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Zusammenfassung

Das Phänomen der Majority Illusion, welches ursprünglich von Lerman et al. (2015)
entdeckt wurde, versetzt Personen in den Irrglauben, dass ein Verhalten, oder Attribut,
sehr populär sei, obwohl es in der Realität nur selten vorkommt. Dadurch, dass sehr
stark vernetzte Personen ein bestimmtes Verhalten aufweisen, wird weniger stark ver-
netzen Personen, die mit ihnen verbunden sind, vorgetäuscht, dass dieses Verhalten sehr
populär wäre. Wir zeigen in unserer Arbeit, wie die Existenz und das Ausmass der Ma-
jority Illusion für ein Netzwerk auf Knotenebene, wie auch auf Netzwerkebene berechnet
werden kann. Im Kontext der Adoption sozialen Verhaltens ist die Majority Illusion
ein interessanter Fall von falschen Wahrnehmungen. Wir präsentieren eine Methode,
wie die Majority Illusion ausgenutzt werden kann, um die Verbreitung eines binären
Attributes in Netzwerken in einem Threshold Modell nach Granovetter (1978) künstlich
zu verstärken. Wir vergleichen unsere Methode mit einem naiven Knotengrad-Ansatz,
der nach stark vernetzen Knoten sucht. Unsere Methode findet Knotenmengen, die
garantiert eine Kaskade von Adoptionen auslösen, die das ganze Netzwerk aktivieren. In
skalenfreien Netzwerken, die Strukturen aufweisen, wie sie von Barabási et al. (2000) und
Dorogovtsev und Mendes (2002) beschrieben wurden, liefert unsere Methode bessere Re-
sultate, als der Knotengrad-Ansatz. In Netzwerken die Strukturen aufweisen, wie sie von
Watts und Strogatz (1998) beschrieben wurden, liefert sie Resultate, welche im Durch-
schnitt doppelt so viele Knoten beinhalten, wie die des Knotengrad-Ansatzes. Darüber
hinaus präsentieren wir eine Variante eines dynamischen Adoptionsmodells, welches den
Zeitaspekt berücksichtigt und Annahmen, die wir über das menschliche Verhalten in der
realen Welt treffen, in das Modell integriert. Es konnte keine Beziehung zwischen dem
Ausmass und der Geschwindigkeit der Adoption und dem Clustering innerhalb des Net-
zwerkes, wie es von Centola (2010) und Centola und Baronchelli (2015) vorgeschlagen
wird, belegt werden. Ebenso war es uns nicht möglich, einen solchen Zusammenhang zu
widerlegen.





Abstract

The majority illusion that was discovered by Lerman et al. (2015) tricks individuals
into perceiving a social behavior to be popular when in reality, it is not. That is,
vertices in a network overestimate the presence of an attribute as highly connected
vertices skew the perception of their neighbors. We show how the majority illusion
can be quantified on a vertex-centric and a global perspective for binary as well as
for continuous attributes. In the context of social contagion, the majority illusion is an
interesting case of disproportionate experiences that can cause a false truth to propagate
through a network. We propose an approach to exploit the majority illusion in order to
artificially promote the diffusion of a binary attribute in a network in a threshold model
as introduced by Granovetter (1978). Our approach returns target vertex sets that are
guaranteed to cause an influence cascade that eventually activates the entire network.
Our approach out-performs a naive highest-degree approach in scale-free networks that
exhibit network structures as described by Barabási et al. (2000) and Dorogovtsev and
Mendes (2002). In small-word networks as described by Watts and Strogatz (1998)
our approach returns target vertex sets that, on average, have twice the size of target
vertex sets retrieved with a highest-degree approach. Additionally, we introduce an
alternative dynamic diffusion model that considers the time dimension and incorporates
assumptions we make about human behavior in the real world. In the diffusion model we
introduce, we were unable to confirm or to disprove that the extent and speed at which
a social behavior propagates in a diffusion process profits from highly clustered network
structures as suggested by Centola (2010) and Centola and Baronchelli (2015).
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1

Introduction

People live in networks. Private networks of other people they are connected with.
Ranging from friendships, work and advice networks to information transfer, online and
offline social networks and many more. Within these networks, people are in constant
interaction with other individuals, which exposes them to external social or behavioral
information and influence. Within these networks, various counterintuitive phenomena
and paradoxes were discovered. One of the most famous network paradoxes is the friend-
ship paradox (Feld, 1991). The friendship paradox states that on average, your friends
are more popular than you. Similar paradoxes that apply to various other characteristics
such as the number of followers Twitter users have and the number of citations authors
have were since identified (Hodas et al., 2013; Eom & Jo, 2014). The so called majority
illusion is a special case of the friendship paradox. It describes how under certain nat-
urally occurring network configurations individuals in a network may perceive a social
behavior to be popular when in in reality, it is not. This creates situations in which
individuals systematically misperceive the extent to which their peers exhibit a certain
attribute. Researchers have found that individuals condition their own social behavior to
a large degree on the social behaviors of their peers (Schelling, 1973; Granovetter, 1978;
Bettencourt et al., 2006; Rogers, 2010; Young, 2011; Salganik et al., 2006). Social be-
havior encompasses not only physical interactions but also the adoption of conventions,
innovations and ideas. Misperceptions that cause people to overestimate the extent at
which their friends engage in risky and unhealthy behavior may lead someone to approx-
imate the misperception with his or her own behavior (Baer, Stacy, & Larimer, 1991;
Berkowitz, 2005; Bearak, 2014). Furthermore, social behavior is often modelled akin to
communicable diseases (Granovetter, 1978; Goldenberg et al., 2001a, 2001b; Bettencourt
et al., 2006; Centola, 2010; Centola & Baronchelli, 2015). These models try to simulate
the spread of a social behavior in a network of interacting individuals. In these networks,
individuals interact only with a small subset of the entire population. The structure of
these networks and the direct neighborhood of an individual play a significant role for
the propagation of a social behavior. The risk of contagion depends on the distribu-
tion of contagion among an individual’s direct neighborhood as well as the strength and
frequency of social influence. Researchers have studied the problem of identifying influ-
ential individuals in a network that play an important role for such diffusion processes in
order to exploit aspects of network paradoxes and the contagiousness of social behavior
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to artificially promote the spread of a social behavior (Domingos & Richardson, 2001;
Domingos, 2005; Kempe et al., 2015; Goyal et al., 2010; Chen et al., 2009).
We present an overview of related scientific research that elaborates on network phe-

nomena and paradoxes, the contagiousness of social behavior, influence maximization
and networks and their structures in Chapter 2. Chapter 3 is dedicated to an intro-
duction into the majority illusion and create the context for this work. In Chapter 4
we propose an approach to quantify the existence and the magnitude of the majority
illusion for a given network on a vertex-centric as well as a global perspective. We
introduce and evaluate an approach to estimate sets of influential vertices in order to
artificially promote the spread of a social behavior in a network in Chapter 5. In Chapter
6 we introduce an alternative approach to simulate the spread of a social behavior that
considers the time dimension and incorporates assumptions that we make on human
behavior in the real world. We show the results of an experiment we conducted using
the diffusion model that we introduce. We discuss limitations to our work in Chapter 7
and discuss possible further scientific contributions in Chapter 8. The thesis concludes
with the general results of our evaluations as well as our thoughts on the contributions
that we could make.

2



2

Related Work

In this chapter we want to give the reader a general overview of scientific research that
is related to this work. In Section 2.1 we introduce various phenomena and paradoxes
related to the majority illusion that emerge in networks. The paradoxes and phenom-
ena explain misperceptions that arise and lead individuals into misperceiving the world
around them. Additionally, we introduce the work of scientists that successfully used
implications drawn from these network phenomena to improve the early detection of
contagious outbreaks. In Section 2.2 we introduce a number of scientific papers that dis-
cuss the contagiousness of social behavior, including examples in which individuals were
shown to adopt social behaviors from their peers, as well as two models that are pop-
ularly used to model the diffusion of social behavior and two experiments in which the
relationship between network structure and the extent and speed of a diffusion process
were studied. In Section 2.3 we introduce various studies that investigate finding highly
influential individuals in networks. In Section 2.4 we introduce two major findings of
the structure of real-world networks including recent research on large real-world online
social networks as well as models to generate networks that exhibit specific properties
that were found in real-world networks.

2.1 A World Full of Illusions

2.1.1 Cases of Disproportionate Experiences - The Class Size Para-
dox

The class size paradox describes the phenomenon that students perceive average class
sizes to be different than the actual average class size, i.e. the average that the faculty or
university sets and perceives. The paradox was discovered by Feld and Grofman (1977).

The phenomenon occurs because students experience the class size of the classes they
are in, and the size of the class they are in accounts to the average class size proportionally
to the number of students in it, i.e. the higher the size of a class, the larger will be its
contribution to calculating the average class size among students. That is, if a class
comprises a high number of students, a high number of students will experience the
corresponding class size simultaneously, whereas if a class is constituted of only a small
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number of students, only a small number of students will experience the lower class size,
which leads to the biased perception of average class sizes.

Feld and Grofman (1977) have shown that the variation of class sizes is responsible
for this contrariety in perceptions and that if there is any variation in class sizes at all,
the paradox is guaranteed to occur.

