBB no daily n/A second
DE/AU	OGD:
CPMDE yes continuous continuous no
CPBDE yes continuous continuous minute
CTBDE no every	5	minutes every	5	minutes second
ATDE no daily hourly second
WPTAU yes continuous continuous no
CPSAU no every	5	minutes every	5	minutes minute
Outlook:
GTFSR yes continuous continuous second

Patrick Muntwyler / Open data streams on the Web

Bachelor Thesis, University of Zurich, 2017 20

Table 5: Survey Table Part 5

Short	name Number	of	Records Representation Number	of	Stars
Swiss	OGD:
CPZH 37 XML	RSS-Feed 3
ZR 8 XML 3
WTZH 16 XML 3
MAQMZH 2k CSV 3
TAQMZH 30 CSV 3
HAQMZH 169 CSV 3
TCZH 1-2M	per	year;	since	2009 CSV 3
PTZH 1-2M	per	week;	since	2015 CSV 3
WSZH n/A JSON 3
ZWNZH 10k GeoJson,	KMZ,	WMS,	WFS,	GPKG,	XML 3
VDZH 183 JSON 3
SMNRCH 96 CSV 3
SMNCH 113 CSV 3
TFCH n/A XML 3
DADCH n/A XML 3
ADSBB 100k-1M CSV 3
ADHSBB 1-10M CSV,	JSON,	Excel,	GeoJson,	KML 3
ADPDSBB 10-100k CSV,	JSON,	Excel,	GeoJson,	KML 3
DE/AU	OGD:
CPMDE 13 XML 3
CPBDE 6 XML 3
CTBDE 93 GeoJson 3
ATDE 9k CSV 3
WPTAU n/A JSON 3
CPSAU 30 GML,	JSON,	CSV,	ESRI	Shapefile,	KML,	GeoRSS 3
Outlook:
GTFSR n/A JSON,	XML 3

Patrick Muntwyler / Open data streams on the Web

Bachelor Thesis, University of Zurich, 2017 21

Table 6: Survey Table Part 6

Short	name Comment
Swiss	OGD:
CPZH
ZR
WTZH Only	updated	in	the	summer
MAQMZH
TAQMZH
HAQMZH
TCZH
PTZH
WSZH API:	no	registration	necessary
ZWNZH There	is	an	Open311	API	available
VDZH Only	updated	at	election	day
SMNRCH Download	link	for	data	set:	http://data.geo.admin.ch/ch.meteoschweiz.swissmetnet-niederschlag/VQHA70.csv
SMNCH Download	link	for	data	set:	http://data.geo.admin.ch/ch.meteoschweiz.swissmetnet/VQHA69.csv
TFCH API:	registration	necessary
DADCH API:	registration	necessary
ADSBB
ADHSBB Data	set	can	be	exported	or	accessed	by	API
ADPDSBB Data	set	can	be	exported	or	accessed	by	API
DE/AU	OGD:
CPMDE
CPBDE
CTBDE
ATDE Temperature	of	Nordrhein-Westfalen
WPTAU API:	registration	necessary
CPSAU Only	3	of	the	30	records	are	certainly	updated	every	5	minutes.	Poor	Quality
Outlook:
GTFSR Beta	version	published	on	22.5.2017.	Not	all	services	are	already	available.	Only	two	calls	per	minute	allowed

Patrick Muntwyler / Open data streams on the Web

Bachelor Thesis, University of Zurich, 2017 22

The column Provider shows the organisation that provides the data set. Column License contains the
license or the terms of use under which a data set is published. If the license has a specific name, then
this name is represented e.g. Creative Commons CCZero. In other cases, the link to the license or to the
terms of use is represented. The OGD portal describes the duties in words which come along with the
usage of their data sets and must be looked up under the given link.
The column Link contains the URL that redirects the user to the Web site where the data set is hosted.
If the data set is available on more than one portal, the link is given to that portal, which is more specific.
For example, the data set Parkleitsystem: Echtzeitinformationen zu freien Parklplätzen in verschiedenen
Parkhäusern is available under the link https://data.stadt-zuerich.ch/dataset/parkleitsystem as well as
under the link https://opendata.swiss/de/dataset/parkleitsystem-echtzeitinformation-zu-freien-parkplat-
zen-in-verschiedenen-parkhausern. Since the city of Zurich is the provider of this data set, the column
contains the URL to the data set on the OGD portal of Zurich.
The column Real-time describes if the data set contains real-time data according to the provider. If this
is the case, then the columns Publication Frequency of Data Set and Update Frequency of Data Set
contain the value continuous.
The column Publication Frequency of Data Set describes in which time interval a data set is published.
For example, if there is written hourly, then the data set is normally published once an hour. The next
column, named Update Frequency of Data Set, describes how often the data set is updated by the pro-
vider. Not all providers publish their data set after each update. For example, the data set Daten der
automatischen Fussgänger- und Velozählung – Viertelstundenwerte contains records for every 15
minutes (which means that updates respectively new records are added every 15 minutes), but the data
set is published only once a week.
The column Precision of Time Stamp relates to the records’ time stamps, and contains the smallest unit
of the time stamp. For example, the term second means that the time stamp contains seconds as smallest
unit. If a data set’s records do not have time stamps, then there is written no.
The column Number of Records describes the size of a data set. If a data set contains information about
objects, then the number of objects is listed in this column. For example, the data set Parkleitsystem:
Echtzeitinformationen zu freien Parklplätzen in verschiedenen Parkhäusern contains information about
parking spots in Zurich. So the column contains the number of parking spots. Such data sets contain a
small number of entities (<1000) and the number does normally not change. This is why we have written
down the exact number of entities respectively objects. The other data sets are much bigger and contain
more than 1000 records. Often the number of records changes over time and therefore only the order of
magnitude of the number of records is given.
The column Representation describes in which format a data set is available. If there are more than one
format, all of them are reported.
The column Number of Stars contains the level of open data as described in Section 3.1.
The last column, Comments, contains additional notes if necessary. Following, we explain the comments
more detailed:

• Wassertemperatur Freibäder (WTZH): This data set is only updated in summer, because it de-
scribes the water temperature of the outdoor pools in the city of Zurich. So a seasonal streaming
would be interesting whereas streaming the data the whole year would not make a lot of sense.

• Echtzeitdaten am Abstimmungstag (VDZH): This data set includes the results at voting days. It
is updated only in these days. Maintaining a stream at the voting days would increase the usa-
bility of those data, but for this Bachelor Thesis it is not of big use, because at most of the time
no evaluation can be made.

• «Züri wie neu» - Meldungen (ZWNZH): This data set can be downloaded in several formats or
can be accessed by API. The API uses the Open311 standard.

Patrick Muntwyler / Open data streams on the Web

Bachelor Thesis, University of Zurich, 2017 23

• Messdaten SMN Niederschlag (SMNRCH) & Messdaten SMN (SMNCH): The comment con-
tains the direct downloading link for the corresponding data set. This is because it is tricky to
find these download links. If one wants to download the data set, the link on the
https://opendata.swiss platform redirects the user to http://data.geo.admin.ch. There one has to
find the relating link and to download a package which includes a ReadMe file. In this ReadMe
file the download link is available.

• Trip forecast (TFCH) & Departure / arrival display (DAPCH): The data of these two data sets
can only be accessed by API calls. The user has to register to be able to access this API.

• Actual Data – History (ADHSBB) & Actual Data - Previous Day (ADPDSBB): These two data
sets are offered by SBB (Schweizerische Bundesbahnen), which runs the biggest part of the rail
network in Switzerland. It offers data sets in two ways: As data dumps to be downloaded, or as
data accessible through API calls. The latter makes sense if only parts of the whole data sets are
needed because the whole data sets contain quite a big number of records.

• Lufttemperatur T (ATDE): This data set contains the temperature measurements of the state
Nordrhein-Westfalen. This is noted, because at first glance it is not clear, from where these
temperature data originate.

• Wiener Linien – Echtzeitdaten (WPTAU): This data set can only be accessed through API calls.
To be able to make those calls, the user has to fill out a registration form and has to mention the
reason why he/she wants access. In our case, the registration form was processed within 24
hours.

• Parkplätze in der Stadt Salzburg (CPSAU): This data set suffers from poor quality. Out of 30
records, only three were real-time updated. But this data set is mentioned on the list, because
maybe the quality increases in future, so the benefit of using it will also increase.

There is one data set listed at the very bottom of the survey table. The https://opentransportdata.swiss
portal has released a beta version of this API on 22nd Mai 2017. There are not all services available yet.
A registration is needed to get access to this API. The API provides GTFS real-time data23. It is possible
to submit two calls per minute. This real-time feed contains all known changes for the public transpor-
tation of Switzerland including a time window of three hours for all public transportation companies
which provide real-time data.

3.2.3 Analysis of the survey table
We analyse in this section the survey illustrated in Tables 1-6. As mentioned above it is possible that
we did not find all data sets which are suitable for being streamed out to the Web. So the analysis done
in this chapter is not representative for the entirety of potential open streaming data sets available in the
German-language open data portals.
The table contains 25 data sets. 19 data sets originate from Swiss open data portals, four data sets are
German ones and two data sets were found on the Austrian open data portal.
Figure 2 shows how many data sets were found on which open data portal. We found ten of 25 data sets
on the open data Zurich portal. This is 40% of all found data sets. There are several reasons why the
amount of open data Zurich data sets is that high. There are three open data portals which we fully
examined, and the one of Zurich is the biggest by far. There is a chance that the open data portals of
Switzerland, Germany and Austria provide more useful data sets than listed in the survey table but we
did not find them. Another reason why 40% of the found data sets are from open data Zurich is that most
of them are available on both portals, the open data Swiss and open data Zurich portal. As mentioned
before, if we found a data set on several portals, then the one is annotated which is more specific. If we
would not handle it like this, the number of open data Swiss data sets would be higher.

23 https://developers.google.com/transit/gtfs-realtime/ (accessed 22.5.2017)

Patrick Muntwyler / Open data streams on the Web

Bachelor Thesis, University of Zurich, 2017 24

Figure 2: Origin of the data sets

As shown in Figure 3, twelve of 25 data sets hold less than 1000 records. This means, that they contain
data about specific objects, like parking spots or weather measure stations. Eight of the other data sets
contain much more than 1000 records. Their records mostly include information about public transport.
Five of 25 data sets have an unknown number of records. This is because they can only be accessed by
API calls. These API calls must contain specific parameters, so not the whole data sets can be fetched.

Figure 3: Number of records

Figure 4 shows the publication frequency of the data sets. Eight of 25 (32%) data sets contain continu-
ously updated data. This means that these data are real-time. Five of 25 data sets are published in an
interval of ten minutes or less. This means that more than 50% of the found data sets can be fetched
every 10 minutes and contain new data which can be streamed out to the Web. Two data sets are listed
under the category “others”. These are the data sets Wassertemperatur Freibäder and Echtzeitdaten am
Abstimmungstag because they are update sporadically. Only four of 25 data sets which we considered
are updated less frequent than daily. So 19 of 25 data sets (76%) are updated at least once a day.

10; 40%

3; 12%
4; 16%

2; 8%

4; 16%

2; 8%

Origin	of	the	Data	Sets

Open	Data	Zurich

Open	Data	Swiss

Open	Data	Transport	Swiss

Open	Data	SBB

Open	Data	Germany

Open	Data	Austria

48%

32%

20%

Number	of	Records

<1000
>1000
n/A

Patrick Muntwyler / Open data streams on the Web

Bachelor Thesis, University of Zurich, 2017 25

Figure 4: Publication frequency

Figure 5 shows how often the data sets are represented in which format. If a data set can be fetched in
different formats, all of them are enumerated in this figure. This means that the number of representa-
tions is more than 25, which represents the number of found data sets. The most commonly used data
format is CSV. Twelve data sets are available as CSV file. This means that the whole data set can be
downloaded. XML is the second most commonly used data format followed by JSON and GeoJSON
which is a specific open standard format of JSON. All of the 25 data sets can be fetched in the format
of CSV, XML, JSON, GeoJSON or as XML RSS-Feed which are all non-proprietary data formats. In
combination with an open license, which all of the found data sets contain, makes them to 3-stars open
data, according to the 5-star open data rating system described in Section 3.1. The remaining data for-
mats in Figure 5 occur rarely in the survey table and belong to some particular data sets.

