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Zusammenfassung

Wir untersuchen Zwei-Klassen kollaborative Filter-Probleme mit positiver und negativer
Klassen-Prognose. Unser Ziel ist die Erstellung von personalisierten Empfehlungslisten,
wobei erwünschte Artikel zuoberst und unerwünschte Artikel zuunterst auf der Liste
eingeordnet werden sollen.

Basierend auf Bayesian Personalized Ranking Matrix Factorization (BPRMF) von
Rendle et al. (2012) und Logistic MF von Johnson (2014), präsentieren wir neue Meth-
oden zur Lösung von Zwei-Klassen kollaborativen Filter-Problemen. Wir evaluieren un-
sere Methoden anhand der folgenden vier Datensätze: MovieLens 100K/1M, Slashdot-
Zoo und Book Crossing. Wir vergleichen unsere Resultate mit den bestehenden Metho-
den BPRMF, Logistic MF, SGDReg (Levy and Jack, 2013) und GAUC-OPT (Song and
Meyer, 2015).

Mit unseren Methoden übertreffen wir die bestehenden Methoden Logistic MF, BPRMF
und GAUC-OPT in jeweils mindestens einem der folgenden Messwerte: AUC, Hit-
Rate@10, Precision@20 und dem jeweiligen negativen Messwert. Dennoch werden alle
unsere Methoden durch SGDReg übertroffen, welches in fast allen Messwerten und fast
allen Datensätzen ausgezeichnete Resultate liefert.





Abstract

We study Two-Class Collaborative Filtering (TCCF) problems with positive and nega-
tive class prediction. Our goal is to distinguish between positive and negative samples
by predicting positive samples at the top and negative samples at the bottom of a per-
sonalized ranking list.

Based on Bayesian Personalized Ranking Matrix Factorization (BPRMF) from Rendle
et al. (2012) and Logistic MF from Johnson (2014), we introduce different new models
to address TCCF problems. We evaluate our models on MovieLens 100K/1M, Slashdot-
Zoo and Book Crossing datasets and compare the results with an evaluation of BPRMF,
Logistic MF, SGDReg (Levy and Jack, 2013) and GAUC-OPT (Song and Meyer, 2015).

With our models we outperform Logistic MF, BPRMF and GAUC-OPT on either
AUC, Hit-Rate@10, Precision@20 and their respective negative evaluation metrics. How-
ever all our evaluation results are surpassed by SGDReg, which excels in most evaluation
metrics on the examined datasets.
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Introduction

Modern consumers are offered a vast variety of choices. Online retailers and content
providers present a wide range of products and articles for different target audiences.
Matching consumers with the most appropriate content is key to enhancing user satis-
faction and loyalty (Koren et al., 2009). Therefore personalized recommender systems
that suit a user’s taste became popular and many e-commerce leaders like Amazon and
Netflix added them as a salient part of their websites. By logging customers’ implicit
feedback such as site views and product purchases as well as explicit feedback like prod-
uct ratings provided by the customers, a huge amount of data is available about which
content appeals to which customer. By analyzing this data, companies can recommend
the right content to the right customers.

Explicit and implicit negative feedback is increasingly available as well. For example
we can extract negative feedback from users’ ratings by treating ratings from 1-2 as
negative feedback and 4-5 as positive feedback. Further examples of positive and negative
feedback are: distinguishing friends from foes, spam from important mails and beneficial
actions from harmful ones. The cost of a negative recommendation may not be significant
in domains like movies or TV shows. But in case of jobs, places to live or friends to
connect to, the cost of a negative recommendation could be high. In such domains,
users are likely to be put off by recommender systems that cannot distinguish potentially
negative items and occasionally put them at the top of the list. Therefore, producing
personalised rankings with positive feedback at the top and negative feedback at the
bottom is an increasingly important task.

In recommender systems oftentimes negative and unknown feedback is mixed together
and not analyzed separately, known as the One-Class Collaborative Filtering (OCCF)
problem. This leads to a bias towards positive feedback, whereas negative feedback
cannot be distinguished from unknown feedback. Our goal is to examine how we can
exploit the availability of negative feedback, to improve positive recommendations and
also improve negative feedback prediction. We extend OCCF to Two-Class Collabo-
rative Filtering (TCCF) to address this limitation and improve prediction quality, by
considering positive, negative and unknown feedback separately.

This Chapter is structured as follows: The first Section of this Chapter gives an
overview over the different research directions in the field of recommender systems.
Section 1.2 will explain our motivation for Two-Class Collaborative Filtering problems
and our contributions will be shown in Section 1.3.
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In Chapter 2 we give a review of the existing literature and explain the relations to our
work. In Chapter 3 we present the experimental setup and explain the different models
and their adaptions to Two-Class Collaborative Filtering. We evaluate these models by
applying them to the MovieLens Slashdot-Zoo and Book Crossing datasets and explain
the datasets and results in Chapter 5.2. In Chapter 5 we conclude our experiments and
summarize the results.

1.1 Background

There are two general types of recommender systems. There are Content Filtering and
Collaborative Filtering approaches.

With Content Filtering, a profile is generated for each product/user which describes its
characteristics/preferences. For example a movie contains features, describing its genre,
whereas a user profile contains its demographic information. Oftentimes this data needs
to be collected externally and is not always readily available. Content Filtering then
matches user and content profiles.

Collaborative Filtering (Goldberg et al., 1992) uses past user behaviour like previous
page views, product purchases or product ratings and doesn’t need explicit profile cre-
ation. It analyzes dependencies between users and between products, to fill the blanks
in the user-item matrix and to suggest and score new user-item recommendations. The
main benefit of Collaborative Filtering is that it is domain independent and thus can
model elusive features, which cannot be collected easily by user or item profiles. It
assumes that, if user A has similar preferences as user B, user A is also more likely
to prefer an item x from user B, than from any other randomly chosen user. Due to
this quality estimation of items by peers, the model is more likely to produce a more
diverse result set (Desrosiers and Karypis, 2011). On the other hand it suffers from the
cold-start problem, its inability to address new items or users, since we cannot compute
similar items or users for those.

Collaborative Filtering is mostly applied using neighbourhood models or latent factor
models (Koren and Bell, 2011).

Neighborhood models calculate the similarity of either users or items, based upon the
rating/feedback given by the same user. The model recommends ”neighboring” items,
which received similar feedback as another item the user already liked, or items which
are liked by another user with similar ratings alternatively.

Latent factor models aim to explain users and items, by characterizing both with a
low number of latent factors, inferred from the feedback patterns. A latent vector is
assigned to each user and item. The dot product between those vectors will serve as
the recommendation score for the given user and item. Some of the most sucessful
latent factor models are based on matrix factorization. Matrix factorization aims to
approximate the user-item feedback matrix with n users and m items R ∈ Rn×m into a
lower dimensional dot product approximation R̂ = UTV with U ∈ Rn×k and V ∈ Rk×m
such that R̂ ≈ R.

Traditionally, Collaborative Filtering problems focus on positive (0, 1] and neutral/neg-
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ative = 0 feedback only and treat the case, where no information is available the same
as where negative feedback is given. This forms the basis of the One-Class Collaborative
Filtering (OCCF). With Two-Class Collaborative Filtering (TCCF), we also consider
negative feedback explicitly and therefore aim to predict the two classes positive or
negative for any given item.

In this section, we gave a short overview of the different approaches to solve the
recommender system problem. We pointed out the differences between content filtering
and collaborative filtering, as well as the most successful realization of collaborative
filtering as a latent factor model with matrix factorization. Due to the focus of this
work, we emphasize on the developments in the field of latent factor collaborative filtering
models with matrix factorization and how they perform in the Two-Class Collaborative
Filtering case with positive and negative feedback.

1.2 Motivation

In this section, we will elaborate our interest in Two-Class Collaborative Filtering Prob-
lems (TCCF), as well as our goals that we wish to achieve.

Signed graphs, in which relationships between nodes can be either positive (like) or
negative (dislike), are increasingly common in recent years. Other examples for datasets
with not only positive but also negative feedback are: explicit up and down votes, friends
and foes networks, item ratings with good (4-5 stars) and bad (1-2 stars) feedback. Also
implicit negative feedback, such as a manual skip to the next song, aborting watching a
movie or closing an ad display can be used.

For instance, MovieLens (Harper and Konstan, 2015) is a movie review website where
users can indicate if they like or dislike a movie, by rating them with 1 to 5 stars.
Another example is Slashdot-Zoo (Brzozowski et al., 2008; Kunegis et al., 2009), which
is a technology related news website where users can tag each other as friends (like) or
foes (dislike), based upon their comments on different articles.

Traditionally, collaborative filtering problems consider either binary One-Class Collab-
orative Filtering (OCCF) for ranking prediction or explicit rating prediction. Ranking
prediction aims to rank items (people, in case of social networks), which the user is in-
terested in, on the top of the predicted ranking list. Rating prediction algorithms aim to
minimize the differences between the predicted and the actual rating. Whereas ranking
prediction works on positive links and ignores negative links, by treating them the same
as unknown links, rating prediction cannot explicitly differentiate between positive and
negative ratings.

In signed networks however, the aim could be to rank items (people) the user is
interested in (positive links, potential likes) on the top and items (people) the user is not
interested in (negative links, potential dislikes) at the bottom of a personalized ranking
list. We will present different metrics to measure the models’ performance on ranking
positive items on the top and negative items at the bottom. By explicitly incorporating
negative ratings, we want to evaluate the performance of existing collaborative filtering
algorithms on signed networks and also introduce new models to improve the algorithms

3
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to these adjusted performance goals. Our goal is to first improve the performance of
the models by explicitly incorporating negative samples and second to correctly classify
positive and negative samples with high probability.

When a new user appears or a new item is added, we do not have many information
nor ratings available to make our decision about recommending existing items for the
new user or recommending the new item to existing users. This is referred to as the
cold-start problem. We want to evaluate the performance of existing models and our
newly introduced models with regard to the cold-start problem.

1.3 Contributions

In this section, we will describe our contributions to current research on recommender
systems with this thesis.

In this thesis we present different methods to handle Two-Class Collaborative Filtering
problems and analyze their performance on signed networks. Our main contributions
are as follows:

1. Based on current state-of-the-art recommendation models, we introduce new meth-
ods for Two-Class Collaborative Filtering, by explicitly distinguishing between
negative and unknown feedback.

2. We analyze the models’ performance for different parameter settings.

3. We examine the performance of our methods on signed datasets.

4. We provide different evaluation measures to compare the models’ performance
on signed datasets and to measure efficiency of ranking negative feedback at the
bottom of personalized ranking lists.

5. To measure the models’ sensitivity to cold-start, we provide an analysis on the
models’ performance for the group with low number of feedback per user.

We adapt Bayesian Personalized Ranking Matrix Factorization BPRMF to explicitly
incorporate negative ratings with different sampling methods and introduce Explicit
Bayesian Personalized Ranking MF (E-BPRMF) and Proportional Bayesian Personal-
ized Ranking MF (P-BPRMF). Based on Logistic Matrix Factorization, we introduce
Multinominal Logistic Matrix Factorization (MLMF) and propose Logistic Likelihood
Matrix Factorization (LLMF), to improve ranking of positive feedback and Explicit Lo-
gistic Likelihood Matrix Factorization (ELLMF), to distinguish between negative and
unknown feedback. We compare our models with different state-of-the-art baseline rec-
ommenders, such as BPRMF, SGDReg, Logistic MF and GAUC-OPT. For the evalua-
tion, we implement GAUC-OPT according to Song and Meyer (2015) and port Logis-
tic MF, BPRMF and SGDReg to Python. We evaluate our models together with the
baseline recommenders on four openly available benchmark datasets: MovieLens 100K,
MovieLens 1M, Slashdot-Zoo and Book Crossing.