A class size paradox arises when individuals disproportionately experience classes of
different sizes. Similarly, disproportionate experiences may emerge in cases other than
classes, such as the average size of corporations, average size of cities, population density,
or how crowded public places, restaurants and roads on average are (Hemenway, 1982;
Granovetter, 1984).

2.1.2 Your Friends Are More Popular Than You

“On average, your friends have more friends than you”, states the friendship paradox
discovered by Feld (1991), one of the best known network paradoxes. The friendship
paradox describes the seemingly counterintuitive observation that the majority of indi-
viduals in a social network has fewer friends than their friends have on average. That
is, the average person has less friends than the average friend of a person.

Let us illustrate the friendship paradox based on a friendship network that was orig-
inally used by Feld (1991), built with data on friendships among students collected at
different high schools.

Figure 2.1: Friendships among eight students (Feld, 1991)

Figure 2.1 shows each student’s number of friends as well as the average number of
friends among his or her friends. For example, F has three friends and F’s friends, on
average, have slighty more friends. There are eight individuals depicted in figure 2.1 out
of which five have less friends, i.e. are less popular, than their friends on average. One
individual has as many friends as his or her friends do and only two have more friends
than their friends have on average. Looking at the entire network, on average, each
person has 2.5 friends, while on average, their friends have 2.98 friends, which means
that the average person in the friendship network in Figure 2.1 is on average less popular

4



2.1. A WORLD FULL OF ILLUSIONS 5

than his or her friends.

The distortion of the paradox arises because highly connected individuals show up
disproportionately more often as friends because they are observed more often by others
and thus significantly skew the mean number of friends of friends. Very similar to the
class size paradox discovered by Feld and Grofman (1977), people are overrepresented
according to their popularity. That is, people with a high number of friends, appear on
a high number of lists of friends, whereas people with only a few friends will appear on
fewer lists of friends.

In his work, Feld (1991) has shown that for a social network with a degree distribution
that has non-zero variance, i.e. where individuals do not all have the same number of
friends, the mean number of friends of friends is always greater than the mean number
of friends of individuals.

2.1.3 Your Friends Are More Interesting Than You

Hodas et al. (2013) have shown in their work that, using a sample of the Twitter firehose,
the friendship paradox holds for more than 98% of Twitter users. For most of the
users, everyone that they follow or who follows them has more friends and followers
than they themselves have on average. Furthermore, they have discovered two more
detailed variations of the friendship paradox, namely the virality paradox that states
“your friends receive and send out more viral content than you” and the activity paradox
which states “your friends are more active than you”.

Hodas et al. (2013) have shown a large correlation between the activity and the con-
nectivity, i.e. followers and friends, in the follower graph on Twitter. Therefore, Hodas
et al. (2013) propose the hypothesis that activity causes connectivity, leading to the two
variations of the friendship paradox that they have discovered.

2.1.4 Generalized Friendship Paradox

Using two coauthorship networks of physicists and network scientists, Eom and Jo (2014)
have shown that the friendship paradox holds for coauthorship characteristics such as
the number of coauthors, number of citations and number of publications. That is, your
coauthors, on average, have more coauthors, citations and publications than you.

To Eom and Jo (2014), this was an indication that the friendship paradox might
hold for node characteristics other than degree. Thus, they have investigated a general-
ized form of the friendship paradox. Their research focused on answering the question,
whether the friendship paradox holds for any other arbitrary node characteristic such as
income or happiness.

Eom and Jo (2014) were able to show that the origin of the generalized friendship para-
dox at network level is rooted in a positive correlation between degree and characteristic,
suggesting that the friendship paradox holds for any arbitrary node characteristic that
is positively correlated with degree.

5
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2.1.5 Exploring the Origin of Network Paradoxes

Kooti et al. (2014) examined whether the origin of network paradoxes such as the friend-
ship paradox is rooted in mathematical properties of networks and their structures, or
whether they have a behavioral origin, i.e. whether they originate from individuals con-
necting themselves to other individuals with certain characteristics. Using two social
networks drawn from Digg and Twitter, Kooti et al. (2014) confirmed the friendship
paradox as well as variations of the friendship paradox such as the activity paradox and
the virality paradox. Furthermore, Kooti et al. (2014) have shown that the friendship
paradox, as well as most variations, also hold when user attributes are compared to
the median of the attributes among their neighbors, as opposed to the mean, which
strengthens network paradoxes for several attributes. That is, not only are your friends
on average more popular than you, but the majority of your friends are more popular
than you.

Similar to Eom and Jo (2014), Kooti et al. (2014) explored whether the presence and
magnitude of the friendship paradox changes depending on different degree-attribute
correlations and assortativity settings. They conclude that, although both correlations
appear to play a significant role in the presence and magnitude of certain variations
of the friendship paradox, individuals seem to dynamically position themselves in the
network to remain subject to the paradox. Kooti et al. (2014) propose that this is
because behavioral factors that create those correlations are often related to desirability
of the attribute of the paradox. This suggests that besides the mathematical nature of
the friendship paradox and related paradoxes, behavioral factors play a significant role
in the cause of the correlations and the paradoxes.

2.1.6 Early Detection of Contagious Outbreaks

Christakis and Fowler (2010) and Garcia-Herranz et al. (2014) have explored a novel
strategy for placing sensors in social networks to detect contagious outbreaks which
employs findings from the friendship paradox (Feld, 1991). Christakis and Fowler (2010)
and Garcia-Herranz et al. (2014) propose the following approach: monitoring the friends
of randomly sampled individuals. The idea is simple, friends of randomly sampled
individuals are expected to be more popular, e.g. have higher degree, than the randomly
sampled individuals and are therefore more likely to interact with a higher number of
people, making them better targets for detecting contagious outbreaks.

Christakis and Fowler (2010) present the results of their strategy, tested on 744 stu-
dents from Harvard College, consisting of 319 randomly sampled students and 425 friends
of students in the random sample. Using the group of friends, they were able to identify
outbreaks of flu a significant number of days earlier than solely with the random sample,
indicating that their approach could be an effective way to detect contagious outbreaks
at early stages of an epidemic.

Garcia-Herranz et al. (2014) used this method to detect contagious message spreading
in Twitter and present their results as follows. Using Twitter data of 40 million users,
1.5 billion directed relationships and nearly half a billion messages, they were able to

6
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identify outbreaks of contagious message spreading about seven days earlier than with
traditional approaches.

2.2 Contagiousness of Social Behavior

2.2.1 The Threshold Model

Granovetter (1978) introduced a threshold model of collective behavior to describe the
relation between collective behavior and individual motives, which previous models did
not include but implicitly assume. A threshold model is used in situations in which indi-
viduals are given two distinct and mutually exclusive alternatives. Individuals condition
their decisions on a simple threshold rule. Each individual has a threshold, a number
or proportion of other individuals a given individual is connected to, that must make
the same decision before a given individual adopts it. That is, at each time step, an
individual observes the decisions other individuals have made and if the proportion of
individuals that have adopted a certain behavior is equal to or larger than the threshold
of the individual, the individual will adopt the same behavior. Threshold models as-
sume that individuals are rational and possess complete information, i.e. an individual
observes the decisions of all other individuals.

2.2.2 The Cellular Automata Model

Goldenberg et al. (2001b, 2001a) studied the effects of word-of-mouth communication
in the context of marketing. In their research, they used a cellular automata model to
simulate the effect word-of-mouth communication has on the promotion and distribution
of a new product. In a cellular automata model, individuals influence each other following
a stochastic model. Initially, a subset of individuals that have adopted the social behavior
convince their peers with a predefined probability to also adopt the social behavior. Each
individual that could be convinced tries to convince its peers with the same probability.
An individual that fails to convince its peers does not retry. Eventually, either all
individuals could or could not be convinced and the diffusion process halts.

2.2.3 The Social Norms Theory

Berkowitz (2005) investigated the theory of social norms. The social norms theory
describes situations in which an individual perceives the extent at which its peers exhibit
a certain social behavior to be different from their own when in reality, this is not the case.
Berkowitz (2005) discusses previous research that suggests that an overestimation of
certain social behaviors among an individual’s peers influences an individual to increase
the extent to which it exhibits the same social behavior. That is, individuals that
overestimate the use of alcohol, cigarettes, drugs and other behaviors and attitudes
among their peers increase their own use to approximate the misperceived extent.

7
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2.2.4 The Spread of Ideas

Bettencourt et al. (2006) studied the spread of ideas using several generic population
models inspired by epidemiology. Particularly, they studied the spread of a specific
scientific idea, Feynman diagrams. Their results suggest that adapted epidemic models
are able to accurately capture aspects of the spread of ideas. With this, Bettencourt et
al. (2006) have shown that the diffusion of ideas shares similarities to the diffusion of
diseases. Furthermore, they have shown that the spread of Feynman diagrams shared
similarities to the spread of communicable diseases.

2.2.5 The Spread of Popular Songs

Salganik et al. (2006) investigated the social influence in cultural markets, studying
what qualitative difference tremendously successful songs, books and movies exhibit in
comparison to their unsuccessful alternatives. Salganik et al. (2006) conducted an exper-
iment in which they created an artificial music market and assigned 14, 341 participants
to two experimental groups. The participants were asked to listen to various songs and
assign a rating to each song they listened to. Participants in one group were only given
information about the music that they listened to, e.g. song and band name, whereas
participants in the other group were additionally given information about the choices
of other participants. The results of their experiment suggest the choices people make
on what music they listen to is affected by the music their peers listen to. That is, the
social behavior of individuals is affected by the social influence of their peers.

