
SSE - An Automated Sample Size
Extractor for Empirical Studies

Kürsat Aydinli
of Grabs SG, Switzerland

Student-ID: 13-926-910
kuersat.aydinli@uzh.ch

Bachelorthesis Mai 12. 2017

Advisor: Patrick de Boer

Prof. Abraham Bernstein, PhD
Institut für Informatik
Universität Zürich
http://www.ifi.uzh.ch/ddis



SSE - An Automated Sample Size Extractor for Empirical Studies

Kürsat Aydinli Patrick de Boer Abraham Bernstein
Department of Informatics Department of Informatics Department of Informatics

University of Zurich University of Zurich University of Zurich
kuersat.aydinli@uzh.ch pdeboer@ifi.uzh.ch bernstein@ifi.uzh.ch

ABSTRACT

This thesis proposes a novel method for automatically retrieving
the sample size for a variety of empirical studies. The studies being
targeted cover a wide range of research fields, including but not
limited to health sciences, computer-human interaction, psychlogy
and management sciences.

SSE is composed of a three-level pipelined algorithmic framework.
At the first stage pattern matching harnessing regular expressions is
utilized to extract eligible sentence fragments most likely containing
the information of interest. The second stage is responsible for rule-
based filtering of the matches identified at step 1. This ensures that
only sample sizes are dealt with during subsequent steps. The third
level of the algorithm is concerned with applying manually designed
heuristics in order to further filter the entries passing stage 2 and
return the requested information.
The algorithm achieves a good accuray while showing promising
performance with respect to competitor systems.

Author Keywords

Sample Size Extraction, Pattern Matching, Rule-Based Filtering,
Case-Specific Heuristics, Valid Research

INTRODUCTION

When conducting and designing empirical studies (e.g medical tri-
als), attaching considerable importance to a confident number of
individuals to include in the analysis - the sample size of the study -
is a key step in ensuring statistical reliability. Due to the fact that
investigators perform studies on a limited number of participants
rather than the whole population, the sample size is closely tied to
the scientific relevance of a study.
Any empirical study involves gathering data from study participants
on different variables. Applying statistical methods (e.g t-test) at
various stages of a study requires mostly a minimum number of
participants. Ensuring these prerequisites helps in terms of sketch-
ing an appropriately designed experiment leading to reliable results
from which meaningful interpretations can be drawn [2].
The usefullness of a study along with the data presented is partially
determined by the sample size [15].

The main objective of the research at hand is to extract sample size
information from a given study article.
This paper evolved in the context of a comprehensive statistics
project conducted by the Dynamics and Distributed Information Sys-
tems group (DDIS) at the University of Zurich. The main motivation
of the project is to assess and evaluate the adequate usage of statis-
tical methods and their assumptions in various research disciplines.
As a result, PaperValidator was developed - an open-source statistics
validation tool which allows the automated validation of statistics in
puplications. At its current state, PaperValidator mainly focuses on
the valid usage of statistical methods in particular checking whether
underlying assumptions are considered and reported as such [14].
As an advancement to PaperValidator, SSE was developed in order
to include sample size analysis. This component is insofar worth
considering as it contributes to the scientific significance of a study.

Our information extraction task is heterogenous with many respects
and poses several challanges. The input texts (study publications)
for our framework differ greatly in both the writing style of differ-
ent authors as well as textual discrepancies across various research
fields. This makes the information of interest - the sample size - be
expressed in many dissimilar ways. In general, number disambigua-
tion is a defiance in terms of sample size extraction as numbers are
included as descriptors for a variety of study characteristics like the
number of subjects, participant age or different variable quantities
(e.g participants having diseas XY).
Finally, in most cases there are many textual fragments containing
identifiers likely to represent a sampe size. This can lead to a large
number of potentially interesting values whereby discrepancies
between them have to be resolved. To overcome these issues, we
have developed a pipelined methodology incorporating rule-based
filtering steps as well as various heuristics.

RELATEDWORK

The problem of automatically recognizing and extracting the sample
size from unstructured text falls under the general category of Infor-
mation Extraction (IE). IE is defined as the process of reconstructing
disambiguated quantifiable data from natural language text snippets.
In contrast to IE, Information Retrieval (IR) indicates the gathering
of relevant information resources from a wide collection of available
information resources (e.g Google search) [6].

1



There exist several approaches in the literature with regard to the
automated retrieval of study specifications. In the majority of cases
attention is devoted to the extraction of study characteristics from
biomedical articles by analysizing their abstract sections.

Cassidy and Hui [3] describe a system for extracting study design
parameters (e.g age of subjects, study duration, number of subjects)
from nutritional genomoics abstracts. Their approach basically con-
sists of extracting potentially relevant sentence fragments using
regular expressions suiting the individual parameter types followed
by additional rules to filter the results and return the most adequate
finding.

The Trial Bank project conducted by Bruijn et al. [7] presents a two-
stage architecture for extracting key study information elements
from randomized controlled trials (RCT) including information re-
lated to the study population. Their methodology follows a machine
learning approach in the first step while annotating relevant sen-
tences according to their informational content. In a second step, an
automatic extractor was designed with a set of rules includig regular
expressions to extract snippets of required information from the
sentences identified in the first step. Their framework is different
from the one described previously in the sense that it is applicable
for running on full-text articles whereas the work of Cassidy and
Hui [3] focuses on the abstract section.

Hansen et al. [8] employs a SVM classifier in order to extract the
sample size from abstracts describing RCTs with the assumption
that the largest number found is the correct sample size. In addi-
tion, their objective lies on extracting the initial number of enrolled
participants into the study before any exclusions or allocations to
different study arms.

Hara and Matsumoto [9] propose a system for extracting controlled
trials design information fromMEDLINE abstracts. They utilize NLP
techniques consisting of base noun-phrase (NP) chunking followed
by pattern matching and subsequent filtering in order to extract
target sentences.

ExaCT is a comprehensive system proposed by Kiritchenko et al.
[11] for the automated extraction of coltrolled trial characteristics
from journal publications. ExaCT primarily searches the text with
a statistical text classifier to locate sentences best describing trial
characteristics. Next, the IE engine applies simple rules to the se-
lected sentences to extract the requested information. Furthermore
it proivdes a web-based user interface for additional modifications
of the suggestions.

