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Zusammenfassung

Während das Semantic Web zunehmend an Aufmerksamkeit gewinnt, gibt es eine Her-
ausforderung bei der effizienten Verwaltung großer RDF-Datensätze. In dieser Arbeit be-
handeln wir das Problem der Vorhersage von SPARQL Anfragen mit maschinellem Ler-
nen. Wir bauen einen Vektor, der die Abfrage strukturell beschreibt und trainieren damit
verschiedene maschinelle Lernmodelle. Wir erforschen Wege, um die Leistung unserer
Modelle zu optimieren und analysieren TensorFlow auf dem IFI-Cluster. Während wir
bekannte Feature-Modellierungen übernehmen, können wir die Vektorgrösse reduzieren
und damit Rechenzeit einsparen. Unser Ansatz kann die bestehenden Ansätze in einer
effizienteren Weise deutlich übertreffen.





Abstract

As the Semantic Web receives increasing attention, there is a challenge in managing large
RDF datasets efficiently. In this thesis, we address the problem of predicting SPARQL
query performance using machine learning. We build a feature vector describing the
query structurally and train different machine learning models with it. We explore
ways to optimize our model’s performance and analyze TensorFlow deployed on the IFI
cluster. While we adopt known feature modeling, we can reduce the vector size and save
computation time. Our approach can significantly outperform existing approaches in a
more efficient way.
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Introduction

1.1 Motivation

Machine learning (ML) has been one of the most exciting research fields in the past
few years. Different ML techniques have been widely adopted in various areas such as
image recognition and natural language processing. The winning of AlphaGo further
highlights the potential impact of ML. Among all the advantages of ML, one especially
interesting point is that ML can hugely outperform rule-based or heuristic-based systems
in areas like entity recognition and information extraction. Instead of letting humans
specify and program complex rules, ML can automatically discover and learn the rules
to achieve better performance. In SPARQL query optimization, heuristics also play a
major role. Currently, most of the SPARQL engines derive query execution plans based
on heuristics about the underlying data. Given the advantages of ML, this thesis will
study the question of using ML to replace the heuristics in SPARQL query optimization.
Specifically, this thesis will focus on predicting SPARQL query performance, such as
query execution time.

1.2 Use Cases

Suppose we have an SPARQL endpoint. After a user inputs a query, the endpoint
would like to provide an estimation of the query’s performance, without actually exe-
cuting it. We are specifically interested in estimating the execution time because it is
applicable in many places:

• The user can refine the query, based on the prediction. Some users are not too
familiar with SPARQL and what constitutes an expensive query. With our model,
we could signal if a query is over the time-out limit and needs refinement.

• The user can have feedback on how different SPARQL commands can have different
influences on the performance. As the user edits the query, we can give feedback,
whether or not the new query will be executed faster. Such a feedback loop could
provide a learning experience for the user.

• The provider can optimize the allocation of computing resources and therefore
achieve an overall better user experience.
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1.3 Problem Statement

We want to build a TensorFlow model that predicts SPARQL query performance. We
have following problems at hand:

• Analyze existing approaches and feature modeling techniques in literature.

• Train a multilayer perceptron (MLP) with TensorFlow on the feature vector, then
optimize and analyze the performance. See how a MLP compares to existing
approaches that use clustering algorithms.

• Find different machine learning models, such as RNN that maybe solve our problem
better and compare to our first model.

• Deploy TensorFlow on the IFI cluster and analyze performance.

1.4 Methodological approach

We want to approach our work in the following structure:

1. Review existing methods and techniques to predict query performance, specifically
[Zhang et al., 2016] and [Hasan, 2014]. The goal is to extract which features and
machine learning (ML) models are used and to find possible improvements in their
approach.

2. From there we deploy a first crude MLP with TensorFlow. We then optimize this
model and look for different model structures, that might bring benefits to our
problem.

3. In the end, we find ways to deploy TensorFlow on the IFI cluster, which will unlock
much more computing power than is available on a conventional machine. It also
enables further and much more computationally expensive research.

1.5 Structure of the work

In chapter 2 we analyze two recent papers that are most relevant to our project. We go
further in chapter 3 to explain our implementation. We first build a simple multilayer
perceptron (MLP) and optimize it. In section 3.3 and 3.4 we explore different TensorFlow
models, that are also capable of solving our problem. In chapter 4 we give an overview
on some TensorFlow specific structures, which are relevant for readers that are new to
TensorFlow and want to understand our code. We conclude our work in chapter 5 and
6 with a critical reflection and a summary of completed and future work.

2
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Analysis of existing approaches

There aren’t many papers aiming to solve the problem we have at hand, and while we
have the same end goal, we take a slightly different route. It follows a short analysis of
the two most recent papers that seem most relevant to our work.

2.1 Paper ”Learning-based SPARQL Query Performance Pre-

diction”

The newest paper is from Zhang et al. (2016) [Zhang et al., 2016], to which we primarily
compare our work.

2.1.1 Prediction

In their model, they use a two-step prediction method (Fig.1 [Zhang et al., 2016]).
First, they use Support Vector Machine (SVM) to classify the queries into four buckets:
short, medium short, medium and long. As a second step, they train K-Nearest Neigh-
bours (KNN) on each class of query. Unfortunately, they do not go into detail on how the
decision to first classify the query, was derived. Also, KNN is expected to perform better
on a denser dataset. Therefore we can just increase the number of buckets to improve
the accuracy of each model. The choice to use exactly four buckets seems arbitrary.