2.2.6 The Spread of Social Innovation

Young (2011) modelled the dynamics of social innovation as a coordination game played
on a network of interacting individuals. In his research, Young (2011) studied how
a particular set of conventions and rules establish, such that they become common
practice in a population of individuals. Young (2011) suggests that the speed at which
conventions emerge depends on the relative advantage individuals obtain from adopting
the convention and the existence of autonomous groups that adopt the innovation in
early stages of the diffusion process.

2.2.7 The Spread of Behavior in an Online Social Network Experi-
ment

Centola (2010) investigated the effects of network structure on the spread of behavior by
studying the spread of behavioral adoption in artificially structured online communities.
His results show that local clustering in a social network can tremendously improve
behavioral adoption on an individual level by reinforcing signals, but also that large
scale diffusion can reach more people and spread more quickly in clustered networks.

8
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2.2.8 The Spontaneous Emergence of Conventions

Centola and Baronchelli (2015) have studied the effects of network structure on the
spontaneous emergence and evolution of social conventions, without any institutional
mechanism guiding or coordinating the process. That is, Centola and Baronchelli (2015)
investigated how purely local interactions and conventions can produce global coordina-
tion and trigger the emergence of a universal convention.

Their results show that depending on the underlying network structure, local groups of
coordinated individuals may emerge and start competing for global dominance, i.e. com-
pete to produce a globally accepted convention. Usually, if local groups of coordinated
individuals emerge, particularly if multiple groups emerge quickly, the population is not
able to generate collective agreement on a global convention as neighboring groups com-
pete and never persuade each other. In their experiments, this was the case for random
graphs as well as spatially embedded networks. Furthermore, Centola and Baronchelli
(2015) present in their results that homogeneously mixing populations leads to coordi-
nation dynamics in which individuals quickly generate a dominant convention which, in
all of their trials, resulted in a global convention.

2.3 Influence Maximization

2.3.1 The Network Value of a Customer

Domingos and Richardson (2001), Richardson and Domingos (2002) and Domingos
(2005) have studied the influence among customers in the context of viral marketing.
Traditionally, customer value was defined as the expected profit from sales to a cus-
tomer, leaving out the fact that customers might influence their friends to buy the same
product. Domingos (2005) included this fact and introducted the customer network
value. The network value of a customer is the expected profit from sales to other peo-
ple that the customer might influence to buy a product. Domingos and Richardson
(2001), Richardson and Domingos (2002) and Domingos (2005) studied the problem of
influence maximization, to be able to find the most influential set of customers, using a
probabilistic model of interactions.

2.3.2 Influence Maximization: A Discrete Optimization Problem

Kempe et al. (2015) studied the problem of influence maximization as a problem in dis-
crete optimization. Kempe et al. (2015) used two different diffusion models. A threshold
model, as described by Granovetter (1978), and a cellular automata model, as described
by Goldenberg et al. (2001a, 2001b). Kempe et al. (2015) introduced approximation
algorithms that solve the problem of finding good sets of target vertices in the context
of the two models. Furthermore, Kempe et al. (2015) have shown that the optimization
problem is NP-hard.

9
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2.3.3 Influence Maximization Problems

Goyal et al. (2010) investigated alternative influence maximization problems motivated
by Kempe et al. (2015). The problems include finding sets of target vertices such that
the number of vertices that will be activated covers at least n vertices and finding such a
coverage in minimal time. Goyal et al. (2010) have introduced approximation algorithms
to solve the problems they proposed and have shown that both problems are NP-hard.

2.3.4 Efficient Influence Maximization

Chen et al. (2009) introduced several improvements to the approximation algorithms
introduced by Kempe et al. (2015) and Goyal et al. (2010). Furthermore, Chen et al.
(2009) introduced a new vertex selection heuristic based on degree discounts. The idea
of degree discount is that if a vertex vi was already selected to be in the target vertex set,
the degree of a new vertex vj that is considered as potential target vertex is discounted
by one if it is connected to vertex vi, i.e. the edge between the two vertices is not counted
towards the degree of vj . The same discount is applied to vj for all vertices it shares
an edge with that are already selected as target vertices. Chen et al. (2009) have shown
that their ehancements on the approximation algorithms introduced by Kempe et al.
(2015) and Goyal et al. (2010) could improve the running time by 15% to 34%, while
matching the quality of the result. Furthermore, the degree discount heuristic that they
introduced was able to improve the running time of the approximation algorithm by
more than six orders of magnitude.

2.4 Networks and Network Structures

2.4.1 Price’s Model

Researcher de Solla Price (1965) has studied a network of citations between scientific
papers and found that the distribution of references follows a power-law. In a later paper,
Price (1976) introduced a theory applied to the growth of a network that explains the
power-law distribution. Price (1976) called the effect cumulative advantage, the effect
that “the rich get richer”. Price (1976) proposed that the power-law follows because
scientific papers that are frequently cited are more likely to be cited than papers that
are less known. Also, Price (1976) suggested that authors who published many papers
are more likely to publish additional papers than authors that have published fewer
papers.

2.4.2 Preferential Attachment

Barabási and Albert (1999) re-introduced the idea of cumulative advantage and reported
their existence in three different networks: an actor collaboration network, the world-
wide web and a power grid network. Furthermore, Barabási and Albert (1999) have
shown that in these three networks, the probability P (k) that a vertex in a network has

10
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degree k, decays as a power-law following P (k) ∼ k−γ , whereby γ ∈ [2.1, 4.0]. Barabási
et al. (2000) introduced a model to generate networks, in which vertices that are added
to the network preferentially attach to vertices with higher degrees, which naturally
leads to a degree distribution that follows a power-law.

2.4.3 Natural Preferential Attachment

Dorogovtsev and Mendes (2002) introduced a model to generate networks similar to
the model that Barabási et al. (2000) proposed. Networks generated by both models
have degree distributions that follow a power-law. The preferential linking in the model
that Dorogovtsev and Mendes (2002) introduced, arises not from a probability P (k) to
connect to high degree vertices, but naturally from the underlying process. In their
model, when a new vertex is added to a network, it is connected to both ends of a
randomly chosen edge in the network. Since high degree vertices have a high number of
edges, it is more likely to find high degree vertices on one of the endpoints of a randomly
chosen edge.

2.4.4 Small-World Network Model

Watts and Strogatz (1998) introduced a model to generate networks that share the prop-
erty of the small-world phenomenon, the phenomenon of six degrees of separation. In
their model, vertices are initially arranged in a ring and connected to their k nearest
neighbors. Conditioned upon a parameter β, the edges of a vertex are randomly re-
connected to a vertex chosen uniformly at random. This creates networks that can be
highly clustered yet have small characteristic path lengths.

2.4.5 Structure and Evolution of Online Social Networks

Kumar et al. (2006) studied the structure and evolution of online social networks such
as Flickr and Yahoo! 360. They have shown that the degree distribution of the two
online social networks follows a power-law. Furthermore, Kumar et al. (2006) classify
members of the social networks into three groups: singletons, giant component and
middle region. Singletons are zero-degree vertices that joined but never participated in
the social network. The giant component represents the large group of vertices who are
directly and indirectly connected to each other. The middle region consists of various
isolated communities that are not part of the giant component. Kumar et al. (2006)
show that almost all isolated communities in the middle region are structured like stars.
Furthermore, Kumar et al. (2006) show that the average diameter in the giant component
is close to six.

2.4.6 The Anatomy of the Facebook Social Graph

Ugander et al. (2011) studied the structure of the social graph of active facebook users.
They have shown that the degree distribution of the Facebook social graph is monoton-

11
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ically decreasing, but does not follow a strict power-law. Furthermore, Ugander et al.
(2011) have shown that almost the entire Facebook social graph consists of one giant
connected component with an average distance between pairs of users of 4.7, an aver-
age local clustering coefficient of 0.14 and degree assortativity of 0.226. Ugander et al.
(2011) confirm the friendship paradox in the Facebook social graph and show that the
friendship paradox holds for 92.7% of all users.

2.4.7 Similarity Breeds Connection

“Birds of a feather flock together” - the principle that individuals tend to connect to
individuals they share similarities with. McPherson et al. (2001) studied the occurrence
and extent of homophily in social networks. That is, McPherson et al. (2001) studied the
extent to which individuals in a social network share sociodemographic, behavioral or
intrapersonal characteristics and show that people’s personal networks are homogeneous
with regard to those characteristics.

12
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The Phenomenon That Tricks Our Minds

Social networks have many complex properties that can lead to counterintuitive phe-
nomena. A well known example is the class size paradox, which was initially discovered
by Feld and Grofman (1977). The class size paradox shows that students of a university
perceive the average class size very differently from the actual average class size. The
class size paradox is a case, where students disproportionately experience high numbers
and thus they think that the average class size is larger, than it actually is. Hemenway
(1982) and Granovetter (1984) have found other cases of disproportionate experiences,
where individuals perceive the average sizes of cities to be larger than they actually
are, or they perceive public places and roads to be more crowded than they are in real-
ity. Another famous example of a network paradox is the friendship paradox discovered
by Feld (1991), which states that on average, your friends are more popular than you.
Hodas et al. (2013) have shown that the friendship paradox is true for nearly all twitter
users and Eom and Jo (2014) and Kooti et al. (2014) discovered and showed that the
friendship paradox also emerges for network characteristics other than degree. Lerman
et al. (2015) have discovered a novel variation of the friendship paradox, the majority
illusion, an example of disproportionate experiences, a paradox that affects an individ-
uals perception and the collective social phenomena that emerge, a paradox that might
explain why some messages, informations or ideas can spread rapidly and widely while
others just perish in the sheer mass of a social network.