Xu et al. [18] developed a mechanism to extract subject demographic
information from RCT abstracts. They employ text classification in
order to identify sentences containing subject demographics. Finally,
NLP techniques are utilized to extract relevant information.

It becomes obvious that recent literature in this research field con-
centrates mainly on clinical trials due to their significant roles as
most important sources of evidence for medical practice and the
design of new trials. These systems indeed provide an easy to handle

way dealing with the time consuming issue of manually reviewing
a large amount of medical publications on the web.

Compared to the previously described techniques for extracting
study information including the sample size, our work extends and
enhances previous research efforts in two main directions. First, the
approach of this work can be seen as an attempt applicable not only
to medical research publications but to a wide range of research
fields.
Second, analysis is performed on full-text publications whereas lit-
erature operating in this field focuses mostly on abstracts. Entire
articles present more challenges yet allow us to extract information
typically not found in abstracts/summaries.

METHODS

Data Source

In this study we used a random sample of 86 full-text articles from
a variety of scientific journals from 2014:

• American Journal of Sociology

• BMJ - British Medical Journal

• Journal of Management

• ACM CHI Conference

• Cognitive Psychology

• Management Science

A first set of 25 papers was used and analyzed in order to design
the heuristical techniques employed by SSE. The remaining set of
61 papers constitutes the ground truth which is used for examining
the effectiveness of SSE.

Sample Size Types

We developed SSE with the aim of extracting three types of sample
sizes which will be referred to as follows:

• OL1: Initial sample size - number of participants initially
enrolled by the investigators before any exclusions or as-
signments to study arms

• NL1: Actual sample size - number of participants included
in the data analysis after excluding ineligible participants

• L2: Group sample size - number of participants in each
study arm if present. Typically L2 sample sizes sum up to
the NL1 sample size

For the purpose of evaluating the final system, the sample sizes
comprising the golden standard were labelled as follows: OL1, NL1,
L2 or FALSE. The following sample extract demonstrates the anno-
tation:

’Initially, we screened 1000 people
who met the inclusion criteria. After
excluding 200 participants, 800 persons

2



were included in the data analysis. Of
the subjects who underwent randomization,
200 were randomly allocated to the group
X, 250 were assigned to group Y and 550
were allocated to group Z. The group X
consists of 110 males and 90 females
where as group Y has ...’

In this case the particular entries in the ground truth would be
labeled as follows:

Table 1. Labeling of identified sample sizes

PDF Name ID N Comment Label

SampleStudy.txt 1 1000 1000 screened OL1

SampleStudy.txt 2 200 200 exluded FALSE

SampleStudy.txt 3 800 800 included in the data analysis NL1

SampleStudy.txt 4 200 200 allocated to ... L2

SampleStudy.txt 5 250 250 assigned to ... L2

SampleStudy.txt 6 550 550 allocated to ... L2

SampleStudy.txt 7 110 110 males FALSE

SampleStudy.txt 8 90 90 females FALSE

The main reason for emphasizing on these three types of sample
sizes rather than the actual one is that empricial studies mostly re-
port all of them in their papers. On the other hand, the classification
of these types facilitates the comparison of SSE with the systems
described in the related work section.

Typical Participant Flow

Typically the sample size falls during the progress of a study. At
the very first stage, a certain number of participants is contacted
and invited. After the screening process, some of them are excluded
due to not fitting the study criteria. If the study intends to compare
different treatments or intervensions on different groups (especially
in medical research), than the number of eligible persons is further
divided into different study arms (see Figure 1).

Within the scneario outlined by Figure 1, SSE would aim to extract
following information elements: 12348 (OL1), 1354 (NL1), 433 (L21)
and 921 (L22).

Approach SSE

SSE follows a multi-stage pipelined approach on extracting and
calssifying the various sample size types found in a study artcle.
The first stage involves 5 different pattern matching modules in
order to capture appropriate sentence fragments. Each module con-
tains patterns for extracting a specific kind of sample size. In this

Fig. 1. Sample Participants Flow Chart

stage, the system is basically divided into two subsystems which
focus on different kinds of sample sizes. The first subsystem aims
at extracting all kinds of sample sizes from the article whereas the
second subsystem is devoted to the extractio of following sample
size categories:

• OL1: Initial sample size

• NL1: Actual sample size

• !NL1: Excluded sample size - Typically difference between
OL1 and NL1

• L2: Group sample size

Once the sentence fragements according to the regular expressions
in the 5 modules are extracted, rule-based filtering is applied in the
second stage in order to filter clauses accidentally matching a par-
ticular pattern without representing a sample size. The completion
of stage 2 results in 5 pools of integer values with each containing
plausible sample sizes according to their types. The most important
part of SSE is embedded in stage 3 where manually crafted heuristics
are applied to the 5 sample size pools in order to extract the correct
ones. The overall architecture of the system is shown in Figure 2.

Stage 1: Pattern Matching

The first phase of the SSE pipeline consists of 5 different pattern
matching modules utilizing regular expressions. At this stage, the
system is further divided into two different tracks (see Figure 2).
The first track (Module TS) aims at extracting all sorts of sample
sizes from a paper, thus having more general patterns. The second
track (Modules OL1, NL1, !NL1 and L2) intends to pool the sample
sizes into 4 different categories (see Figure 2).

Table 2 describes the patterns made use of by each module. The

3



Fig. 2. Design of SSE

regular expressions were developed and adjusted during the investi-
gation of a large set of scientific studies spanning various research
disciplines.