Figure 5: Representation

8; 32%

5; 20%
1; 4%

5; 20%

4; 16%
2; 8%

Publish	Frequency

continuous

<=	10	minutes
hourly

dayli

>	24	hours

others

0

2

4

6

8

10

12

14

Representation

Patrick Muntwyler / Open data streams on the Web

Bachelor Thesis, University of Zurich, 2017 26

4 Transforming data into RDF
The goal of this Bachelor Thesis is to increase the number of open data streams on the Web. Addition-
ally, the open data streams should be published according to the Linked Data Principles. This chapter
describes the implemented components and their interaction to achieve the goals.
As we described in Chapter 2, TripleWave is a framework which transforms non-RDF streams into RDF
streams. This is exactly what we use TripleWave for in this project. We transform and publish a range
of OGD sets, among the ones shown in the survey table (see Tables 1-6), according to the Linked Data
Principles. TripleWave is able to transform the specific OGD into RDF data using the flexible R2RML
mappings. Afterwards TripleWave makes the transformed OGD available through WebSockets.
We do not simply run an individual TripleWave instance for each data set. We have decided to connect
the individual TripleWave instances and build a cluster using Apache Kafka. Apache Kafka presents
some characteristics which bring advantages for this project.
Vineet & Xia (2017) note that Apache Kafka has high throughput and thus is suitable for processing big
data sets. The data sets which are shown in the survey table are either too small or are updated too
infrequently to really generate a large data stream. Nevertheless, this project should serve as a guideline
for similar projects and therefore we want to cover cases which include large amounts of data. For
example, publishing open sensor data generated by large sensor networks can lead to large data streams
which Apache Kafka can handle without further problems. As the topic Internet of Things becomes
more and more important the number sensor data streams will increase.
As described by Wang et al. (2015), since Apache Kafka can replicate topics among Kafka brokers the
reliability of Apache Kafka has increased. The replication greatly reduces the risk of losing data when
Kafka brokers crash. Vineet & Xia (2017) conclude that the AMPQ protocol guarantees better reliability
than Apache Kafka. But according to Kreps, Narkhede & Rao (2011) Apache Kafka guarantees at-least-
once delivery which should be enough for this project. User applications which require exactly-once
delivery can achieve that by implementing own data checks. Another advantage of Apache Kafka is the
disk storage. Disk storage enables to stream data from the past, if this is required.
The most important characteristics of Apache Kafka are the scalability and modularity. The architecture
of Apache Kafka, including Producers, Kafka brokers, topics and Consumers, enables to easily add new
elements to the cluster.
We use Kafka Producers to fetch the specific OGD sets, to convert them to JSON, to clean them if
required and finally to forward the data to the Apache Kafka brokers. The OGD sets are only available
through pull-based mechanisms, either they can be downloaded or they are published through a RESTful
API. After Kafka Producers forward the data to the Kafka brokers, each data set is assigned to an own
topic. With this approach Apache Kafka offers a simple way of managing data streams. We connect the
particular TripleWave instances to the Kafka cluster. This is how the TripleWave instances get the data
which should be transformed into RDF. The transformed output data of TripleWave is then again for-
warded to the Kafka cluster. Thus the cluster contains both the non-transformed and the transformed
data (in different Kafka topics). We implement some push-based mechanisms which stream the data on
the Web. This should happen in a way such that it is as easy as possible for clients to access the RDF
streams. This approach makes it possible to fetch 3-star level OGD, to transform them and finally pub-
lish them as 5-star level OGD.
Figure 6 shows all the implemented and used components. Some of them are shown more than once (for
presentation purposes). For example, we illustrate the WebSocketConsumer twice although this com-
ponent must be run only once.

Patrick Muntwyler / Open data streams on the Web

Bachelor Thesis, University of Zurich, 2017 27

Figure 6: Overview of all implemented components

The two components on the right side called EventSource24 and WebSocketClient are some example
client applications which can be used to connect to the output streams. As the EventSource and Web-
SocketClient components do nothing else than connecting to a stream and printing it to the console, they
are not further explained. They are mentioned in Appendix C.
We did not implement the WebSocket component of TripleWave, since it already existed. But it is
included in Figure 6 to show how TripleWave can publish its output stream.
In the Sections 4.1.1 and 4.1.2 we present the components which are responsible for the input of Tri-
pleWave and Kafka using WebSockets and SSE/EventSource. Namely these are the SSEProducer, Web-
SocketProducer, WebSocketProducerBig, sseStream and wsStream components. On the one hand they
can be used to fetch existing WebSocket streams and SSE streams and forward them to the cluster. On
the other hand, they are used to connect the Kafka brokers and TripleWave.
In Section 4.1.3 we describe the implemented connectors for some specific data sets of the survey table.
They all fetch data and forward them to the Kafka brokers using Kafka topics.
In Section 4.2 we present the components which are used to publish the resulting streams. There are
three approaches we implement and evaluate. The first component we describe in Section 4.2 is the
WebSocketConsumer. This component must be run only once and then handles all incoming requests
for connecting to the streams. We use it on the one hand to connect TripleWave and the Kafka cluster
and on the other hand to publish the resulting RDF streams. The second component we use is KafkaSSE.
This is a library from Wikimedia. We can use it also to connect TripleWave and Kafka and to publish
the resulting RDF streams. The third output component is KafkaThrift in combination with KTClient.
In Section 4.3 we introduce the mappings which we created to transform the OGD sets into RDF streams.
They are used in the TripleWave.

24 the code originates from here and we slightly adapted it: https://www.npmjs.com/package/kafka-sse (accessed 23.7.2017)

Patrick Muntwyler / Open data streams on the Web

Bachelor Thesis, University of Zurich, 2017 28

In Section 4.4 we give an overview of the cluster which we finally run on the University Server. We do
not execute all components. Section 4.4 describes which components are excluded and explains the
reasons.

4.1 Input Kafka & TripleWave
This chapter describes all the components which feed Apache Kafka and TripleWave with input. These
components are on the one hand an important part for connecting the two frameworks Apache Kafka
and TripleWave and on the other hand they are used to fetch the open data sets, to clean them where
necessary, to convert them to JSON and then to forward the data to the Kafka cluster. This chapter
contains three sub sections. Section 4.1.1 describes the components which use WebSockets to connect
the Kafka cluster and TripleWave; Section 4.1.2 describes the components which can consume data
using Server Sent Events (SSE) and EventSource; and Section 4.1.3 introduces all the components which
fetch open data sets using a pull-based approach.

4.1.1 Input using WebSockets
WebSockets are a standard for push-based connections. TripleWave is a WebSocket server where ap-
plications can connect to and consume the output of TripleWave. This is how a TripleWave instance is
connected to the Kafka cluster. Section 4.1.1.1 describes the component which is responsible for that
connection. We must also create a connection in the opposite direction, to feed a TripleWave instance
with data from the Kafka cluster. This can also be done using WebSockets and is further described in
Section 4.1.1.2.

4.1.1.1 Input Kafka using WebSockets

This section elucidates two components named WebSocketProducer and WebSocketProducerBig. The
names of these two components are composed of two parts: WebSocket and Producer. This means, that
the components are Apache Kafka Producers which use a WebSocket to get the data. The main purpose
of these components is to connect TripleWave to Kafka and thus forwarding the output of TripleWave
to a Kafka topic. It is also possible to connect any other data source to Kafka which uses a WebSocket
connection. The difference between these two components is that WebSocketProducer works good for
data streams with low throughput and WebSocketProducerBig is designed to work for data streams with
high throughput. As the most data sets presented in the survey table (Tables 1-6) are small data sets or
their update frequency is low, the WebSocketProducer normally suffices. But in Appendix B we show
how to run the cluster for a high throughput data stream. There we need the WebSocketProducerBig
component. First we describe the WebSocketProducer component and after that we introduce the Web-
SocketProducerBig component.

This pseudo-code illustrates how the WebSocketProducer works:
Require: Address of TripleWave and a Kafka topic T

1: Initialize new Kafka Producer P;

2: Wait until P is ready then:

3: Create new WebSocket client C;

4: Connect C to TripleWave;

5: On new incoming data from TripleWave:

6: Stringify incoming data;

7: Forward incoming data to the Kafka topic T;

Patrick Muntwyler / Open data streams on the Web

Bachelor Thesis, University of Zurich, 2017 29

The WebSocketProducer uses the kafka-node library25 to create a Kafka Producer and connect it to the
Kafka cluster. For the WebSocket connection, the Primus library26 is used. Primus can use several real-
time frameworks for establishing a connection. As TripleWave uses Primus in combination with the ws
library27 the same is done in the WebSocketProducer.
The output of TripleWave is in the JSON-LD format. Thus the input format of the WebSocketProducer
is JSON. As the Kafka cluster takes as input only plain text, the JSON input must first be stringified
before sending it to Kafka. If the WebSocketProducer is used for connections to other sources than
TripleWave, the format of the data should be JSON, otherwise the code must be adapted.
WebSocketProducer takes four command line parameters to ease the handling of the configuration:

• –t=topic for determining the topic name to which the producer should send the data, e.g.:
–t=test2

• –u=URL which consists of the base URL of TripleWave, e.g.: –u=ws://localhost:4040
• –p=pathname of TripleWave, e.g.: –p=/triplewave/primus
• –q=query which contains a URL query e.g.: –q=/?variable=value

If they are omitted, the producer takes the given default parameters in the code. Except for parameter q,
the default parameters in the code match the above presented example parameters. The default value of
the parameter q is an empty string, as no query element is needed to connect TripleWave.

This pseudo-code illustrates how the WebSocketProducerBig works:
Require: Address of TripleWave and a Kafka topic T

1: Initialize new Kafka Producer P;

2: Wait until P is ready then:

3: Create new WebSocket client C;

4: Connect C to TripleWave;

5: On new incoming data from TripleWave:

6: Stringify incoming data;

7: Push the data on the payloads;

8: After one second, send payloads to Kafka topic T and reinitialize them

The WebSocketProducerBig works similar to the WebSocketProducer. Instead of forwarding each mes-
sage individually to Kafka, it collects the incoming messages and once a second sends them to Kafka in
one batch. Doing so reduces the traffic between Kafka Producer and Kafka brokers drastically. The
WebSocketProducer and the WebSocketProducerBig components accept the same parameters.

4.1.1.2 Input TripleWave using WebSockets

wsStream is a WebSocket stream connector necessary for TripleWave28. TripleWave already has some
example Web stream connectors implemented. One of them, named wikiStream2, uses an old version
of a WebSocket (it uses the socket.io29 0.9.1). So we decided to implement a connector, named
wsStream, which uses an updated version of WebSockets (Primus 7.0.2 in combination with ws 1.1.0).
This connector establishes a connection to a WebSocketConsumer (described in

25 https://www.npmjs.com/package/kafka-node (accessed 17.7.2017)
26 https://github.com/primus/primus (accessed 17.7.2017)
27 https://www.npmjs.com/package/ws (accessed 17.7.2017)
28 http://streamreasoning.github.io/TripleWave/docs.html#webstream (accessed 17.7.2017)
29 https://www.npmjs.com/package/socket.io (accessed 17.7.2017)

Patrick Muntwyler / Open data streams on the Web

Bachelor Thesis, University of Zurich, 2017 30

Section 4.2.1). With the approach, we can establish a connection from Kafka’s output to TripleWave’s
input.
We started from wikiStream2. We changed only the WebSocket client and the information needed (re-
quest URL) to connect to the Kafka cluster. TripleWave already uses the Primus library, so we decided
that the connector wsStream implements a WebSocket client using Primus in combination with the ws
library.
To connect a WebSocket client to the component called WebSocketConsumer (described in Section
4.2.1), the base URL, the pathname and a URL query are needed. For further details of how to use
wsStream, see Appendix B. The required information is defined in the first lines of the code of
wsStream. There is no functionality implemented to define them using command line parameters.
When a connection is established, wsStream gets data from the Kafka cluster and simply forwards it to
TripleWave. As the output of the Kafka cluster is parsed to JSON and as TripleWave can handle JSON
input no further parsing is required.
We have to note one more important fact: the WebSocketConsumer uses Primus 7.0.2. TripleWave 2.1.1
however uses Primus 6.0.1. There have been made some breaking changes from Primus version 6 to
Primus version 7 including a new implementation of the heartbeat mechanism30. Thus these two versions
do not work together if the heartbeat mechanism is not disabled. Because a heartbeat mechanism is an
important part of a connection, we do not disable it. So it is necessary to update TripleWave, so that it
uses at least Primus 7.0.0. Otherwise the connection to the WebSocketConsumer will not work correctly.

4.1.2 Input using SSE/EventSource
Wikimedia maintains a real-time stream which contains all changes in a machine-readable format made
to MediaWiki31. This stream recently adapted the EventSource interface32. Motivated by this stream, we
implement an input component for Kafka (described in Section 4.1.2.1) and a Web stream connector for
TripleWave (described in Section 4.1.2.2), which use the EventSource interface to consume Server Sent
Events.

4.1.2.1 Input Kafka using SSE/EventSource

This section introduces the SSEProducer component. It consists mainly of a Kafka Producer and the
eventsource library33. The SSEProducer enables to connect any SSE Web stream to the Kafka cluster.
As mentioned above, it is motived by the Wikimedia stream, which is available as SSE Web stream.

The following pseudo-code illustrates the mechanism of this component:
Require: Address of a SSE Web stream and a Kafka topic T

1: Initialize new Kafka Producer P;

2: Wait until P is ready then:

3: Connect to SSE Web stream;

4: On new incoming events:

5: Forward the message part of the event to the Kafka topic T;

30 https://github.com/primus/primus/releases/tag/7.0.0 (accessed 17.7.2017)
31 https://www.mediawiki.org/wiki/Manual:RCFeed (accessed 17.7.2017)
32 https://wikitech.wikimedia.org/wiki/EventStreams (accessed 17.7.2017)
33 https://www.npmjs.com/package/eventsource (accessed 17.7.2017)

Patrick Muntwyler / Open data streams on the Web

Bachelor Thesis, University of Zurich, 2017 31

It is quite simple to connect a JavaScript application to a SSE Web stream, which is one advantage of
this protocol. An incoming Server Sent Event consists of three objects: event, id and data34. The data
object contains the actual message we are interested in. Thus the SSEProducer only forwards the data
object to the Kafka cluster. This can easily be changed if needed. In contrast to the WebSocketProducer
(see Section 4.1.1.1), this component does not parse the incoming stream because the SSE Web stream
delivers plain text. The Wikimedia real-time Web stream publishes its data as stringified JSON, which
is exactly the required format for our Kafka cluster. If a SSE Web stream should be connected to the
Kafka cluster, which contains a different format, a parsing algorithm must be implemented.
The SSEProducer can take two command line parameters:

• –t=topic, for determining the topic name to which the producer should send the data, e.g.
–t=test

• –u=URL, which contains the URL of the SSE Web stream, e.g.
–u=https://stream.wikimedia.org/v2/stream/recentchange

If they are omitted, the producer takes the given default parameters in the code which match the above
presented example parameters.