4



1.3. CONTRIBUTIONS 5

We focus on the difference between negative and unknown feedback to solve Two-Class
Collaborative Filtering problems and fill the gap in the current research on personalized
recommender systems. Based on state-of-the-art recommenders, we propose new meth-
ods and provide an analysis of the different approaches.
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Related Work

In this chapter, we focus on recent research efforts on the topic of Collaborative Filtering
and especially Two-Class Collaborative Filtering problems. The names of the models
that we implement and use as baseline recommenders (see Section 4.1.1) are printed in
bold face.

As shown in Section 1.1, Collaborative Filtering models and especially the use of
Matrix Factorization has been widely applied as state-of-the-art method for recommen-
dation systems. After the launch of the Netflix prize (Bennett et al., 2007), collaborative
filtering has become a well studied topic and gained research attraction. The idea, that
a small number of unobserved features can determine the preferences of a user forms
the basis of low dimensional latent factor models, such as Matrix Factorization. Current
research can be roughly categorized into two areas: First by introducing and incorpo-
rating additional information, like user or item context information within the model
and second by modifying the models optimization function and for example, optimize a
probabilistic loss function.

On the example of the Netflix prize competition, Koren et al. (2009) show the benefits
of Matrix Factorization methods, which allow the incorporation of additional information
and are thus superior to classic nearest-neighbor techniques. Using side information, such
as implicit feedback, temporal effects and confidence levels, can improve the models’
performance significantly. Especially weighting implicit feedback by their confidence
and incorporating temporal effects drastically improved matrix factorization models on
the Netflix dataset.

Probabilistic approaches introduced by Hofmann (1999), Marlin and Zemel (2004) and
others attempt to encode the probability of a user choosing to interact with an item.
But they were not meant to handle large datasets, due to exact inference (Welling et al.,
2005). Mnih and Salakhutdinov (2007) introduce Probabilistic Matrix Factorization
(PMF) which improves those traditional probabilistic approaches and handles very large
datasets and users with very few ratings. Their model places zero-mean Gaussian priors
on latent user and item features and optimizes the root-mean-square error (RMSE) with
quadratic regularization terms, using gradient descent. By introducing constraints on
the user-specific feature vectors, they improve their model for users with very few ratings
significantly, by defining the user feature vector as a combination of user bias and relative
item similarities of rated items for each given user.
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Ma et al. (2008) extend PMF with addidtional information from a user-user adjacency
matrix, which represents the users’ social network. Due to the sparsity of explicit feed-
back matrices, Collaborative Filtering models often fail to find similar users and cannot
handle users who have never rated any items. Traditional recommender systems assume
that users and their ratings are independent and identically distributed, and therefore
ignore the social connections and their importance for social recommendations, as shown
by Sinha and Swearingen (2001) and Bedi et al. (2007). With the incorporation of the
users’ social network context information, they introduce the SoRec model to overcome
these limitations. They factorize the user-item rating matrix together with the user-
user adjacency matrix using a common latent user feature vector based on Probabilistic
Matrix Factorization. By optimizing the RMSE using gradient descent, they evaluate
their model on the Epinions dataset against Probabilistic Matrix Factorization (PMF),
Constrained PMF and Maximum Margin Matrix Factorization (MMMF) and come to
the conclusion, that SoRec outperforms those models on mean absolute error (MAE).

As most of the previous work on recommendation systems focuses on explicit feedback,
which can be difficult to obtain, Oard and Kim (1998) propose to use implicit feedback,
such as purchase or browsing history. Hu et al. (2008) introduce Implicit Feedback
Matrix Factorization (IMF) to incorporate confidence levels of implicit user feedback
and improve traditional Matrix Factorization models to handle implicit feedback. Their
main finding is that for implicit observations a preference estimate, whether the user
likes or dislikes an item, should be coupled with a confidence level.

By adapting Implicit Feedback Matrix Factorization to PMF, Johnson (2014) use a
probabilistic approach on optimizing a logistic likelihood function and introduce the
Logistic Matrix Factorization (Logistic MF). They model the probability of a
user choosing to interact with an item by a logistic function. They use alternating
gradient descent to find a local optimum and drastically improve the convergence by
adaptively choosing the gradient step size via AdaGrad (Duchi et al., 2011). Evaluated
on the Spotify dataset and measuring Mean Percentage Ranking (MPR), the Logistic
MF outperformed IMF.

Rendle et al. (2012) focus on ranked recommendations from implicit feedback and
introduce the Bayesian Personalized Ranking (BPR) model. They use a boolean
rating matrix, where a user has either seen an item or not. They provide a generic
optimization criterion, based on the difference of user preferences between two items
and build upon stochastic gradient descent with bootstrap sampling. The user’s item
preference is composed of the two estimators for the single items and thus allows the use
of standard collaborative filtering models. The model is evaluated, first using nearest-
neighbour and second using matrix factorization techniques. They show that their ap-
proach converges much faster and especially, that not only the choice of the right model,
but also largely the choice of the right optimization criterion is critical for better pre-
diction quality.

Also Song and Meyer (2015) propose a different optimization criterion, which ex-
plicitely takes negative samples into account. They adapt the area under the ROC
curve metric (Hanley and McNeil, 1982), which is often used as AUC to measure the
perfomance of recommendation systems, to also measure the models’ performance on

8
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negative samples. This adapted metric is used to quantify the ranking performance on
a signed network graph with positive and negative samples, as a Two-Class Collabora-
tive Filtering problem. They infere an algorithm, by minimizing the generalized AUC
loss, using sub-gradient descent and introduce the GAUC-OPT optimization criterion.
They evaluate their method on the MovieLens 1M dataset, by considering ratings of 4
and 5 as positive links and ratings of 1 and 2 as negative links.

Similar to BPR, Ning and Karypis (2011) looked into ranked recommendation lists
and introduced Sparse Linear Methods for Top-N Recommender Systems (SLIM). They
propose a simple model to generate top-N recommendations, by aggregating from the
user-item rating history. The model consists of a sparse aggregation coefficient matrix,
which is used to aggregate an item rank from the user’s previous rating history. Under
the assumption that the items are independent, the computation can be done in parallel
and sparsity can be exploited, to reduce the computational complexity. Nevertheless,
compared to matrix factorization models the training of SLIM involves considerably
higher computational cost. Therefore Levy and Jack (2013) relax the non-negativity
constraint and propose SGDReg which allows the learning of item similarities using
stochastic gradient descent as described by Tsuruoka et al. (2009).

In this chapter, we described recent research efforts on the topic of Collaborative Fil-
tering and pointed out different approaches, used to improve and adapt existing methods.
We will base our work on some of these approaches and use the best recommenders as
baseline to compare and evaluate our results.

9
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Two-Class Collaborative Filtering
Problems

In this chapter, we present the experimental setup and explain the different models and
their adaptions for Two-Class Collaborative Filtering (TCCF). We focus on two differ-
ent kinds of collaborative filtering models: Logistic matrix factorization and Bayesian
Personalized Ranking.

We start with the problem definition in Section 3.1 and continue with an explanation
of the used notations in Section 3.2.

For logistic matrix factorization in Section 3.3, we first show the adaption of the
Logistic Matrix Factorization model from Johnson (2014) to the probabilistic approach,
by optimizing the logistic likelihood function. We then adapt it to TCCF and introduce
Explicit Logistic Likelihood Matrix Factorization (ELLMF) and add explicit two-class
learning, using a Multinominal Logistic Matrix Factorization (MLMF).

In Section 3.4 we show the adaptions of Bayesian Personalized Ranking (BPR) from
Rendle et al. (2012) to TCCF by using different sampling methods.

3.1 Problem Definition

Collaborative Filtering (CF) has been widely applied as the state-of-the-art method for
recommendation systems. With the motivation of the Netflix Prize, the application of
collaborative filtering to model explicit rating feedback has been extensively studied.
Oftentimes explicit feedback is not or not yet available, whereas implicit feedback from
views, clicks, buys or users’ demographic information is readily available or can easily
be collected.

Recommendation systems from implicit feedback have been studied by Rendle et al.
(2012), Koren et al. (2009), Ning and Karypis (2011) and others. They all focus on
solving the Collaborative Filtering problem, where only examples of the positive class
are available and negative feedback is mixed together with unknown feedback. This
approach is refered to as One-Class Collaborative Filtering, as shown by Pan et al.
(2008).

In this work we focus on Two-Class Collaborative Filtering (TCCF) by considering
examples from both positive and negative class. We aim to classify new unknown items
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into the positive or negative class and therefore distinguish between unknown and nega-
tive feedback. We consider cases where explicit or implicit positive and negative feedback
is available and aim to predict positive and negative items likewise.

3.2 Formalization

Let U be the set of all users and I the set of all items. We set R to be the user-item
rating matrix with positive and negative feedback. Denote with S+ ⊂ U × I the set
of implicit/explicit positive feedback, S− ⊂ U × I the set of negative feedback and
S0 ⊂ U × I the set of unknown feedback, all of which are non-overlapping.

We always use the subscripts u ∈ U for an user, i ∈ I for an item and the superscripts
+, − and 0 for positive, negative and unknown feedback respectively. d ∈ [1, ..., D] is
used as the index of a D-dimensional latent factor.

Let R̂ ≈ R ∈ RN×M be the approximation of the user-item rating matrix with N
users and M items. Using matrix factorization A ∈ RN×D and B ∈ RM×D will be the
user and item latent factors respectively and D the dimensionality of the latent factors.
With βu, βi we denote the user and item biases. Uppercase characters always represent
matrices (e.g. the user-item rating matrix R) whereas lowercase characters represent
vectors (e.g. the user latent vector au). Rows of matrices are denoted in lower-case, as
for example ru represents the row at position u in the matrix R = [r1, r2, ..., rN ]T .

For convenience we define:

I+
u := {i ∈ I : (u, i) ∈ S+}
I−u := {i ∈ I : (u, i) ∈ S−}

We denote with ‖au‖22 the Euclidean norm, with ‖au‖1 the L1-norm and with δ(x) the
indicator function as follows:

‖au‖22 =

√√√√ D∑
d=1

| au,d |2

‖au‖1 =

D∑
d=1

| au,d |

δ(x) =

{
1 if x is true,

0 else

12



3.3. LOGISTIC MATRIX FACTORIZATION 13

3.3 Logistic Matrix Factorization

Inspired by Johnson (2014) and Mnih and Salakhutdinov (2007) we looked into proba-
bilistic and logistic matrix factorization and how they could be extended for Two-Class
Collaborative Filtering.

We will start with a short review of the Logistic Matrix Factorization model from
Johnson (2014). We then introduce an adapted version, by optimizing the likelihood
function and introduce Logistic Likelihood Matrix Factorization and further improve this
model, to use explicit indicators with Explicit Logistic Likelihood Matrix Factorization.
Finally we present the Multinominal Logistic Matrix Factorization, which optimizes a
multinominal logistic model for the joint optimization on positive and negative class.
We call them LLMF, ELLMF and MLMF respectively.

3.3.1 Logistic Matrix Factorization

The Logistic Matrix Factorization presented by Johnson (2014) uses two low dimensional
matrices A ∈ RN×D and B ∈ RM×D. It factorizes the observed user-item rating matrix
R ∈ RN×M similar to Hu et al. (2008).