Additionally, using a combination of models is expected to improve the accuracy of
the result, but if that is the most efficient way to arrive at a satisfying performance is
questionable. Similar to the point about the number of buckets used, why could just add
another algorithm to increase the accuracy further. If we want to examine the efficiency
of such combination, we would need a more detailed time analysis, than provided in 5.4,
which only represents the total time for feature modeling and classification. We could
therefore presumably improve their paper by just increasing the number of buckets in
their classification and algorithms used.
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2.1.2 Feature Modeling

They have two vectors which represent their extracted features: Algebra Feature
and BGP Feature. The details of these feature vectors are further explained in chapter
3. In the paper, they have one further vector, called Hybrid Feature. In their hybrid
vector, they use a manual feature selection with the contribution to overall prediction
performance as the selection heuristic. In our approach this is not applicable: We want
our model to learn which features to consider and which to ignore. It is, of course,
interesting to look at the performance between combining the algebra vector with the
BGP feature vector and using them separately, but dissecting the two vectors will be
the job of our machine learning model.

2.1.3 Data

For their experiment, they used 10000 random queries, taken from the USEWOD20161

challenge, and filtered for static data. We think that their database size is only barely
enough to have a good approximation of real world queries. Since USEWOD contains
around 43GB of text logs and an estimated 110 millions of queries, it is questionable if
10000 queries are enough to represent the real world nature of the USEWOD dataset.
For this reason, we extended our dataset to 40000 random queries, but see a potential
improvement in further increasing the database. The training size is also discussed at
the end of the paper in Section 6. It is mentioned that it is very time consuming to
build a bigger dataset and makes similar work hard to compare. We want to tackle
this problem in this thesis: Make it possible to decrease the overall training time, which
enables a bigger dataset and a more representative solution.

Their 10000 queries are run 11times: The first time ’cold’, meaning the data is not
cached, and then ten times in a ’warm’ state. For their prediction of warm queries, they
use the mean over those ten executions. This distinction solves one thing: it makes
predicting cold queries easier. One of the most important features is whether or not a
query has been run before and therefore stored in the cache. Rather than knowing or
predicting beforehand whether data will be in cache, the dataset is split, and the model
is trained on both datasets. However, this distinction is problematic for several reasons:

• A query is rarely entirely cold. Assuming a server has run a decent amount of
queries, it will reuse interim results out of cache, which will significantly reduce
the execution time. A distinction into ’partly-warm’ and ’warm’ would be a more
accurate description for most queries.

• In the case of a server-side query scheduling application, this distinction is unus-
able. Knowing whether or not a query is in cache requires building a table of past
queries. Accessing this table creates additional overhead, which is not wanted.
A scheduling algorithm would therefore always need to use the cold model. We

1https://eprints.soton.ac.uk/385344/

4
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need a satisfying performance on cold queries to make an efficient query scheduling
possible.

• In the case of a front-end application, the accuracy is of less importance. The
probability of a user testing the prediction versus performance is small.

We will adopt the distinction of cold and warm queries but hope to achieve a good
enough performance, to only use cold queries in the future.

2.1.4 Evaluation Metric

As their cost function, they use relative error:

relativeerror =
1

N

N∑
i=1

| actuali − estimatei |
actualmean

(2.1)

We adopt this error function for our model but need to clarify actualmean further, which is
discussed in section 3.2. While the usage and reasoning for relativeerror are sound, they
never compared their error to using no model. If we replace estimate with actualmean,
we get a benchmark of using no model and using only statistics. Using such a reference
point is important for two reasons:

• Since we take random queries from the dataset, we need to establish a baseline of
our database. Otherwise, the comparison to previous work is unfair.

• In our database building process, we experienced some variance in our relative
error over the database, since the query execution time is not only dependent on
the query itself, but also on the server load and network connection. Without
using a benchmark of the dataset, the improvement over old work could be partly
based on happenstance.

2.2 Paper ”A Machine Learning Approach to SPARQL Query

Performance Prediction”

For the slightly older paper by [Hasan, 2014], we want to mainly highlight the differences
to [Zhang et al., 2016].

2.2.1 Feature Modeling

In their feature extraction, they also construct an algebra feature vector with tuples
and a GED vector. For their GED vector they first cluster queries using k-medoids
[Kaufman, 1987], then calculate the GED from every query to the cluster center queries
and transform this distance using:

sim(pi, C(k)) =
1

1 + d(pi, C(k))
(2.2)

5
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Where d(pi, C(k)) is the GED between query graph pi and cluster center query C(k).
This calculation is not necessary: The GED is mainly a feature to describe the structural
properties of a query. To which graph we compare this to is irrelevant, as long as graphs
are somewhat unique. For example, if we take five SELECT-queries the GED distances
will obviously fail to provide an essential feature, but if we carefully choose unique queries
beforehand to compare to we can refrain from any clustering algorithm.

2.2.2 Data

The dataset of queries is generated from the DBPSB[Morsey et al., 2011] benchmark2

query templates, which cover the 25 most commonly used SPARQL query features on
DBPedia3. They generate in total 2100 queries from the templates and split it up into
training, validation and test set. Apart from the point we already made in section 2.1
regarding the database size, the query templates disregard any outliers:

[Morsey et al., 2011] Applying BorderFlow to the input queries led to 12272
clusters, of which 24% contained only one node, hinting towards a long-tail
distribution of query types. To generate the patterns used in the benchmark,
we only considered clusters of size 5 and above.

The usage of generated queries is fine for presenting a more isolated case but makes it
hard to argue for a real-world application.