4.1.2.2 Input TripleWave using SSE/EventSource

In the preceding section we introduced a component which can connect a SSE Web stream to the Kafka
cluster. For the same reasons, we implement a similar component for TripleWave, named sseStream.
With this extension it is possible to connect TripleWave to a SSE Web stream, for transforming this
stream into an RDF stream. The sseStream component is a Web stream connector for TripleWave.
sseStream works similar to SSEProducer (introduced in Section 4.1.2.1). sseStream also uses the even-
tsource library. Only a URL is required to determine the source of the SSE Web stream. When the
connection is established, the incoming event data objects are converted to JSON and then forwarded to
TripleWave for the transformation. In contrast to the SSEProducer, the sseStream converts the incoming
stringified JSON to JSON, as TripleWave requires the input stream in JSON. Again, if the SSE Web
stream contains a different format as stringified JSON, a parser mechanism must be implemented before
forwarding the data to TripleWave.
The sseStream component can also be used to connect TripleWave to the Kafka cluster. This is enabled
by the kafka-sse library35, which is published by Wikimedia. For a short introduction into this library
see Section 4.2.2.

4.1.3 Input through fetching data sets
This section introduces the implemented connectors which fetch, clean, parse and forward the OGD sets
to the Kafka cluster. As shown in Figure 5 (Section 3.2.3), CSV and XML are the two most common
data representations in the survey table. Thus we focused on writing connectors for these data formats.
All the data sets mentioned in the survey table have their own characteristics and differ in various as-
pects. Therefore, it is not possible to write one connector which fits on all the data sets in the survey
table. Specific, ad-hoc connectors are therefore written for fetching specific data set. We chose the data
sets, such that we can write connectors which cover as many characteristics as possible and, therefore,
can be seen as reference point for further implementations. Table 7 gives an overview over the imple-
mented connectors and their characteristics.
The first important characteristic of the data sets in the survey table is the distinction between data sets
that replace all their content at each update and data sets that append new content at each update. As
example for the former case, we can mention SMNRCH (see Tables 1-6), which contains the measured

34 https://wikitech.wikimedia.org/wiki/EventStreams (accessed 17.7.2017)
35 https://www.npmjs.com/package/kafka-sse (accessed 17.7.2017)

Patrick Muntwyler / Open data streams on the Web

Bachelor Thesis, University of Zurich, 2017 32

rainfall for about 100 weather stations in Switzerland. This data set is updated every ten minutes and at
each update all the old data are replaced by the current one. We call this type of data sets non-appending.
As example for the latter case, let’s consider the data set which counts the traffic in Zurich (TCZH, see
Tables 1-6), and is published weekly. The new content is appended to the existing one, so the data set
grows weekly. We call this type of data sets appending. This is important because it is not desired to
stream all the old data at every time the data set is changed. This characteristic is reported in column 3
in Table 7.
Appending data sets require filters to distinguish old and new data. Also, non-appending data sets may
require filters, e.g. data sets where not all entities are updated at the same time or where not all entities
own new values between two updates. With filter functions we ensure that the stream only contains
values which have changed. Column 4 in Table 7 represents this characteristic.
Another aspect which we must consider is the size of the data set. There are data sets which contain
around 100 records and others with several hundred thousands or even millions of records. The TCZH
Connector (see Section 4.1.3.2) fetches a data set which contains now (June 2017) more than 500’000
records and at the end of the year will contain more than one million records. The ZR Connector (see
Section 4.3.4) fetches a data set with eight records. So the amount of data which is forwarded to Kafka
can vary. The Producer from the kafka-node library does not automatically handle the batch size of its
sent messages. This is important because for every sent message, there is an acknowledge from the
Kafka broker. When there is only a low number of entities in the data set or when the data are forwarded
to Kafka in a manageable speed, there is no problem to send every element separately to the Kafka
cluster. But fetching half a million records and sending them separately as fast as possible to the Kafka
cluster leads to an overload because of all these acknowledgments. This characteristic is reported in
column 5 in Table 7. The corresponding sections about the connectors report how the connectors deal
with this aspect.
Another difference is if and how the content must be cleaned and enriched to be correctly converted to
RDF. This is also managed in the connectors before the data are forwarded to the Kafka cluster.
The column Other in Table 7 reports if there is anything special implemented in the corresponding
connector.

Section Format Append Filter Size Other
4.1.3.1 SMNRCH Connector CSV No No Small -
4.1.3.2 TCZH Slow Connector CSV Yes Yes Big Slow processing
4.1.3.3 TCZH Fast Connector CSV Yes Yes Big Fast processing
4.1.3.4 CPZH Connector XML No Yes Small RSS Feed
4.1.3.5 CPBDE Connector XML No Yes Small Conditional Get
4.1.3.6 ZR Connector XML No Yes Small Decoding corrected
4.1.3.7 CPMDE Connector XML No Yes Small -

Table 7: Overview Connectors

4.1.3.1 SMNRCH Connector

We explain in this section the connector written for the data set SMNRCH (see Tables 1-6). This data
set contains the measured rainfall for the last ten minutes for about 100 weather stations in Switzerland.
We decided to write a connector for this data set to give an example for a CSV & non-appending data
set. The data set contains always exactly one measurement value for each weather station, namely the
most current value. No additional examination should be done to distinguish between new and old data,
when fetching the data set. (However, this may be required, when the goal is to stream only changed
values, e.g. the rainfall value has changed for a certain station in the last ten minutes.)

Patrick Muntwyler / Open data streams on the Web

Bachelor Thesis, University of Zurich, 2017 33

The SMNRCH Connector makes use of mainly three packages. First a Kafka Producer is needed to be
able to forward the fetched data to the Kafka cluster. We use for this the kafka-node library. Second, the
request library36 is used to make an HTTP request for fetching the data set. And the third package is the
CSV to JSON parser37, which we need to convert the data to JSON for TripleWave.

The following pseudo-code illustrates how the connector works:
Require: a Kafka topic T

1: Initialize new Kafka Producer P;

2: Wait until P is ready then:

3: Make HTTP request to fetch the data set;

4: Remove the first two lines;

5: Parse CSV to JSON;

6: On every parsed line:

7: Stringify JSON record R;

8: Send R to the Kafka topic T;

9: Repeat every ten minutes;

There are some notes:
• Line 4: the first two lines must be removed, as they do not contain required data.
• Line 8: each line thus each record is sent separately to the Kafka cluster. As the data set contains

only about 100 records, this is not a problem.
• Line 9: as the data set is updated every ten minutes, we set the interval to ten minutes.

It is possible to define the Kafka topic to which the data should be sent over a command line tool,
through parameter –t=topic.
It is not possible to write one single connector for all CSV data sets also because the data sets are not
consistently formatted. There is sometimes information in the data file, which should not be streamed
or even disturb correct parsing (in this example the first two lines).

4.1.3.2 TCZH Slow Connector

The TCZH Slow Connector fetches the TCZH data set (see Tables 1-6), which contains the number of
pedestrians and cyclists passing certain spots in Zurich. The numbers are update every 15 minutes but
the data set is published only once a week. The new data records are appended to the existing ones, thus
the data set continually grows until the end of the year, then a new data set is started. Under the corre-
sponding link to this data set, there are several data sets listed, one for every year since 2009. Because
the data sets contain measurements for several stations every 15 minutes, the number of records at the
end of the year exceeds one million. Around 25’000 records are added every week. Because of the size
of the data, we must ensure that data set is transformed and streamed out slowly enough to not overload
the WebSocket (or SSE/EventSource) output stream. This can happen as Kafka can handle more data
than a simple WebSocket or SSE/EventSource connection.
The connector uses the same three main components as the SMNRCH Connector, described in Section
4.1.3.1, namely the kafka-node library, the request library and the csvtojson library. The work-flow is
different, as illustrated in the following peuso-code:

36 https://www.npmjs.com/package/request (accessed 17.7.2017)
37 https://www.npmjs.com/package/csvtojson (accessed 17.7.2017)

Patrick Muntwyler / Open data streams on the Web

Bachelor Thesis, University of Zurich, 2017 34

Require: Address of a TCZH data set and a Kafka topic T

1: Initialize new Kafka Producer P;

2: Wait until P is ready then:

3: Make HTTP request to fetch the data set;

4: Remove the first line;

5: Seperate new data from old data;

6: If there is new data:

7: Convert one line to JSON;

8: Stringify JSON record;

9: Send record to the Kafka topic T;

10: Repeat after 20 milliseconds;

11: Repeat after 3.5 days;

As this data set also has its individual characteristics, the connector was adapted so that it fits the re-
quirements:

• Line 4: after fetching the data set, the first line, which includes the headers, is removed, as the
headers are added manually using the options of the csvtojson library.

• Line 5: the old data are separated from the new ones. As mentioned above, this must be done
because the data set contains the measurements of the current year and it is not useful to stream
all of them every week.

• Lines 6-10: if there is new data available, then the component processes line by line with a pause
of twenty milliseconds. We take a relatively slow data process rate so that as many WebSockets
connections as possible can handle the stream. With this process rate, there are no problems
according to the traffic between Kafka Producers and Kafka brokers although we use in this
approach a batch size of one.

• Line 11: the data set is published once a week. Because we do not know if it is always exactly
one week, we decided to fetch it twice a week to ensure we do not miss new updates.

The connector takes two command line parameters: one for the topic (-t=topic) and one for the URL
(-u=URL). There is a command line parameter available for the URL, because there are individual data
sets available for every year (since 2009). So using the command line parameter, it is easier to define
which URL the connector should fetch. The default data set is the one of the year 2017.

4.1.3.3 TCZH Fast Connector

This component fetches the TCZH data set, like the TCZH Slow Connector does (see Section 4.1.3.2).
The TCZH Fast Connector can scale exploiting the cluster. Thus, this component should fetch, transform
and forward the data as fast as possible. In this section, we describe how the TCZH Fast Connector
works; in Appendix B we give an example of how to use Kafka and TripleWave in combination with
this connector.
This component uses the same libraries as the TCZH Slow Connector. The following pseudo-code
shows how the TCZH Fast Connector works:

Require: Address of a TCZH data set and three Kafka topics T0, T1, T2

1: Initialize new Kafka Producer P;

2: Wait until P is ready then:

3: Make HTTP request to fetch the data set;

4: Remove the first line;

5: Separate new data from old data;

Patrick Muntwyler / Open data streams on the Web

Bachelor Thesis, University of Zurich, 2017 35

6: If there is new data:

8 Rotate between three topics;

9: Convert 5000 lines to JSON;

10: Stringify JSON records;

11: Send records to one of the three the Kafka topics T0, T1 and T2;

12: Repeat as long as not all data are processed;

13: Repeat after 3.5 days;

Lines 6-12 describe the differences compared to the TCZH Slow Connector. Instead of processing one
record every 20 milliseconds, this connector processes the data as fast as possible. If new data are avail-
able, the TCZH Fast Connector parses 5000 records to JSON at the same time and then forwards them
to a Kafka topic. The important part is that this connector rotates between three Kafka topics after each
batch with the size of 5000 records. This means that the data set are finally split into three subsets. Doing
so, we can connect three TripleWave instances to the Kafka brokers and thus transform data into RDF
in parallel.
The TCZH Fast Connector takes four parameters. Three for the three topics (-t0=topic0; -t1=topic1; -
t2=topic2) and one parameter for the URL, similar to the TCZH Slow Connector.

4.1.3.4 CPZH Connector

The CPZH Connector fetches the CPZH data set (see Tables 1-6) which contains the number of free
slots of Zurich’s parking facilities. This data set is available as XML RSS-Feed and contains real-time
data. As this is the only one data set in the survey table which contains an XML RSS-Feed we have
written a connector for it, to give a guideline for this case.
The CPZH Connector uses mainly four packages to fetch, filter, convert and forward the data set to a
Kafka topic. The kafka-node library and the request library are used for initializing a Kafka Producer
and fetching the data set. For XML RSS-Feeds, there is available a library called feedparser38 which can
parse the XML data to JSON. The fourth package is the stream library39, which is available from Node.js
itself. It is needed to forward the fetched data set to feedparser.

The work-flow of the connector is described in the following pseudo-code:
Require: a Kafka topic T

1: Initialize new Kafka Producer P;

2: Wait until P is ready then:

3: Make HTTP request to fetch the data set;

4: If data set contains new data:

5: Separate old data from new data;

6: Stream new data into converter;

7: Convert new data to JSON;

8: Enrich data;

9: Clean data;

10: Stringify data;

11: Send new data to the Kafka topic T;

12: Repeat after 10 seconds;

38 https://github.com/danmactough/node-feedparser (accessed 17.7.2017)
39 https://nodejs.org/api/stream.html (accessed 17.7.2017)

Patrick Muntwyler / Open data streams on the Web

Bachelor Thesis, University of Zurich, 2017 36

Similar to the other connectors, first a Kafka Producer is initialized and when it is ready, the connector
starts to fetch the data set. Following steps are explained in detail:

• Line 4: the fetched data set is compared to the one which was fetched ten seconds ago. If the
two data sets are identical, the rest of the code is not executed.

• Line 5: otherwise, new data items are separated from the old one. Thus, only the changed data
items are forward to the Kafka cluster. This separation function is adjusted to the structure of
the CPZH data set. It will not work properly if the connector is used to fetch other XML RSS-
Feeds, as the structures of the feeds may differ.

• Line 6: for forwarding the new data items to the parser, a stream object is needed.
• Lines 8-9: these two steps are important for transforming the OGD set into RDF, which is done

in TripleWave. TripleWave needs some additional attributes to correctly apply the correspond-
ing R2RML mapping (see Section 4.3.2). We add the required attributes in these two steps.
Especially we add links to entities from LinkedGeoData40 to link the data set to other data.

• Line 12: the last step which we explain is that every ten seconds the data set is fetched and the
whole process restarts from Line 3. The OGD portal of Zurich mentions that the CPZH data set
is real-time respectively continuously updated. After implementing and running the connector,
it came out that the data set is only updated roughly once a minute. We therefore set the repeat-
ing interval to 10 seconds, to limit the number of calls.