Let the probability that a user interacts with an item be distributed according to the
logistic function as follows:

p(r+
ui | au, bi, βu, βi) =

exp(aub
T
i + βu + βi)

1 + exp(aubTi + βu,+βi)

The bias terms βu and βi are bias factors associated with each user u and item i and
account for the differences between users and items respectively.

Under the assumption that all observed ratings in R are independent, it optimizes
the following likelihood function, where α defines a weighting factor to balance between
positive and unkown ratings as suggested by Hu et al. (2008):

pLK =
∏

(u,i)∈U×I

p(r+
ui | au, bi, βu, βi)

αrui(1− p(r+
ui | au, bi, βu, βi))

3.3.2 Logistic Likelihood Matrix Factorization

Based on Johnson (2014), we modify the Logistic Matrix Factorization to optimize the
log likelihood function according to James et al. (2014). The goal of Logistic Likelihood
Matrix Factorization (LLMF) is first to differentiate between positive and negative or
unknown feedback and second to use the resulting matrix factorization, to provide a
probability measure for classifying positive and negative feedback.

It differs from the model from Johnson (2014) in the definition of the likelihood func-
tion. Instead of always multiplying with the probability of a negative or unknown rat-
ing, we only consider the probability of a negative rating for truly negative or unknown
samples within the likelihood function. We therefore only account for the loss of false
positives, whereas Logistic MF also accounts for the loss of true positives and hence

13



14 CHAPTER 3. TWO-CLASS COLLABORATIVE FILTERING PROBLEMS

lowers the probability measure for true positive classifications. With this adaption we
expect the model to perform better on arranging truly positive samples on top of a user’s
ranking list.

To distinct between the positive and negative class, we denote the probability that a
user u likes item i analogous to the Logistic Matrix Factorization as:

p(r+
ui | au, bi, βu, βi) =

exp(aub
T
i + βu + βi)

1 + exp(aubTi + βu,+βi)

And the probability that user u dislikes item k as:

p(r−ui | au, bk, βu, βk) = 1− p(r+
ui | au, bk, βu, βk) =

1

1 + exp(aubTk + βu,+βk)

For better readability we omit the condintionals and use f to represent the matrix
factorization result:

p(r+
ui) := p(r+

ui | au, bi, βu, βi)
p(r−ui) := p(r−ui | au, bk, βu, βk)

f := aub
T
i + βu + βi

We consider the following likelihood function:

pLK =
∏

(u,i)∈U×I

p(r+
ui)

δ((u,i)∈S+)(1− p(r+
ui))

1−δ((u,i)∈S+)

=
∏

(u,i)∈U×I

exp(f)

1 + exp(f)

δ((u,i)∈S+)(
1− exp(f)

1 + exp(f)

)1−δ((u,i)∈S+)

And the resulting log-likelihood function:

log pLK =
∑

(u,i)∈U×I

log

( exp(f)
1+exp(f)

δ((u,i)∈S+) 1
1+exp(f)

1
1+exp(f)

δ((u,i)∈S+)

)

=
∑

(u,i)∈U×I

δ((u, i) ∈ S+) log

(
exp(f)

1 + exp(f)

)
+ log

(
1

1 + exp(f)

)

− δ((u, i) ∈ S+) log

(
1

1 + exp(f)

)
=

∑
(u,i)∈U×I

δ((u, i) ∈ S+)f − δ((u, i) ∈ S+) log(1 + exp(f))

− log(1 + exp(f)) + δ((u, i) ∈ S+) log(1 + exp(f))

=
∑

(u,i)∈U×I

δ((u, i) ∈ S+)f − log(1 + exp(f))

=
∑

(u,i)∈U×I

δ((u, i) ∈ S+)(aub
T
i + βu + βi)− log(1 + exp(aub

T
i + βu + βi))

14



3.3. LOGISTIC MATRIX FACTORIZATION 15

And aim to maximize the following objective function:

max
a,b,βu,βi

log pLK − λ

2
‖a‖ − λ

2
‖b‖ =

max
a,b,βu,βi

∑
(u,i)∈U×I

δ((u, i) ∈ S+)(aub
T
i + βu + βi)

− log(1 + exp(aub
T
i + βu + βi))

− λ

2
‖a‖ − λ

2
‖b‖

And therefore the partial derivatives for the user vectors and bias:

∂

∂a
= δ((u, i) ∈ S+)b− b exp(aub

T
i + βu + βi)

1 + exp(aubTi + βu + βi)
− λa

∂

∂βu
= δ((u, i) ∈ S+)− exp(aub

T
i + βu + βi)

1 + exp(aubTi + βu + βi)

Similarly for the item vectors and item bias:

∂

∂b
= δ((u, i) ∈ S+)a− a exp(aub

T
i + βu + βi)

1 + exp(aubTi + βu + βi)
− λb

∂

∂βi
= δ((u, i) ∈ S+)− exp(aub

T
i + βu + βi)

1 + exp(aubTi + βu + βi)

3.3.3 Explicit Logistic Likelihood Matrix Factorization

To distinguish between unknown and negative feedback we extend Logistic Likelihood
Matrix Factorization by explicitly accounting for negative classes within the likelihood
function and introduce the Explicit Logistic Likelihood Matrix Factorization (ELLMF).

In this approach, we modify the likelihood function, to account for the probability of a
negative rating, only if the given user rated this item negative. We include positive and
negative feedback and ignore unknown feedback within the likelihood function. With
this adaption, we expect the model to be able to better differentiate between positive
and negative feedback.

For readablility we omit the conditionals and denote the following as in Subsection
3.3.2:

p(r+
ui) := p(r+

ui | au, bi, βu, βi)
f := aub

T
i + βu + βi

We consider the following likelihood function:

pLK =
∏

(u,i)∈U×I

p(r+
ui)

δ((u,i)∈S+)(1− p(r+
ui))

δ((u,i)∈S−)

15



16 CHAPTER 3. TWO-CLASS COLLABORATIVE FILTERING PROBLEMS

And the resulting log-likelihood function:

log pLK =
∑

(u,i)∈U×I

log
( exp(f)

1 + exp(f)

δ((u,i)∈S+) 1

1 + exp(f)

δ((u,i)∈S−))
=

∑
(u,i)∈U×I

δ((u, i) ∈ S+) log

(
exp(f)

1 + exp(f)

)
+ δ((u, i) ∈ S−) log

(
1

1 + exp(f)

)
=

∑
(u,i)∈U×I

δ((u, i) ∈ S+)f − (δ((u, i) ∈ S+) + δ((u, i) ∈ S−)) log(1 + exp(f))

=
∑

(u,i)∈U×I

δ((u, i) ∈ S+)(aub
T
i + βu + βi)

− (δ((u, i) ∈ S+) + δ((u, i) ∈ S−)) log(1 + exp(aub
T
i + βu + βi))

And aim to maximize the following objective function:

max
a,b,βu,βi

∑
(u,i)∈U×I

δ((u, i) ∈ S+)(aub
T
i + βu + βi)

− (δ((u, i) ∈ S+) + δ((u, i) ∈ S−)) log(1 + exp(aub
T
i + βu + βi))

− λ

2
‖a‖ − λ

2
‖b‖

And therefore the partial derivatives for the user vectors and bias:

∂

∂a
= δ((u, i) ∈ S+)b− (δ((u, i) ∈ S+) + δ((u, i) ∈ S−))b

exp(aub
T
i + βu + βi)

1 + exp(aubTi + βu + βi)
− λa

∂

∂βu
= δ((u, i) ∈ S+)− (δ((u, i) ∈ S+) + δ((u, i) ∈ S−))

exp(aub
T
i + βu + βi)

1 + exp(aubTi + βu + βi)

Analogue the partial derivatives for the item vectors and bias:

∂

∂b
= δ((u, i) ∈ S+)a− (δ((u, i) ∈ S+) + δ((u, i) ∈ S−))a

exp(aub
T
i + βu + βi)

1 + exp(aubTi + βu + βi)
− λb

∂

∂βi
= δ((u, i) ∈ S+)− (δ((u, i) ∈ S+) + δ((u, i) ∈ S−))

exp(aub
T
i + βu + βi)

1 + exp(aubTi + βu + βi)

3.3.4 Multinominal Logistic Matrix Factorization

Logistic MF, LLMF and ELLMF are all limited to predicting a single probability p(r+
ui)

and cannot predict the difference between unknown and negative feedback. By introduc-
ing a second estimator, we now aim to predict the probabilities, that an item is positive
or negative simultanously and are thus able to distinguish positive, negative and un-
known feedback. We extend Logistic Matrix Factorization using multinominal logistic
regressions as shown by Kwak and Clayton-Matthews (2002) and introduce Multinom-
inal Logistic Matrix Factorization (MLMF). With this approach, we are able to sep-
arately predict the probability of positive, negative and unknown samples. Following

16



3.3. LOGISTIC MATRIX FACTORIZATION 17

this method we expect an increase in prediction accuracy of both positive and negative
feedback.

For all users we aim to predict each user-item pair to be part of one of the three
classes: positive (+), negative (−) or unknown (0). Assuming independence of irrele-
vant alternatives, we will learn a combination of two independent logistic regressions,
representing positive (P ) and negative (N) item membership with common latent user
features A and positive (B), respective negative latent item features (C), as shown in
Figure 3.1:

Positive (P): R̂+ = ABT + β+
i + βu

Negative (N): R̂− = ACT + β−i + βu

Figure 3.1: Graphical model for Multinominal Logistic Matrix Factorization

We denote the probability that user u likes item i as:

p(r+
ui | au, bi, ci, β

+
i , β

−
i , βu) =

exp(aub
T
i + β+

i + βu)

1 + exp(aubTi + β+
i + βu) + exp(aucTi + β−i + βu)

And the probability that user u dislikes item k as:

p(r−uk | au, bk, ck, β
+
i , β

−
i , βu) =

exp(auc
T
k + β−i + βu)

1 + exp(aubTk + β+
i + βu) + exp(aucTk + β−i + βu)

And therefore the probability that it is unknown if the user u likes or dislikes the item
j as:

p(r0
uj | au, bj , cj , β+

i , β
−
i , βu) = 1− p(r+

uj | au, bj , cj , β
+
i , β

−
i , βu)− p(r−uj | au, bj , cj , β

+
i , β

−
i , βu)

=
1

1 + exp(aubTj + β+
i + βu) + exp(aucTj + β−i + βu)

17



18 CHAPTER 3. TWO-CLASS COLLABORATIVE FILTERING PROBLEMS

Multinominal Logistic Optimization Criterion

Given the following likelihood function:

PLK =
∏

(u,i)∈U×I

p(r+
ui | au, bi, ci, β

+
i , β

−
i , βu)δ((u,i)∈S

+)p(r−ui)
δ((u,i)∈S−)

p(r0
ui | au, bi, ci, β+

i , β
−
i , βu)δ((u,i)∈S

0)

=
∏

(u,i)∈U×I

p(r+
ui)

δ((u,i)∈S+)p(r−ui)
δ((u,i)∈S−)(1− p(r+

ui)− p(r
−
ui))

δ((u,i)∈S0)

We get this logistic likelihood function which we want to maximize:

logPLK =
∑

(u,i)∈U×I

δ((u, i) ∈ S+)(aub
T
i + β+

i + βu)

+ δ((u, i) ∈ S−)(auc
T
i + β−i + βu)

− log
(
1 + eaub

T
i +β+

i +βu + eauc
T
i +β−

i +βu
)

And therefore the partial derivatives for the user and item features and bias:

∂

∂au
=


bi − (bie

aubTi +β+
i +βu + cie

aucTi +β−
i +βu) 1

1+eaub
T
i
+β+
i

+βu+eauc
T
i
+β−
i

+βu
if (u, i) ∈ S+,

ci − (bie
aubTi +β+

i +βu + cie
aucTi +β−

i +βu) 1

1+eaub
T
i
+β+
i

+βu+eauc
T
i
+β−
i

+βu
if (u, i) ∈ S−,

−(bie
aubTi +β+

i +βu + cie
aucTi +β−

i +βu) 1

1+eaub
T
i
+β+
i

+βu+eauc
T
i
+β−
i

+βu
else

∂

∂bi
=


au − au eaub

T
i +β+

i
+βu

1+eaub
T
i
+β+
i

+βu+eauc
T
i
+β−
i

+βu
if (u, i) ∈ S+,

−au eaub
T
i +β+

i
+βu

1+eaub
T
i
+β+
i

+βu+eauc
T
i
+β−
i

+βu
else

∂

∂ci
=


au − au eauc

T
i +β−

i
+βu

1+eaub
T
i
+β+
i

+βu+eauc
T
i
+β−
i

+βu
if (u, i) ∈ S−,

−au eauc
T
i +β−

i
+βu

1+eaub
T
i
+β+
i

+βu+eauc
T
i
+β−
i

+βu
else

∂

∂β+
i

=


1− eaub

T
i +β+

i
+βu

1+eaub
T
i
+β+
i

+βu+eauc
T
i
+β−
i

+βu
if (u, i) ∈ S+,

− eaub
T
i +β+

i
+βu

1+eaub
T
i
+β+
i

+βu+eauc
T
i
+β−
i

+βu
else

∂

∂β−i
=


1− eauc

T
i +β−

i
+βu

1+eaub
T
i
+β+
i

+βu+eauc
T
i
+β−
i

+βu
if (u, i) ∈ S−,

− eauc
T
i +β−

i
+βu

1+eaub
T
i
+β+
i

+βu+eauc
T
i
+β−
i

+βu
else
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3.4. BAYESIAN PERSONALIZED RANKING 19

3.4 Bayesian Personalized Ranking

Inspired by Rendle et al. (2012), we looked into Bayesian Personalized Ranking and how
this could be adapted for Two-Class Collaborative Filtering.

We will start with a short review of the Bayesian Personalized Ranking (BPR) model
from Rendle et al. (2012). We then introduce two adapted versions, by using different
sampling techniques, to incorporate negative feedback into the BPR model.

3.4.1 Bayesian Personalized Ranking

The Bayesian Personalized Ranking as suggested by Rendle et al. (2012) presents a
generic optimization criterion, derived from the maximum posterior estimator for opti-
mal personalized ranking.

They optimize the total ranking of each user u >u, such that if user u prefers item i
over item j, i >u j holds. They let r̂uij be the relationship between user u, item i and
item j, such that r̂uij = r̂ui − r̂uj and maximize the difference between preferred and
unknown/disliked items:

BPR-OPT =
∑
u∈U

∑
i∈I+u

∑
j∈I\I+u

log
1

1 + exp(r̂uj − r̂ui)
+ λu‖au‖2 + λi‖bi‖2

Θ represents the parameter vector of an arbitrary model class (e.g. matrix factoriza-
tion).

They propose a LearnBPR algorithm which optimizes BPR-OPT by randomly sam-
pling from DS := {(u, i, j) | i ∈ I+

u ∩ j ∈ I\I+
u } using stochastic gradient descent:

Algorithm 1 LearnBPR (DS ,Θ)

1: initialize Θ
2: repeat
3: draw (u, i, j) from DS := {(u, i, j) | i ∈ I+

u ∩ j ∈ I\I+
u }

4: Θ← Θ + α( e−r̂uij

1+e−r̂uij
∂
∂Θ r̂uij + λΘΘ)

5: until convergence

3.4.2 Explicit BPR (E-BPR)

Sine LearnBPR ignores the difference between known disliked items and unknown items,
we propose a different sampling technique for LearnBPR and introduce Explicit BPR (E-
BPR). We aim to maximize the difference between known positive and known negative
samples and sample from triples, each consisting of one positive and one negative sample
for each user. We therefore sample from the follwoing set DS , which we define as follows:

DS := {(u, i, j) | i ∈ I+
u ∩ j ∈ I−u }

19
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Algorithm 2 LearnEBPR (DS ,Θ)

1: initialize Θ
2: repeat
3: draw (u, i, j) from DS := {(u, i, j) | i ∈ I+

u ∩ j ∈ I−u }
4: Θ← Θ + α( e−r̂uij

1+e−r̂uij
∂
∂Θ r̂uij + λΘΘ)

5: until convergence

3.4.3 Proportional BPR (P-BPR)

Since E-BPR only samples from known feedback and therefore has less data to train on,
we introduce P-BPR to address this limitation.

With P-BPR we introduce two kind of triples: In the first class each triple consists of
a positive and an unknown sample per user and in the second class each triple consists of
a unknown and a negative sample. We then sample from positive and unknowns, as well
as from negative and unkowns, proportional to ratio of positive versus negative ratings
in the training dataset:

Let η be the proportion of number of positive to the number of total known samples
in the training dataset:

η :=
| I+
u |

| I+
u | + | I−u |

With probability η we then sample from:

D+
S := {(u, i, j) | i ∈ I+

u ∩ j ∈ (I0
u ∪ I−u )}

And with probability 1− η we sample from:

D−S := {(u, i, j) | i ∈ (I0
u ∪ I+

u ) ∩ j ∈ I−u }

Algorithm 3 LearnPBPR (η,D+
S , D

−
S ,Θ)

1: initialize Θ
2: repeat
3: if random <= η then
4: draw (u, i, j) from D+

S

5: else
6: draw (u, i, j) from D−S
7: Θ← Θ + α( e−r̂uij

1+e−r̂uij
∂
∂Θ r̂uij + λΘΘ)

8: until convergence
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4

Evaluation

In the previous chapter we introduced new methods based upon Logistic MF by Johnson
(2014) and Bayesian Personalized Ranking by Rendle et al. (2012). In the following
sections we will evaluate our proposed methods and compare it to existing models, used
as baseline in terms of accuracy and different other performance metrics.

We will start with a description of the methodology of our evaluations in Section
4.1, where we describe the baseline recommenders, present a descriptive analysis of the
datasets and describe the performance metrics.

We then present our results of the models’ performance on the chosen datasets in
Section 4.2, as well as an evaluation, grouped by number of ratings per user, to analyze
the cold-start problem and discuss the results.

4.1 Methodology

This section starts with an overview of the baseline recommenders considered in the
evaluation, followed by a description of the dataset characteristics. We then describe
the performance metrics, which we used to evaluate our models.

4.1.1 Baseline Recommenders

We compare our models, introduced in Chapter 3, in terms of accuracy and different
other metrics, as described in Section 4.1.3, with Bayesian Personalized Ranking Matrix
Factorization (BPRMF) from Rendle et al. (2012), SGDReg a variant of Sparse Linear
Methods (SLIM) from Levy and Jack (2013), Logistic MF from Johnson (2014) and
an optimization of a gerneralized AUC metric (GAUC-OPT) from Song and Meyer
(2015).

We experimented with different numbers of latent factors, regularizers and learn rates
to maximize the accuracy of each model. The complete set of parameters used for each
recommender is shown in Appendix A.1.

The following paragraphs will give a short introduction of the baseline recommenders
and their implementation used for the evaluations.
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Bayesian Personalized Ranking Matrix Factorization

We use Rendle et al. (2012) Bayesian Personalized Ranking Matrix Factorization (BPRMF)
implementation from MyMediaLite1 and ported it to Python.

This implementation uses stochastic gradient descent, as suggested by the paper, as
well as an item bias to capture the differences between items.

Sparse Linear Methods

We use Mendeley’s Python implementation2 of SGDReg as described by Levy and Jack
(2013). SGDReg is a variant of Sparse Linear Methods (SLIM), proposed by Ning and
Karypis (2011).

This implementation uses the SGDRegressor from scikit-learn for stochastic gradient
descent, to compute the similarities between items. This implementation is considerably
faster than the original SLIM, due to relaxed non-negativity constraints.

Logistic Matrix Factorization

For Logistic Matrix Factorization (Logistic MF) from Johnson (2014), we use his Python
implementation3.

This implementation uses gradient descent with AdaGrad as proposed by Duchi et al.
(2011), to increase convergence and adds user and item biases.

GAUC-OPT

As described by Song and Meyer (2015), we implemented the optimization of a gerneral-
ized AUC (GAUC-OPT) in Python, based on scikit-learn from Pedregosa et al. (2011).

4.1.2 Datasets

We evaluate the performance of the different methods on the datasets from MovieLens
(100K and 1M), Slashdot-Zoo and Book Crossing. The characteristics of those datasets
are summarized in Table 4.1.

We use 5-fold cross validation, to evaluate the models. For each of the 5 folds, the
testset is generated by randomly sampling 30% of the total ratings from users which
have at least five positive ratings and three negative ratings, and items which have at
least one positive and one negative rating.

1MyMediaLite BPRMF Implementation - https:// github.com/ zenogantner/MyMediaLite/ blob/
master/ src/MyMediaLite/ ItemRecommendation/BPRMF.cs

2Mendeley SGDReg Implementation - https:// github.com/Mendeley/mrec/ blob/master/mrec/ item
similarity/ slim.py

3Johnson’s Logistic MF Implementation - https:// github.com/MrChrisJohnson/ logistic-mf/ blob/
master/ logistic mf.py
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Name Ratings Positive
Ratings
Share

Users Items Min
User
Degree

Max
User
Degree

Min
Item
Degree

Max
Item
Degree

Average
User
Degree

Average
Item
Degree

Median
User
Degree

Median
Item
Degree

Density

MovieLens 100K - total 99649 54.38% 943 1682 8 737 1 578 105.7 59.2 64 27 6.2825%
MovieLens 100K - train 69755 54.07% 943 1682 8 556 1 394 74 41.5 45 19 4.3978%
MovieLens 100K - test 29894 55.12% 943 1628 0 193 0 184 31.7 18.4 20 9 1.9472%

MovieLens 1M - total 998087 54.42% 6040 3706 9 2314 1 3416 165.2 269.3 95 123 4.4589%
MovieLens 1M - train 698661 54.36% 6040 3706 8 1613 1 2364 115.7 188.5 66 86 3.1212%
MovieLens 1M - test 299426 54.56% 6040 3706 0 701 0 1052 49.6 80.8 28 37 1.3377%

Slashdot-Zoo Small - total 202831 75.69% 3745 4769 20 345 3 972 54.2 42.5 38 25 1.1357%
Slashdot-Zoo Small - train 141982 82.00% 3745 4769 8 345 3 661 37.9 29.8 27 18 0.7950%
Slashdot-Zoo Small - test 60849 60.97% 3745 4769 0 171 0 311 16.2 12.8 9 8 0.3407%

Slashdot-Zoo Big - total 305583 75.74% 7896 9504 10 377 1 1520 38.7 32.2 22 16 0.4072%
Slashdot-Zoo Big - train 213909 82.64% 7896 9504 8 377 1 1096 27.1 22.5 16 12 0.2850%
Slashdot-Zoo Big - test 91674 59.63% 7895 9504 0 199 0 424 11.6 9.6 0 4 0.1222%

Book Crossing - total 306669 28.79% 3398 14841 15 4708 1 793 90.2 20.7 45 13 0.6081%
Book Crossing - train 214669 27.28% 3398 14841 8 3279 1 522 63.2 14.5 32 10 0.4257%
Book Crossing - test 92000 32.30% 3398 14839 0 1429 0 271 27.1 6.2 14 4 0.1825%

Table 4.1: Dataset Properties

MovieLens The MovieLens 1M (100K) dataset4 contains 1,000,209 (100,000) movie
ratings obtained from the MovieLens research project (Harper and Konstan, 2015).