2.2.3 Prediction

For predicting they achieve the best result with using both algebra and GED vector
and the SVM algorithm with 15 clusters.

There are many more relevant features other than the query structure influencing
query execution time. Processor load, caching state, network delay and others play a
major role. That is why we want to approach the underlying problem a little differently:
While they looked at queries more isolated, we want to leverage the query sequence
in section 3.3 to get a more accurate approximation of the solution. So instead of
independent queries, we feed a sequence into our model. Having a sequence, we hope to
capture the state of the server and achieve better performance.

2http://aksw.org/Projects/DBPSB.html
3http://dbpedia.org

6
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Implementation

3.1 Setup

We adopt a similar experiment setting of [Zhang et al., 2016] for comparability and
as a reference point for improvement. Our dataset consists of 40’000 random queries,
taken from the USEWOD2016 challenge, which provides query logs from a DBPedia3.91

endpoint.

The queries were executed 11 times. We use the first one as a ”cold query” execution,
since there is no cache present beforehand. We use the average of the following 10 queries
as ”warm query” execution, since some data is presumably cached from the cold query.
A random 20% of our dataset signifies our test set and 80% our training set. The
maximum execution time on the server was set to 30 seconds, but any existing timeout in
the provided log remained. In our dataset build, we observed high variance in execution
times, which signifies the importance of providing the relative mean error of the dataset
itself, as a benchmark.

Our server instance hosted Virtuoso 7.22 on a Debian 3.16 machine with 64GB RAM
and 24CPUs at 2.2GHz. We followed Virtuoso’s performance tuning guideline3 by setting
following parameters:

1 NumberOfBuffers=5450000
2 MaxDirtyBuffers =4000000

Listing 3.1: Virtuoso settings

The TensorFlow models were trained on an iMac (2013) with 32GB RAM and i7-4771
CPU @ 3.50GHz. All models were trained using TensorFlow v1.1.

1http://wiki.dbpedia.org/services-resources/datasets/data-set-39
2https://virtuoso.openlinksw.com/
3https://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/VirtRDFPerformanceTuning
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3.1.1 Feature Modeling

To use our queries with machine learning models, we first have to transform them into
vectors. Each value in the vector is a feature of the current query. The performance of
our models highly depends on how well our feature vectors can describe our queries.

Algebra Vector

Our first vector tries to capture the syntactical and structural information in the
query. Meaning that different SPARQL operators have a different influence on the
performance, so if we can parse this structural information, we can extract meaningful
features. Additionally, the syntax of the query decides in which order the query is
supposed to be executed. We can parse this syntax into a graph and leverage the graph
structure to extract further features.

To build our algebra vector, the query is first parsed using Apache Jena-3.24, which
provides an algebra tree. We then parse this tree for features. We extract the height
of the tree, and a triple for every SPARQL command, containing the occurrence of the
operator, the maximum and minimum height. This results in a set of tuples for every
SPARQL operator: {(ci,minhi,maxhi)}, where ci is the operator’s count, minhi the
operator’s minimum height in the algebra tree and maxhi the maximum height. These
tuples are all concatenated in the end. Additionally, we add a representation of the
amount and type of the occurring triple patterns. This procedure results in a vector of
52 features.

GED Vector

In our second vector we further extract features from our query graph structure.
The graph edit distance (GED) measures the minimum amount of graph operations to
transform one graph into another. Such operations include insertion, deletion of isolated
vertex or edge, and changing the label of a vertex or edge. However, this problem is
NP-complete.

The Graph Edit Toolkit [Riesen et al., 2013] provides implemented approximation
algorithms that run in polynomial time, such as the Beam algorithm. According to
[Riesen et al., 2013], this exaggerates GED, but in our application accuracy is not highly
relevant, as we only want to differentiate queries from another. As long as we have a
consistent error, this is not of concern. In our implementation, we chose to use the
Jonker-Volgenant (JV) algorithm, originally proposed in [Jonker and Volgenant, 1987],
mainly because of its slight speed advantage over Beam. However, even with its stable
performance, relying on an algorithm with cubic running time is impractical in most sce-
narios. It would be a meaningful improvement if we can achieve comparable performance
to state of the art without any GED.

4https://jena.apache.org/

8
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Figure 3.1: Algebra Feature on example query

For every query, we record the GED to 10 benchmark queries, taken from DBPSB[Morsey et al., 2011],
mentioned in subsection 2.2.2. Using eight queries less than in [Zhang et al., 2016] should
provide the first step towards a meaningful speed improvement.

3.2 Multilayer Perceptron

3.2.1 Setup

We chose first to build a working model and then optimize from there. Therefore our
parameters are all within a reasonable boundary, but arbitrary in this first step. We
chose to use one hidden layer with size 1024. The hidden layer has a rectified linear unit
(ReLu) as the activation function and a dropout layer[Srivastava et al., 2014] with a
dropout-probability set at 20%. The model’s optimizer is TensorFlow’s implementation
of Adam Optimizer[Kingma and Ba, 2014] with a learning rate of 10−3.

9
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Evaluation Metric

We adopted the cost function of [Zhang et al., 2016], namely relativeerror (2.1), but
need to clarify one distinction. In our training dataset actualmean is defined over the
training dataset and in the test set accordingly.

As a benchmark for our evaluation, we set prediction to actualmean over the test set,
which is equal to using no model and relying on query statistics alone. Additionally, we
added State of the art error, which refers to the best score [Zhang et al., 2016] achieved
using their two-step prediction method. The model gets evaluated over 100 epochs,
meaning after 100 forward an backwardpasses of all training examples, which seems to
be enough for the network to stabilize and converge.