Stage 2: Rule-Based Filtering

Applying the search patterns to the full-text of an article results in 5
different pools containing string matches each. In order to capture
distant dependencies between the integer value and the identifier
(e.g ’participants’), the regular expressions are designed to allow
up to 50 arbitrary characters between these tokens. This regula-
tion allows SSE to match strings of the form ’50 participants’

4



Table 2. Patterns of the SSE modules

Patterns TS Patterns OL1 Patterns NL1

X women
X invited
invited X

X

recruited/included

recruited/included

X

X members
X reviewed
reviewed X

Of the X

recruited/included

X cases
X screened
screened X

X were randomized

X controls
X assessed for
eligibility

X underwent
randomization

X respondents
X met inclusion
criteria

X were included
in the (data)?
analysis

X persons

X participants

X subjects

X patients

X people

X individuals

X adults

X recruited

N=X

Total of X

Study population
included X

X enrolled
enrolled X

Data of / from X

Patterns !NL1 Patterns L2
X were not eligible X in the group

X did not meet (inclusion)?
criteria

X received

X were excluded X (allocated|assigned) to

X / Y

as well as ’50 alcohol drinking as well as medication XY
receiving participants’.

At the other hand, fragments containing numbers not being related
to the identifier are also likely to be matched. The fragment ’2012.
Regarding the health status of the patients’ serves as
such an example.
In this case the value 2012 probably represents a year instead of a
sample size. In order to exclude misleading matches from further
analysis, rule-based filtering is performed on the matches of a mod-
ule. The utilized filterings are outlined in Table 3.

In general, it is attempted to filter matches where the integer value
is not related to an identifier token (e.g ’participants’). This may be

Table 3. Filtering constraints on the matches of each module

Filter TS Filter OL1 Filter NL1
X years, months, weeks, days, hours etc.

X and Identifier unrelated

Contains special symbols

Contains Non-ASCII

length of number > 9

Contains ’%’ ’%’ < X(Y%)

Contains ’not’

Filter !NL1 Filter L2
X years, months, weeks, days, hours etc.

X and Identifier unrelated

Contains special symbols

Contains Non-ASCII

’%’ < X(Y%)

length of number(s) > 9

X > Y in X/Y

sum(Xi) , Y in
[X1/Y; X2/Y;...]

due to appearance in different sentences or due to seperation by a
collection of pre-defined seperating words like ’for’, ’and’, ’from’,
’when’, ’among’ etc.

Matches of the pool TS are not allowed to contain ’%’ whereas the
other pools may contain this sign. In case a ’%’ is encountered it
has to appear in clauses where the sample size preceeds ’%’.
For instance the clause ’... 400(45%) patients ...’ is a
valid match for OL1, NL1, !NL1 and L2.
The pattern ’X/Y’ from the pool L2 poses further restrictions since
it risks capturing irrelevant clauses from tables or even the ref-
erences section (e.g as part of a doi identifier). The first part of
this pattern (’X/Y’) only represents a subgroup for as long as it is
smaller than the second part of the pattern (’X/Y’).
Furthermore it is assumed that in the case the subgroups are rep-
resented using this pattern, SSE should be able to capture the sub-
groups all together. More specifically, summing up every ’Xi’ in
’Xi/Y’ should be equal to ’Y’.
Following fragment is representative for not filtering the’X’matches
of the pattern ’X/Y’:

’In total we enrolled 200 subjects.
The subjects underwent randomization
as follows: 30/200 were allocated to
group A. 60/200 were allocated to group
B and 110/200 were allocated to group
C.’

After processing this clause, the pool L2 would provide following
matches: 30/200, 60/200 and 110/200. In this case it is assured
that

3∑
i=1

X i = 200

5



Matches of this pattern exhibiting such a behaviour are kept in the
L2 pool.

Moreover, all numbers with a length of > 9 are discarded since such
huges numbers are not likely to represent sample sizes encountered
in empirical studies. As a matter of fact, this restriction ensures a
successful typecast to Int.

Once irrelevant matches are filtered from the pools, the respecive
integer values are extracted. Passing this second stage, the SSE
pipeline enters the last major stage of the framework which deals
with heuristical calculations on the 5 pools.

Stage 3: Case-Specific Heuristics

At this point SSE has populated 5 integer buckets containing poten-
tial sample sizes. The manually crafted heuristics which are applied
in this stage have some underlying assumptions. Due to the sophis-
ticated elaboration of regular expressions and subsequent filtering
of misleading matches it is assumed that the numbers in each pool
contain more or less reasonable sample sizes of the corresponding
module type - in particular:

• Pool TS: contains all kinds of sample sizes

• Pool OL1: contains primary sample sizes of enrollment

• Pool NL1: contains actual sample sizes included in the data
analysis

• Pool !NL1: contains sample sizes excluded from the study

• Pool TS: contains sample sizes from study arms

Furthermore it is assumed that the pool TS always contains some
sample sizes on which the heuristics are applied. As mentioned ear-
lier in the paper, the pool TS intends finding every possible sample
size from the text.
The other 4 pools are utilized as an aid on categorizing and filtering
the sample sizes from TS.

Due to the limited patterns of the other 4 modules it is not guaran-
teed that each pool is non-empty. Because the heuristics build upon
the assumption of dealing with different kinds of sample sizes, it
needs to be aware of which pool is available for the calculations.
The information about the emptyness of each pool thus has a crucial
impact on the calculations.
For instance, a reasonable attempt would be to sum up values from
L2 and check if a number in NL1 matches the sum. Another effort
would be to substract values of !NL1 from the entries in OL1 and
check if a value in NL1 matches the difference and so forth.
Before executing any heuristical calculations, SSE therefore needs
to check which of the 4 pools are available. By doing so, SSE distin-
guishes between 16 cases denoted in Table 4.
SSE applies cascades of calculations on the pools depending on the
case encountered. Each cascade consists of a sequence of calcula-
tions with decreasing priority. If the first calculation does not lead
to a result than the next one is executed and so forth. If a calculation
leads to reasonable outcomes than the involved sample sizes are

Table 4. Cases for different heuristics

Case OL1 NL1 !NL1 L2
1 Non-Empty Non-Empty Non-Empty Non-Empty
2 Empty Non-Empty Non-Empty Non-Empty
3 Non-Empty Empty Non-Empty Non-Empty
4 Non-Empty Non-Empty Empty Non-Empty
5 Non-Empty Non-Empty Non-Empty Empty
6 Empty Empty Non-Empty Non-Empty
7 Empty Non-Empty Empty Non-Empty
8 Empty Non-Empty Non-Empty Empty
... ... ... ... ...
... ... ... ... ...
16 Empty Empty Empty Empty

stored in a list containig potentially correct results.