3.1 The Majority Illusion

Lerman et al. (2015) have discovered what they call the majority illusion, a phenomenon
that can trick people into thinking that something is common, when in reality, it is
actually rare. The phenomenon describes how individuals in a social network, under
certain naturally occurring network configurations, may perceive the majority of their
neighbors to exhibit a certain characteristic or attribute, even though, among the entire
network, only a minority of individuals actually carries the characteristic. That is,
individuals in a social network may perceive a certain attribute to be popular, when in
fact, it is globally rare.

The majority illusion applies to networks in which vertices have attributes. Attributes
can be as simple as a binary characteristic such as “has a smartphone” versus “does
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not have a smartphone” or “is a vegetarian” versus “is not a vegetarian”. Attributes
can also be more complex and describe behavioral characteristics, personality traits
or opinions such as “is adventurous” versus “is unadventurous” or “agrees with abc’s
political views” versus “disagrees with abc’s political views”. In such cases, attributes
may be continuous and describe the extent to which an individual agrees with a certain
opinion. Additionally, attributes may also be either implicit or explicit, which we will
see in Chapter 4. For binary attributes, we say that a vertex is active, if it carries the
attribute and likewise, we say that a vertex is inactive, if it does not carry the attribute.

Let us illustrate the illusion with the example that Lerman et al. (2015) already used
to familiarize with the paradox.

Figure 3.1: Illustration of the majority illusion paradox (Lerman et al., 2015)

The two networks in Figure 3.1 are identical, except for which three vertices are
colored. Suppose that the color of a vertex represents whether a vertex is active or not,
whereby grey vertices are inactive and blue vertices are active. In the network on the
left, all grey vertices observe the majority of their neighbors to be active, whereas in
the network on the right, not a single inactive vertex has a majority of active neighbors.
Even though the blue vertices are clearly a minority, when looking at the entire network,
it appears to all vertices, except for the active vertices themselves, in the left network,
that most of the their friends are active.

An individual’s social behavior appears to be affected to a large degree by its percep-
tion of the behaviors and actions of others. Social behavior is exhibited not only through
physical or explicit interactions between individuals, but also through the adoption of
new ideas, innovations and preferences in the form of cognitive or emotional behavior.
Bettencourt et al. (2006), Rogers (2010) and Young (2011) have shown that individuals
are more likely to adopt a new technology or innovation, the more of their peers also
adopt the same new technology or innovation. Salganik et al. (2006), Schelling (1973),
Granovetter (1978) and Bearak (2014) have shown that the strength of social influence
also affects the decisions people make to listen to music, join social movements or en-
gage in risky behavior. Social behavior is contagious and the dynamics underlying the
diffusion of social behavior have many similarities to those involved in the spread of

14
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communicable diseases. Therefore, the spread of social behavior is often modelled akin
to contagious diseases. In these models, social interactions are modeled as networks of
interacting individuals whose decisions are determined by the actions of their neighbors.
Often in these models, the way an individual is influenced by its neighbors follows a
threshold rule. That is, an individual has some threshold T ∈ [0, 1], which is a fraction
of neighbors, and at each time step, if the fraction of neighbors which exhibits a certain
social behavior is at least T , the individual adopts the social behavior itself. The thresh-
old represents the social evidence it takes to persuade an individual to adopt a certain
social behavior.

Let us again use the illustration of the majority illusion in Figure 3.1. Recall that
‘active’ means that an individual carries an attribute and that attributes encompass
social behavior. In the network on the left, all inactive vertices experience a majority of
active neighbors. That is, every inactive vertex experiences a fraction of active neighbors
that is at least 0.5. In a threshold setting where an individual would switch from inactive
to active if at least half of its neighbors are active, i.e. individuals have threshold T = 0.5,
in the network on the left in Figure 3.1, every inactive individual would eventually
become active, whereas in the network on the right, not a single individual would become
active.

In the context of social contagion, the majority illusion is a very interesting case of
disproportionate experiences. Similar to the examples of Feld and Grofman (1977) and
Feld (1991), the majority illusion creates a false truth, something that is believed by
many individuals to be true but is not. In the case of the majority illusion however,
depending on what social behavior is promoted, the collective social phenomena that
might emerge can have a tremendous impact on the individuals that are affected. The
majority illusion is able to promote the spread of social behaviors as simple as what
music will be perceived as popular or what products people will preferably buy, but also
social behaviors as complex as revolutionary political movements. The majority illusion
potentially explains why some messages, pictures, videos, opinions or ideas can reach a
tremendous number of people in a very short time, while others do not; simply because
those individuals that promote the spread play a more important, hidden role for the
propagation dynamics.
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4

Quantifying the Majority Illusion

In this chapter, we show how the presence and magnitude of the majority illusion in a
social network can be quantified both on a network level as well as an individual vertex
level. Furthermore, we discuss how the magnitude of the illusion could be approximated
in cases when networks exceed sizes for which exact calculation is feasible.

4.1 Preliminaries and Definitions

For a given network with vertices V , edges E and an attribute a, we want to derive
for each vertex, whether the vertex is subject to the majority illusion. Furthermore, we
want to be able to tell what proportion of a network experiences the majority illusion
as well as what proportion of vertices causes the misperception. We say, every vertex in
a network has an attribute a, where ai denotes the attribute of vertex vi, such that i is
a generic index and vi is a member of the network, i.e. vi ∈ V . Attribute ai indicates,
whether vertex vi exhibits a certain characteristic a or not, or simply, whether it agrees
with opinion a, such that ai is either binary, i.e. ai ∈ {0, 1}, indicating whether a vertex
does or does not exhibit a, or continuous, i.e. ai ∈ [0, 1], indicating to what degree
vertex vi agrees to a. Furthermore, ai can be implicit, i.e. ai ∈ {0, 1} or ai ∈ [0, 1] as
well as explicit, i.e. ai ∈ {−1, 1} or ai ∈ [−1, 1]. That is, if ai is explicit, additionally
to what extent vertex vi agrees to a, ai is able to more naturally describe disagreement.
For completeness, we will quantify the majority illusion for attributes a as described in
this section, i.e. binary, continuous as well as implicit and explicit. In later chapters, we
will work with binary and implicit attributes and continuous where noted.

We define the majority illusion to be existent in a network, if there is at least one
vertex vi ∈ V , for which the majority illusion holds. We call such a vertex to be affected
by or to experience the majority illusion. Additionally, we call a network to be affected
by or experience the majority illusion, if the majority of vertices experiences the majority
illusion.

4.2 Quantifying the Majority Illusion

A vertex vi experiences the majority illusion if what is popular among the neighbors of vi
and appears to vi to be common, is globally rare. Therefore, to be able to tell whether
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some vertex vi experiences the majority illusion, we compare what is locally popular
to what is globally popular. That is, compare the most common attribute among the
neighborhood of vi to the most common attribute in the entire network.
We first want to identify the attribute that occurs most often among the entire net-

work, i.e. the majority attribute of the network. In a first step, we take the sum of all
attributes of all vertices

Sa =
∑n

i=1 ai (4.1)

where n is the number of vertices in the network. The sum Sa already tells us whether
the majority of people in the network are in favour of or against a. Suppose that
attributes are explicit and binary, i.e. ai ∈ {−1, 1}. If the majority of people is against
a, which means that the majority of vertices has attribute ai = −1, the sum of all
attributes of all vertices Sa will be negative. If the sum of all attributes of all vertices
Sa is positive, the majority of people agree with a and if Sa equals zero, attributes are
distributed evenly and there are as many vertices with ai = −1 as there are vertices with
ai = 1. Respectively, suppose that attributes are implicit and binary, i.e. ai ∈ {0, 1}.
If the majority of people is against a and thus carry attribute ai = 0, the sum Sa will
be lower than n

2 . This time, we check whether Sa is greater than, less than or equal to
n
2 instead of 0.0 and can tell what the majority attribute will be, depending on which
inequality will be true.
We divide the sum of all attributes over all vertices Sa by the number of vertices in

the network, n,

ā = 1
n

∑n
i=1 ai (4.2)

which gives the average attribute ā. The average attribute has the same properties as
Sa. Namely, whether it is below or above 0.0, or 0.5 respectively, gives us the majority
attribute. Additionally, ā represents the weighted sum of the attributes, such that each
attribute accounts to the sum only to the extent of the fraction of attributes that it
makes up. The average attribute ā thus includes the proportion of vertices that actually
carry the majority attribute, which indicates how popular the majority attribute really
is. For example, suppose there is a network with n = 500 and each vertex vi in this
network carries an attribute ai ∈ {0, 1} such that ā = 0.8. What is the number of
vertices that carry attribute ai = 1 in this network?1

When dealing with continuous attributes, the nature of the average attribute ā and
the sum of all attributes of all vertices Sa is very much the same, except that we cannot
infer from ā the proportion of people in the network that have some attribute ai, while
still giving us a good estimate of the degree to which people in the network agree with
a.
Generally, the average attribute represents the opinion of the entire network. There-

fore, if we round the average attribute to the closest attribute ai, such that ai ∈ {0, 1}
or ai ∈ {−1, 1}, we obtain the majority attribute [ā].2 Rounding the average attribute

1The number of vertices with ai = 1 must equal ā ∗ n = 0.8 ∗ 500 = 400.
2Note that if the average attribute ā = 0.5, or 0.0 respectively, there is no majority attribute.
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to the closest integer if attributes are continuous classifies the average attribute into a
binary category.