In the following, we will optimize on cold queries as a default unless otherwise noted,
as this is the more difficult task. In the end, we will again make the comparison between
the cold and warm queries.

Figure 3.2: Multilayer Perceptron performance

First Model

In our first, unoptimized version of the model (Figure 3.2) we see that the GED vector
is converging the fastest, and the algebra vector has overall the best performance. We
can observe that errors start all very high. Also, the error of the algebra vector is

10
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increasing after finding local minimum at around 0.8%, which can be an indication of
overfitting.

3.2.2 Model Optimization

Weight Initialization

One approach to optimization is to adjust variable initialization. How to initialize
weights in an optimal fashion is a topic of research, but there exist several best practices
and known practices to avoid.

We want to avoid setting all weights to the same value, to break symmetry. Meaning
that if we set every weight to one, each hidden unit will get the same signal, which is the
sum of inputs multiplied by the corresponding weights. Even worse, if we set all weights
to zero, all hidden units will get zero signal. Therefore we want to initialize weights
randomly, or as a minimum with different values.

Before, our weights of the hidden layer are initialized with the default settings for
TensorFlow’s tf .random normal:

1 new layer = { ’ we ights ’ : t f . Var iab le ( t f . random normal (
2 [ l a y e r c o n f i g [ i −1] , l a y e r c o n f i g [ i ] ] , mean=0, stddev=1) ) ,
3 ’ b i a s e s ’ : t f . Var iab le ( t f . random normal (
4 [ l a y e r c o n f i g [ i ] ] , mean=0, stddev=1) ) }

Listing 3.2: Weight initialization

Which means that it in our first model we initialized the weights with a mean at zero
and standard deviation at 1, which is not ideal in our case for two reasons:

• Because we use a ReLu activation, it is a good practice to use a slight positive bias
to avoid ”dead neurons”.

• The weights seem too large for our case: The majority of our labels are around 0.06,
setting the standard deviation to +/- 1 is too high. However, if we set the weights
too small, then the signal shrinks as it passes through the layers and may end up
too small to be useful. It may be overengineering for our model, but initializing
the weights correctly is essential to getting a good result.

One of the most famous weight initialization methods is Xavier Initialization, proposed
by [Glorot and Bengio, 2010]. It defines the variance at:

V ar(W ) =
6

nin + nout
(3.1)

nin and nout are the numbers of inputs and outputs of the layer.

11
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[He et al., 2015] found that using Xavier initialization in deep neural networks with
30 layers and ReLu activations does not lead to convergence and suggest a different
variance:

V ar(W ) =
2

nin
(3.2)

Note that in both versions the variance of the bias initialization and the mean of weight
initialization are both set at 0.

To see which weight initialization is better in our case we run our MLP model with
the GED vector and two different configurations: First, with one hidden layer of size
128. Second with five hidden layers with size 64. We chose these settings to find out
whether the difference is noticeable in a deeper network, as [He et al., 2015] describes.
Both initialization methods are run five times and are averaged. We also include our
original setting of standard deviation at 1 for comparison.

0 20 40 60 80 100
epoch

10-2

10-1

100

101

er
ro

r

1 Hidden Layer

STD=1
Xavier
He

0 20 40 60 80 100
epoch

5 Hidden Layers

STD=1
Xavier
He

Figure 3.3: Comparison between Xavier and He initialization

In Figure 3.3 we can see that with one hidden layer Xavier is a little less prone to
overfitting than He initialization. With five hidden layers, we can observe the opposite.
The effect of He initialization performing better is likely to increase as the network gets
deeper but is subject to future work. As our networks are not very deep, we chose Xavier
initialization.

Early Stopping

Until now, we evaluated our model at epoch 100. However, this might be too late for
models that are prone to overfit. In Figure 3.2 we can observe that the algebra vector

12
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would have performed better if we chose to stop at around epoch 25. Early Stopping
refers to an approach in training models to avoid overfitting. As the name suggests: It
tries to avoid overfitting by stopping early at an inflection point, where the error starts
to increase. There are many ways to approach stopping early. [Prechelt, 1998] explore
three classes of stopping criteria and conclude on three selection rules for choosing a
stopping criterion. We adopt Rule 2, which says:

2. To maximize the probability of finding a ”good” solution (as opposed to
maximizing the average quality of solutions), use a GL criterion.

A GL criterion is describing the generalization loss, which describes the relative increase
of validation error over the minimum-so-far (in percent). We slightly modify to use the
test error instead of the validation error:

GL(t) = 100 ∗ (
Ete(t)

Eopt(t)
− 1) (3.3)

Where Eopt(t) is defined as:

Eopt(t) := min
t′≤t

Ete(t
′) (3.4)

Meaning Eopt(t) is the lowest test error in the epochs before t and Ete(t) is the test error
at epoch t. This stops the training process at epoch t with GL(t) > x. The difficulty
is to define an appropriate value for x: If set too low, we do not allow for an error
adjustment out of a local minimum, and if set too high we will not stop early before
overfitting. We include this new parameter into our parameter optimization.

Additionally, we add a patience variable, which signifies how many epochs to wait until
early stopping is considered. If we would consider early stopping at the very beginning,
a first misstep by the optimizer could trigger an early stop, which we want to prevent.
In our case, we want to set patience at 10.