This means that each processed paper is assigned three list data
structures for each sample size type (OL1, NL1 and L2). In case a
calculation was successful the involved sample sizes are added to
the corresponding lists. It is noteworthy that the list containing
promising L2 sample sizes is a list embedded in a list. Each list item
stores the single L2 values.
For instance, passing all the heuristics may result in following final
lists:

• OL1: List = [3456, 6517, 3000, 6517]

• NL1: List = [576, 893, 45]

• L2:

– List = [List = [250,326]

– List = [400,493]

– List = [15,20,10]

Each entry in a list was added due to successfully passing some
rule-based calculations which will be discussed in detail further
down the paper. Furthermore, the list items in the embedded L2 list
each correspond to a split-up of one NL1 entry.
This is due to SSE seeking to find NL1 and L2 sample sizes in combi-
nation. In case this is not possible, only the NL1 entry is retrieved.
In the rest of the paper, these three lists will be referred to as
OL1_potential, NL1_potential and L2_potential respectively.

At this point it is worth of mention that two additional map data
structures are generated for the TS pool: SubArrayMap and Sub-
SetMap:

• SubArrayMap: Map [TSi -> List[TSj, TSj+1, TSj+2,...]

with ∑
j, j+1, j+2, ...

TS = TS i

• SubSetMap: Map [TSi -> List[TSk, TSl, TSm,...]
with ∑

k,l,m, ...

TS = TS i

6



The SubArrayMap contains for each TSi value a subarray from the
TS pool of length ≥ 2 excluding itself which sums up to TSi. In
similar fassion, the SubSetMap contains a subset from the TS pool
of length ≥ 2 excluding TSi with sum equal to TSi.
The difference is that SubArrayMap forces to find sequential pattern
matches whereas SubSetMap may contain matches which are not in
sequential ordering. A sample representaion would be the following
scenario:

• TS Pool: List = [310, 5, 9000, 20, 11250, 89,
800, 196, 150, 160]

• SubSetMap: Map = [310 -> List[5,20,89,196]]

• SubArrayMap: Map = [310 -> List[150,160]]

The idea behind these data structures is to capture dependencies
between the values of TS. If at some point the calculations on the
other specific pools return a potentially interesting sample size X,
then using these maps it can be investigated whether X represents
a composition of other sample sizes.

The next part of this section continues with the specific heuristics
for each of the 16 cases which can be encountered (see Table 4).
The row headers of the cases are supported through colouring the
’emptyness’ of the pools OL1, NL1, !NL1 and L2. Green cellcolor
indicates a non-empty pool whereas a red cell indicates an empty
pool. Non-empty pools are those which are available and thus can
be used in the single calculations. Remember that the TS pool is
assumed to be non-emtpy.
The sub-cases (e.g 1a, 1b,...) of each main case constitute a cascade.
If the first calculation does not lead to reasonable results, then the
next calculation is triggered.
Executing sub-cases aims to find values likely to represent NL1
and L2 sample sizes which are then stored in NL1_potential or
L2_potential respectively. Besides these sub-cases, there are roll-
back procedures which are executed irrespective of the sub-cases.
They are primarily meant to extract OL1 sample sizes and storing
them in OL1_potential.
The following section will discuss case 1 in detail. Cases 2-16 are
described in the appendix.

Case 1 OL1 NL1 !NL1 L2

• Case (1a): ∃ OL1i ∧ subset of !NL1 such that:

– OL1i - subset(!NL1) = NL1i

– SubArrayMap.keySet.contains(NL1i) or

– SubSetMap.keySet.contains(NL1i)

=⇒ Add NL1i to NL1_potential and its subArray resp. sub-
Set to L2_potential

Case (1a) shows the calculation with the highest priority for case
1. This sub-case asks if an entry of the NL1 pool can be composed
of substracting ’excluding’ sample sizes from a potentially initial
sample size. If such a NL1i exists, then the TS pool is investigated

to check wheter NL1i can be composed of some other sample sizes.

For this purpose SubArrayMap and SubSetMap are iterated over to
assess if they contain a key equal to NL1i. If this is the case it means
that NL1i can be put together by at least 2 other sample sizes. This
positive control results in adding NL1i to the list of possible NL1
sample sizes of the paper. In analogeous fashion the corresponding
subArray or subSet is added to the list of potential L2 sample sizes.

In case the map data structures are checked, priority is given to
SubArrayMap over SubSetMap. The intuition behind this handling
is that the authors of a study maily break down the actual sample
sizes in its components right after referring to it. Following sentence
demonstrates the scenario:

’In total we enrolled 800 persons whereby
300 persons were allocated to treatment
group X and 500 persons were assigned
to group Y’

The SubArrayMap would contain inter alia following entry:

(800) -> List = [300,500]

It is not guaranteed that the SubSetMap contais this exact sequence.
Thus, if SubArrayMap returns an entry than this entry is stored in
the lists of potential sample sizes of a paper.

• Case (1b): SubArrayMap , ∅∨ SubSetMap , ∅ such that:

– SubArrayMap.keySet.contains(NL1i)

– SubSetMap.keySet.contains(NL1i)

=⇒ Add NL1i to NL1_potential and its subArray resp. sub-
Set to L2_potential

If case (1a) did not lead to some outcome, i.e did not fillNL1_potential
or L2_potential, then case (2b) is triggered.
Here it is asked whether TS contains a subArray or subSet summing
up to NL1i.

• Case (1c): ∃ subSet of the L2 such that:

– sum(subSet) = NL1i

=⇒AddNL1i toNL1_potential and subset(L2) to L2_potential

(1c) checks whether there is a NL1i composed of a subset of the L2
pool.

• Case (1d): ∃ NL1i = max(pool NL1) such that:

– SubArrayMap.keySet.contains (NL1i) or

– SubSetMap.keySet.contains(NL1i)

=⇒ Add NL1i to NL1_potential and its subArray resp. sub-
Set to
L2_potential

7



This case looks for an entry in the map structures comprising the
largest value in the pool NL1.