In order to quantify the majority illusion in a social network, we want to identify
whether there are vertices that perceive an attribute other than [ā] to be the most
popular attribute among its neighbors. That is, we compare the majority attribute
among the neighborhood of a vertex to the actual majority attribute.

To do this, we follow the same principle. We sum up the attributes among the neigh-
bors of a vertex vi and divide this number by the number of neighbors vi has, i.e. its
degree ki, which gives us

āi =
1
ki

∑ki
j=1 aj (4.3)

the average attribute among the neighbors of vi, which then can be rounded to the
closest integer to obtain [āi], the majority attribute among the neighbors of vi. If for
any vertex vi the majority attribute among its neighbors [āi] does not equal the actual
majority attribute [ā], then the vertex vi is affected by the majority illusion and the
vertices that trick vi into the illusion are all neighboring vertices vj that have aj = āi.

After that we have obtained the majority attribute for every vertex vi ∈ V , we want to
find out whether there are vertices in the network that experience the majority illusion,
how many there are, by whom it is caused and whether the entire network itself is
affected by the illusion. The proportion of vertices that experience the majority illusion
is the number of vertices for which [āi] ̸= ā, caused by the number of vertices for which
ai ̸= [ā] and if the proportion of vertices that experience the majority illusion is greater
than n

2 , or 0.0 respectively, then the entire network is affected by the majority illusion.

Note that when working with continuous attributes, the described calculation of the
majority attribute might not necessarily be suitable. The calculation of the average
attribute gives the opinion among the entire network, rounding the average attribute
to the nearest integer classifies it into a binary statement, which does represent what
attribute vertices in the network on average exhibit, but not whether the majority of
vertices, if expressed in binary in terms, are in favour of or against the attribute, i.e.
agree or disagree with a. Consider the isolated view of a vertex and its neighbors with
depicted attribute distribution in Figure 4.1.

The average attribute āi = 0.525, which is slightly above the neutral state and means
that on average, vi’s neighbors agree with a to a small degree and thus, [āi] = 1. How-
ever, depending on the perception model one is working with, this might not give the
anticipated result. One could argue that a vertex does not interact with all its neighbors,
or that an individual only has a limited view on the attributes among its neighbors, i.e.
it only sees whether a neighbor agrees or disagrees with a3, such that it would naturally
perceive the majority of its neighbors to disagree with a, because in fact, the majority of
its neighbors actually do. Nevertheless, quantifying the majority illusion as we have de-
scribed in this section certainly yields a proper result and quantification for the illusion,
particularly in a setting where vertices are aware of the attribute distribution among

3Which would be very much the same, as if we would transform a continuous attribute to its binary
representation.
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Figure 4.1: Illustration of vertex neighborhood with continuous attributes

their neighbors and where we make no assumptions on how individuals perceive their
neighbors. The provided example arises simply from the nature of continuous attributes.
Further elaboration on different models are described in Chapter 6.

4.3 Approximating the Majority Illusion

The approach shown in Section 4.2 requires knowledge of the entire network as well as
every single edge in the network, which is not suitable for networks of large size as,
depending on the network structure, this might require intensive computation. In this
section we want to give our thoughts on how the magnitude of the majority illusion could
be approximated on a network level as opposed to the vertex-centric fashion shown in
Section 4.2.
Lerman et al. (2015) introduced a statistical model to calculate the magnitude of the

majority illusion and demonstrated empirically how different network structures affect
the magnitude of the illusion. The proposed model uses network properties such as
the degree distribution p(k), the probability that an arbitrary vertex vi has degree k,
the joint degree distribution e(k, k

′
), the probability that an arbitrary vertex vi with

degree k is connected to a vertex vj that has degree k
′
, the joint probability distribution

P (k, x), the probability that an arbitrary vertex vi with degree k has attribute x, as
well as inferred properties, such as the assortativity coefficient, or the average degree.
Given that the magnitude of the majority illusion can be calculated using these specific
network properties, one should be able to approximate the magnitude of the illusion
using approximate values for the required network properties.
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Causing the Majority Illusion

In this chapter, we will use a threshold model to simulate the spread of the misperception
caused by the majority illusion. We introduce a novel approach to estimate a subset of
vertices in a network to target in order to artificially promote the spread of an attribute
in a network by exploiting the majority illusion. We compare the performance of our
approach to the performance of the baseline heuristic to target high-degree vertices. We
present the results of our baseline evaluation and draw conclusions on the performance
of our approach.

5.1 Preliminaries and Model

Granovetter (1978) introduced what is called a threshold model. It describes how social
behavior spreads within a group of people using a simple threshold rule. When a certain
number, or proportion, of an individual’s neighbors adopt a certain social behavior, the
individual adopts the social behavior itself. This number is its threshold T ∈ [0, 1]. In a
threshold model, the adoption of a behavior is a binary decision between two distinct and
mutually exclusive alternatives. We will use a threshold model to simulate the spread
of a binary attribute in a network G = (V,E) of interacting individuals, such that each
vertex vi ∈ V has a threshold Ti. Each vertex vi has an attribute ai ∈ {0, 1}, which
indicates whether vi does or does not exhibit attribute a. If vi does not have attribute
a, i.e. ai = 0, but the proportion of its neighbors that do exhibit attribute a is equal
to or larger than threshold Ti, vi adopts the behavior of its neighbors. Likewise, if vi
has attribute ai = 1, but the proportion of vi’s neighbors that have attribute aj = 0 is
equal to or larger than Ti, vi will adopt the behavior of its neighbors and will discard
the attribute, such that ai becomes 0. Vertices are fully aware of the attributes of
their neighbors and in each time step, a vertex observes all the attributes among its
neighbors and either adopts it or not. Whenever a vertex vi changes its attribute, i.e.
it was persuaded by its neighbors, each neighbor observes the change and re-evaluates
whether to change its attribute as well. Eventually, the network will converge and
vertices will stop changing their attributes. Under certain network configurations, this
might lead to influence cascades, in which individuals are persuaded, which persuades
other individuals, which persuades others, and so on, such that the number of vertices
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that have adopted attribute a is significantly higher than the number of vertices that
initially exhibited the attribute.

We use a threshold model with threshold Ti = 0.5 for every vertex vi ∈ V . This is the
model that Lerman et al. (2015) used to demonstrate the majority illusion. A threshold
model with T = 0.5 accurately captures the notion of an illusion in that an individual
affected by the illusion will observe a majority of its neighbors exhibit some attribute a,
while in the global perspective still belonging to a minority.

Let us illustrate the threshold model and such an influence cascade with an example.

Figure 5.1: Illustration of threshold model and influence cascade using Ti = 0.5
(Granovetter, 1978)

Figure 5.1 depicts the same network in five different stages t of a diffusion process in
a threshold setting, whereby t indicates the time step the network is in. The color of a
vertex indicates whether it exhibits attribute a, i.e. whether it is active. Grey vertices
are inactive and blue vertices are active. Each vertex vi in the example network has a
threshold of Ti = 0.5. That is, a vertex in this network adopts attribute a and changes
its color from grey to blue if the proportion of active neighbors is equal to or larger than
0.5. The network configuration where t = 0 is the initial configuration and attribute
distribution, from which the diffusion process starts. After the first diffusion step, the
network is in time step t = 1. Before the transition between t = 0 and t = 1, four
inactive vertices observed that the proportion of their neighbors that are active exceeds
their threshold and thus adopted attribute a and changed their color to blue. Likewise, in
the following time steps, more and more vertices observe a proportion of active neighbors
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that is larger than their threshold and also adopt the attribute. Note that the number of
vertices that were initially active is significantly lower than the number of vertices that
were subsequently activated. The majority of inactive vertices, that were convinced to
adopt attribute a, were not convinced to do so solely by the vertices that were initially
active. It required additional vertices to adopt attribute a beforehand, in order to
supply those vertices with the amount of social evidence needed to persuade them.
Nevertheless, the influence of the minority vertices that were initially active sufficed to
persuade some fraction of their neighbors, which then sufficed to activate additional
vertices, such that eventually, the entire network could be activated. That is, initially
activating three influential vertices has triggered an influence cascade that spread across
the entire network and managed to activate a significant number of additional vertices
- in this case, the entire network.

Influence cascades are a good example to show the importance of the interplay of mul-
tiple individuals and their positions in a network for diffusion processes. An individual
does not necessarily have to influence a high number of other individuals in order to
be influential. An individual is most influential, if it is able to persuade many other
influential individuals, which then further influence more (influential) individuals, and
so on. Likewise, an individual is not necessarily influential, i.e. important for diffusion
dynamics, if it is highly connected. Finding a good set of individuals to target in order
to intentionally promote the spread of an attribute is a very complex task. The problem
of finding such sets is known as influence maximization.