Parameter Optimization

The model is still prone to overfitting, as the performance still varies from iteration to
iteration. The tendency to overfit is mostly due to a lack of hyperparameter optimization.
We still define the depth and size of the network, batch size, learning rate, dropout
probability all by hand.

One approach to optimizing these parameters is Bayesian optimization, which is a
sequential model-based optimization algorithm. Intuitively the algorithm uses previ-
ously computed points as input to suggest the next set of parameters, for the objective
function, which will likely give a better result. The objective function is in our case
to minimize the error rate when using the test set, averaged over the last ten epochs.
This optimization process is computationally very expensive, which is why the model
will only be evaluated over 80 epochs.

13
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To make a custom implementation of Bayesian optimization would go beyond the
scope of this work. Fortunately, there is an excellent implementation by the Harvard
Intelligent Probabilistic System Group5, called ”Spearmint”6, which is originally based
on the work by [Snoek et al., 2012]. Spearmint provides a simple wrapper to a python
function to do parameter optimization. Doing this optimization is computationally very
expensive, which is why we have narrowed down our parameters to following scopes:

1 0.0001< l e a r n i n g r a t e <0.1
2 8<bat ch s i z e <256
3 0<num network layers<4
4 8< l a y e r s i z e <256
5 10< ea r l y s t op <100

Listing 3.3: Optimization Parameters

We ran the optimizer for 250 iterations on our vectors with following results:

Vector Minimum calculated error Minimum observed error

GED 2.454% (+/- 0.163) 1.9957%
Algebra 4.534% (+/- 1.383) 3.7436%
Combining GED&Algebra 5.281% (+/- 22.171) 2.0731%
[Zhang et al., 2016] - 11.06%

Table 3.1: Bayesian Optimization result.

We see that the GED vector outperforms the algebra vector, but both are well under
the current state of the art. Additionally, the combined vector’s range of error suggests
we still experience overfitting and could benefit from a manual correction of the early stop

flag.

When using these optimized parameters, the results were not always consistent. At a
few rare iterations, the model overfitted completely and got stopped out. We think that
this is mostly caused by the randomness in weight initialization and unavoidable. Also,
since we can simply save the current model and reuse it, being able to reproduce the
performance from the start is not a prerequisite. Another possible influence could be
that we split our training and test set randomly before every run, so if we predominantly
test on outliers, the error will be higher.

We can see in Figure 3.4 that our MLP outperforms state of the art with every vector
combination. It appears that the GED vector performs significantly better than the other
two options. Also, it is interesting that the combined vector performs almost identical

5http://hips.seas.harvard.edu
6https://github.com/HIPS/Spearmint
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Figure 3.4: MLP with implemented optimization.

to the algebra vector with cold queries. Note that we only optimized our models for cold
queries and used the same settings for warm queries, which very well be not ideal.
Final results, averaged over the last ten epochs are as follows:

Vector Cold Error Warm Error

GED 2.76% 1.57%
Algebra 5.38% 3.73%
Combining GED&Algebra 5.35% 3.3%
[Zhang et al., 2016] 9.81% 11.06%

Table 3.2: Final result comparison using our MLP model.

3.3 LSTM Network

3.3.1 Idea

One disadvantage of MLPs is their inability to include the history of inputs. While
a MLP can only map from input to output vectors, and therefore considers all samples
independently, a recurrent neural network (RNN) can, in principle map the entire his-
tory of previous inputs to each output. The idea is to provide a memory of previous
inputs that persists as an internal state and can influence the network’s output. How-
ever, RNN has its limits when trying to map long-term dependencies. Theoretically, it

15
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is possible for an RNN to learn long-term dependencies by carefully optimizing its pa-
rameters, but in practice, RNN seems unable to learn them. This problem was explored
by [Bengio et al., 1994], who found some reasons why long-term dependencies present a
problem for RNN.

Introduced by [Hochreiter and Schmidhuber, 1997], LSTM is a special kind of RNN
network, that are built to avoid this long-term dependency problem. The rough idea
is to add a cell state, to which the LSTM cell can add or remove information. This
modification of information is regulated by gates, which are defined by the type of cell
used.

3.3.2 Challenge

Besides being an excellent exercise to building an LSTM network, we originally hoped
for it to solve one problem: The network should learn whether a query is taken from
cache or not. As discussed in chapter 2, we think splitting the database into cold and
warm is unpractical and unrealistic. However, it is crucial to know whether or a query
is already in cache. Unfortunately, this introduces several new challenges. Some of them
are:

• Depending on the log, the network maybe has not enough data to learn such a
feature.

• The state of the cache depends on Virtuoso’s software: Just because the query uses
somewhat similar data, it is not guaranteed to get it from the cache. Of course,
when querying the same data, this is not a problem.

• We would need to capture the used data as a feature. Currently, we only capture
the structure of the query. To do so, we have to extend our feature extraction and
find a way to vectorize the data a query tries to access.

3.3.3 Model

One difficulty of building the network was the formatting of the data: To learn from
long-term dependencies, we need to feed in the data as a sequence. This sequence gets
too long in our case, as we want to learn from all past queries. On the other hand, if we
define the sequence too short we might miss an identical past query.

The solution to this was a persistent state: Normally the hidden state would get
reset after every sequence, but we can ”inject” the last hidden state of the previous
sequence into the next sequence to learn from all past queries that were fed into the
network. However, the persistent state has to be reset at the beginning of every epoch.
Otherwise, the network would think that every query is in the cache after epoch 1.
This reset leads to spikes in error when plotting the performance of our network, as at

16
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the beginning of every epoch the hidden state is set to zeroes. Without this necessary
modification to the model, we cannot achieve any meaningful result with LSTM.