On both datasets we apply mean-removal, as suggested by Wang et al. (2006); James
et al. (2014) and others. For each user we subtract the mean rating of the given user
from his ratings. The resulting ratings below zero are then mapped as negative samples
and ratings above zero as positive samples, while zero-ratings are left out.

From the remaining 998,087 (99,649) ratings we select 299,426 (29,894) ratings for the
testset at random, under the condition that each user in the trainset has at least five
positive and three negative ratings and each item at least one positive and one negative
rating.

The MovieLens dataset is the most dense dataset in our evaluation and positive and
negative ratings are equally represented, with a share of positive to negative ratings of
roughly 54%.

Slashdot-Zoo The Slashdot-Zoo5 is a signed social network of users of the technology
news site Slashdot (slashdot.org) (Kunegis et al., 2009). It consists of an adjacency
matrix, describing the friends and foes relations between users of the news site.

For the Slashdot-Zoo Small dataset we remove all items with less than twenty ratings
and then only select users with at least twenty ratings. From the remaining 202,831
ratings we select 60,849 ratings for the testset at random, under the condition that each
user in the trainset has at least five positive and three negative ratings and each item at
least one positive and one negative rating.

The Slashdot-Zoo Big dataset is constructed by first removing all items with less than
ten ratings and then selecting all users with twenty or more ratings. From the remaining
305,583 ratings we select 91,674 ratings for the testset at random, under the condition
that each user in the trainset has at least five positive and three negative ratings and
each item at least one positive and one negative rating.

The Slashdot-Zoo Big dataset is the most sparse dataset in our evaluation and positive
samples are over represented, with a share of positive to negative samples of roughly 75%.

4MovieLens Dataset - http:// grouplens.org/ datasets/movielens/
5Slashdot-Zoo Dataset - http:// konect.uni-koblenz.de/ networks/ slashdot-zoo
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Book Crossing The Book Crossing dataset6 contains book ratings from the Book
Crossing community (Ziegler et al., 2005). We only consider users with at least fifteen
ratings and then apply mean-removal. For each user we subtract the mean rating of
the given user from his ratings. The resulting ratings below zero are then mapped as
negative samples and ratings above zero as positive samples, while zero-ratings are left
out.

From the remaining 306,669 ratings we select 92,000 ratings for the testset at random,
under the condition that each user in the trainset has at least five positive and three
negative ratings and each item at least one positive and one negative rating.

The Book Crossing dataset is relatively sparse on ratings per item, but relatively dense
on ratings per user, as each user on average has roughly 90 ratings and negative ratings
are over represented, with a share of positive to negative ratings of roughly 29%.

(a) MovieLens 1M (b) Book Crossing

(c) Slashdot-Zoo Small (d) Slashdot-Zoo Big

Figure 4.1: Dataset histograms of number of ratings per user

6Book Crossing Dataset - http://www2.informatik.uni-freiburg.de/∼cziegler/BX/
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4.1.3 Performance Metrics

To evaluate our models, we measure AUC, neg-AUC, GAUC, HR@10, neg-HR@10, MRR
and positive, negative and overall classification performance. We then compare the eval-
uation results of our methods with the evaluation results of the baseline recommenders.
In the following paragraphs, we will explain the different metrics, how they are measured
and what they are used for.

AUC AUC measures the area under the receiver operating characteristic (ROC) curve,
which is the curve plotted by the true positive rate against the false positive rate
(Fawcett, 2006). It measures the expected proportion of positive samples which are
ranked before a uniformly drawn random negative sample.

neg-AUC We define the negative-AUC as the ROC curve of negative samples on the
inverse ranking list, as used by Song and Meyer (2015) as the second part of their
generalized AUC measure (GAUC). With the negative-AUC we measure the efficiency
of ranking negative samples at the bottom of a personalized ranking list.

Generalized AUC (GAUC) The generalized AUC (GAUC) was introduced by Song
and Meyer (2015). It measures the combined efficiency of ranking positive samples at the
top and negative samples at the bottom of a personalized ranking list. When η ∈ [0, 1]
is the fraction of positive samples in the dataset, GAUC is defined as follows:

GAUC = ηAUC + (1− η)neg-AUC

Mean Reciprocal Rank (MRR) The mean reciprocal rank is the multiplicative
inverse of the rank of the first correctly classified sample (Craswell, 2009). If we have N
users and define ranki as the rank of the first correctly classified sample of user i, the
MRR is defined as:

MRR =
1

N

N∑
i

1

ranki

Precision (Prec) Precision@K measures the true positives within a personalized rank-
ing list with K recommendations:

Prec@K =
Relevant true positives within top-K ranking list

K

In all of our experiments we set K = 20 and look at the precision for top-20 ranked
recommendations.

Negative Precision (neg-Prec) We define the negative Precision@K as the precision
of the bottom-K ranking lists, where we are looking for correctly classified negative
samples.
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Hit Rate (HR) A hit is when a testset item of a user is correctly classified within
the top-N items recommended by the model. The hit rate is the number of hits divided
by the number of users:

hit rate (HR) =
Number of hits

Number of users

In all of our experiments we set N = 10 and look at the hit-rate for top-10 ranked
recommendations.

Negative Hit Rate (neg-HR) We define the negative hit rate as the hit-rate of the
bottom-N ranking lists, where a hit correctly classifies a negative sample.

Classification Score The classification score is the fraction of correctly classified
samples from the testset.

Classification =
Number of correctly classified samples

Number of samples

For all logistic models we use the resulting probability approximation to classify each
item for a given user. For simplicity we use 0.5 as the decision boundary to classify an
item. We classify an item as positive, if the score is greater than 0.5 and negative, if it
is lower than 0.5 and unknown else. For the non-logistic models we pass the resulting
user-item score through the expit function and classify the item positive, if the result is
greater than 0.5 and negative, if it is lower than 0.5 and unknown when equal to 0.5.

Positive Classification Score The positive classification score is the fraction of cor-
rectly classified positive samples from the testset.

pos-Classification =
Number of correctly classified positive samples

Number of positive samples

Negative Classification Score The negative classification score is the fraction of
correctly classified negative samples from the testset.

neg-Classification =
Number of correctly classified negative samples

Number of negative samples

4.2 Results

In the following subsections we will analyze the results of our evaluations. We use the
metrics as defined in Section 4.1.3, to evaluate our methods which we introduced in
Chapter 3 and compare the results with an evaluation of the baseline recommenders
which we presented in Section 4.1.1.
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We first give an overview of the evaluation on the four benchmark datasets and then
focus on the performance on negative samples and finally the performance for different
groups of users, depending on how many samples they have.

We present our results in Table 4.2 which lists the performance of all models on all
analyzed datasets. The model score with the best performance per dataset and metric
is highlighted as bold text, the second best as bold italic text and the third best as italic
text.

Table 4.2: Performance Evaluation Results
MODEL AUC neg-AUC GAUC PREC@20 neg-PREC@20 HR@10 neg-HR@10 MRR CLASS pos-CLASS neg-CLASS

Slashdot Small

LLMF 0.724126 0.393095 0.595003 0.063111 0.001687 0.438996 0.014649 0.250971 0.378585 0.002771 0.999243
ELLMF 0.657225 0.684686 0.667937 0.059432 0.025977 0.421357 0.222619 0.228782 0.762338 0.846470 0.442911
MLMF 0.600100 0.537168 0.575547 0.015396 0.003564 0.158395 0.046522 0.084970 0.623118 0.748074 0.395705
E-BPRMF 0.557043 0.661421 0.597758 0.032032 0.017745 0.291421 0.169976 0.146497 0.625323 0.597846 0.680758
P-BPRMF 0.654215 0.603060 0.634262 0.047937 0.017904 0.366660 0.167332 0.193450 0.670455 0.684180 0.632747

Logistic MF 0.537723 0.687066 0.595979 0.043098 0.018354 0.348925 0.162964 0.183917 0.377297 0.001293 0.999339
BPRMF 0.749500 0.385496 0.607516 0.064524 0.001427 0.440860 0.012762 0.224639 0.634791 0.784717 0.374940
SGDReg 0.936589 0.858273 0.906040 0.053235 0.023822 0.349490 0.195122 0.180746 0.287030 0.336997 0.145674
GAUC-OPT 0.695803 0.576150 0.649133 0.061812 0.019449 0.377762 0.156826 0.205772 0.684816 0.694211 0.639348

Slashdot Big

LLMF 0.757988 0.337833 0.588815 0.048189 0.000663 0.363434 0.006879 0.195566 0.369203 0.000720 0.999586
ELLMF 0.672366 0.654335 0.665108 0.051079 0.021179 0.372988 0.179684 0.201080 0.740065 0.861317 0.397691
MLMF 0.564467 0.527741 0.549679 0.009846 0.002676 0.099375 0.033513 0.053732 0.619168 0.739389 0.397854
E-BPRMF 0.547193 0.693258 0.606007 0.030966 0.011553 0.293299 0.116929 0.165516 0.623269 0.575551 0.712303
P-BPRMF 0.671968 0.564819 0.628826 0.039502 0.012366 0.324489 0.119938 0.161641 0.656001 0.693319 0.587936

Logistic MF 0.650555 0.592037 0.626999 0.043451 0.012264 0.347415 0.128597 0.191414 0.368698 0.000158 0.999777
BPRMF 0.785965 0.315267 0.596441 0.051358 0.000543 0.398408 0.004543 0.228243 0.629252 0.804285 0.321379
SGDReg 0.848944 0.725215 0.799124 0.054853 0.020956 0.356565 0.173430 0.182425 0.145517 0.185980 0.059004
GAUC-OPT 0.710599 0.458956 0.609276 0.034270 0.006064 0.250252 0.049249 0.110556 0.626640 0.651901 0.572283

MovieLens 100K

LLMF 0.926161 0.141509 0.574878 0.216461 0.000572 0.820166 0.006258 0.539099 0.473723 0.063706 0.982331
ELLMF 0.668456 0.489046 0.588125 0.066526 0.022670 0.433962 0.196342 0.223776 0.620862 0.652807 0.541347
MLMF 0.857779 0.799525 0.831698 0.117458 0.054354 0.668414 0.426971 0.399022 0.550823 0.579942 0.509421
E-BPRMF 0.712256 0.461402 0.599950 0.058829 0.017604 0.350672 0.140833 0.172039 0.625844 0.762798 0.456531
P-BPRMF 0.653401 0.520645 0.593965 0.103017 0.039051 0.597702 0.312133 0.322193 0.605784 0.661808 0.536605

Logistic MF 0.834838 0.729845 0.787833 0.074015 0.008318 0.450589 0.078209 0.253671 0.466776 0.050882 0.982376
BPRMF 0.920216 0.148978 0.574938 0.201443 0.000820 0.843939 0.008205 0.536773 0.575177 0.973313 0.079483
SGDReg 0.935712 0.906247 0.922522 0.168282 0.065699 0.741169 0.461564 0.489900 0.469766 0.575537 0.306098
GAUC-OPT 0.679730 0.497579 0.598171 0.114691 0.041006 0.534560 0.301295 0.305898 0.619250 0.668715 0.540359