5.2 Causing the Majority Illusion

Domingos and Richardson (2001), Richardson and Domingos (2002) and Domingos
(2005) have studied the problem of influence maximization in the context of viral mar-
keting as a probabilistic model of interactions. A customer is said to have a network
value, which is the expected profit from sales to people the customer might influence to
buy the same product. That is, activating a specific customer might trigger an influence
cascade in which the social behavior that is spread is the purchase of a product. Kempe
et al. (2015) considered the problem of selecting a set of most influential individuals
in a network as a problem in discrete optimization and have shown that the problem
is NP-hard for threshold models. Kempe et al. (2015) introduced approximation algo-
rithms to compute sets of most influential individuals in a network and showed that
their algorithms significantly out-perform vertex selection heuristics based on degree
centrality and distance centrality. Goyal et al. (2010) studied alternative optimization
problems which address the same influence maximization problem. Particularly, Goyal
et al. (2010) investigated what they call the minimum target set selection, which is the
problem of finding the minimal set of vertices to activate, such that the influence cascade
that is caused activates at least n vertices. Furthermore, Goyal et al. (2010) have shown
that the alternative problems are also NP-hard for linear threshold models.

We introduce an approach to estimate a (minimum) target set selection, such that
n = |V |, i.e. the entire network, for a network G = (V,E) in a threshold model, such
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that threshold Ti = 0.5 for all vertices vi ∈ V . The approach uses insights derived
from the friendship paradox as discovered by Feld (1991). We take a similar approach
as Christakis and Fowler (2010) and Garcia-Herranz et al. (2014) did to place sensors
in social networks for an early detection of contagious outbreaks. Instead of searching
for individuals that are influential on a global perspective, i.e. individuals that exhibit
characteristics that appear influential in comparison to all other individuals in the same
network, we build on the assumption that global influence can be estimated by finding
locally influential individuals. That is, those individuals that are important for diffusion
dynamics on a network level are presumably also important for diffusion dynamics on
a vertex-centric level. Furthermore, vertices that appear non-influential on a global
perspective, might in fact be influential in their local neighborhood, which might be
very hard to detect from a global perspective.

In our approach, each vertex vi ∈ V has a counter ci. Initially, ci = 0 for all vertices in
V . For each vertex vi, search for the n most influential vertices vj in the neighborhood
Ni of vi, such that n is equal to or larger than the number of neighbors required by vi
to be active, i.e. the proportion described by threshold Ti, such that vi would adopt a.
Influence can be defined in various ways and encompass several vertex characteristics.
In our case, we measure the influence of a vertex using its degree. That is, the influence
of a vertex is equal to its degree, whereby a high degree equals higher influence. Add
neighboring vertices vj to a list L and increment the counter for each vertex vj that
was found to belong to the most influential vertices among the neighborhood of vi. The
result of this operation is a list of vertices L, that contains all vertices that are considered
locally influential.

L is not guaranteed to be minimal, but has an important property: Every vertex
required to activate in order to persuade any arbitrary vertex vi ∈ V is contained in
L. Therefore, initially activating each vertex vj ∈ L would trigger an influence cascade
that would eventually activate the entire network. However, in order to adopt attribute
a, some vertices in L only require vertices to be active that are also in L, or that are
persuaded by vertices in L. Only a subset of vertices in L is required to cause an influence
cascade that activates the entire network.1 Therefore, we want to decrease the size of
L and remove vertices that are not required to achieve the same influence cascade. In
the next step, L is sorted by ci in ascending order, i.e. less important vertices appear
earlier in L. For each vertex vj ∈ L, we check whether all vertices that vj considers
most influential are still in L or will be activated by vertices that are still in L or will
be activated by vertices that will be activated by vertices that are still in L, and so on.
If this condition is true, vertex vj can be removed from L, as it is not required to be
initially active for the influence cascade.

The result of this process is a list of vertices L∗ which is not necessarily minimal, but
sufficient to trigger an influence cascade that eventually activates the entire network.

The network shown in Figure 5.2 is the same as in Figure 5.1 and illustrates the

1Consider the following example: L contains every vertex that is required to be active in order to
activate any arbitrary vertex vi ∈ V . Thus, if we pick an arbitrary vertex vi ∈ V , such that vi ∈ L,
we can remove vi from L and still have a set of vertices that triggers an influence cascade that
activates the entire network, because those vertices that are required to activate vi are still L.
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Figure 5.2: Illustration of finding target set selection using influential neighbors

approach. The uncolored network in the upper left shows each vertex with its degree.
Next to the network, we can see the n most influential vertices for each vertex. Again,
each vertex in the network has threshold 0.5. For instance, for vertex a with degree
ka = 4, the two most influential neighbors, i.e. the neighbors with highest degree, are
l and g. Next to this, we find the list L, which holds all locally influential neighbors
together with their count. For instance, vertex g is among the most influential neighbors
of seven other vertices. This is the list L we retrieve, after checking all vertices and
finding their most influential neighbors. After this, unnecessary vertices are removed
from L. Every vertex in L that will be activated by vertices that are also in L, or
vertices that will be activated by vertices that will be activated by vertices in L, and so
on, can be removed from L. For instance, we will remove a from L, because a requires
vertices l and g to be active, which are still in L. Next, we can remove b, because b
requires g and c, which are also in L. Eventually, this gives the list L∗ = {l, d, g}.

The network in the lower left shows the same network with vertices l, d and g initially
activated, ready for the diffusion process to start. Before the transition from t = 0 to
t = 1, almost the entire network observed a majority of their neighbors to be active and
thus, were also activated. From t = 1 to t = 2, the remaining inactive vertex could also
be persuaded, such that the entire network is now active.
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5.3 Baseline Evaluation

The example in Figure 5.2 has shown that using our approach, we were able to find a good
set of vertices to initially target, to cause an influence cascade, that eventually activates
the entire network. Though, the set we retrieved with our approach is not minimal.
Removing one of the three vertices l, d or g, and only target two of them, e.g. l and g,
will cause a similar influence cascade with the same effect on the network. Nevertheless,
searching for locally influential neighbors, as compared to traditional approaches, has
given us a good result with comparably small effort. Therefore, we want to compare
the performance of our method to the performance of the baseline heuristic to target
high-degree vertices. That is, we want to compare the number of target vertices that we
retrieve using our approach, to the number of target vertices we retrieve by searching
for a set of highest-degree vertices that, if initially activated, cause a similar influence
cascade.

5.3.1 Networks

Milgram (1967) and Travers and Milgram (1969) described the famous experiment in
which packets that were passed from person to person were able to reach a designated
target person in only around six steps. With this, Milgram (1967) and Travers and
Milgram (1969) were the first to demonstrate the small-world effect, the fact that indi-
viduals in most networks appear to be only a few steps apart. Various networks were
since shown to display the property that the average distance between two vertices is
around the famously known six degrees (Nunes Amaral, Scala, Barthelemy, & Stanley,
2000; Newman, 2003). Kumar et al. (2006) have shown that the Flickr and Yahoo! 360
online social networks display small-world properties. Ugander et al. (2011) have shown
that the Facebook social graph not only also displays small-world properties, but with
an average distance between pairs of users of 4.7, their world is even smaller.

Watts and Strogatz (1998) proposed a model to generate networks with small-world
properties, i.e. small average distances between pairs of vertices. In this model, ver-
tices are initially arranged in a ring and connected to their k closest neighbors. Then,
depending on a probability β, the edges of a vertex are randomly rewired to another
vertex chosen uniformly at random. Both parameters, k and β are user-specified and
can be set independently. Degrees in networks generated with this model are normally
distributed.

As de Solla Price (1965) discovered, the degree distribution of a network of citations
that he studied follows a power-law. Price (1976) introduced a theory that explains the
power-law distribution that he discovered, which he called cumulative advantage - the
effect that “the rich get richer”. The idea is that authors who published many papers
are more likely to publish additional papers, compared to authors that have published
only few papers. Also, authors that are often cited, and thus popular in their field of
research, are likely to be cited again, whereas authors that are unknown are unlikely to
be cited. Barabási and Albert (1999) re-introduced the idea of cumulative advantage
and reported a collaboration network, a computer network and a power grid network
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to display the same property. Reka et al. (1999), Faloutsos et al. (1999), Adamic and
Huberman (2000) and Broder et al. (2000) confirm in their experiments that the degree
distribution of computer networks appears to follow a power-law. Kumar et al. (2006)
have shown that the degree distributions of the online social networks Flickr and Yahoo!
360 both follow a power-law.

Barabási et al. (2000) introduced a model to generate networks that have a degree
distribution that follows a power-law. In their model, whenever a vertex is added to the
network, the probability that the vertex will be connected to some other vertex depends
on the degree of that vertex, which leads to a random, scale-free network. Dorogovtsev
and Mendes (2002) proposed an alternative model to generate networks that have a
degree distribution that follows a power-law. In their model, a newly added vertex
connects to both ends of an edge, chosen uniformly at random. As high degree vertices
share many edges in the network, this mechanism leads to a scale-free network.

We used the three models we described to generate networks to test the performance
of our approach, as these three models provide networks that exhibit specific character-
istics that we would expect in real-world networks. We will refer to a network generated
according to the model of Barabási et al. (2000) as BA-network, likewise, we will refer
to a network generated as proposed by Dorogovtsev and Mendes (2002) as DM-network
and to a network generated with the model of Watts and Strogatz (1998) as WS-network.
We generated numerous BA- and DM-networks, ranging from networks with a thousand
vertices to networks with a million vertices, as well as numerous WS-networks for differ-
ent values of k and β, varying in their size. That is, we created WS-networks, ranging
from ten vertices to hundreds of thousands of vertices, each for both, a fixed value for
β ∈ {0.1, 0.2, 0.3, 0.4, 0.5} and a fixed value for k, defined as a fraction of the number of
vertices, i.e. k = n

10 , with k ≥ 1.