• Case (1e): SubArrayMap , ∅∨ SubSetMap , ∅ =⇒ Add
max(SubArrayMap.keySet) or max(SubSetMap.keySet) to
NL1_potential and the subArray resp. subSet values to
L2_potential

Case (1e) attempts to take the entry with the largest key from Sub-
ArrayMap or SubSetMap

• Rollback Pool OL1 such that:

– OL1.filter(OL1i > max(NL1)) , ∅

=⇒ Add max(OL1) to OL1_potential

These sub-cases including the rollback procedure represent the sin-
gle calculation steps in order to fill the potential sample size pools
for an article. They are arranged in a modular way with decreasing
priority. The order of the sub-cases was arranged by intuition and
research.
In a similar fashion all other sub-cases per ’superior’ case are han-
dled. They are described in more detail in the appendix.

Evaluation

In order to evaluate the performance for all three sample size types,
a test set comprising 61 full-text articles from various scientific re-
search fields was used. The identified sample sizes from the papers
were manually annotated with either OL1, NL1, L2 or FALSE.
The labelled dataset was considered to represent the ground truth.
For the purpose of quantifying the performance, following metrics
were utilized:

Sample Sizes found and correct
Sample Sizes found

= Precision

Sample Sizes found and correct
Sample Sizes correct

= Recall

Precision * Recall
Precision + Recall

× 2 = F − Score

Furthermore, following evaluation criteria were categorized:

• Exact Match: Outcome of SSE is fully in accordance with
the annotation in the ground truth

• Partial Match: Any overlap between outcome of SSE and
annotation in the ground truth

The exact match criterion is applicable to all three sample size types
(OL1, NL1, L2) meaning that the returned value for a specific sam-
ple size class by SSE can fully correspond to the annotation in the
ground truth.

The partial match criterion is only applicable to the L2 sample size
since in this case the list of group sample sizes identified by SSE
can overlap with the sample sizes in the testset labeled as L2. The
partial match criterion is not applicable to the other sample size
types since there exists at most only one per paper which can not
be retrieved partially.

The sample application of SSE in table 5 demonstrates the difference
between exact and partial match performances. The left column
contains L2 sample sizes which are assumed to be annotated as
such in the ground truth. The right column contains L2 sample sizes
assumed to be returned by SSE.

Table 5. Example Exact (EM) vs. Partial Match (PM)

L2 in Ground Truth L2 found by SSE EM PM

List = [40, 50, 80] List = [40, 60, 70] X

List = [300, 400] List = [300, 400] X X

List = [110, 120, 130] List = [350, 5, 5]

List = [45, 55] List = [90, 55] X

List = [789, 801, 900] List = [789, 801, 400, 500] X

List = [85,75]

List = [370,350]

The scenario outlined by table 5 shows one exact match vs. 4 partial
matches with respect to the sample sizes found by SSE. Comparing
these criteria the precision of exact vs. partial match would be 20%
(1/5) and 80% (4/5) respectively. In a similar way the recall met-
ric could be calculated as 14% (1/7) and 57% (4/7) respectively.

The results of the actual evaluation of SSE on the testset comprising
61 full-text articles are shown in table 6.

Table 6. Evaluation results of SSE on ground truth

Exact Match Partial Match
Prec. Rec. F-Score Prec. Rec. F-Score

OL1 0.71 0.4 0.52 - - -
NL1 0.73 0.69 0.71 - - -
L2 0.33 0.31 0.32 0.71 0.67 0.69

The evaluation of L2 demonstrates that loosening the restrictions on
the matches increases the overall performance roughly by the factor
of over 2. In addition it is noteworthy that the main contribution of
SSE is to extract the actual sample size (in our case NL1). For this
purpose it achieves the best performance.

Primary causes of errors included violations of assumptions built
into the heuristics (e.g a specific pool containing values intended
to be in another pool), overlooking of important patterns or simply

8



errors in the design of the regular expressions (e.g missing tolerance
for spacing or capital letters).
Due to the pipelined architecture of SSE, an error in stage 1 or 2 has
significant implications on the outcome of stage 3.

In order to put the performance of SSE into a relative perspective,
SSE was also evaluated on two different test datasets used by related
extractors.
We contacted the authors of the papers referenced in the Related
Work section for requesting their testset used for evaluation. Two of
them returned with a positive reply. The testsets were reconstructed
whereby a subsample was chosen to be examined by SSE.
Both of the compared systems refer to the NL1 sample size in SSE.

Hara and Matsumoto [9] designed their system for the application
on abstracts describing phase III randomized controlled trials (RCTs).
SSE was run on a sample of 50 manually annotated abstracts from
their dataset. The results of the comparison is shown in table 7.

Table 7. Comparing SSE with Hara and Matsumoto

Hara and Matsumoto SSE
Precision 0.803 0.936
Recall 0.794 0.898
F-Score 0.8 0.92

It is obvious that SSE outperforms the approach of Hara and Mat-
sumoto. Because abstracts usually do not contain a large number
of potential sample size matches, SSE only has to find the correct
number from a small set of numbers. In most cases, these abstracts
report the NL1 sample size along with its breakdown into subgroups
if present.
Thus, in the majority of cases the SubArrayMap and SubSetMap data
structures of the TS pool should be sufficient to find the correct
number.

The second dataset used to draw comparison was provided by Kir-
itchenko et al. [11]. Their extractor was employed on full-text ar-
ticles representing RCT publications. A sample of 20 papers was
examined by SSE. Table 8 shows the results of the evaluation.

Table 8. Comparing SSE with Kiritchenko et al.

Kiritchenko et al. -
Sentence Level

Kiritchenko et al. -
Fragment Level SSE

Precision 0.77 0.89 0.79
Recall 0.68 0.87 0.75
F-Score 0.72 0.88 0.77

Kiritchenko et al. distinguish two types of system performances.
Sentence level performance is concerned with the ability of the sys-
tem to identify sentences carrying relevant parameter information -
in this case the sample size.
Fragment level performance deals with the capability of extracting

the correct infromation element from within the relevant sentence.
Comparing SSE with the efforts of Kiritchenko et al., it can be stated
that the performance of SSE lies inbetween the two performances
of the compared system.
The more granular fragment level performance outperformes SSE.
This observation may be due to the fact that the system of Kir-
itchenko et al. is specialized in parsing full-text RCT trials whereas
SSE is designed to handle studies covering a wide range of research
disciplines.
The general purpose application landscape of SSE poses a natural
restriction on the specification of the patterns in stage 1 and there-
fore influencing subsequent performance of the other 2 stages.
If, for instance, SSE would only be applied in the environment of
medical RCT papers than the extraction pipeline could be more
strictly bound to structural circumstances encountered in RCTs and
probably a higher overall performance could be achieved.