Setup

In our LSTM network, we use the newly developed NASCell [Zoph and Le, 2016],
three layers of cells, 100 epochs, the already mentioned Adam Optimizer [Kingma and Ba, 2014]
with a learning rate of 10−3 and a batch size of 16. The model also uses the Xavier-
initializer [Glorot and Bengio, 2010], mentioned in section 3.2.2.

0 20 40 60 80 100
epoch

10-2

10-1

100

er
ro

r

Cold Queries

Combined Vector
GED Vector
Algebra Vector
State of the art error

0 20 40 60 80 100
epoch

er
ro

r

Warm Queries

Combined Vector
GED Vector
Algebra Vector
State of the art error

Figure 3.5: LSTM performance

We observe in Figure 3.5 that the performance is very good and does not need further
optimization. This model outperforms our MLP in almost all vector combinations. It
is also nice to see such a good performance using only the algebra vector because with
this approach we can save computation time in our feature extraction. Final results,
averaged over the last ten epochs are as follows:

Vector Cold Error Warm Error

GED 2.05% 2.72%
Algebra 2.83% 1.55%
Combining GED&Algebra 1.62% 1.31%
[Zhang et al., 2016] 11.06% 9.81%

Table 3.3: Final result comparison using our LSTM model.

17
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3.4 Distributed TensorFlow

3.4.1 Code Adjustments

As a model grows, one experiences quickly that TensorFlow needs a lot of computing
power. With minimal code adjustment, TensorFlow can be executed in a distributed
fashion. It is important to know the difference on how the execution of the graph takes
place. According to the docs7:

A TensorFlow ”cluster” is a set of ”tasks” that participate in the distributed
execution of a TensorFlow graph. Each task is associated with a TensorFlow
”server”, which contains a ”master” that can be used to create sessions, and
a ”worker” that executes operations in the graph.

To coordinate between the nodes in a cluster, we mainly need to define two variables:

ClusterSpec, a dictionary that describes all tasks in the cluster. It maps job names to
a list of network addresses. For example:

1 t f . t r a i n . ClusterSpec ({
2 ” worker ” : [
3 ” c laud io09 :2222” ,
4 ” c laud io10 :2222” ,
5 ] ,
6 ”ps ” : [
7 ” c laud io11 :2222”
8 ] } )

Which results in 3 available tasks:

1 / job : worker / task : 0
2 / job : worker / task : 1
3 / job : ps/ task : 0

Every node gets the same ClusterSpec.

Additionally, every node has a Server variable, which contains a set of connections
to other tasks, the node’s job name, and its task index. Obviously, every node gets a
different instance of tf . train .Server. As we can see above, jobs are split between PS

and worker. The difference is that Parameter Servers (PS or parameter devices) hold the
variables, and are updating variables at the appropriate time. A worker is an assigned the
more computationally intensive part of the model, like pre-processing, loss calculation,
backpropagation, and sends updates to the PS when available. Figure 3.6 is illustrating
the communication further.

7https://www.tensorflow.org/deploy/distributed
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Figure 3.6: PS Interaction with Worker

3.4.2 Cluster Design

With that, every node knows how to communicate with each other. Unfortunately,
TensorFlow lacks support for many cluster managers, meaning that when using the IFI
cluster, that uses Slurm8 as a cluster manager, one would have to define the ClusterSpec

and tf . train .Server manually. There is an unsupported slurm manager for TensorFlow on
github9, that we successfully deployed. When using the slurm manager for TensorFlow,
the ClusterSpec gets automatically built using available nodes.

There are several design choices when deploying a model in a distributed fashion.
We have to decide between ”in-graph replication” and ”between-graph replication” and
between ”asynchronous training” and ”synchronous training”.

• Synchronous Training: All workers are coordinated. After reading the parameters
and computing the gradient, the worker waits for others to finish. When all workers
are done with the current iteration, a PS averages the gradients and does an update
based on the average. Synchronous training is only as fast as the weakest link: if
one worker is slow, every other worker does nothing until the slow worker finished
(Figure 3.7).

• Asynchronous training: Workers can update each other’s work freely, without any
locking mechanism (Figure 3.8). Each worker is training the model as if it were
isolated, but parameters are shared with other workers.

• In the case of ”in-graph replication”, one client contains the parameters and assigns
intensive computation to workers, similar to a resource manager. The problem with

8https://slurm.schedmd.com/
9https://github.com/jhollowayj/tensorflow slurm manager/blob/master/slurm manager.py

19



20 CHAPTER 3. IMPLEMENTATION

Figure 3.7: Synchronous Data Parallelism [Abadi et al., 2016]

Figure 3.8: Asynchronous Data Parallelism [Abadi et al., 2016]

this replication is that it is not scalable enough10, when the model has hundreds
of clients, the ”master client” distributing the workload, becomes a bottleneck.

• With ”between-graph replication” each worker uses a separate TensorFlow process
and builds a separate Graph. This makes synchronous training difficult because
one has to synchronize different training loops.

While synchronous training achieves a better accuracy, asynchronous training has a
higher throughput [Abadi et al., 2016]. Between-graph replication with asynchronous
training is probably the most common choice as of now, and our choice to build a test
model.