5.3.2 Experimental Setup

For every network that we created, we estimated a target set selection using two ap-
proaches. First, we calculated a set of target vertices using our neighbor approach as
described in Section 5.2. Then, we calculated a set of target vertices using a highest-
degree approach. That is, we searched for the minimal number of vertices, ordered
by their degree, that have to be initially activated, in order to trigger a similar influ-
ence cascade. We searched for sets of highest-degree vertices by activating a number
of highest-degree vertices and checking whether the influence cascade that is triggered
activates the entire network. We repeated this process until we found a minimal set of
highest-degree vertices, such that, only if all of these vertices are activated, the influence
cascade that is triggered activates the entire network. After this process we analysed
the structural properties of the networks we have created. We calculated various met-
rics such as clustering coefficients, degree assortativity coefficients, and average degrees,
which we used to further analyse the relationship between the network structure and
the performance of our neighbor approach.

Finding target sets of highest-degree vertices, as well as analysing the networks for
their structural properties, are computationally intensive processes. Thus, we could not
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evaluate our approach on all networks that we generated. We used 109 BA-networks,
105 DM-networks and 1602 WS-networks.

5.3.3 Results

We evaluated the efficiency of the two approaches by comparing the sizes of the target
sets we retrieve, whereby smaller vertex sets are desired. We present the sizes of the sets
retrieved from applying both approaches as fractions of the total number of vertices in
the networks. Additionally, we compare the performance of our neighbor approach as
a fraction of the sizes of the two target vertex sets, such that values below 1 indicate
that the neighbor approach finds a smaller vertex set. We will refer to this metric as
performance measure. We present our results separately for each of the three network
types.
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Figure 5.3: Distribution of relative target vertex set sizes for BA-networks (Barabási et
al., 2000)

BA-Networks Figure 5.3 shows the results of the two approaches applied to the BA-
networks. In the first diagram, we can see the distribution of the sizes of the target vertex
sets retrieved with our neighbor approach as a fraction of the size of the corresponding
target vertex set retrieved with the highest-degree approach. It shows that the neigh-
bor approach consistently out-performs the highest-degree approach in all BA-networks.
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The mean target vertex set size retrieved with our neighbor approach is 0.8627 of the size
of the corresponding target vertex set size retrieved with the highest-degree approach
with variance 0.00012. The middle diagram shows the distribution of the relative target
vertex set sizes from the neighbor approach, expressed as a fraction of the total number
of vertices in the network. The mean relative target vertex set size using the neigh-
bor approach in BA-networks measures 0.1439. The minimum and maximum relative
target vertex set sizes are 0.1297 and 0.1557 respectively. The bottom diagram shows
the distribution of the relative sizes of the target vertex sets using the highest-degree
approach. The mean relative target vertex set size using the highest-degree approach in
BA-networks is 0.1668. The minimum and maximum relative target vertex set sizes are
0.1447 and 0.1826 respectively.

Further analysis of the structural parameters and the results of BA-networks reveals
that the structural properties, and hence the results we retrieve, remain fairly stable.
Networks that are generated using the Barabási et al. (2000) model, result in networks
with almost identical structural parameters regardless of their size.
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Figure 5.4: Actual and relative target vertex set sizes for neighbor approach in BA-
networks (Barabási et al., 2000)

Figure 5.4 shows the actual target vertex set sizes using the neighbor approach in the
top diagram, the sizes of the networks, in the middle diagram, and the relative target
vertex set sizes as a fraction of the total number of vertices in the bottom diagram. Each
grey bar represents a single network. The illustration demonstrates that the results we
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retrieve are very similar. We think this is because the structural parameters of all BA-
networks that we generated are almost identical.
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Figure 5.5: Distribution of relative target vertex set sizes for DM-networks (Dorogovtsev
& Mendes, 2002)

DM-Networks Figure 5.5 shows the results of the two approaches applied to the
DM-networks. The upper diagram shows the distribution of the sizes of the target
vertex sets retrieved with our neighbor approach expressed as fractions of the size of the
corresponding target vertex set retrieved with the highest-degree approach. It shows that
the neighbor approach predominantly out-performs the highest degree approach. The
mean target vertex set size from the neighbor approach measures 0.8444 of the size of
the corresponding highest-degree target vertex set with variance 0.00756. The minimum
and maximum values are 0.8125 and 1.3540 respectively. The middle diagram shows
the distribution of the target vertex set sizes from the neighbor approach as fractions of
the total number of vertices in the network. On average, the target vertex sets retrieved
with the neighbor approach contain 0.1661 of the total number of vertices in the network
with variance 7.229e−6. The minimum and maximum relative target vertex set sizes are
0.1563 and 0.1735. The bottom diagram shows the distribution of the relative target
vertex set sizes using the highest-degree approach. The mean relative target vertex set
size is 0.1933 with variance 0.00018. The minimum and maximum relative target vertex
set sizes are 0.1246 and 0.2062 respectively.
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Further analysis of the structural parameters and the results of DM-networks shows a
similar consistency in network structure and target vertex set sizes as in BA-networks.
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Figure 5.6: Actual and relative target vertex set sizes for neighbor approach in DM-
networks (Dorogovtsev & Mendes, 2002)

Figure 5.6 shows the actual target vertex set sizes using the neighbor approach in the
top diagram, the sizes of the networks in the middle diagram, and the target vertex set
sizes as a fraction of the total number of vertices in the bottom diagram. Each grey bar
represents a single network. The diagrams show that, similar to what could be observed
in Figure 5.4, increasing the network size does not lead to structural changes and hence,
the target vertex set sizes we retrieve with the neighbor approach remain fairly stable.
Although there were a few single cases in which the highest-degree approach yielded a
better target vertex set, the vast majority of the result sets retrieved with the neighbor
approach were smaller.

WS-Networks Figure 5.7 shows the results of the two approaches applied to the
WS-networks for all values of k and β. The top diagram shows the distribution of
the sizes of the target vertex sets retrieved with the neighbor approach expressed as
a fraction of the size of the corresponding target vertex set from the highest-degree
approach. The distribution shows that the highest-degree approach significantly out-
performs the neighbor approach with the neighbor approach returning target vertex sets
of up to 24 times the size of the corresponding highest-degree target vertex set. The mean

31



32 CHAPTER 5. CAUSING THE MAJORITY ILLUSION

0

50

100

150

0.4 1.2 2.0 2.8 3.6 4.4 5.2 6.0 6.8 7.6 8.4 9.2 10.0 10.8 11.6 12.4 13.2 14.0 14.8 15.6 16.4 17.2 18.0 18.8 19.6 20.4 21.2 22.0 22.8 23.6
target vertex set size using neighbor approach as a fraction of the corresponding target vertex set size using highest−degree approach

co
un

t

0

50

100

150

0.01 0.06 0.11 0.16 0.21 0.26 0.31 0.36 0.41 0.46 0.51 0.56 0.61
relative target vertex set size using neighbor approach as a fraction of total number of vertices in the network

co
un

t

0

100

200

300

0.01 0.06 0.11 0.16 0.21 0.26 0.31 0.36 0.41 0.46 0.51 0.56 0.61
relative target vertex set size using highest−degree approach as a fraction of total number of vertices in the network

co
un

t

Figure 5.7: Distribution of relative target vertex set sizes for WS-networks (Watts &
Strogatz, 1998)

performance measure is 1.8610, with variance 2.11853. The minimum and maximum
values are 0.4247 and 24.0 respectively. The middle diagram shows the distribution of
the relative target vertex set sizes expressed as fractions of the total number of vertices
in the network retrieved with the neighbor approach. The mean target vertex set size is
0.3863 with variance 0.00496. That is, the highest-degree approach, on average, returns
results that are approximately half the size of the target vertex sets retrieved with
the neighbor approach. The minimum and maximum values are 0.1800 and 0.4817
respectively. The bottom distribution shows the relative target vertex set sizes retrieved
with the highest-degree approach expressed as fractions of the size of the network. The
mean relative target vertex set size is 0.2475 with variance 0.00905. The minimum and
maximum values are 0.0100 and 0.6475.