The CPZH Connector can take one parameter to define the topic to which the data should be forwarded.
This is done by using the –t=topic parameter in the command line.

4.1.3.5 CPBDE Connector

This connector fetches the CPBDE data set (see Tables 1-6) which contains the number of free parking
spaces of parking facilities in the city of Bonn. The special characteristic of this data set is that it is
published applying the conditional GET. This is a mechanism where the data set is sent from the server
to the client only when it has changed since the last request therefore reducing the traffic in the network.
This is done by adding some specific headers to the request41. The CPBDE Connector implements the
requirements for the conditional GET and thus can be seen as a guideline for fetching similar data sets.
The CPBDE Connector requires three packages: the request library for fetching the data set, the kafka-
node library for instantiating a Kafka Producer and the xml2js library42 to convert XML data to JSON.

The following pseudo-code illustrates the mechanism of the CPBDE Connector:
Require: a Kafka topic T

1: Initialize new Kafka Producer P;

2: Wait until P is ready then:

3: Make HTTP request to fetch the data set;

4: If response status == 200:

5: Parse data from XML to JSON;

6: Separate new data items from old ones;

7: Enrich the data;

8: Send stringified, new data to the Kafka topic T;

9: Else if response status == 304:

40 http://linkedgeodata.org/About (accessed 28.6.2017)
41 https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html (accessed 17.7.2017)
42 https://github.com/Leonidas-from-XIV/node-xml2js (accessed 17.7.2017)

Patrick Muntwyler / Open data streams on the Web

Bachelor Thesis, University of Zurich, 2017 37

10: Prepare variables for next call;

11: Repeat after 10 seconds;

The following steps are explained in more details:
• Line 3: an HTTP conditional GET request is done. Such a request contains additional headers

called If-Modified-Since and If-None-Match. These two headers are sent with the request to the
server. The server uses them to find out if the data on the server have changed since the last
request. This means that these two headers must be updated for every call.

• Lines 4-6: if the server detects that the data have changed since the last request, the response
contains the status 200 and the data set. This data set is in XML, so it must be converted to
JSON. As only the changed data items should be forwarded to Kafka, they must first be sepa-
rated.

• Line 7: for the transformation into RDF, some additional attributes are required, namely links
to entities on LinkedGeoData and URLs to the parking Web site. They are added in this step.

• Line 9: if the server detects that the data set has not changed since the last call, the response
contains the status 304. In this case, the response does not contain the data set.

• Line 11: the fetching loop is repeated every ten seconds. Although the CPBDE data set is la-
belled as real-time, it seems that it is not updated every second but rather every one to two
minutes. Therefore, the fetching loop is set to ten seconds to limit the number of calls.

The CPBDE Connector can take one parameter to define the topic to which the data should be forwarded.
This is done by using the –t=topic parameter in the command line.

4.1.3.6 ZR Connector

This connector fetches the ZR data set (see Tables 1-6) which contains information about the bicycle
rental in Zurich. This data set also belongs to the real-time data sets in the survey table and therefore is
interesting for being published on the Web as RDF stream.
As the data set must be fetched and forwarded to the Kafka cluster, the request library and the kafka-
node library are used. The ZR data set is available as XML and thus the xml2js library is required to
convert the XML data to JSON.

This pseudo-code mirrors how the ZR Connector works:
Require: a Kafka topic T

1: Initialize new Kafka Producer P;

2: Wait until P is ready then:

3: Make HTTP request to fetch the data set;

4: Parse the XML data to JSON;

5: Clean data;

6: Separate new data items from old ones;

7: Enrich the remaining data;

8: Forward stringified data to the Kafka topic T;

9: Repeat after 3 seconds;

This connector is quite simple compared to the previous one:
• Lines 3-4: when the Kafka Producer is ready, the HTTP request is sent to the server. The data

set contained in the response is converted to JSON.
• Line 5: one special thing about this data set is that there are decoding errors, which did not

happen in the other data sets. These are corrected automatically by the connector.

Patrick Muntwyler / Open data streams on the Web

Bachelor Thesis, University of Zurich, 2017 38

• Line 7: the records must be enriched so that they contain the necessary attributes for the R2RML
transformation done in TripleWave. Time stamps and links to entities from LinkedGeoData are
added in this step. Additionally, the X and Y coordinates are added.

• Line 9: the ZR data set contains real-time data according to the OGD portal of Zurich. In con-
trast to the CPBDE data set (see Section 4.1.3.5) and to the CPZH data set (see Section 4.1.3.4)
no fixed update rate was identified. So the loop interval is set to three seconds, to minimize the
risk to miss some updates.

The ZR Connector can take one parameter to define the topic to which the data should be forwarded.
This is done by using the –t=topic parameter in the command line.

4.1.3.7 CPMDE Connector

This connector fetches the CPMDE data set (see Tables 1-6) from the survey table. It contains data about
parking facilities of the city of Moers. As this data set belongs to the real-time data sets in the survey
table we decided to transform it into an RDF streamed and publish it on the Web. As every data set has
its own characteristics we had to write a separate connector for fetching, editing and converting the
CPMDE data set.
We do not explain the whole workflow of this connector, because the CPMDE and the ZR data sets can
be fetched similarly. Section 4.1.3.6 contains more information about the workflow. We slightly adapted
the ZR Connector. We removed the decoding error correction, as it is not required. Additionally, the
CPMDE Connector deletes an attribute, because we are not interested in it and it would influence the
separation of new and old data. The third thing we changed is the content of the enrichment method,
because two different data sets require two different enrichment methods. Links to entities on LinkedGe-
oData and time stamps are added to the data records.

4.2 Output Kafka
In this section, we describe the implemented components which make it possible for clients to connect
to the transformed output Web streams. We implement push-based mechanisms, so that the clients au-
tomatically get the new data when the OGD sets are updated. There are three mechanisms which we
implemented. In Section 4.2.1, we describe how we enable to connect to these data streams using Web-
Sockets. Section 4.2.2 gives a short introduction about how we publish the data streams using SSE/Even-
tSource. We explain in Section 4.2.3 how we use Apache Thrift43 as alternative to JSON-LD to serialize
the streams.

4.2.1 Output Kafka using WebSockets
WebSockets are a standard for push-based connections and thus we implement a component named
WebSocketConsumer which makes it possible for clients to connect to the RDF output streams using
this protocol. This component supports a simple way to connect to the streams, thus supporting usability
which is important to increase the benefit of the OGD RDF streams.
As the name suggests, the WebSocketConsumer consists of two entity types: A WebSocket server and
a Kafka Consumer Group. We use the Primus library to maintain the WebSocket server. By using the
same WebSocket library in every component where one is needed, we ensure the compatibility. To set
up Kafka Consumer Groups we use the kafka-node library.

The following pseudo-code illustrates how the WebSocketConsumer works:
1: Initialize new WebSocket server;

2: Get available topics;

43 https://thrift.apache.org/ (accessed 26.6.2017)

Patrick Muntwyler / Open data streams on the Web

Bachelor Thesis, University of Zurich, 2017 39

3: On new request:

4: Read the desired topics out of the request (if available);

5: If the desired topics are not valid:

6: Reject the connection;

7: Else:

8: Initialize new Consumer Group with desired topics or default topic;

9: On new message from Kafka topics:

10: Forward it to the WebSocket client as JSON;

11: On WebSocket client disconnects:

12: Close the Consumer Group;

We explain the following steps in more details:
• Line 2: the available topics are all topics which are already created in the Kafka cluster. The

available topics are refreshed once an hour. So if the Kafka cluster gets new topics including
new streams, they are at the latest available for clients after one hour. With this approach, it is
not necessary to restart the WebSocketConsumer after adding new topics.

• Line 4: we implemented the functionality that a WebSocket client can connect to more than one
topic at the same time, if that is desired. The topics can be given in the query of the request. For
further details of how a user can connect to the Kafka cluster using WebSockets, see
Appendix C.

• Line 6: we noticed that if the topics in the query do not already exist, then they are created when
initializing a new Consumer Group. To prevent that wrong requests can create topics, the re-
quest is first checked; if the topics are not available, the request is rejected.

• Line 10: the WebSocketConsumer parses every message from the Kafka cluster to JSON before
streaming it to the client. This is necessary because the Kafka cluster processes plain text.

• Line 12: if a client disconnects from the WebSocketConsumer, the corresponding Kafka Con-
sumer Group will be closed. Otherwise the Consumer Group would continue running although
the WebSocket connection does not exist anymore.

4.2.2 Output Kafka using SSE/EventSource
We have decided to give clients the possibility to consume the output Web streams using the Even-
tSource interface. There is an available package, implemented by Wikimedia, called kafka-sse44. It en-
ables clients to easily connect to Kafka topics using SSE/EventSource. An example of how to connect
is available in Appendix C. We decided to support this format because it works on the top of HTTP, and
it is a recent effort for creating Web streams. Also the most browsers support SSE/EventSource.

4.2.3 Output Kafka using Apache Thrift
Slee, Agarwal & Kwiatkowski (2007) describe several advantages of Apache Thrift and why it was
built. There is one advantage we wanted to look closely: The Serialization & Deserialization function-
ality and thus its ability to efficiently transmit messages. RDF Binary45 is an approach which describes
a format to encode RDF using Apache Thrift. We examined if we can reuse RDF Binary for RDF
streams.

44 https://www.npmjs.com/package/kafka-sse (accessed 26.6.2017)
45 https://afs.github.io/rdf-thrift/ (accessed 26.6.2017)

Patrick Muntwyler / Open data streams on the Web

Bachelor Thesis, University of Zurich, 2017 40

Apache Thrift implements a client-server model. This approach is not designed to send data from the
server to the client in a push-based way. The client part sends data to the server and the server responds
to that request. Thus a more complicated approach is necessary, because the Apache Thrift server must
be run on the client side (i.e. where the data should be streamed to) and the Apache Thrift client must
be implemented in combination with a Kafka Consumer to forward the RDF stream. This stands in
contrast to the structure of push-based mechanisms, where the server sends the data to the client. The
following lines illustrate how the both parts interact to establish a connection. (C) stands for what the
client side makes (not the Apache Thrift client but the client who wants to consume the RDF stream,
called KTClient in Figure 6) and (KT) stands for what the KafkaThrift component makes:

1: (KT) Create an HTTP server and listen for incoming request;

2: (C) Create an Apache Thrift server and listen for incoming streaming data;

3: (C) Make an HTTP request which includes its own IP address and port;

4: (KT) On request:

5: (KT) Create an Apache Thrift client which connects to the Apache Thrift server
corresponding to the IP address and port in the request;

6: (KT) As the connection is established, create an Apache Kafka Consumer Group;

7: (KT) On new message in the Consumer Group:

8: (KT) Parse the message to JSON;

9: (KT) Parse the JSON message to NQuads;

10: (KT) Create the defined Apache Thrift object using the NQuads;

11: (KT) Transmit the NQuads to the Apache Thrift Server;

12: (C) On incoming message:

13: (C) Parse the Apache Thrift object back to NQuads;

14: (C) Parse the NQuads to JSON

The following steps are explained in more details:
• Line 1: must be done only once, because the created HTTP server will then handle all incoming

requests.
• Line 2: the Apache Thrift client sends messages to an Apache Thrift server and thus it must be

run where the stream is consumed. The client application must first start the Apache Thrift
server before an Apache Thrift client can be started and connected to transfer the streaming data.

• Line 3: IP address and port are required by the Apache Thrift client as it must know where to
connect to and send the streaming data.

• Lines 8-11: the RDF Binary format describes RDF streams row by row, which means that the
Apache Thrift client must send each RDF Quad individually. As TripleWave outputs the data
as JSON-LD the Apache Thrift client must do several parsing steps before it is able to send the
data to the Apache Thrift Server.

• Lines 13-14: the Apache Thrift server then must parse the incoming data back to JSON-LD
which requires again several steps.

There come several disadvantages with this approach. We noticed that multiple parsing steps must be
done before the Apache Thrift client is able to forward the streaming data to the Apache Thrift server.
These multiple parsing steps require an individual instance for each OGD set because the data objects
are different. Another disadvantage of this approach is that the client application must run an Apache
Thrift server and thus must use a free port for the incoming message. This could lead to Firewall issues.
We have implemented such an approach for one specific data stream to be able to evaluate the transmis-
sion. We wondered if the RDF Binary scheme is more efficient concerning the package size. So we

Patrick Muntwyler / Open data streams on the Web

Bachelor Thesis, University of Zurich, 2017 41

evaluated the package size and compared it to the package size when using WebSocket or SSE/Even-
tSource. We present the results of this evaluation in details in Section 5.4.

4.3 Increasing the number of stars
All the connectors we mentioned in Section 4.1.3 fetch a specific data set. Then each data set is for-
warded to the Apache Kafka cluster and to TripleWave, where it is transformed into RDF, and then
streamed back to the cluster. Through the transformation into RDF we increase the number of stars for
the OGD sets according to Tim Berners-Lee 5-star open data model. We keep as much information as
possible from the original data sets, so that the resulting RDF streams contain as much data as possible.
We describe in this chapter the mappings we use to transform the OGD data into RDF. In the following
sections we use prefixes to describe the mappings:

• dex: http://data.example.com/TripleWave-transform/
• ex: http://example.com/terms#
• dtx: http://vocab.datex.org/terms#
• rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#
• owl: https://www.w3.org/2002/07/owl#
• ldg: http://linkedgeodata.org/
• purl: http://purl.org/dc/terms/
• geo: http://www.w3.org/2003/01/geo/wgs84_pos#
• rdfs: http://www.w3.org/2000/01/rdf-schema#

4.3.1 TCZH Mapping
We select this data set to fetch, transform and stream it out because of its size. So we want to show how
this can be done with large data sets and what the challenges are. Because we have not found a suitable
vocabulary for the TCZH data set in appropriate time, we use example URIs for transforming it into
RDF. The main challenge in managing this data set is its high throughput. Table 8 shows which triples
TripleWave creates using the mapping, illustrated for one record of the data set.