MovieLens 1M

LLMF 0.909784 0.181650 0.578293 0.195740 0.000359 0.723537 0.003355 0.481469 0.459819 0.028412 0.994418
ELLMF 0.732613 0.467373 0.611860 0.071138 0.009247 0.411667 0.074785 0.237644 0.666695 0.698186 0.579731
MLMF 0.826759 0.766725 0.799424 0.107078 0.041287 0.562421 0.298915 0.333294 0.552702 0.571933 0.529544
E-BPRMF 0.749255 0.450062 0.613044 0.059569 0.015914 0.363450 0.129379 0.181292 0.637917 0.800220 0.445077
P-BPRMF 0.620973 0.535946 0.582261 0.115649 0.033051 0.576353 0.264986 0.345146 0.595742 0.629230 0.555121

Logistic MF 0.825242 0.718973 0.776862 0.061672 0.005620 0.405542 0.047912 0.207474 0.465928 0.046130 0.982942
BPRMF 0.935458 0.149602 0.577689 0.212219 0.000451 0.821569 0.003758 0.515051 0.576689 0.985294 0.069779
SGDReg 0.965631 0.921785 0.945671 0.197188 0.074244 0.774217 0.461403 0.526834 0.311462 0.425746 0.154090
GAUC-OPT 0.715029 0.500948 0.617565 0.113455 0.036221 0.531363 0.235935 0.303964 0.652390 0.701624 0.559945

Book Crossing

LLMF 0.692916 0.299469 0.426901 0.006574 0.000395 0.108801 0.003679 0.057027 0.569662 0.000001 0.999997
ELLMF 0.507893 0.517435 0.514344 0.006574 0.014449 0.071330 0.129566 0.037438 0.587974 0.362706 0.659751
MLMF 0.548991 0.585068 0.573381 0.002314 0.007374 0.024587 0.071570 0.011531 0.510171 0.439392 0.552887
E-BPRMF 0.544127 0.469225 0.493486 0.005838 0.012244 0.066268 0.141542 0.036671 0.499852 0.546384 0.465661
P-BPRMF 0.528529 0.488930 0.501754 0.005759 0.014449 0.069752 0.148563 0.037561 0.506110 0.531108 0.486498

Logistic MF 0.629020 0.724790 0.693773 0.000437 0.014449 0.004338 0.009769 0.003228 0.569812 0.000406 0.999777
BPRMF 0.714570 0.274596 0.417098 0.013770 0.000378 0.137859 0.003745 0.074411 0.456963 0.721424 0.257117
SGDReg 0.866276 0.878845 0.874775 0.021583 0.030091 0.201760 0.226219 0.131181 0.198660 0.144702 0.203727
GAUC-OPT 0.486546 0.521514 0.510184 0.004694 0.013635 0.049306 0.120667 0.025538 0.516304 0.489095 0.520106

Performance evaluation results of all models on all datasets. The best score per dataset and metric is
highlighted as bold text, the second best as bold italic text and the third best as italic text.
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4.2.1 Performance

In this subsection, we will first explain the results of the evaluation, measured by AUC,
Precision@20, Hit-Rate@10 and MRR, followed by a discussion of the results.

Performance measured by AUC

When comparing the models’ performance measured by AUC, we see that SGDReg
always outperforms all other models, followed by BPRMF and LLMF.

Using Logistic Likelihood Matrix Factorization (LLMF), we see an increase in AUC,
compared to Logistic MF. This is the expected increase, as we adapted LLMF to promote
correctly classified positive samples more than the optimization used by Logistic MF.

The newly introduced methods ELLMF, E-BPRMF and P-PRMF all experience a
performance drop in AUC, compared to their original models Logistic MF and BPRMF.
This is mainly due to the fact that all of those models do not only optimize for the
scores for positive samples, but also take negative samples into account. We will discuss
later in Subsection 4.2.2 how the trade-off between optimizing for positive and negative
samples will let those models outperform on other evaluation metrics.

The advantage of SGDReg is bigger for more sparse and skewed datasets like Slashdot-
Zoo and Book Crossing, by scoring around 15 to 20 percentage points higher than the
second best model. On the relatively dense and balanced MovieLens datasets, the differ-
ence between the models’ performance is much smaller, with around 1 to 3 percentage
points difference from SGDReg to the second best model.

Performance measured by Precision@20

When looking at Precision@20, BPRMF is always either the best or second best model,
followed by SGDReg and LLMF. In Table 4.3 we list the Precision@20 results for better
readability, together with the standard deviation in parenthesis.

Table 4.3: Precision@20
Model Slashdot Small Slashdot Big MovieLens 100K MovieLens 1M Book Crossing

Logistic MF 0.043098 (1.0947e-03) 0.043451 (8.8543e-04) 0.074015 (8.1101e-03) 0.061672 (6.1222e-03) 0.000437 (6.9332e-05)
LLMF 0.063111 (1.1673e-03) 0.048189 (1.0437e-03) 0.216461 (1.5342e-03) 0.195740 (1.3623e-03) 0.006574 (2.2689e-04)
ELLMF 0.059432 (3.7589e-04) 0.051079 (6.2329e-04) 0.066526 (2.2938e-03) 0.071138 (5.8294e-04) 0.006574 (2.2689e-04)
Multinominal Log MF 0.015396 (1.3663e-03) 0.009846 (8.6182e-04) 0.117458 (4.2184e-03) 0.107078 (4.7601e-03) 0.002314 (1.2548e-04)
BPRMF 0.064524 (5.7527e-04) 0.051358 (8.7915e-04) 0.201443 (1.2201e-03) 0.212219 (1.5865e-03) 0.013770 (3.3396e-04)
E-BPRMF 0.032032 (6.6991e-04) 0.030966 (1.0051e-03) 0.058829 (9.5130e-04) 0.059569 (6.8765e-04) 0.005838 (1.8809e-04)
P-BPRMF 0.047937 (4.9809e-04) 0.039502 (9.5701e-04) 0.103017 (2.1777e-03) 0.115649 (9.2683e-04) 0.005759 (1.6083e-04)
SGDReg 0.053235 (9.8206e-04) 0.054853 (9.3728e-04) 0.168282 (3.2847e-03) 0.197188 (3.4452e-04) 0.021583 (4.7490e-04)
GAUC-OPT 0.061812 (6.3063e-04) 0.034270 (5.4378e-03) 0.114691 (4.0924e-03) 0.113455 (1.3474e-03) 0.004694 (2.1783e-04)

Precision@20 performance of all evaluated models on all datasets. The best score per dataset is
highlighted as bold text, the second best as bold italic text and the third best as italic text. The

numbers in parenthesis denote the standard deviation.

While LLMF performs well on the small and dense MovieLens 100K and Slashdot-Zoo
Small datasets, SGDReg handles the skewed big Slashdot-Zoo Big and Book Crossing
dataset better. Multinominal Log MF fails to list positive samples on the top of the
ranking list, when the dataset is relatively sparse, like the Slashdot-Zoo Big and Book
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Crossing datasets. While GAUC-OPT manages to perform well on the Slashdot-Zoo
Small dataset, it fails on all other datasets.

LLMF and ELLMF both outperform Logistic MF on all except the small and dense
MovieLens 100K dataset.

Performance measured by Hit-Rate@10

Comparing the models’ performance on Hit-Rate@10, we examine whether a model is
able to present at least one positive sample within the top 10 ranking list of each user.

Similar to the Precision@20 results, BPRMF outperforms most of the other models,
as it explicitly optimizes the ranking list, followed by SGDReg and LLMF. Also ELLMF
does a really good job on the Slashdot-Zoo datasets, while E-BPRMF and P-BPRMF
do not perform as well as BPRMF, since they are shifted towards negative samples, as
we will see in Subsection 4.2.2.

LLMF and ELLMF both outperform Logistic MF on all except the small and dense
MovieLens 100K dataset.

Performance measured by MRR

While LLMF performs great for MRR, evaluated on the dense MovieLens 100K and
Slashdot-Zoo Small datasets, SGDReg outperforms other models on the sparse Book
Crossing and MovieLens 1M datasets.

LLMF and ELLMF both outperform Logistic MF on all except the small and dense
MovieLens 100K dataset.

BPRMF is always within the top three models for MRR and has the best performance
on the Slashdot-Zoo Big dataset. Again the Multinominal Log MF fails on sparse, large
datasets.

Performance measured by Classification Score

ELLMF outperforms all other models, with an advantage of 3 to 9 percentage points to
the second best model GAUC-OPT or P-BPRMF. Except on the small MovieLens 100K
dataset, where they are slightly outmatched by E-BPRMF.

While ELLMF always outperforms Logistic MF, LLMF results are similar to the ones
from Logistic MF. P-BPRMF outmatches BPRMF, except for the small MovieLens 100K
dataset. Multinominal Log MF, E-BPRMF and GAUC-OPT perform nearly as good,
whereas Logistic MF, LLMF and SGDReg are quite off.

Conclusion

Even though SGDReg is a rather simple model, it performs great for AUC optimization
tasks. When looking for optimized Top-K ranking lists, BPRMF outperforms most of
the other models on Hit-Rate@10.
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By adapting Logistic MF to negative samples and introducing LLMF and ELLMF,
we are able to outperform the original Logistic MF model in terms of AUC, Preci-
sion@20, Hit-Rate@10 and MRR on almost all datasets. The adaption of BPRMF to
negative samples with the introduction of E-BPRMF and P-BPRMF did not yield an
improvement on those metrics, but they still outperform BPRMF in classification accu-
racy. Multinominal Log MF, as well as GAUC-OPT do not perform well on the big and
sparse Book Crossing and Slashdot-Zoo Big datasets.

4.2.2 Performance on Negative Samples

In this subsection, we will first explain the results of the evaluation, measured by
negative-AUC, GAUC, negative-Precision@20, negative-Hit-Rate@10 and negative clas-
sification performance, followed by a discussion of the results.

Performance measured by negative-AUC

When comparing the models’ performance on the negative-AUC metric, we see that
SGDReg always outperforms all other models, followed by Logistic MF, ELLMF, E-
BPRMF and Multinominal Log MF.

While E-BPRMF and ELLMF perform better on the Slashdot-Zoo datasets, Multi-
nominal Log MF and Logistic MF are better on MovieLens and Book Crossing datasets.
The adaption of BPRMF, to sample explicitly from negative samples, led to the result
that E-BPRMF and P-BPRMF both outmatch BPRMF in terms of negative-AUC per-
formance on all datasets. BPRMF, LLMF and GAUC-OPT are quite off, with up to 50
percentage points below the best performing model.

Performance measured by GAUC

The combination of AUC and negative-AUC in the GAUC metric is headed by SGDReg,
followed by Logistic MF, ELLMF and Multinominal Log MF.

While Logistic MF and Multinominal Log MF perform quite well on Book Crossing and
MovieLens datasets, P-BPRMF and ELLMF are better on the Slashdot-Zoo datasets.
LLMF and BPRMF, which scored well on AUC, do not manage to transfer its superiority
to the GAUC metric, since they both score bad on negative-AUC.

Performance measured by negative-Precision@20

When looking at negative-Precision@20, ELLMF performs great on the Slashdot-Zoo
datasets, whereas SGDReg outmatches all other models on MovieLens and Book Cross-
ing datasets.

On the dense MovieLens datasets, Multinominal Log MF performs quite good as well.
BPRMF, Logistic MF and LLMF are rather bad at ranking negative samples at the top
of the negative ranking list. ELLMF always beats Logistic MF and the adapted versions
of BPRMF, E-BPRMF and P-BPRMF both always outmatch BPRMF.
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Performance measured by negative-Hit-Rate@10

Negative-Hit-Rate@10, similar to negative-Precision@20, is headed by SGDReg and
ELLMF.