3.4.3 IFI Cluster Performance

To measure the performance of IFI’s Kraken cluster, we start by looking at the
throughput. We modified our LSTM model in section 3.3 so that it can be deployed
distributedly. We measure the throughput in queries per second and compare it between

10http://stackoverflow.com/questions/39658422/tensorflow-in-graph-replication-example
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different configurations of PS and worker tasks. We included the throughputs of running
the model in a non-distributed fashion on an iMac and one Kraken node.
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Figure 3.9: Kraken Cluster Throughput

We can observe in Figure 3.9 that the throughput scales sub-linearly. This was to be
expected, due to the additional network overhead. It is interesting to see that using only
one PS task leads to a faster convergence to a maximum throughput, most likely due to
the PS task becoming the bottleneck. When using two PS tasks, this effect is delayed.
Unfortunately, as we only have limited number of nodes, this effect is difficult to study
at a larger scale.

This supports the original observation in [Dean et al., 2012], where they saw a sub-
linear training speed-up for four different models using DistBelief, the predecessor of
TensorFlow.

The performance of the Kraken cluster is rather underwhelming. We think the prob-
lem is two-fold: First, TensorFlow is mainly intended to be deployed on GPUs. Second,
the CPU base clock is rather low, which could explain the difference to the iMac’s per-
formance. However, our models were only optimized for the result, and not speed. For
future work, we suggest looking into potential bottlenecks of the cluster. One poten-
tial bottleneck is the data feed: TensorFlow supports queues11, where it is possible to
preprocess the data and not do a direct feed with python variables using feed dict . The
usage of queues could shorten the time where the CPU or GPU is idle.

11https://www.tensorflow.org/programmers guide/reading data
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Asynchronous Training

As previously mentioned in asynchronous training we only have one shared copy of
each variable. Each worker sends the gradients to its PS task and applies it to the
appropriate variable, which is essentially a running aggregate of updates received. The
updates may be done independently from each worker.

The notion of only having one copy of variables raises interesting questions. Intuitively
we want to compare the different results of our workers to get the best result. We would
have to compare if the higher throughput, thanks to asynchronous training, leads to a
shorter time to accuracy.

[Chen et al., 2016] looks at this performance difference, and finds that with modern
GPUs and a fast interconnect a synchronous model runs acceptably fast. With our
environment at IFI this is likely not applicable.

22



4

TensorFlow

4.1 Session and Graph

We wanted to explain two characteristics of TensorFlow, that can be confusing when
first reading TensorFlow code. On a very high level, every model consists of two parts:
a TensorFlow Graph and Session.

A graph defines the computation. It does not hold values or compute any operation but
defines the operations specified in the code. A session, on the other hand, executes the
graph, holds the actual values, results, and variables. According to the documentation1:

A Session object encapsulates the environment in which Operation objects
are executed, and Tensor objects are evaluated.

Therefore if we define a var like so:

1 graph=ten so r f l ow . Graph ( )
2 with graph . a s d e f a u l t ( ) :
3 var=ten so r f l ow . Var iab le (1 )

Listing 4.1: Variable initialization

The value of tf .Variable is not stored in the python variable var. It is only a reference
to the graph. TensorFlow creates a default graph, which means the first two lines are
redundant in this example.

To access the value of var we have to add the following:

1 with t en so r f l ow . Se s s i on ( graph=graph ) as s e s s :
2 s e s s . run ( t en so r f l ow . g l o b a l v a r i a b l e s i n i t i a l i z e r ( ) )
3 #g l o b a l v a r i a b l e s i n i t i a l i z e r ( ) r e tu rn s op
4 #that i n i t i a l i z e s g l o b a l v a r i a b l e s
5 pr in t ( s e s s . run ( var ) )
6 #1

Listing 4.2: Session initialization

This provides the basic idea to building a TensorFlow model: We first built the graph (in
this case only consisting of variable var) and executed the graph in a session. Obviously,
this construct is very basic but should give a good intuition to reading TensorFlow code.

1https://www.tensorflow.org/api docs/python/tf/Session/
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4.2 TensorBoard

As developing machine learning models can be confusing and very complex there is a
need for visualization tools. TensorBoard2 is a suite of visualization tools that deserves a
highlight since it eases the debugging and understanding of one’s models. TensorBoard
is included in the normal TensorFlow distribution and gets started with:

1 tensorboard −− l o g d i r=path/ to / log−d i r e c t o r y

If we would like to learn how the error rate is varying over time, we can simply attach
tf .summary.scalar3 to the node. Another useful application of TensorBoard is the ability
to visualize the graph. This can help to understand any architectural misconfiguration
of the network when debugging the performance. Figure 4.1 shows our LSTM network
visualized with this tool.

Figure 4.1: LSTM graph

One disadvantage is that TensorBoard does not support replicated summary writer,
meaning that in a distributed setting TensorBoard will not work as expected. However,
as every task in a distributed model is identifiable with its task id and task name we can
filter for a single node and have it writing any scalar for TensorBoard, identical to using
TensorBoard with a single machine.

2https://www.tensorflow.org/get started/summaries and tensorboard
3https://www.tensorflow.org/api docs/python/tf/summary/scalar
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Critical reflection

It is hard to give a definitive solution to a problem using machine learning. We can set
a time limit on training time, or experimentally look for a convergence and try to explain
the reasoning behind the solution, but at the end, we lack a definitive answer. Maybe
we experience a local minimum in our problem and would get a much better solution
if we ran the training longer. Maybe we missed a better solution, due to a bad setting
in model parameters. Machine Learning is still very much a ”black-box” approach, that
achieves empirically very impressive results, but lacks in fundamentally proven solutions
and ways to visualize the reasoning. It is a fascinating and rapidly changing field, but if
one lacks experience in practical machine learning, developing and optimizing a model
can easily get confusing due to the vast amount of options that exist.