Subject Predicate Object
dex:4688617 ex:position U15G3063866
dex:4688617 purl:date 2017-01-22T14:30:00
dex:4688617 ex:bicyclesIn ""
dex:4688617 ex:bicyclesOut ""
dex:4688617 ex:pedestriansIn 16
dex:4688617 ex:pedestriansOut 11

Table 8: TCZH Mapping

We create a triple for each column of the record. It is normal that not all columns have values, because
not each station counts the number of bicycles and the number of pedestrians passing the location. So
not every object of a triple has a value.

Patrick Muntwyler / Open data streams on the Web

Bachelor Thesis, University of Zurich, 2017 42

4.3.2 CPZH Mapping
We select the CPZH data set because it is updated frequently and contains information about 37 parking
facilities in Zurich, which is a big number. There is a vocabulary named datex46 which has been created
for describing parking facilities. So we reuse it as much as possible. We also found an ontology defining
a parking facility from LinkedGeoData47. For every parking facility in the data set, we searched the
corresponding entity on OpenStreetMap48 to link the data set to LinkedGeoData entities. Doing so we
are able to raise the CPZH data stream to the 5-star level of open data. Table 9 shows the triples which
TripleWave creates with our mapping.

•
Subject Predicate Object
dex:Parkgarage am Central dtx:parkingName Parkgarage am Central
dex:Parkgarage am Central dtx:address Seilergraben
dex:Parkgarage am Central dtx:urlLinkAddress http://www.plszh.ch/park-

haus/central.jsp?pid=central
dex:Parkgarage am Central dtx:parkingMode open
dex:Parkgarage am Central dtx:numberOfVacantParking-

Spaces
0

dex:Parkgarage am Central dtx:dateTime 2017-06-28T13:39:57.000Z
dex:Parkgarage am Central rdf:type ldg:ontology/Parking
dex:Parkgarage am Central owl:sameAs ldg:geometry/node460419758

Table 9: CPZH Mapping

4.3.3 CPBDE Mapping
We select the CPBDE data set for its update frequency similarly to the CPZH data set. Because this data
set also relates to parking facilities, we reuse the datex vocabulary. We searched the corresponding
entities on LinkedGeoData to raise the CPBDE data stream to the 5-star open data level. The last triple
in Table 10 contains a link to the Web page for the parking facilities which originally is not contained
in the data set. We add this in the corresponding connector to increase the information quality of the
output stream. Table 10 shows the triples which TripleWave creates with our mapping.

Subject Predicate Object
dex:1 dtx:parkingName bahnhof.txt
dex:1 dtx:parkingNumberOfSpaces 114
dex:1 dtx:numberOfVacantParkingSpaces 039
dex:1 dtx:dateTime 28.06.2017 16:14
dex:1 rdf:type ldg:ontology/Parking
dex:1 owl:sameAs ldg: geometry/node596726810
dex:1 dtx:urlLinkAddress http://bcp-bonn.de/bahnhofgarage/

Table 10: CPBZH Mapping

46 http://vocab.datex.org/terms/# (accessed 28.6.2017)
47 http://linkedgeodata.org/page/ontology/Parking (accessed 28.6.2017)
48 http://www.openstreetmap.org/ (accessed 28.6.2017)

Patrick Muntwyler / Open data streams on the Web

Bachelor Thesis, University of Zurich, 2017 43

4.3.4 ZR Mapping
The ZR data set is continuously updated and so frequently contains new data. It is a suitable candidate
for being published as RDF stream. We have not found a vocabulary which describes bicycle rentals.
So we used other vocabularies to describe its content. The only attribute we could not find in an existing
vocabulary is the number of free bikes. So we used a custom vocabulary. Unfortunately, only four of
the eight rental locations are marked on OpenStreetMap, so half of the records cannot be linked to
LinkedGeoData entities. Because the original data set does not contain a time stamp, we add one in the
corresponding connector using the number of milliseconds since 1.1.1970 00:00:00 UTC. Table 11
shows the triples which are the result of the mapping TripleWave uses.

Subject Predicate Object
dex:6 rdfs:label Züri rollt Enge
dex:6 ex:numberOfFreeBikes 14
dex:6 purl:date 1498661139479
dex:6 rdf:type ldg:ontology/BicycleRental
dex:6 owl:sameAs ldg:geometry/node504484391
dex:6 geo:long 8.53245629597557
dex:6 geo:lat 47.3646919355276

Table 11: ZR Mapping

4.3.5 CPMDE Mapping
The CPMDE data contains data about parking facilities, so we use the vocabulary mentioned above, i.e.
datex. We link the records of the data set to LinkedGeoData entities, so we are able to raise the CPMDE
data stream to the 5-star open data level. The original data set does not contain time stamps for the
records, so we add them in the corresponding connector using UNIX time, i.e. the number of millisec-
onds since 1.1.1970 00:00:00 UTC.

Subject Predicate Object
dex:Parkplatz Mühlenstraße dtx:parkingName Parkplatz Mühlenstraße
dex:Parkplatz Mühlenstraße dtx:address Moerser Benden
dex:Parkplatz Mühlenstraße dtx:parkingNumberOfSpaces 999
dex:Parkplatz Mühlenstraße dtx:numberOfVacantParking-

Spaces
789

dex:Parkplatz Mühlenstraße dtx:dateTime 1498662497395
dex:Parkplatz Mühlenstraße rdf:type ldg:ontology/Parking
dex:Parkplatz Mühlenstraße owl:sameAs ldg:geometry/way4440755
dex:Parkplatz Mühlenstraße geo:long 6.62589
dex:Parkplatz Mühlenstraße geo:lat 51.4553

Table 12: CPMDE Mapping

4.4 Implementing the use case
We present here the components we finally run on the University Server. As not all the implemented
components are used, we show in Figure 7 the used components. The final cluster fetches, transforms
and streams out the following five data sets: CPZH, ZR, TCZH, CPBDE and CBMDE. We do not con-
nect to already existing WebSocket streams or SSE streams. For the five data sets the corresponding
mappings are used. We run for each data set one TripleWave instance for the transformation. As the

Patrick Muntwyler / Open data streams on the Web

Bachelor Thesis, University of Zurich, 2017 44

incoming data streams are not that large, one TripleWave instance is enough for each data set. We make
the resulting RDF streams available over WebSockets and the EventSource interface using the Web-
SocketConsumer and KafkaSSE components.

Figure 7: Components run on the University server

There are some components which are missing in Figure 7 in contrast to Figure 6: KafkaThrift, KTCli-
ent, SMNRCH Connector, TCZH Fast Connector, WebSocketProducerBig, SSEProducer, WebSock-
etClient and the EventSource component. The evaluation results of the KafkaThrift component were not
as good as the evaluation results of JSON-LD and thus we decided to not run it on the server (see Section
5.4). We implement the SMNRCH Connector to show how such a data set can be fetched. But we did
not create a mapping for this data set due to lack of time. The TCZH Fast Connector and WebSock-
etProducerBig belong together and so if we do not run one component the other one is also not used.
These two components are a guideline for processing data streams with high throughput. In
Appendix B we give an example of how the two components can be run and in Section 5.2 we show
that our cluster scales in combination with them. But as in our project the resulting RDF output streams
are published over the Web, we decided to use the TCZH Slow Connector on the server, because at the
end, clients must be able to consume the output stream using a simple WebSocket or SSE/EventSource
connection. This means that the final output stream must not have too high throughput as the clients
could not consume it over the Web. The SSEProducer component is not used because we do not connect
to already existing SSE/EventSource streams. Finally, the WebSocketClient and EventSource compo-
nents are simple client application examples and must be run on client side.

Patrick Muntwyler / Open data streams on the Web

Bachelor Thesis, University of Zurich, 2017 45

5 Evaluation
In this chapter we present the evaluation results of our prototype. We ran the evaluation on a MacBook
Pro (Retina, 13-inch, Early 2015) which has an Intel Core i5-5257U (2.7 GHz, dual-core) processor and
8GB 1867 MHz DDR3 RAM. We present the results of four different tests. In Section 5.1 we compare
the latency of the whole prototype (Kafka connected with TripleWave) to the latency of only Tri-
pleWave. In Section 5.2 we test the scalability of our system connecting different numbers of Tri-
pleWave instances to a data stream. In Section 5.3 we present the time performance of different parts of
our implemented cluster. In Section 5.4 we test the size of the data packages in different formats.

5.1 Latency
In this section we present our results of evaluating the latency of different setups of our prototype and
comparing it with TripleWave.
For all of the five tests we restarted the Mac Book. No unnecessary programs were run. With these
arrangements we want to ensure that all tests have the same preconditions.
In Figure 8 we illustrate the setup of our prototype for this evaluation. The DataSetReader10x compo-
nent reads a data set which contains 3000 records and sends each of them to Kafka. This data set is
processed ten times, for a total of 30'000 records. We have implemented a pause of 20ms between each
record, because we do not want to overload the system as we measure the latency and not the throughput.
With this approach we can ensure that there are no data bursts. After the Kafka brokers receive the
records, data are forwarded to a TripleWave instance which transforms the data using a simple mapping.
The resulting RDF stream is again forwarded to Kafka. At the end a client application consumes the
RDF stream. We measure the time which a record needs to pass the whole cluster, starting at the Da-
taSetReader10x component and ending at the consumption client.
We repeat this test for four different setups. In Figure 8, KT stands for the connection type between
Kafka and TripleWave and KC stands for the connection type between Kafka and the client application.
If the connection of KT or KC uses SSE/EventSource, then we run the KafkaSSE component. If the
connection of KT or KC uses WebSockets, then we run the WebSocketConsumer component. We tested
all four combinations of KT and KC and the results are shown in Table 13 and in Figure 10.

Figure 8: Setup of our cluster for latency test

We measure the latency of TripleWave with the setup illustrated in Figure 9. We implement a Da-
taSetReader10x component in TripleWave and send the RDF output stream to a consumption client
application over WebSockets. We measure the time a record needs to pass TripleWave including the
DataSetReader10x component and receiving the client application. The results are shown in Table 13
and in Figure 10.

Patrick Muntwyler / Open data streams on the Web

Bachelor Thesis, University of Zurich, 2017 46

Figure 9: Setup of TripleWave for latency test

Table 13 shows the results of the latency tests. Each column refers to one specific setup. For example,
SSE-WS means that the first connection (KT) uses SSE/EventSource and the second connection (KC)
uses a WebSocket. The last column contains the latency of TripleWave (TW). Each row (except the last
two) stands for one of the ten rounds. In each round there are computed 3’000 latency values, one value
for each record of the test data set. The value in one field in Table 13 stands for the average latency in
milliseconds for the 3’000 values computed in a certain round. The second last row contains the average
latency for all the ten rounds. As the first round for all the setups has a significantly higher latency, we
present in the last row the average latency for the rounds 2-10.

 SSE-WS WS-WS SSE-SSE WS-SSE TW
ROUND 1 5.86ms	 5.84ms 6.06ms 5.75ms 0.80ms
ROUND 2 5.14ms 5.04ms 5.10ms 4.88ms 0.75ms
ROUND 3 4.99ms 4.81ms 4.87ms 4.66ms 0.76ms
ROUND 4 4.83ms 4.63ms 4.83ms 4.61ms 0.73ms
ROUND 5 4.84ms 4.59ms 4.72ms 4.60ms 0.75ms
ROUND 6 4.81ms 4.70ms 4.84ms 4.56ms 0.71ms
ROUND 7 4.90ms 4.67ms 4.80ms 4.57ms 0.74ms
ROUND 8 4.93ms 4.71ms 4.77ms 4.56ms 0.72ms
ROUND 9 4.90ms 4.59ms 4.74ms 4.53ms 0.73ms
ROUND 10 4.85ms 4.65ms 4.75ms 4.56ms 0.71ms
AVG (1-10) 5.01ms	 4.82ms	 4.95ms	 4.73ms	 0.74ms	
AVG (2-10) 4.91ms	 4.71ms	 4.82ms	 4.61ms	 0.73ms	

Table 13: Results of latency tests

As we can see in Table 13, the average latency of TripleWave is less than one millisecond. But the time
stamps we use for these tests contain milliseconds as smallest unit. The results cannot be totally precise,
because they are more precise as the used time stamps. But for our comparison of the latency between
TW and the cluster containing Kafka and TW the quality of the results suffices.
Figure 10 visualizes the presented values of Table 13. The result for each setup in round one is always
notable higher than the results for the other nine rounds. This is because at the beginning Kafka must
establish several mechanisms what takes time and increases the latency. After the first round, the average
values remain stable. We can draw two important conclusions out of these results. First, we can observe
that TripleWave is responsible for about 20% of the latency of the whole cluster. Second, we can observe
that there are no remarkable latency differences between using WebSockets or SSE/EventSource.