Again ELLMF always outperforms Logistic MF and the adapted versions of BPRMF,
E-BPRMF and P-BPRMF both always outmatch BPRMF. Except on the dense Movie-
Lens datasets, Multinominal Log MF performs relatively bad. BPRMF and LLMF are
not able to correctly rank negative samples at the bottom of the ranking list and therefore
do not perform well on all datasets.

Performance measured by Classification

The analysis of the models’ performance on classification score can be split into analyzing
classification of positive and negative items separately.

If we look at how the classification performance of the models consists of negative
and positive classification score, we notice that Logistic MF and LLMF are not able to
classify correctly, but most of the time predict the negative class for any given sample.
We therefore do not include these models in our classification evaluation, since a simple
dummy recommender, which would always predict the same negative class, would be
quite as good.

For classifying positive samples, BPRMF performs quite good on most datasets.
ELLMF also performs quite well on positive classification, but is more sensitive to the
share of positive samples within a dataset. It outperforms on Slashdot-Zoo with many
positive samples, but is not as good on the Book Crossing dataset with many negative
samples.

When looking at the classification score of negative items, ELLMF, P-BPRMF and
GAUC-OPT are quite good. For skewed datasets with either many positive or many
negative items, ELLMF outperforms all other models, since it catches those differences
quite good and manages to balance positive and negative classification.

Conclusion

When evaluating the performance on negative samples by measuring negative-AUC,
negative-Precision@20 and negative-Hit-Rate@10, ELLMF outmatches all other models
on the sparse Slashdot-Zoo datasets with many positive and few negative samples. For
the same evaluation metrics on the dense MovieLens datasets and the sparse Book
Crossing dataset with many negative samples, SGDReg outperforms all other models.

When looking at classification performance, ELLMF is the best choice, as it out-
performs all other models on most datasets. Logistic MF and LLMF are not able to
correctly classify most of the samples. This might be due to the proposed classification
decision boundary which we presented in Subsection 4.1.3.

While BPRMF is great for positive metrics like AUC, it falls short on negative mea-
sures. E-BPRMF and P-BPRMF both outmatch BPRMF on all negative metrics,
whereas E-BPRMF especially increases classification accuracy. P-BPRMF outmatches
E-BPRMF on the sparse Slashdot-Zoo and Book Crossing datasets.
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Overall SGDReg does a very good job for all measures on positive samples, especially
for AUC. If one also needs a good performance on the negative samples, i.e. ranking
negative samples at the bottom of a ranking list or for recommending a Bottom-K list,
ELLMF is the best choice as it balances negative and positive samples the best and thus
outperforms most of the other models. For classification tasks also ELLMF outperforms
all other models on most of the datasets.
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4.2.3 Performance per Groups of Ratings per User

We will now analyze the models’ performance on different groups of users, depending
on how many samples they have. We assign each user into one of the following groups,
according to how many positive or negative samples each user has: 0-10, 11-20, 21-40,
41-60, 61-80, 81-100, 101-150, 151-200, 201-300 and 301-1000 samples per user. We then
calculate the Hit-Rate@10 and AUC measures for each group and analyze the results.
With this approach, we want to examine the models’ sensitivity to less samples per user
and analyze the cold-start problem.

(a) MovieLens 1M

(b) Slashdot-Zoo Big

(c) Book Crossing

Figure 4.2: Distribution of Number of Ratings per User
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We look at the performance of our methods on the three benchmark datasets Movie-
Lens 1M, Book Crossing and Slashdot-Zoo Big. All of these datasets have a different
distribution of number of ratings per user, as shown in Figure 4.2. The complete evalu-
ation grouped by number of ratings per user of all models on all three datasets can be
found in Appendix A.3.

Sparse Linear Methods

SGDReg has nearly constant and high positive and negative AUC throughout all groups
on nearly all datasets. Even for low numbers of samples per user (0-20 samples per user),
SGDReg outperforms most of the other models, without any trade-off between positive
and negative AUC.

Bayesian Personalized Ranking Models

Altough lower than SGDReg, BPRMF has nearly constant AUC over all groups of users,
even for low numbers of samples. If there are enough positive samples, BPRMF has a
really high Hit-Rate@10 score. While BPRMF excels on AUC and Hit-Rate@10 for low
numbers of samples per user, E-BPRMF and P-BPRMF both outmatch BPRMF with
higher neg-AUC and neg-Hit-Rate@10 scores which are nearly constant, even for low
numbers of samples per user.

Logistic Models

(a) Logistic MF (b) Logistic Likelihood MF

Figure 4.3: Hit-Rate on MovieLens 1M

As shown in Figure 4.3, Logistic Likelihood MF nearly doubled the Hit-Rate@10
compared to Logistic MF for less than 10 samples on the MovieLens 1M dataset. But
unlike Logistic MF, LLMF falls short on neg-Hit-Rate@10 and all other negative metrics.

Explicit Logistic Likelihood MF performs relatively bad on the dense MovieLens 1M
dataset but excels on the sparse Slashdot-Zoo Big dataset, where it outmatches Logistic
MF on all metrics. ELLMF has especially high negative and positive classification scores

34



4.2. RESULTS 35

for low numbers of samples per user. The negative classification score of ELLMF is
lower, if there are more positive samples. If the number of negative samples increases,
the positive classification score gets lower, as shown in Figure 4.4.

Figure 4.4: Classification performance of ELLMF on Slashdot-Zoo Big

Multinominal Logistic MF scores relatively bad on AUC, Hit-Rate and Classification
for low numbers of samples to train on. For more than 150 positive samples MLMF
scores rather good with an AUC score of around 95% on the Book Crossing dataset.
Whereas an increasing number of positive samples lead to an increase in both positive
and negative AUC, mainly negative AUC benefits from an increasing number of negative
samples as shown in Figure 4.5.

Figure 4.5: AUC performance of Multinominal Logistic MF on Book Crossing
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Conclusion

In this section, we evaulated the models’ performance on different number of samples
per users. With focus on low number of samples per user (0-20 samples per user) we
analyzed the models’ capability of handling new users, the so called cold-start problem.

For low number of samples per user SGDReg outmatches all other models on AUC,
negative AUC and negative Hit-Rate@10 on all datasets. BPRMF has the highest Hit-
Rate@10 score across all evaluated methods. On the sparse Slashdot-Zoo Big dataset
Log MF performs good for positive and negative Hit-Rate@10 and ELLMF outmatches
other methods on positive and negative classification accuracy. On the dense MovieLens
1M dataset E-BPRMF and GAUC-OPT excel in positive and negative classification
accuracy for low numbers of samples per user respectively. Only with a high number of
samples per user Multinominal Logistic MF performs good on AUC and negative-AUC
but is still outmatched by SGDReg.

Therefore depending on the task, different models are superior. For AUC SGDReg,
for Hit-Rate@10 BPRMF and for classification tasks ELLMF are the best performing
methods respectively, when evaluated on low number of samples per user.
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Conclusions

Current research mainly focused on explicit and implicit positive feedback. Those One-
Class Collaborative Filtering (OCCF) problems examine positive and unknown feedback
and aim to correctly classify positive samples, whereas they ignore the difference between
negative and unknown samples.

Moreoften not only positive but also negative relationships are of interest. For exam-
ple: distinguishing friends from foes, spam from important mails and beneficial actions
from harmful ones. The cost of a negative recommendation may not be significant in
domains like movies or TV shows. But in case of jobs, places to live or friends to connect
to, the cost of a negative recommendation could be high. In such domains, users are
likely to be put off by recommender systems that cannot distinguish potentially negative
items and occasionally put them at the top of the list. Therefore, producing personalised
rankings with positive feedback at the top and negative feedback at the bottom is an
increasingly important task (Song and Meyer, 2015).

We study positive and negative class prediction in Two-Class Collaborative Filter-
ing (TCCF) problems, where we examine the efficiency of current state-of-the-art rec-
ommenders and propose new methods to better address these problems. Based on
Bayesian Personalized Ranking Matrix Factorization (BPRMF) from Rendle et al. (2012)
and Logistic MF from Johnson (2014) we introduce Explicit-BPRMF (E-BPRMF) and
Proportional-BPRMF (P-BPRMF), as well as Logistic Likelihood MF (LLMF), Explicit
Logisitc Likelihood MF (ELLMF) and Multinominal Logistic MF (MLMF) to address
TCCF problems.

We evaluate our models on the four benchmark datasets: MovieLens 100K, MovieLens
1M, Slashdot-Zoo and Book Crossing. We compare the results with an evaluation of
the baseline recommenders BPRMF, Logistic MF, SGDReg (Levy and Jack, 2013) and
GAUC-OPT (Song and Meyer, 2015).

With our methods we outperform Logistic MF, BPRMF and GAUC-OPT on either
AUC, Hit-Rate@10, Precision@20 and their respective negative evaluation metrics. How-
ever, all our evaluation results are surpassed by SGDReg, which excels in most evaluation
metrics on the examined datasets.

In the following section we will discuss the evaluation results and finish with an
overview of possible future work.
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5.1 Discussion

As shown in Chapter 5.2, SGDReg a variant of Sparse Linear Methods (SLIM) excels
in most evaluations. The advantage of SGDReg is bigger for more sparse and skewed
datasets like Slashdot-Zoo and Book Crossing. It has an advantage of around 15 to 20
percentage points in AUC to the next best model.

With the introduction of Logistic Likelihood MF (LLMF) and Explicit Logistic Like-
lihood MF (ELLMF), we outperform Logistic MF on Percision@20 and Hit-Rate@10.
LLMF even outperforms Logistic MF on AUC and ELLMF outperforms Logistic MF on
most of the negative evaluation metrics, by ranking negative samples at the bottom of
a personalized ranking list.

As described by Rendle et al. (2012), BPRMF is really good for personalized ranking
lists. Whereas BPRMF excels on positive ranking lists, it cannot properly rank negative
items at the bottom of a personalized ranking. With E-BPRMF and P-BPRMF we over-
come this limitation and increase the performance on negative ranking lists. However,
the increased performance of negative ranking lists leads to a decrease in the perfor-
mance of positive ranking lists. We therefore experience a trade-off between positive
and negative ranking lists on the Bayesian Personalized Ranking models.

By splitting the performance evaluation into groups of different number of samples
per user, we analyze the models’ behaviour on sparsity and cold-start. Especially for few
samples per user (0-20) SGDReg outmatches all other models by providing very high
AUC throughout all groups of users. Multinominal Logistic MF (MLMF) only performs
good as soon as enough feedback for training is available.

Finally, we would like to share some insights and our observations which we accumu-
lated during the work on this thesis. On the used methods we can note that user and
item bias improve the models’ performance as suggested by Koren et al. (2009), James
et al. (2014) and Tintarev and Masthoff (2011). Also using AdaGrad to compute the
learning rate in gradient descent algorithms, improves convergence of the algorithms as
suggested by Duchi et al. (2011). Subtracting users’ mean-rating by applying mean-
removal seems to increase all Logistic MF models’ performances, whereas it doesn’t
have a big impact on BPRMF models. Applying gridsearch, to search for the best pa-
rameter settings, increased the models’ performance significantly, even for the baseline
recommenders where the standard parameters didn’t always yield the best performance.
Although the SGDReg model is rather simple and relaxes SLIM’s non-negativity con-
straint, it seems to be quite good in representing the ranking list and outperforms most
of the other models.