Using TensorFlow at this time has many advantages, but also one disadvantage: It
is still very actively being developed. During this project, they released V1.0, which
had breaking changes due to many refactorings. The version change made any tutorial
or preexisting code snippets almost unusable. Of course, it forced a deeper dive into
TensorFlow and understanding the underlying mechanism, but the resulting workload
was rather high.

5.1 Comparison with related work

This is a summary of our ongoing comparisons, mentioned in chapter 3. We have found
multiple configurations that work better than the current state of the art [Zhang et al., 2016].
First, we found that both our models outperform state of the art without using GED:

Model Relative Error (Cold) Relative Error (Warm)

MLP(Algebra) 5.38% 3.73%
LSTM(Algebra) 2.83% 1.55%
[Zhang et al., 2016] 11.06% 9.81%

Table 5.1: Performances using only Algebra Vector.
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This saves computation time when preparing the query. This is crucial in a practical
application, as the delay of a prediction only worsens the usability of the model. There
is still room for improvement, but not relying on GED is the clear way to go for future
work.

Additionally, we want to highlight the best performance we achieved versus state of
the art, which is more than a six-fold improvement:

Model Relative Error (Cold) Relative Error (Warm)

LSTM(GED+Algebra) 1.62% 1.31%
[Zhang et al., 2016] 11.06% 9.81%

Table 5.2: Best Performance we achieved overall.

5.2 Discussion of open issues

Similar to every other machine learning model and case study, there are more good
practices than fundamentally proven ways to justify design decisions. Therefore, we can
often only give empirical observations.

One issue we had was that it is difficult to generalize a solution while having a vast
amount of variables to define. For example, the performance of a query relies on the
network connection of the client and server, the server’s workload, the server’s free
RAM, Virtuoso’s query engine, Virtuoso’s cache state and many more factors. These
conditions make it hard to reason why a query performs the way it does. We also saw
high variability in query execution times, independent of hardware used. Running the
same queries twice, without any change in configuration did result in over 10% difference
in relative mean error over the dataset (both warm and cold queries). There might be
some gain in setting up Virtuoso with a VirtualBox1, where we have more control over
the system’s resources.

In our problem, the time to prediction is clearly important. However, there’s no good
way to measure this. In [Zhang et al., 2016] they measure Time1k, which means the
time it takes for their model to extract features and predict the time for 1000 queries.
This is highly hardware dependent and requires us to rebuild their work to have a fair
comparison. Additionally, the time to train a model is not highly relevant, if you have
the option to reuse pre-trained models. In the end, we are interested in the time it takes
to extract features and for the model to make a prediction.

1https://www.virtualbox.org/
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In our models, we have two factors, that are to some degree random: the weight ini-
tialization and the split between training and test samples (fixed ratio). This introduces
some variance in our results that make it difficult to generalize a definitive solution in
the end.
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Future Work and Summary

6.1 Future Work

Optimizer: For both of our models, we used Adam Optimizer, without testing other
options thoroughly. This could be a possible route for improvement. Better yet, a
recent paper by [Andrychowicz et al., 2016] showed the potential of using a meta-learner:
Instead of a handcrafted optimizer that trains our model, we define an RNN that gets
trained on our gradients and suggests the next step.

Dynamic Data: In this model, we only considered static data. With dynamic queries,
the data gets updated. We should investigate the performance of our model on dynamic
data and what features or different techniques are appropriate for the use case.

Training Size: We used a bigger dataset than previous work, but the model would
benefit from seeing more data. By seeing more diverse data, the model will get a more
robust prediction performance.

LSTM Optimization: Our LSTM ended up being much more time-consuming to train
than the MLP. That is the reason why we only looked at Bayesian Optimization for our
MLP model since in the optimization process the model has to be executed numerous
times. In the future we will look at using Spearmint in our cluster, and how to approach
distributed Bayesian Optimization.

Different Dataset: All work on predicting SPARQL query performance relies on DB-
Pedia at the moment. In the future, we will look at different datasets, for example,
LUBM1, and see how the performance compares. It would also be interesting to see how
well our model performs if we mix our queries from different datasets. Since we only use
syntactic features, we might be able to generalize a broader solution.

Distributed TensorFlow: We saw that there is only few research done in comparing
the different distributed TensorFlow models. There is a wide variety of hardware setups,
and it would be valuable to generalize some reasoning behind different design choices.

1http://swat.cse.lehigh.edu/projects/lubm/
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Feature Modeling: In our approach, we only used the syntactic and structural features
of a query. In the future we want to explore feature extraction of data, that was queried
in the past. One possible route is to vectorize DBPedia using word2vec and leverage the
distance between vectors of queries as features.

6.2 Summary

In this thesis, we studied existing work on predicting SPARQL query performance. In
our implementation, we adopted existing feature modeling and trained machine learning
models with it. We explored two different TensorFlow models and ways to optimize their
performance. We presented several models that outperform state of the art and save
time in query feature modeling. Having a better performance with a reduced vector size,
we identified that for our problem model performance is not the only goal, but rather
to achieve a good balance between performance and time to prediction, which we will
explore further in the future.

Additionally, we deployed TensorFlow on the IFI cluster and measured its throughput.
We showed several design options in building distributed models and offer a potential
reasoning for its performance.
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Appendix

A.1 Code

All of our code for this project can be found at https://github.com/derdav3/tf-sparql
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