Patrick Muntwyler / Open data streams on the Web

Bachelor Thesis, University of Zurich, 2017 47

Figure 10: Illustration of latency test results

5.2 Scalability and throughput
In this section, we present the throughput results of our cluster. We measured the throughput for the
cluster with one TripleWave instance, two TripleWave instances and three TripleWave instances con-
nected. For each of the three setups we restarted the Mac Book to ensure that each test execution has the
same preconditions.
The first setup which includes one TripleWave instance is constructed as follows: We use the TCZH
Fast Connector which we slightly modified for this test. It fetches the corresponding data set but for-
wards only 50’000 records. We do not want the WebSocket connection from Kafka to TripleWave to
disconnect because of a buffer overflow (with 50’000 records this does not happen). The 50’000 records
are sent in one batch from the TCZH Fast Connector to the Kafka brokers, so that afterwards no more
processing power is needed for the Kafka input. The records are then forwarded to the TripleWave
instance over a WebSocket connection (using the WebSocketConsumer component). TripleWave trans-
forms the records according to the TCZH.r2rml mapping. Then the records are sent back to Kafka with
the help of the WebSocketProducerBig component. In the WebSocketProducerBig component for each
incoming record a time stamp is logged which we can use to calculate the records per second processing
rate.
For the setup which includes two TripleWave instances, the TCZH Fast Connector forwards 50’000
records to each TripleWave instance (using two different topics). The TCZH Fast Connector parses
100’000 records to JSON at once so that the two batches à 50’000 records can be sent to Kafka as
simultaneously as possible. With this approach we achieve that the two TripleWave instances start work-
ing at mostly the same time. The two TripleWave instances send the output to two different WebSock-
etProducerBig components which each log time stamps for processed records.
For the setup which includes three TripleWave instances, we modified the TCZH Fast Connector so that
it converts 150’000 records at once and then forwards 50’000 records to three different topics as simul-
taneously as possible. Each of the three TripleWave instances sends the output data to a different Web-
SocketProducerBig component which logs time stamps.
As mentioned above, we choose 50’000 records per TripleWave instance (and not more) because oth-
erwise the WebSocket connection between Kafka and TripleWave disconnects after certain time, since
the buffer overflows. This means that Kafka can handle higher throughput than the WebSockets or Tri-
pleWave. We do not know, however, where exactly the bottle neck is, but it is an interesting future
investigation.
In Section 5.1 we showed that at the beginning the latency is higher because our cluster must first ini-
tialize several processes. Because of that fact we run each of the setups twice, without restarting the
cluster. For each of the test executions we run a console-consumer for each of the needed topics to see

0
1
2
3
4
5
6
7

1 2 3 4 5 6 7 8 9 10

La
te
nc
y	
in
	m
s

Round

Illustration	of	latency	test	results

SSE-WS WS-WS TW SSE-SSE WS-SSE

Patrick Muntwyler / Open data streams on the Web

Bachelor Thesis, University of Zurich, 2017 48

when the processing for each topic is done. A console-consumer is a standard component which is in-
cluded in the download package of Kafka49.

Figure 11: Throughput with one TripleWave (TW) instance

Figure 11 shows the throughput in records per second over the time which was needed to process the
50’000 records. 1 TW, first run means that the results belong to the setup with one TripleWave instance
for the first test execution. 1 TW, second run means that the results belong to the same setup but for the
second test execution. We can see that for the second test execution our cluster does need less time to
reach a stable level of throughput. For both setups the maximum throughput is around 2’500 records per
second.

Figure 12: Throughput with two TripleWave (TW) instances

Figure 12 shows the measured throughput for the setup with two TripleWave instances connected to
Kafka which process overall 100’000 records. The annotation is similar to Figure 11. 2 TW means that
the setup contains two TripleWave instances and again a first and a second test are executed. We can
see that the maximum throughput is higher than for the setup with only one TripleWave instance. In the
1 TW setup the maximum throughput is around 2’500 records per second. In the 2 TW setup the maxi-
mum throughput reaches 3’330 records per second. Again we observe that in the second test execution

49 https://kafka.apache.org/quickstart (accessed 10.7.2017)

0

500

1000

1500

2000

2500

3000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Re
co
rd
s	
/	s
ec
on
d

Time	in	seconds

Throughput	with	one	TripleWave	instance

1	TW,	first	run 1	TW,	second	run

0
500
1000
1500
2000
2500
3000
3500

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

Re
co
rd
s	
/	s
ec
on
d

Time	in	seconds

Throughput	with	two	TripleWave	instances

2	TW,	first	run 2	TW,	second	run

Patrick Muntwyler / Open data streams on the Web

Bachelor Thesis, University of Zurich, 2017 49

less time is needed to reach a stable level of throughput. What we also can observe is that there are two
phases in the timeline where the throughput is stable on two different levels.

Figure 13: Throughput with three TripleWave (TW) instances

Figure 13 shows the results for the setup with three TripleWave instances connected to Kafka. In both
runs are processed 150’000 records. The maximum throughput for 3 TW, first run is slightly higher than
the test results in 2 TW, first run. But the maximum throughput for the 3 TW, second run is lower than
for the 2 TW, second run. Again we see the two phases with stable throughput of different levels and
that in the second run a stable level of throughput is reached faster.

We cannot explain the two different levels of stable throughput with certainty. But we hypothesise that
there are some processes going on in Kafka which require at the beginning (where the 50’000 records
per TripleWave instance are sent to Kafka) more process power than towards the end of a test execution.
And so, towards the end the TripleWave instances can use more process power. Because of these two
different levels of throughput we calculate two different throughput averages per test execution. Since
all test executions show the same behaviour we can compare the averages between the different setups.

Figure 14: Throughput with one TripleWave (TW) instance with averages

0
500
1000
1500
2000
2500
3000
3500

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68

Re
co
rd
s	
/	s
ec
on
d

Time	in	seconds

Throughput	with	two	TripleWave	instances

3	TW,	first	run 3	TW,	second	run

0
500
1000
1500
2000
2500
3000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Re
co
rd
s	
/	s
ec
on
d

Time	in	seconds

Throughput	with	one	TripleWave	instance	with	averages

1	TW,	first	run 1	TW,	second	run Avg	 low,	1	TW,	first	run

Avg	high,	1	TW,	first	run Avg	 low,	1	TW,	second	run Avg	high,	1	TW,	second	run

Patrick Muntwyler / Open data streams on the Web

Bachelor Thesis, University of Zurich, 2017 50

Figure 15: Throughput with two TripleWave (TW) instances with averages

Figure 16: Throughput with three TripleWave (TW) instances with averages

In Figures 14-16 we show the throughput rates of each of the three setups with the different averages
illustrated. Each figure contains the throughput rates for the two test executions and four different aver-
ages. For the first and the second run of a setup the average throughput of the lower level and the higher
level of stable throughput is illustrated. We leave away some of the first values for the average compu-
tation because there the prototype has an initialization phase and the throughput is not stable. We also
do not consider the last few values, since not all TripleWave instances finish exactly at the same time.
We see that in all three setups the records are processed faster in the second run than in the first run. The
averages are higher and there is less time required for the initialization phase, thus the average lines
begin and end earlier in the timeline. We report the illustrated values of Figures 11-16 in Appendix A.

0
500
1000
1500
2000
2500
3000
3500

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

Re
co
rd
s	
/	s
ec
on
d

Time	in	seconds

Throughput	with	two	TripleWave	instances	with	averages

2	TW,	first	run 2	TW,	second	run Avg	 low,	2	TW,	first	run

Avg	high,	2	TW,	first	run Avg	 low,	2	TW,	second	run Avg	high,	2	TW,	second	run

0
500
1000
1500
2000
2500
3000
3500

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68

Re
co
rd
s	
/	s
ec
on
d

Time	in	seconds

Throughput	with	three	TripleWave	instances	with	averages

3	TW,	first	run 3	TW,	second	run Avg	 low,	3	TW,	first	run

Avg	high,	3	TW,	first	run Avg	 low,	3	TW,	second	run Avg	high,	3	TW,	second	run

Patrick Muntwyler / Open data streams on the Web

Bachelor Thesis, University of Zurich, 2017 51

 1 TW INSTANCE
(RECORDS/SEC)

2 TW INSTANCES
(RECORDS/SEC)

3 TW INSTANCES
(RECORDS/SEC)

AVERAGE LOW,
FIRST RUN

1756 1674 2064

AVERAGE HIGH,
FIRST RUN

2289 2712 2714

AVERAGE LOW,
SECOND RUN

1842 2053 2321

AVERAGE HIGH,
SECOND RUN

2403 3083 2963

Table 14: Throughput averages

Table 14 shows the averages for the low and high throughput levels for each setup and each test execu-
tion. We expect that the setup with two TripleWave instances generates the highest throughput because
the Mac Book processor contains two cores. As we see this is only the case for the last row in the table.
Thus the two TripleWave instances are not distributed most efficiently between the two cores.

The main statement we want to show with this evaluation is that our cluster scales. In every row the
setup with three TripleWave instances processes more records as the setup with one TripleWave in-
stance. Also the setup with two TripleWave instances processes more records per second than the setup
with one TripleWave instance except for the first row. Especially in the high throughput phase, the two
TripleWave setup processes significantly more records per second.

5.3 Time performance of Kafka and TripleWave
In this section we present the time performance analysis of our prototype. We measure the time at several
spots to find out how long each part of our prototype needs to process the data. In Section 5.1 we found
out that there are only small latency differences using different connection types. So we decided to set
up our prototype with WebSocketConsumer components as we can configure the WebSocketConsumer
easier than KafkaSSE, and add a time stamp writing mechanism.

Figure 17: Setup of time performance evaluation

In Figure 17 we illustrate the setup for this test. At five different spots we log time stamps, so we are
able to define the processing time of four different passages. The numbers in Figure 17 show where we

Patrick Muntwyler / Open data streams on the Web

Bachelor Thesis, University of Zurich, 2017 52

log the time stamps. The first time stamp is logged in the DataSetReader10x before the records are sent
to the Kafka brokers. The second time stamp is logged in the WebSocketConsumer1 component before
forwarding the data to TripleWave. The third time stamp is logged in the WebSocketProducer compo-
nent before sending the records back to Kafka. The fourth time stamp is again logged in a WebSock-
etConsumer component before the data are forwarded. The last time stamp is logged after the data are
received in the client application.

 1-2 2-3 3-4 4-5 OVERALL
ROUND 1 2.56ms	 1.52ms	 2.32ms	 0.64ms	 7.04ms
ROUND 2 2.04ms	 1.26ms	 1.64ms	 0.52ms	 5.46ms
ROUND 3 1.91ms	 1.22ms	 1.58ms	 0.52ms	 5.23ms
ROUND 4 1.92ms	 1.21ms	 1.57ms	 0.47ms	 5.17ms
ROUND 5 1.89ms	 1.18ms	 1.53ms	 0.46ms	 5.06ms
ROUND 6 1.95ms	 1.21ms	 1.45ms	 0.46ms	 5.07ms
ROUND 7 2.01ms	 1.23ms	 1.49ms	 0.46ms	 5.19ms
ROUND 8 1.99ms	 1.20ms	 1.41ms	 0.44ms	 5.04ms
ROUND 9 1.99ms	 1.21ms	 1.45ms	 0.43ms	 5.08ms
ROUND 10 2.00ms	 1.18ms	 1.45ms	 0.44ms	 5.07ms
AVG (1-10) 2.03ms	 1.24ms	 1.59ms	 0.48ms	 5.34ms	
AVG (2-10) 1.97ms	 1.21ms	 1.51ms	 0.46ms	 5.15ms	

Table 15: Results of time performance test

In Table 15 we present the test results. In column 1-2 we show the time which is needed for a data record
to be processed from the DataSetReader10x component to the WebSocketConsumer1 component. In
column 2-3 we show the processing time which is needed between the WebSocketConsumer1 compo-
nent and the WebSocketProducer component, and so on. The last column shows the overall time needed
for the whole cluster. The second last row contains the average processing time for all the ten rounds.
As the processing time for the first round is significantly higher, we present in the last row the average
processing time for all rounds excluding the first one.
We expect the overall time to be the same as in Table 13 column WS-WS, because the setup is quite
similar. There are only two differences between the two setups: first, for the time performance test, we
log time stamps at not only two spots but at five different spots. Second, we use two WebSocketCon-
sumer components as it is easier to implement two timestamp logging mechanisms in two different
components. Thus slightly more processing is required in this setup compared to Section 5.1. We explain
the small time difference between the overall time and Table 13 column WS-WS with this additional
processing effort.
We expect the processing times in column 1-2 and column 3-4 to be the same, as both passages contain
a Producer, the Kafka brokers and a Consumer. But there is a difference about half a millisecond. We
explain this difference with the different data objects processed on this two passages. Between the Da-
taSetReader10x component and the WebSocketConsumer1 component the non-RDF JSON objects are
processed which are considerably bigger than the transformed JSON-LD objects which are processed
between the WebSocketProducer component and the WebSocketConsumer2 component. This is be-
cause a lot of attributes of the original JSON object are ignored in the corresponding R2RML mapping.
As mentioned above, the test results are more precise than the time stamps used for the evaluation. Thus
a certain variance from the real processing time is possible. But nevertheless the presented results give
an idea of the processing times needed for the different passages.

Patrick Muntwyler / Open data streams on the Web

Bachelor Thesis, University of Zurich, 2017 53

5.4 Data exchange comparison
In this section, we present the results of measuring the package sizes of the content of an RDF output
stream. We measure the package sizes of RDF output stream elements for different formats and for
different connection types. We measure the package size with a framework called Wireshark50.
On the one hand we want to measure the package size of the JSON-LD objects which are the output of
TripleWave and on the other hand we want to measure the package size when we apply the RDF Binary
scheme using Apache Thrift to transmit the data. The JSON-LD objects are sent using WebSockets and
SSE/EventSource. Thus we can compare the package size difference using the two connection mecha-
nisms. We run the Apache Thrift transmission with our KafkaThrift and KTClient components (see
Figure 6, Section 4). We execute two Apache Thrift tests. We use in the first test the TBufferedTransport
in combination with the TCompactProtocol and in the second test the TBufferedTransport in combina-
tion with the TBinaryProtocol. So we can compare the package sizes for these two different Protocols.