The comparison with the two competitors demonstrates the ability
of SSE being able to keep up with comparable systems operating in
the medical field.

Discussion

We have introduced a method for automatically extractig the num-
ber of participants included in a study. The extraction is leveraged
by a three-level pipelined architecture whose third stage utilizes
manually crafted heuristics based on the pattern matching and sub-
sequent filtering outcome of the first two stages.
This section discusses various purposes for which SSE can be used.
One apparent application is to enhance PaperValidator - an open-
source tool for automated assessment of valid statistics usage in
study papers by including sample size analysis into the framework.

Despite the utilization of SSE within PaperValidator, it can also be
employed as an independent module. For instance, it can drasti-
cally decrease the time consuming effort of manually collecting
studies from the web enrolling a minimum number of participants.
Especially within the field of evidence-based medicine (EBM), SSE
can simplify the retrieval of relevant documents. EBM argues that
making novel decisions about the care of patients should build upon
the best medical research available at that time [17]. Necessarily,
this implies the assessment of a large number of articles with a con-
fident sample size being representative for the current examination.
Within this scenario, SSE could assist in quickly filtering irrelevant
studies.

Taking a step back and observing SSEs ability of operating on var-
ious kinds of research documents poses yet another interesting
application.
Society in general can and should benefit from scientific discoveries
found by researchers through conducting empirical studies. Never-
theless, caution is recommended with respect to fully trusting study
outcomes only due to the fact that the investigation was performed
by researchers. An additional factor in relying on experimental
findings should consider the sample size included in the respective
study.

9



Regardless of how innovative or groundbreaking a study finding
might seem to be, it would possibly loose conviction in the light of
a small number of investigated subjects.

Being able to rapidly scan numerous empirical studies from different
disciplines with respect to the sample size information introduces
an attractive utility.
For this purpose, SSE was run on a large sample of the corpus com-
prising studies of the journals outlined in the Data Source section.
The intention behind this is to more or less shed light on the distri-
bution of the sample sizes included in various studies.
The results of the following analysis have to be interpreted with
caution. Due to the fact that SSE was evaluated on the ground truth
with an F-Score of 0.71 (see Evaluation), its performance cannot
be projected to the whole corpus the more so as the corpus likely
contains studies not representative with regard to the ground truth
or the training set mainly used to develop SSE.
Figure 3 shows the sample size distribution of the ground truth
whereby studies with a NL1 value > 1000 were excluded.
The chart demonstrates that the pool containing sample sizes of
≤ 20 is the largest one.

Fig. 3. Sample Size Distribution in the Ground Truth

This behaviour becomes clearer when processing a large sample
of the corpus. As with the previous analysis, studies having a NL1
value > 1000 were discarded. The final dataset contains roughly 3000
papers covering all investigated journals. The distribution of the
sample sizes is outlined in the histogram of Figure 4.

The presented overview is in no manner representative with the
actual values in the corpus. It only demonstrates the application of
SSE on a large set of empirical studies.
Nevertheless, an interesting point can be made about the distribu-
tion. According to the histogram, approximately 40% of the studies
exhibit a sample size of ≤ 20. This finding may call reasonable
research into question.

Fig. 4. Sample Size Distribution in the Corpus

Limitations

The design and purpose of SSE accounts for several limitations. The
framework at its current state is primarily designed to be applicable
on studies describing one experiment and thus having at most one
NL1 sample size. Studies documenting several experiments were
discarded from the evaluation.
Furthermore, only studies having at least either a NL1 or L2 sample
size were considered in the development as well as in the evalua-
tion.

Conclusion

The present thesis outlined an approach on automatically extract-
ing the most important types of sample sizes from a full-text study
paper. The methodology used differentiates in many aspects from
concepts discussed in the Related Work section.
While recent literature in this field mostly employs NLP techniques
in combination with machine learning, SSE follows a more con-
servative approach. SSE is designed in a modular fashion clearly
seperating the single stages in the pipeline from each other.
Therefore it can be extended at any time (e.g. by adding new reg-
ular expressions in stage 1 or refining the case-specific heuristics).
Alltogether, SSE proposes a promising methodology on retrieving
sample size information from research in general.

Acknowledgement

I would like to show my gratitude especially to Patrick de Boer
for his valuable feedbacks on the development ideas as well as his
patient support.

10



References

[1] D. J. Biau, S. KernÃľis, and R. Porcher. Statistics in Brief: The
Importance of Sample Size in the Planning and Interpretation of
Medical Research. Clinical Orthopaedics and Related Research,
2008.

[2] V. S. Binu, S. S. Mayya, and M. Dhar. Some basic aspects of sta-
tistical methods and sample size determination in health science
research. Ayu, 2014.

[3] K. Cassidy and Y. Hui. A system for extracting study design
parameters from nutritional genomics abstracts. Journal of
Integrative Bioinformatics, 2013.

[4] Pierre Charles, Bruno Giraudeau, Agnes Dechartres, Gabriel
Baron, and Philippe Ravaud. Reporting of sample size calcu-
lation in randomised controlled trials: review. BMJ: British
Medical Journal, 338(7705):1256–1259, 2009.

[5] Grace Yuet-Chee Chung. Towards identifying intervention
arms in randomized controlled trials: Extracting coordinating
constructions. Journal of Biomedical Informatics, 42(5):790 –
800, 2009. Biomedical Natural Language Processing.

[6] H. Cunninghan. Information extraction, automatic. Encyclo-
pedia of Language and Linguistics, 2005.

[7] B. De Bruijn, S. Carini, S. Kiritchenko, J. Martin, and I. Sim.
Automated information extraction of key trial design elements
from clinical trial publications. AMIA Annual Symposium
Proceedings, pages 141–145, 2008.