5.2 Future Work

After our work on Two-Class Collaborative Filtering (TCCF) problems, we see oppor-
tunities for future research efforts in mainly three different directions: Adapting the
optimization criterion, analyzing the classification decision boundary and changing the
loss function used for gradient descent.
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We have several ideas of adapting the optimization criterion, to better represent the
desired ranking list, which lists positive samples at the top and negative samples at the
bottom, to solve TCCF problems.

We focused on logistic models which predict the probability of an item belonging to
a given class, rather than modelling the item’s value directly (James et al., 2014). It
would be interesting to see if using a logisitic model to predict the item similarity for
SLIM and develop a Logistic-SLIM could improve the results.

As we’ve seen in the evaluation in Chapter , SGDReg performs great on numerous
tasks on all datasets. Since SGDReg is based on SLIM but relaxes the non-negativity
constraint and as suggested by Levy and Jack (2013), it would be interesting to investi-
gate the theoretical basis for the success of the simple regression model SGDReg.

Another approach would be to adapt Logistic MF similar to Kabbur and Karypis
(2014), to model positive and negative user interests in two separate user latent factors
and combine it with one single item latent factor. This could be done analog to the
Multinominal Logistic Matrix Factorization (MLMF) implementation.

The advantage of Bayesian Personalized Ranking models in representing the ranking
list could be applied to other models as well. Using the difference between two user-
item-rating triples (rui − ruj), instead of focusing on one single user-item-rating triple
(rui), could improve other models as well.

In this work, we classify samples according to a static decision boundary of 0.5. De-
pending on the model and the dataset, the decision boundary could be different. It
would be interesting to analyze how a dynamic decision boundary can be developed, to
improve classification performance.

Instead of using the direct optimization criterion loss within the gradient descent
algorithms, it might be beneficial to use other loss functions like hinge-loss or softmax,
to improve convergence and prevent over-fitting.
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Appendix

A.1 Gridsearch Parameters

All experiments were performed on a Slurm1 cluster with 16 nodes. Each machine node
has 128 GB of RAM and two Intel R Xeon R E5-2680V2 processors (25 MB Cache, 2.80
GHz base frequency) with 10 cores per processor (40 threads per machine).

All models were evaluated with 30 iterations.

Bayesian Personalized Ranking (BPRMF), E-BPRMF, P-BPRMF Regular-
izer: [0.001, 0.0025, 0.01]. Learn-Rate: [0.01, 0.05, 0.1]. Latent Factors: [10, 30, 50].

GAUC-OPT Regularizer: [0.01, 0.1, 0.5]. Learn-Rate: [0.01, 0.05, 0.1]. Latent Fac-
tors: [10, 30, 50].

Logistic Matrix Factorization (Logistic MF), LLMF, ELLMF Regularizer:
[0.01, 0.6, 0.1]. Gamma: [0.1, 1.0, 2.0]. Latent Factors: [10, 30, 50].

Multinominal Logistic Matrix Factorization (MLMF) Regularizer: [0.01, 0.06,
0.1]. Once with L1 regularizer whereas reg L1 = regularizer, reg L2 = L1/10.0 and once
without L1 regularizer: reg L1=0.0, reg L2=regularizer. Gamma: [1.0, 2.0]. Latent
Factors: [10, 30, 50].

SGDReg Regularizer: [0.001, 0.01, 0.1], whereas reg L1 = regularizer, reg L2 =
reg L1/10.0. Fit intercept: False.

1Slurm Workload Manager - http:// slurm.schedmd.com
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A.2 Optimal Parameter Sets of Recommenders

Table A.1: Optimal Parameter Sets of Recommenders

Model MovieLens 1M Slashdot-Zoo Big Book Crossing

BPRMF D = 50, λ = 0.01, L = 0.05 D = 10, λ = 0.01, L = 0.01 D = 50, λ = 0.01, L = 0.01
E-BPRMF D = 50, λ = 0.01, L = 0.01 D = 50, λ = 0.001, L = 0.01 D = 10, λ = 0.001, L = 0.01
P-BPRMF D = 50, λ = 0.001, L = 0.05 D = 50, λ = 0.01, L = 0.05 D = 10, λ = 0.001, L = 0.01
Logistic MF D = 50, γ = 2.0, λ = 0.1 D = 10, γ = 1.0, λ = 0.1 D = 50, γ = 2.0, λ = 0.6
LLMF D = 10, γ = 1.0, λ = 0.1 D = 10, γ = 1.0, λ = 0.1 D = 10, γ = 1.0, λ = 0.6
ELLMF D = 10, γ = 1.0, λ = 0.6 D = 50, γ = 2.0, λ = 0.6 D = 30, γ = 1.0, λ = 0.6
MLMF D = 50, γ = 2.0, λ = 0.1 D = 50, γ = 2.0, λ = 0.1 D = 50, γ = 2.0, λ = 0.006 with L1
GAUC-OPT D = 50, λ = 0.1, L = 0.01 D = 50, λ = 0.5, L = 0.05 D = 10, λ = 0.01, L = 0.01
SGDReg λ = 0.01 λ = 0.001 λ = 0.001

Optimal model parameter set for best AUC performance on each model. Where D denotes the
dimensionality of latent vectors, λ the regularizer parameter and L the learning parameter.
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A.3 Evaluation Grouped By Number of Ratings per User

A.3.1 Distribution of Number of Ratings per User

(a) Relative Number of Ratings per User (b) Number of Ratings per User

Figure A.1: MovieLens 1M - Distribution of Number of Ratings per User

(a) Relative Number of Ratings per User (b) Number of Ratings per User

Figure A.2: Slashdot-Zoo Big - Distribution of Number of Ratings per User

(a) Relative Number of Ratings per User (b) Number of Ratings per User

Figure A.3: Book Crossing - Distribution of Number of Ratings per User

A.3.2 MovieLens 1M
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(a) Relative AUC (b) AUC

(c) Relative Classification (d) Classification

(e) Relative Hit-Rate (f) Hit-Rate

Figure A.4: MovieLens 1M - BPRMF Original
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(a) Relative AUC (b) AUC

(c) Relative Classification (d) Classification

(e) Relative Hit-Rate (f) Hit Rate

Figure A.5: MovieLens 1M - P-BPRMF
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(a) Relative AUC (b) AUC

(c) Relative Classification (d) Classification

(e) Relative Hit-Rate (f) Hit Rate

Figure A.6: MovieLens 1M - E-BPRMF
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(a) Relative AUC (b) AUC

(c) Relative Classification (d) Classification

(e) Relative Hit-Rate (f) Hit Rate

Figure A.7: MovieLens 1M - GAUC-OPT

51



52 APPENDIX A. APPENDIX

(a) Relative AUC (b) AUC

(c) Relative Classification (d) Classification

(e) Relative Hit-Rate (f) Hit Rate

Figure A.8: MovieLens 1M - Logistic MF
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(a) Relative AUC (b) AUC

(c) Relative Classification (d) Classification

(e) Relative Hit-Rate (f) Hit Rate

Figure A.9: MovieLens 1M - Logistic Likelihood MF

53



54 APPENDIX A. APPENDIX

(a) Relative AUC (b) AUC

(c) Relative Classification (d) Classification

(e) Relative Hit-Rate (f) Hit Rate

Figure A.10: MovieLens 1M - Explicit Logistic Likelihood MF
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(a) Relative AUC (b) AUC

(c) Relative Classification (d) Classification

(e) Relative Hit-Rate (f) Hit Rate

Figure A.11: MovieLens 1M - SGDReg
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(a) Relative AUC (b) AUC

(c) Relative Classification (d) Classification

(e) Relative Hit-Rate (f) Hit Rate

Figure A.12: MovieLens 1M - Multinominal Logistic MF
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A.3.3 Slashdot-Zoo Big

(a) Relative AUC (b) AUC

(c) Relative Classification (d) Classification

(e) Relative Hit-Rate (f) Hit Rate

Figure A.13: Slashdot-Zoo Big - BPRMF Original
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(a) Relative AUC (b) AUC

(c) Relative Classification (d) Classification

(e) Relative Hit-Rate (f) Hit Rate

Figure A.14: Slashdot-Zoo Big - P-BPRMF
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(a) Relative AUC (b) AUC

(c) Relative Classification (d) Classification

(e) Relative Hit-Rate (f) Hit Rate

Figure A.15: Slashdot-Zoo Big - E-BPRMF
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(a) Relative AUC (b) AUC

(c) Relative Classification (d) Classification

(e) Relative Hit-Rate (f) Hit Rate

Figure A.16: Slashdot-Zoo Big - GAUC-OPT
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(a) Relative AUC (b) AUC

(c) Relative Classification (d) Classification

(e) Relative Hit-Rate (f) Hit Rate

Figure A.17: Slashdot-Zoo Big - Logistic MF
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(a) Relative AUC (b) AUC

(c) Relative Classification (d) Classification

(e) Relative Hit-Rate (f) Hit Rate

Figure A.18: Slashdot-Zoo Big - Logistic Likelihood MF
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(a) Relative AUC (b) AUC

(c) Relative Classification (d) Classification

(e) Relative Hit-Rate (f) Hit Rate

Figure A.19: Slashdot-Zoo Big - Explicit Logistik Likelihood MF
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(a) Relative AUC (b) AUC

(c) Relative Classification (d) Classification

(e) Relative Hit-Rate (f) Hit Rate

Figure A.20: Slashdot-Zoo Big - SGDReg

64



A.3. EVALUATION GROUPED BY NUMBER OF RATINGS PER USER 65

(a) Relative AUC (b) AUC

(c) Relative Classification (d) Classification

(e) Relative Hit-Rate (f) Hit Rate

Figure A.21: Slashdot-Zoo Big - Multinominal Logistic MF
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A.3.4 Book Crossing

(a) Relative AUC (b) AUC

(c) Relative Classification (d) Classification

(e) Relative Hit-Rate (f) Hit Rate

Figure A.22: Book Crossing - BPRMF Original
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(a) Relative AUC (b) AUC

(c) Relative Classification (d) Classification

(e) Relative Hit-Rate (f) Hit Rate

Figure A.23: Book Crossing - P-BPRMF
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(a) Relative AUC (b) AUC

(c) Relative Classification (d) Classification

(e) Relative Hit-Rate (f) Hit Rate

Figure A.24: Book Crossing - E-BPRMF
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(a) Relative AUC (b) AUC

(c) Relative Classification (d) Classification

(e) Relative Hit-Rate (f) Hit Rate

Figure A.25: Book Crossing - GAUC-OPT
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(a) Relative AUC (b) AUC

(c) Relative Classification (d) Classification

(e) Relative Hit-Rate (f) Hit Rate

Figure A.26: Book Crossing - Logistic MF
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(a) Relative AUC (b) AUC

(c) Relative Classification (d) Classification

(e) Relative Hit-Rate (f) Hit Rate

Figure A.27: Book Crossing - Logistic Likelihood MF
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(a) Relative AUC (b) AUC

(c) Relative Classification (d) Classification

(e) Relative Hit-Rate (f) Hit Rate

Figure A.28: Book Crossing - Explicit Logistik Likelihood MF
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(a) Relative AUC (b) AUC

(c) Relative Classification (d) Classification

(e) Relative Hit-Rate (f) Hit Rate

Figure A.29: Book Crossing - SGDReg
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(a) Relative AUC (b) AUC

(c) Relative Classification (d) Classification

(e) Relative Hit-Rate (f) Hit Rate

Figure A.30: Book Crossing - Multinominal Logistic MF
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