Connection Type Individual packages (in bytes) Final result (in bytes)
SSE – JSON-LD 116 + 453 569
WebSockets – JSON-LD 374 374
TCompactProtocol – Thrift 192 + 237 + 224 + 230 883
TBinaryProtocol – Thrift 231 + 285 + 272 + 278 1066

Table 16: Package sizes

We present the four results in Table 16. The first column contains the four different connection types.
The second column contains the sizes of the individual packages in bytes. A Server Sent Event contains
an ID object and a message object. The 116 bytes are the ID object and the 453 bytes stand for the
message object which contains a JSON-LD object. Using WebSockets, there is sent only one frame
which contains the JSON-LD object. When we use our KafkaThrift and KTClient components to trans-
mit the JSON-LD object, it had to be converted to NQuads. There were four Quads necessary to describe
the corresponding JSON-LD object thus in row four and five there are four package sizes. The last
column sums up the individual package sizes.
The size of the records of our test data set differ to a small degree from record to record. This is because
the records contain data about user names and other things which require different numbers of bytes to
be encoded. To be able to directly compare the test results, we present in Table 16 the package sizes for
the same record of the test data set.
We can observe that using WebSockets generates the smallest package size followed by SSE. This
makes sense because of several reason. First a Server Sent Event contains not only the message object
(which contains the actual JSON-LD) but also an ID object. Thus the whole package must be larger.
Second, a SSE/EventSource connection works over HTTP (Hickson 2015), but a WebSocket works over
TCP/IP51. It is therefore expected that SSE/EventSource introduces additional overhead.
The two connections using Apache Thrift need significantly more bytes than the SSE and WebSockets
connection. This is because the RDF Binary scheme is not efficient for our output. What is written in
one JSON-LD object must be converted to four NQuads to be transmitted. This means that four packages
must be sent. We can additionally confirm with this test that the TCompactProtocol needs less bytes to
transmit the same data than the TBinaryProtocol.
We only evaluated Apache Thrift in combination with the RDF Binary scheme. The RDF Binary scheme
compresses triples but the JSON-LD output contains RDF graphs. It would be interesting to write a

50 https://www.wireshark.org/ (accessed 5.7.2017)
51 https://en.wikipedia.org/wiki/WebSocket (accessed 5.7.2017)

Patrick Muntwyler / Open data streams on the Web

Bachelor Thesis, University of Zurich, 2017 54

scheme which compresses RDF graphs and repeat this evaluation with the created scheme. Apache
Thrift may start to pay off in combination with a scheme that is optimized for the output of TripleWave.

Patrick Muntwyler / Open data streams on the Web

Bachelor Thesis, University of Zurich, 2017 55

6 Conclusion
Our study deals with the lack of guidelines and prototypes which show how open data sets can be pub-
lished as Linked Data streams. So we developed a system which fetches, transforms and publishes sev-
eral open data sets as RDF streams. We wrote down our experience and challenges and thus this work
can be seen as guideline for future projects.
We examined Swiss, German and Austrian OGD portals and we made a survey of potential streaming
data sets. The focus of the examination was on the Swiss OGD portals. We examined the OGD portals
of Zurich, Switzerland, SBB and Swiss Public Transport. In addition, we extended our survey with some
data sets from German and Austrian OGD portals.
Our prototype is a combination of Kafka and TripleWave. We use it to increase the number of Linked
Open Data streams on the Web, contributing to the development of the Linked Data Web.
The prototype consists of several components which manage individual tasks. We split our components
into three groups: input components, output components and R2RML mapping components.
We developed two types of input components. The first type of components are important parts of the
connection between Kafka and TripleWave. The other kind of components, called connectors, fetch,
clean, enrich and forward several open data sets to Kafka. We have written connectors for different types
of data sets. These connectors serve as example connectors for accessing different types of data sets. As
every data set has its own characteristics, e.g. data format or protocol, connectors may require to be
adapted if used for other data sets.
The output components have two different usages. First, they are used for the connection between Kafka
and TripleWave. Second, they publish the RDF streams in the Web. We used three different types of
output connections: WebSocket, SSE and Apache Thrift.
The R2RML mapping components are required by TripleWave to transform the non-RDF input streams
into RDF output streams. For every of the five data sets we considered, we wrote an individual mapping.
All five input data sets are classified as 3-star open data according to the Tim Berners-Lee 5-star open
data scheme. Our goal was to increase the number of stars: we used links to entities on LinkedGeoData
for four of the five data sets, thus the RDF output streams are 5-star open data. We also enriched some
of the data sets with additional information. e.g. time stamps or URLs to Web sites of the entities.
Our prototype is modular and scalable. We used Kafka and its topics to manage the different data
streams. Because we wrote individual components which are connected to Kafka and TripleWave our
cluster can easily be extended. New data streams can be connected at runtime, thus no client applications
which are already connected to our cluster are affected. To fetch and transform a new open data set and
publish it as RDF stream, users only have to do few steps: adapt a connector, write an R2RML mapping,
create new Kafka topics and connect the adapted connector and a TripleWave instance to the cluster.
The new stream can be consumed by client applications. Our prototype transforms data sets which are
available through pull-based mechanisms into streams which can be consumed through push-based pro-
tocols like SSE and WebSockets.
After we developed our prototype, we ran different tests to evaluate it. We measured the latency in
different setups and determined the processing times of its different parts. We showed that the cluster is
scalable by measuring the throughput for different numbers of TripleWave instances connected to
Kafka. Finally, we compared the package sizes of output stream objects for different push-based mech-
anisms.
There are some limitations in our work. We examined all data sets from the OGD portal of Zurich, from
the OpenTransportData portal and from the SBB portal. But as the OGD portals of Switzerland, Ger-
many and Austria contain thousands of data sets, we were not able to examine all of them. Thus our
survey is non-exhaustive.
There are some limitations corresponding to our mappings. Our TCZH mapping contains a custom vo-
cabulary because at the best of our knowledge, there is no existing vocabulary for this data set. Our ZH

Patrick Muntwyler / Open data streams on the Web

Bachelor Thesis, University of Zurich, 2017 56

mapping links entities from LinkedGeoData to the entities of the data set. But LinkedGeoData contains
only four of eight required entities and thus we were only able to link half of the entities of the data set.
For the CPZH mapping the same problem exists but there only two out of 37 entities missing. So we
were able to link 35 of 37 parking facilities of the data set to LinkedGeoData.
Our evaluation also includes some limitations. The throughput evaluation has shown that our prototype
scales. We also saw that Kafka can manage higher throughput than TripleWave in combination with
WebSockets. But with our evaluation we did not show where exactly the bottleneck is. Another limita-
tion of our evaluations is that they are done on localhost. This means that no network connection was
included in the tests. So our latency test results do not consider the advantages or disadvantages of
WebSockets or SSE concerning a network connection.
We have learned a lot of things during this thesis. First of all, we learned about the underlying technol-
ogies, namely Node.js, TripleWave, Apache Kafka and Apache Thrift. As TripleWave is written in
JavaScript, the output streams are published on the Web and therefore client applications are likely to
be written in JavaScript we decided to write our components also in JavaScript. We did not regret this
decision because there exist a lot of good packages for Node.js which were useful for our work. On the
one hand Node.js packages enabled to interact with Kafka which is written in Scala and Java52. On the
other hand, we found a lot of helpful packages for various tasks, e.g. converting CSV and XML to JSON
or to set up WebSockets.
We noticed that Kafka is a simply usable framework to manage data streams. The combination of Tri-
pleWave and Kafka was a good decision as the resulting cluster can easily be extended and clearly
manages the different streams. The use of Apache Thrift in combination with the RDF Binary scheme
was not a good choice, as the RDF Binary scheme is not efficient for our output format. The data can
be transmitted in smaller packages when we use JSON-LD and SSE or WebSockets. If there is a Thrift
scheme which is more optimized for the TripleWave output, Apache Thrift may start to pay off as an
alternative to serialize the RDF streams.
An unexpected finding is that there are quite a few real-time data sets on the OGD portals in relation to
the total number of data sets. The most real-time data sets contain information about car parks and the
number of free parking spaces. It seems that such data are easy to collect and to publish on the OGD
portals. We also expected to find more real-time public transportation data. But the public transportation
data sets which can be downloaded only contain the data of the previous day.
There exist a lot of vocabularies for Linked Data. But it is hard to find the suitable vocabularies for a
given data set. The Linked Open Vocabularies Web site53 helped us in this direction, but we register the
need of more tools to enable the identification and reuse of existing vocabularies. Concerning the linking
of the selected data sets LinkedGeoData is a good option. LinkedGeoData benefits from Open-
StreetMap, which can be edited by everyone. Thus the number of entities on OpenStreetMap and
LinkedGeoData increases over time.
For future work it would be interesting to use our prototype with sensor data from Internet of Things. A
prototype can be developed to consume the data of a sensor network, to transform them into Linked
Data and then use SPARQL (or a continuous extension) to query the data streams. Because the data
streams are in RDF, the evaluation process can include data from related data sources distributed over
the Web. This would be a step further towards integrating the topic Internet of Things into the Linked
Data Web.

52 https://en.wikipedia.org/wiki/Apache_Kafka (accessed 12.7.2017)
53 http://lov.okfn.org/dataset/lov/ (accessed 12.7.2017)

Patrick Muntwyler / Open data streams on the Web

Bachelor Thesis, University of Zurich, 2017 57

7 Bibliography
Barbieri, DF & Della Valle, E 2010, ‘A Proposal for Publishing Data Streams as Linked Data’,

Proceedings of the Linked Data on the Web Workshop (LDOW2010), Raleigh, North Carolina.
Berners-Lee, T 2006, Linked Data, viewed 5 June 2017,

<https://www.w3.org/DesignIssues/LinkedData.html>.

Berners-Lee, T, Fielding, R, & Masinter, L 2005, Uniform Resource Identifier (URI): Generic Syntax.
Request for Comments: 3968, viewed 23 July 2017, <https://tools.ietf.org/html/rfc3986>.

Bizer, C, Heath, T, & Berners-Lee, T 2009, ‘Linked Data - The Story So Far’, International Journal on
Semantic Web and information Systems, vol. 5, no. 3, pp. 1-22.

Boyle, D, Yates, D, & Yeatman, E 2013, ‘Urban Sensor Data Streams: London 2013’, IEEE Internet
Computing, vol. 17, no. 6, pp. 12-20.

Brickley, D, & Guha, R 2014, RDF Vocabulary Description Language 1.0: RDF Schema - W3C
Recommendation, viewed 23 July 2017, <https://www.w3.org/TR/rdf-schema/>.

Cyganiak, R, Wood, D, & Lanthaler, M 2014, RDF 1.1 Concepts and Abstract Syntax - W3C
Recommendation, viewed 11 July 2017, <https://www.w3.org/TR/rdf11-concepts/>.

Fette, I, & Melnikov, A 2011, The WebSocket Protocol. Request for Comments: 6455, viewed 23 July
2017, <https://tools.ietf.org/html/rfc6455>.

Fielding, R, Gettys, J, Mogul, J, Frystyk, H, Masinter, L, Leach, P, & Berners-Lee, T 1999, Hyptertext
Transfer Protocol -- HTTP/1.1. Request for Comments: 2616, viewed 23 July 2017,
<https://tools.ietf.org/html/rfc2616>.

Hausenblas, M 2015, 5 � Open Data, viewed 3 Mai 2017, <http://5stardata.info/en/>.

Heyvaert, P, Taelman, R, Verborgh, R, & Mannens, E 2016, ‘Linked Sensor Data Generation using
Queryable RML Mappings’, Proceedings of the 2016 International Semantic Web Conference
Posters & Demonstrations Track.

Hickson, I 2015, Server-Sent Events - W3C Recommendation, viewed 11 July 2017,
<https://www.w3.org/TR/eventsource/>.

Kobilarov, G, Scott, T, Raimond, Y, Oliver, S, Sizemore, C, Smethurst, M, Bizer, C, Lee, R 2009,
‘Media Meets Semantic Web - How the BBC Uses DBpedia and Linked Data to Make
Connections’, The Semantic Web: Research and Applications. ESWC 2009, pp. 723-737.

Kreps, J, Narkhede, N, & Rao, J 2011, ‘Kafka: a Distributed Messaging System for Log Processing’,
NetDB'11.

Mauri, A, Calbimonte, J-P, Dell'Aglio, D, Balduini, M, Brambilla, M, Della Valle, E, & Aberer, K
2016., ‘TripleWave: Spreading RDF Streams on the Web’, The Semantic Web - ISWC 2016 -
15th International Semantic Web Conference, Kobe, Japan, pp. 140-149.

McGuinness, DL, & van Harmelen, F 2004, OWL Web Ontology Language - W3C Recommendation,
viewed 23 July 2017, <https://www.w3.org/TR/owl-features/>.

Open Knowledge International 2017a, What is open?, viewed 31 Mai 2017,
<https://okfn.org/opendata/>.

Open Knowledge International 2017b, Open Definition 2.1, viewed 31 Mai 2017,
<http://opendefinition.org/od/2.1/en/>.

Open Knowledge International 2017c, Open Government Data, viewed 31 Mai 2017,
<https://opengovernmentdata.org/>.

Patrick Muntwyler / Open data streams on the Web

Bachelor Thesis, University of Zurich, 2017 58

Scott, A 2015, Citymapper executive to governments: 'Open more data so we can improve your cities',
viewed 31 Mai 2017, <https://theodi.org/news/citymapper-government-open-data-improve-
cities>.

Shadbolt, N, O'Hara, K, Berners-Lee, T, Gibbins, N, Glaser, H, Hall, W, & Schreafel, M 2012, ‘Linked
Open Government Data: Lessons from Data.gov.uk.’, IEEE Intelligent Systems, vol. 27, no. 3,
pp. 16-24.

Slee, M, Agarwal, A, & Kwiatkowski, M 2007, Thrift: Scalable Cross-Language Services
Implementation, Technical Report, Facebook.