[8] Marie J Hansen, Nana Rasmussen, and Grace Chung. Amethod
of extracting the number of trial participants from abstracts de-
scribing randomized controlled trials. Journal of Telemedicine
and Telecare, 14(7):354–358, 2008. PMID: 18852316.

[9] Kazuo Hara and Yuji Matsumoto. Extracting clinical trial
design information from medline abstracts. New Generation
Computing, 25(3):263–275, 2007.

[10] Maurits Kaptein and Judy Robertson. Rethinking statistical
analysis methods for chi. In Proceedings of the SIGCHI Confer-
ence on Human Factors in Computing Systems, CHI ’12, pages
1105–1114, New York, NY, USA, 2012. ACM.

[11] Svetlana Kiritchenko, Berry de Bruijn, Simona Carini, Joel
Martin, and Ida Sim. Exact: automatic extraction of clinical
trial characteristics from journal publications. BMC Medical
Informatics and Decision Making, 10(1):56, 2010.

[12] Robert V. Krejcie and Daryle W. Morgan. Determining sam-
ple size for research activities. Educational and Psychological
Measurement, 30(3):607–610, 1970.

[13] Russell V. Lenth. Some practical guidelines for effective sample
size determination. The American Statistician, 55(3):187–193,
2001.

[14] R. Manuel and de B. Patrick. Papervalidator - towards the
automated validation of statistics in publications. https:
//github.com/pdeboer/PaperValidator, 2016.

[15] J. Gail Neely, Ron J. Karni, Samuel H. Engel, Patrick L. Fraley,
Brian Nussenbaum, and Randal C. Paniello. Practical guides to
understanding sample size and minimal clinically important
difference (mcid). OtolaryngologyâĂŞHead and Neck Surgery,
136(1):14–18, 2007. PMID: 17210326.

[16] Robert A. Parker and Nancy G. Berman. Sample size: More
than calculations. The American Statistician, 57(3):166–170,
2003.

[17] David L Sackett, William M C Rosenberg, J A Muir Gray,
R Brian Haynes, and W Scott Richardson. Evidence based
medicine: what it is and what it isn’t. BMJ, 312(7023):71–72,
1996.

[18] Rong Xu, Yael Garten, Kaustubh S. Supekar, Amar K. Das,
Russ B. Altman, and Alan M. Garber. Extracting subject de-
mographic information from abstracts of randomized clinical
trial reports. In Klaus A. Kuhn, James R. Warren, and Tze-
Yun Leong, editors, MedInfo, volume 129 of Studies in Health
Technology and Informatics, pages 550–554. IOS Press, 2007.

Appendix

Following section describes the inherent heuristics for each of the
2-16 cases.

Case 2 OL1 NL1 !NL1 L2

• Case (2a): SubArrayMap , ∅∨ SubSetMap , ∅ such that:

– SubArrayMap.keySet.contains(NL1i)

– SubSetMap.keySet.contains(NL1i)

=⇒ Add NL1i to NL1_potential and its subArray resp. sub-
Set to L2_potential

• Case (2b): ∃ subSet of the L2 such that:

– sum(subSet) = NL1i

=⇒AddNL1i toNL1_potential and subset(L2) to L2_potential

• Case (2c): ∃ NL1i = max(pool NL1) such that:

– SubArrayMap.keySet.contains (NL1i) or

– SubSetMap.keySet.contains(NL1i)

=⇒ Add NL1i to NL1_potential and its subArray resp. sub-
Set to L2_potential

• Case (2d): SubArrayMap , ∅∨ SubSetMap , ∅ =⇒ Add
max(SubArrayMap.keySet) or max(SubSetMap.keySet) to
NL1_potential and the subArray resp. subSet values to L2_potential

Case 3 OL1 NL1 !NL1 L2

• Case (3a): ∃ OL1i ∧ subset of !NL1 such that:

– OL1i - subset(!NL1) = TSi

– SubArrayMap.keySet.contains(TSi) or

– SubSetMap.keySet.contains(TSi)

11

https://github.com/pdeboer/PaperValidator
https://github.com/pdeboer/PaperValidator


=⇒Add TSi to NL1_potential and its subArray resp. subSet
to L2_potential

• Case (3b): ∃ subSet of the L2 such that:

– sum(subSet) = TSi

=⇒AddTSi toNL1_potential and subset(L2) to L2_potential

• Rollback: =⇒ Add max(Pool OL1) to OL1_potential

Case 4 OL1 NL1 !NL1 L2

• Case (4a): SubArrayMap , ∅∨ SubSetMap , ∅ such that:

– SubArrayMap.keySet.contains(NL1i)

– SubSetMap.keySet.contains(NL1i)

=⇒ Add NL1i to NL1_potential and its subArray resp. sub-
Set to L2_potential

• Case (4b): SubArrayMap , ∅∨ SubSetMap , ∅ =⇒ Add
max(SubArrayMap.keySet) or max(SubSetMap.keySet) to
NL1_potential and the subArray resp. subSet values to L2_potential

• Case (4c): ∃ subSet of the L2 such that:

– sum(subSet) = NL1i

=⇒AddNL1i toNL1_potential and subset(L2) to L2_potential

• Case (4d): ∃ NL1i = max(pool NL1) such that:

– SubArrayMap.keySet.contains (NL1i) or

– SubSetMap.keySet.contains(NL1i)

=⇒ Add NL1i to NL1_potential and its subArray resp. sub-
Set to L2_potential

• Rollback Pool OL1 such that:

– OL1.filter(OL1i > max(NL1)) , ∅

=⇒ Add max(OL1) to OL1_potential

Case 5 OL1 NL1 !NL1 L2

• Case (5a): ∃ OL1i ∧ subset of !NL1 such that:

– OL1i - subset(!NL1) = NL1i

– SubArrayMap.keySet.contains(NL1i) or

– SubSetMap.keySet.contains(NL1i)

=⇒ Add NL1i to NL1_potential and its subArray resp. sub-
Set to L2_potential

• Case (5b): SubArrayMap , ∅∨ SubSetMap , ∅ such that:

– SubArrayMap.keySet.contains(NL1i)

– SubSetMap.keySet.contains(NL1i)

=⇒ Add NL1i to NL1_potential and its subArray resp. sub-
Set to L2_potential

• Case (5c): ∃ NL1i = max(pool NL1) such that:

– SubArrayMap.keySet.contains (NL1i) or

– SubSetMap.keySet.contains(NL1i)

=⇒ Add NL1i to NL1_potential and its subArray resp. sub-
Set to L2_potential

• Rollback Pool OL1 such that:

– OL1.filter(OL1i > max(NL1)) , ∅

=⇒ Add max(OL1) to OL1_potential

Case 6 OL1 NL1 !NL1 L2

• Case (6a): ∃ subSet of the L2 such that:

– sum(subSet) = TSi

=⇒AddTSi toNL1_potential and subset(L2) to L2_potential

Case 7 OL1 NL1 !NL1 L2

• Case (7a): SubArrayMap , ∅∨ SubSetMap , ∅ such that:

– SubArrayMap.keySet.contains(NL1i)

– SubSetMap.keySet.contains(NL1i)

=⇒ Add NL1i to NL1_potential and its subArray resp. sub-
Set to L2_potential

• Case (7b): ∃ subSet of the L2 such that:

– sum(subSet) = NL1i

=⇒AddNL1i toNL1_potential and subset(L2) to L2_potential

• Case (7c): ∃ NL1i = max(pool NL1) such that:

– SubArrayMap.keySet.contains (NL1i) or

– SubSetMap.keySet.contains(NL1i)

=⇒ Add NL1i to NL1_potential and its subArray resp. sub-
Set to L2_potential

• Case (7d): SubArrayMap , ∅∨ SubSetMap , ∅ =⇒ Add
max(SubArrayMap.keySet) or max(SubSetMap.keySet) to
NL1_potential and the subArray resp. subSet values to L2_potential

Case 8 OL1 NL1 !NL1 L2

• Case (8a): SubArrayMap , ∅∨ SubSetMap , ∅ such that:

– SubArrayMap.keySet.contains(NL1i)

12



– SubSetMap.keySet.contains(NL1i)

=⇒ Add NL1i to NL1_potential and its subArray resp. sub-
Set to L2_potential

• Case (8b): ∃ NL1i = max(pool NL1) such that:

– SubArrayMap.keySet.contains (NL1i) or

– SubSetMap.keySet.contains(NL1i)

=⇒ Add NL1i to NL1_potential and its subArray resp. sub-
Set to L2_potential

Case 9 OL1 NL1 !NL1 L2

• Case (9a): ∃ subSet of the L2 such that:

– sum(subSet) = TSi

=⇒AddTSi toNL1_potential and subset(L2) to L2_potential

• Case (9b): SubArrayMap , ∅∨ SubSetMap , ∅ =⇒ Add
max(SubArrayMap.keySet) or max(SubSetMap.keySet) to
NL1_potential and the subArray resp. subSet values to L2_potential

• Rollback: =⇒ Add max(Pool OL1) to OL1_potential

Case 10 OL1 NL1 !NL1 L2

• Case (10a): ∃ OL1i ∧ subset of !NL1 such that:

– OL1i - subset(!NL1) = NL1i

– SubArrayMap.keySet.contains(NL1i) or

– SubSetMap.keySet.contains(NL1i)

=⇒ Add NL1i to NL1_potential and its subArray resp. sub-
Set to L2_potential

• Case (10b): SubArrayMap , ∅∨ SubSetMap , ∅ =⇒ Add
max(SubArrayMap.keySet) or max(SubSetMap.keySet) to
NL1_potential and the subArray resp. subSet values to L2_potential

• Rollback: =⇒ Add max(Pool OL1) to OL1_potential

Case 11 OL1 NL1 !NL1 L2

• Case (11a): ∃ NL1i = max(pool NL1) such that:

– SubArrayMap.keySet.contains (NL1i) or

– SubSetMap.keySet.contains(NL1i)

=⇒ Add NL1i to NL1_potential and its subArray resp. sub-
Set to L2_potential

• Rollback Pool OL1 such that:

– OL1.filter(OL1i > max(NL1)) , ∅

=⇒ Add max(OL1) to OL1_potential

Case 12 OL1 NL1 !NL1 L2

• Case (12a): ∃ subSet of the L2 such that:

– sum(subSet) = TSi

=⇒AddTSi toNL1_potential and subset(L2) to L2_potential

• Case (12b): SubArrayMap , ∅∨ SubSetMap , ∅ =⇒ Add
max(SubArrayMap.keySet) or max(SubSetMap.keySet) to
NL1_potential and the subArray resp. subSet values to L2_potential

Case 13 OL1 NL1 !NL1 L2

• Case (13a): SubArrayMap , ∅∨ SubSetMap , ∅ =⇒ Add
max(SubArrayMap.keySet) or max(SubSetMap.keySet) to
NL1_potential and the subArray resp. subSet values to L2_potential

Case 14 OL1 NL1 !NL1 L2

• Case (14a): ∃ NL1i = max(pool NL1) such that:

– SubArrayMap.keySet.contains (NL1i) or

– SubSetMap.keySet.contains(NL1i)

=⇒ Add NL1i to NL1_potential and its subArray resp. sub-
Set to L2_potential

• Case (14b): SubArrayMap , ∅∨ SubSetMap , ∅ =⇒ Add
max(SubArrayMap.keySet) or max(SubSetMap.keySet) to
NL1_potential and the subArray resp. subSet values to L2_potential

Case 15 OL1 NL1 !NL1 L2

• Case (15a): SubArrayMap , ∅∨ SubSetMap , ∅ =⇒ Add
max(SubArrayMap.keySet) or max(SubSetMap.keySet) to
NL1_potential and the subArray resp. subSet values to L2_potential

• Rollback: =⇒ Add max(Pool OL1) to OL1_potential

Case 16 OL1 NL1 !NL1 L2

• Case (16a): SubArrayMap , ∅∨ SubSetMap , ∅ =⇒ Add
max(SubArrayMap.keySet) or max(SubSetMap.keySet) to
NL1_potential and the subArray resp. subSet values to L2_potential

13


	 Appendix