Taelman, R, Heyvaert, P, Verborgh, R, & Mannens, E 2016a, ‘Querying Dynamic Datasources with
Continuously Mapped Sensor Data’.

Taelman, R, Verborgh, R, Colpaert, P, Mannens, E, & Van de Walle, R 2016b, ‘Continuously Updating
Query Results over Real-Time Linked Data’, Proceedings of the 2nd Workshop on Managing
the Evolution and Preservation of the Data Web.

Vineet, J, & Xia, L 2017, ‘A Survey of Distributed Message Broker Queues’, eprint arXiv:1704.00411.

Vrandencic, D, & Krötzsch, M 2014, ‘Wikidata: A Free Collaborative Knowledgebase’,
Communications of the ACM, vol. 57, no. 10, pp. 78-85.

Wang, G, Koshy, J, Subramanian, S, Paramasivam, K, Zadeh, M, Narkhede, N, Rao, J, Kreps, J, Stein,
J. 2015, ‘Building a Replicated Logging System with Apache Kafka’, Proceedings of the VLDB
Endowment, vol. 8, no. 12, pp. 1654-1655.

Patrick Muntwyler / Open data streams on the Web

Bachelor Thesis, University of Zurich, 2017 59

Appendix A: Detailed experimental results
This table contains the values which we present in Section 5.2.

Time in se-
conds

1 TW, first
run (Rec-
ords per
second)

1 TW, se-
cond run
(Records
per se-
cond)

2 TW, first
run (Rec-
ords per
second)

2 TW, se-
cond run
(Records
per se-
cond)

3 TW, first
run (Rec-
ords per
second)

3 TW, se-
cond run
(Records
per se-
cond)

0 465 1005 243 650 677 304
1 1016 1607 587 1303 716 953
2 1681 1667 739 1996 838 1524
3 1645 1857 1408 2071 1364 2347
4 1633 1933 1690 1946 1794 2241
5 1580 1774 1491 1861 1624 2249
6 1504 1886 971 2125 1852 1873
7 1660 1961 1246 2152 1628 1867
8 1985 2055 1192 2043 1724 2012
9 1884 2315 1377 1887 2141 2414
10 1922 2459 1759 1959 1776 2183
11 2358 2385 1797 2088 1883 2528
12 2540 2483 1688 2048 2072 2246
13 2321 2551 1702 2074 2153 2201
14 2181 2545 1438 2126 2101 2288
15 2302 2405 1570 1726 1998 2414
16 2340 2521 1958 2132 1652 2455
17 1839 2152 1968 2256 1760 2328
18 1989 2326 1728 2071 2204 2334
19 2395 2117 1773 2143 2035 2415
20 2305 2413 1870 2152 2056 2435
21 2358 2502 1876 2199 2185 2392
22 2133 2469 1685 2059 2054 2401
23 2353 612 1840 3126 1772 2204
24 2634 2180 3104 2038 2162
25 977 2304 2974 2178 1956
26 2798 3136 1880 2519
27 2635 3100 2210 2187
28 2904 2877 2133 2416
29 2812 2555 2143 2398
30 2576 3121 1954 2381
31 2730 3262 2214 2530
32 2735 3019 1860 2314
33 2890 3129 2100 2471
34 2662 3169 2279 2326
35 2687 3303 2168 2330
36 2726 2992 2277 2333
37 2739 3128 2211 2264
38 2675 3304 2120 2415
39 2578 3104 2105 2306
40 2674 2530 2295 2444

Patrick Muntwyler / Open data streams on the Web

Bachelor Thesis, University of Zurich, 2017 60

41 2731 2239 2489
42 2700 2250 2420
43 2514 2169 2428
44 2601 2253 2545
45 2876 2246 2756
46 2698 2337 2988
47 2222 2358 2956
48 757 2392 2935
49 2760 2852
50 2763 3006
51 2688 2874
52 2731 3045
53 2131 3050
54 2104 3028
55 2399 3057
56 3025 3033
57 2642 3014
58 2776 3269
59 2838 2709
60 2741 2843
61 2957 2343
62 2887
63 2745
64 2921
65 2826
66 2777
67 2856
68 1965

Table 17: Records per second for throughput evaluation

Patrick Muntwyler / Open data streams on the Web

Bachelor Thesis, University of Zurich, 2017 61

Appendix B: How to run
We give in this section two examples of how to run parts of the cluster. As the mechanisms (fetching,
transforming and streaming out) of all five connectors shown in Figure 7 (on page 44) work similar, we
give an example for one of them, namely the CPZH Connector. The second example explains how to
run the TCZH Fast Connector and thus we show how our cluster can be used for streams with high
throughput. As for both examples certain similar things must be done. We describe them before going
to the specific examples. The examples below are run on localhost. If this is not the case, the URLs must
be adapted.
We use Kafka version 2.11-0.10.2.0 (the newest at the time of the thesis). For each topic that we gener-
ate, we use a replication factor of three to guarantee more reliability than with a replication factor of
one. We only create one partition for each topic, because we do not need more throughput and the Kafka
brokers are not distributed54.
The second framework which is required is TripleWave55.
To run TripleWave and the implemented connectors, Node.js is required. For this project we use Node.js
version 6.10.2 as TripleWave requires Node.js 6.
Every component needs certain Node.js packages. At the beginning of each file we listed the required
packages56.
How to fetch, transform and stream out the CPZH data set:

• Set up a Kafka cluster with two topics, e.g. cpzh-original and cpzh.
• Run WebSocketConsumer and KafkaSSE. This can be done using the following commands:

o node pathToFolder/WebSocketConsumer.js
o node pathToFolder/KafkaSSE.js

• Configure a TripleWave instance and run it. This includes the following steps:
o In the config.properties file, define some free ports (for the variable ws_port we use for

this example the port 4040)
o In the config.properties file, choose the desired transform_transfomer (wsStream.js or

sseStream.js)
o In the config.properties file, define path and ws_stream_location (in this case we define

path=/triplewave and ws_stream_location=/primus; the two variables define the path-
name which must be used to connect a WebSocketProducer to TripleWave)

o In the config.properties file, choose the correct transform_mapping (in this case
CPZH.r2rml)

o In the sseStream.js or wsStream.js file, configure the correct Kafka topic:
§ sseStream.js: const url = 'http://localhost:6917/cpzh-original'; (Line 5)
§ wsStream.js: var url = 'ws://localhost:4041/?topics=cpzh-original'; (Line 3)

o run TripleWave using the following command:
§ sh pathToFolder/start.sh

54 For more information of how to run Kafka, see here: https://kafka.apache.org/quickstart (accessed 1.7.2017)
55 A description of how to download and run it can be found here: http://streamreasoning.github.io/TripleWave/ (accessed
1.7.2017)
56 To install a package, first install Node.js and then simply use the following command in the command line where
packageName is the name of the package to install: npm install packageName. If two components need the same package, the
package must be installed only once.

Patrick Muntwyler / Open data streams on the Web

Bachelor Thesis, University of Zurich, 2017 62

• Run a WebSocketProducer to forward the output of TripleWave back to the Kafka cluster. The
URL address, pathname and the port must match the configurations of the TripleWave instance:

o node pathToFolder/WebSocketProducer.js –t=cpzh –u=ws://localhost:4040
–p=/triplewave/primus

• As the whole cluster is now set up, the CPZH Connector can be started:
o Node pathToFolder/CPZH.js –t=cpzh-original

After these steps are done, clients can connect and consume the resulting RDF stream. We describe in
Appendix C how this can be done.
Now we describe how to set up several TripleWave instances for one high throughput data stream illus-
trated for the TCZH Fast Connector. The TCZH Fast Connector splits the data set into three subsets
which each are forwarded to three different Kafka topics. This means that we can connect three Tri-
pleWave instances for this data set. The code of the TCZH Fast Connector can easily be changed and
the number of subsets can be increased/decreased if desired thus increasing/decreasing the number of
connected TripleWave instances. But in the following example, it is shown how to set up the cluster for
three TripleWave instances:

• Set up a Kafka cluster with four topics, e.g. tczh-original0, tczh-original1, tczh-original2 and
tczh (tczh contains the resulting RDF stream of all three TripleWave instances).

• Run WebSocketConsumer and KafkaSSE. This can be done using the following commands:
o node pathToFolder/WebSocketConsumer.js
o node pathToFolder/KafkaSSE.js

• Configure three TripleWave instances and run them. This includes the following steps:
o In each config.properties file, define some free ports (for the variable ws_port we use

for this example 4038, 4039 and 4040)
o In each config.properties file, choose the desired transform_transfomer (wsStream.js or

sseStream.js)
o In each config.properties file, define path and ws_stream_location (in this case we de-

fine path=/triplewave and ws_stream_location=/primus; the two variables define the
pathname which must be used to connect a WebSocketProducerBig to TripleWave)

o In each config.properties file, choose the correct transform_mapping (in this case
TCZH.r2rml)

o In the sseStream.js or wsStream.js file, configure the correct Kafka topic (important:
each TripleWave instance must connect to a different subset of the data set; this means
tczh-original0, tczh-original1 and tczh-original2 must be used once):

§ sseStream.js: const url = 'http://localhost:6917/tczh-original0'; (Line 5)
§ wsStream.js: var url = 'ws://localhost:4041/?topics=tczh-original0'; (Line 3)

o run each TripleWave instance using the following command:
§ sh pathToFolder/start.sh

• Run three WebSocketProducerBig to forward the three output streams of TripleWave back to
the Kafka cluster. Each output stream is in this example forwarded to the same topic (e.g. tczh).
The URL address and the port must match the configurations of the TripleWave instance (use
here the ports 4038, 4039, 4040 as defined above):

o node pathToFolder/WebSocketProducerBig.js –t=tczh –u=ws://localhost:4040
–p=/triplewave/primus

• As the whole cluster is now set up, the TCZH Fast Connector can now be started:

Patrick Muntwyler / Open data streams on the Web

Bachelor Thesis, University of Zurich, 2017 63

o Node pathToFolder/TCZHFast.js –t0=tczh-original0 –t1=tczh-original1
–t2=tczh-original2

Patrick Muntwyler / Open data streams on the Web

Bachelor Thesis, University of Zurich, 2017 64

Appendix C: How to connect to the RDF streams
In Section 4.4 we list the five data sets which are fetched, transformed and streamed out to the Web. In
this section we describe how these transformed RDF streams can be consumed. We publish the streams
over SSE/EventSource and over WebSockets. The components EventSource and WebSocketClient are
simple examples of how the streams can be consumed. We show how they can be run.
As we transform five OGD sets there are five RDF output streams. They are available under the follow-
ing links57 when using WebSockets respectively the WebSocketClient component:

• CPZH: ws://rdfstreams.ifi.uzh.ch:4041/kafka/primus?topics=cpzh
• ZR: ws://rdfstreams.ifi.uzh.ch:4041/kafka/primus?topics=zr
• TCZH: ws://rdfstreams.ifi.uzh.ch:4041/kafka/primus?topics=tczh
• CPBDE: ws://rdfstreams.ifi.uzh.ch:4041/kafka/primus?topics=cpbde
• CPMDE: ws://rdfstreams.ifi.uzh.ch:4041/kafka/primus?topics=cpmde

If it is desired to connect with the same WebSocket connection to several topics, then add a comma
separated list of topics to the URL query, e.g. http://rdfstreams.ifi.uzh.ch:4041/kafka/primus?top-
ics=cpmde,cpbde,tczh
When using the EventSource interface, the streams are available under the following links:

• CPZH: http://rdfstreams.ifi.uzh.ch:6917/cpzh
• ZR: http://rdfstreams.ifi.uzh.ch:6917/zr
• TCZH: http://rdfstreams.ifi.uzh.ch:6917/tczh
• CPBDE: http://rdfstreams.ifi.uzh.ch:6917/cpbde
• CPMDE: http://rdfstreams.ifi.uzh.ch:6917/cpmde

If it is desired to connect with the same SSE connection to several topics, then add a comma separated
list of topics to the URL query, e.g. http://rdfstreams.ifi.uzh.ch:6917/cpmde,cpbde,tczh
As an example of a WebSocket client application we implement the WebSocketClient which simply
connects to a stream and then prints the data to the console. It can be run using the following command
(this command connects to the CPZH RDF stream):

• node pathToFolder/WebSocketClient.js –u=ws://rdfstreams.ifi.uzh.ch:4041 –p=/kafka/primus
–q=?topics=cpzh

If one wants to test the connection using the Google Chrome browser there can be found a WebSocket
client extension here58. After installing it, the desired link above can be used to connect to the stream.
The SSE streams can be accessed by implementing the EventSource interface. We provide a simple
component, named EventSource, which connects to the stream and prints the data to the console. Addi-
tionally, most browsers have also implemented the interface and so the SSE streams can be consumed
by calling one of the corresponding links above in a browser. The EventSource component is run using
the following command (this command connects to the CPZH RDF stream):

• node pathToFolder/EventSource.js –u= http://rdfstreams.ifi.uzh.ch:6917 -t=/cpzh

57 We use ws://rdfstreams.ifi.uzh.ch and http://rdfstreams.ifi.uzh.ch as placeholder for the address
58 https://chrome.google.com/webstore/detail/simple-websocket-client/pfdhoblngboilpfeibdedpjgfnlcodoo (accessed 1.7.2017)

Patrick Muntwyler / Open data streams on the Web

Bachelor Thesis, University of Zurich, 2017 65

Appendix D: Content of the CD
• English Abstract (Abstract.txt)
• German Abstract (Zusfsg.txt)
• Bachelor Thesis as PDF (Bachelorarbeit.pdf)
• Folder named Code with four subfolders:

o Apache-Kafka
o Components
o Evaluation
o TripleWave

The folder named Code contains a README file, which contains more information about the structure
and content of this folder.