Further analysis of the structural parameters and results of WS-networks reveals some
very interesting details. The highest performance measures of 7, 10 or 20 and higher,
which can be seen in the top diagram in Figure 5.7, come from small networks in which
vertices have a very low average degree. The upper diagram in Figure 5.8 shows the
average degree on the y-axis along with the performance measure on the x-axis. The
lower diagram in Figure 5.8 shows the number of edges in a network on the y-axis and the
performance measure on the x-axis. Opposed to BA- and DM-networks, WS-networks
are not scale-free. Vertex degrees in WS-networks are normally distributed and the
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majority of the vertices in a WS-network have degree equal to the average degree. The
number of vertices that are required for an arbitrary vertex vi in a network to be initially
active in order to activate vertex vi equals half its degree. Hence, the average number of
vertices required to activate an arbitrary vertex vi in a WS-network is half the average
degree. In WS-networks, the majority of vertices have degree equal to the average
degree and thus, the average neighbor degree in WS-networks is approximately equal to
the average degree. In very small WS-networks with very low average degree, minimal
target vertex sets only require a very small subset of all vertices, which the neighbor
approach is not able to capture. This explains why in such network configurations the
highest-degree approach is able to find target vertex sets that are significantly smaller
than those retrieved with the neighbor approach.
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Figure 5.8: Comparison between performance of the neighbor approach and different
average degrees and network sizes for WS-networks (Watts & Strogatz, 1998)

Akin to what could be observed in BA- and DM-networks, WS-networks generated
with fixed parameters k and β tend to have similar structures. Figure 5.9 shows the
results of our experiments separately for different combinations of k and β. Target
vertex set sizes using the neighbor approach for fixed values for k and β exhibit a similar
stability as we could observe in BA- and DM-networks, whereas target vertex set sizes
retrieved with the highest-degree approach display an unaccountable variation. That
is, the highest-degree approach finds different target vertex sets for similar networks.
We think the variation that is observed can be explained with how the highest-degree
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approach compares vertices and with the degree distribution of WS-networks. Vertex
degrees in WS-networks are normally distributed and the majority of vertices have degree
and average neighbor degree equal to the average vertex degree in the network. The
highest-degree approach does not compare vertices other than with their degree, due to
which there is a high number of vertices that could potentially be selected, which leads
to many different possible target vertex sets with substantially different results.

Figure 5.9: Relative target vertex set sizes for both approaches for different values of k
and β in WS-networks (Watts & Strogatz, 1998)

5.3.4 Conclusions

We have introduced an approach to estimate target vertex sets for networks in a thresh-
old model with Ti = 0.5 for all vertices vi ∈ V , such that the influence cascade that is
triggered by initially activating all vertices in the target vertex set eventually activates
the entire network. The approach was shown to consistently out-perform a highest-
degree approach in scale-free networks that exhibit structures as described by Barabási
et al. (2000) and Dorogovtsev and Mendes (2002). In small-world networks as described
by Watts and Strogatz (1998), the neighbor approach returns target vertex sets that, on
average, contain twice as many vertices as target vertex sets retrieved with the highest-
degree approach. We think this is because in WS-networks, vertices with high degrees
are naturally more important than in BA- and DM-networks. Additionally, as the ma-
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jority of vertices in WS-networks have the same degree, targeting high-degree vertices is
reasonably a suitable approach, which the neighbor approach is unable to capture. The
neighbor approach is therefore not generally a better approach to find target vertex sets
for networks with any arbitrary network structure.

Nevertheless, the neighbor approach was shown to return target vertex sets with con-
sistent sizes in similar network configurations for all three network models. While the
target vertex sets retrieved with the neighbor approach are larger in WS-networks, the
neighbor approach may be computationally more efficient and it is effective in causing
an influence cascade that eventually activates the entire network. We conclude that the
neighbor approach has proven itself to be a good candidate to estimate target vertex
sets that cause influence cascades that activate the entire network.
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6

Dynamic and Complex Diffusion Model

In this chapter, we introduce a new dynamic diffusion model that incorporates assump-
tions that we make on how individuals in the real world influence each other. We apply
our diffusion model on three different network models and present the results of the
experiment.

6.1 Preliminaries and Definitions

Granovetter (1978) introduced the threshold model to describe how social behavior
spreads within a group of individuals. In his model, individuals observe a social be-
havior among their neighbors and depending on a simple threshold rule, individuals
might adopt the social behavior that they observe. In the same context, Goldenberg
et al. (2001b, 2001a) studied the effects of word-of-mouth communications in networks
of interacting individuals in a cellular automata model. In a cellular automata model,
individuals that exhibit the social behavior persuade their neighbors according to a pre-
defined probability. If an individual was persuaded by one of its neighbors, it too tries to
persuade its neighbors with a predefined probability. If an individual fails to persuade its
neighbors, it does not retry. Eventually, either all individuals will be persuaded or there
will be no individuals left that try to persuade their neighbors. These are the two mod-
els Kempe et al. (2015) and Goyal et al. (2010) used in their studies of approximation
algorithms for influence maximization.

We introduce a new dynamic diffusion model that incorporates assumptions that we
make on how social behavior spreads in the real world within a network G = (V,E) of
interacting individuals represented by vertices vi ∈ V . Our model treats the decision
between two distinct and mutually exclusive alternatives as the formation of a preference
for either of the two. That is, in our model, individuals do not choose to exhibit a social
behavior or attribute a in a binary fashion, but express the extent to which they agree or
disagree with it, using an implicit and continuous attribute ai. That is, each individual
vi has an attribute ai ∈ [0, 1] which indicates whether the individual agrees or disagrees
with attribute a, such that ai = 0 implies that the individual is entirely against what is
represented by a and ai = 1 implies that the individual is entirely in favor of or exhibits a
in its fullest form. All values for ai between 0 and 1 indicate to what extent an individual
agrees or disagrees with a. Individuals that are undecided or neutral and do not have
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a preference for or against a exhibit attribute ai = 0.5. Individuals do not influence
each other following a threshold rule or probability, but rather examine a selected set
of properties for each of their neighbors and according to these properties, decide to
what extent they let themselves be influenced by the social behavior they observe. That
is, an individual vi examines a selected set of properties and estimates a weight wij

for each of its neighbors vj ∈ Ni, which indicates to what extent vi is influenced by
vj . Also, individuals may be resistant to external influence and only allow a certain
proportion of external influence to reach them. This influence resistance is expressed
with a parameter ri ∈ [0, 1] for each vertex vi ∈ V , such that ri = 1 indicates that vi
is entirely resistant against all external influences and will never change its attribute.
Similar to the threshold model, an individual is influenced by all its neighbors in our
model. However, unless an individual vi is entirely resistant to external influence, i.e.
ri = 1, it always changes its attribute if it is influenced by its neighbors. But rather
than switching between binary values, an individual incorporates the influence it receives
into its own attribute, conditioned upon its resistance and the properties it examined.
Furthermore, the influence that individuals adopt from their neighbors decreases linearly
with the number of diffusion steps tn. That is, we make the assumption that the strength
of influence deteriorates over time, as individuals get used to hear about a certain topic
and give it less importance.

6.2 Parameters and Diffusion Process

Let us introduce and formally define the selected set of properties an individual examines
for each of its neighbors, in order to estimate a weight wij that indicates, to what extent
individual vi is influenced by a neighbor vj .

McPherson et al. (2001) suggest that individuals who are connected tend to be similar
in various characteristics. Furthermore, McPherson et al. (2001) propose that this is
because individuals tend to interact with others that are similar. We use this to make
the assumption that the influence from interactions between individuals that are similar
tends to be higher than from interactions with individuals that do not share any simi-
larities. We characterize the similarity between two neighboring vertices vi and vj and
use it to adjust the weight of the edge between vi and vj , i.e. the degree of influence
the vertices have on each other. We say that two vertices vi and vj are similar to each
other, if they have similar neighbors. That is, the more mutual neighbors two vertices
have, the closer these two vertices are, i.e. the higher is the influence they have on each
other.

Let Ni be the neighborhood of vertex vi, such that vi shares an edge with all vertices
vj ∈ Ni. Then Ni ∩Nj , the intersect of the neighborhood of vertices vi and vj , is the set
of vertices that share an edge with both vertices, vi and vj . We define H(vi, vj) ∈ [0, 1]
as the similarity between two vertices vi and vj , such that H(vi, vj) is the proportion of
neighbors that vi and vj share, including the vertices vi and vj themselves.

H(vi, vj) =
2∗(|Ni∩Nj |+1)

|Ni|+|Nj | (6.1)
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Additional to H(vi, vj), we say that two vertices vi and vj are similar, if the attributes
ai and aj that they exhibit are also similar. Furthermore, we make the assumption that
individuals that have opposing opinions are less engaging in their interactions and that
the influence an individual experiences from an individual that promotes an opposing
opinion is less likely to affect the individual. We define O(vi, vj) ∈ [0, 1] as the compliance
of the attribute ai to the attribute aj of neighboring vertices vi and vj , such that O(vi, vj)
indicates to what extent vertices vi and vj find agreement in their opinions.

O(vi, vj) = 1− |ai − aj | (6.2)

For our third parameter, we make the assumption that individuals are more receptive
to influence from popular individuals. We define P (vi, vj) ∈ [0, 1] as the popularity
bonus a vertex vj earns on the influence on vertex vi due to its popularity, whereby the
bonus is dampened for highly popular individuals.

P (vi, vj) = 1− e−log(kj) (6.3)

Note that P (vi, vj) = 0 for vertices vj with degree kj = 1. We think that this accu-
rately captures the behavior in configurations in which a single charismatic individual
leads the opinion formation of a community, i.e. in network configurations known as
hubs or stars.

The weights wij that indicate the extent to which vertex vi is influenced by vertex vj
is the sum of the three parameters.

wij = D(vi, vj) +O(vi, vj) + P (vi, vj) (6.4)

The individual weights are then normalized with the weights that vi appoints to its
other neighbors, such that the sum of all weights wij for all vertices vj ∈ Ni equals one.

w
′
ij =

wij∑ki
j=1 wij

(6.5)

Initially and whenever a vertex vi changes its attribute, all of its neighbors vj observe
the change and re-evaluate the weight wij . A vertex vi calculates the weighted average
attribute ai,w among its neighbors, such that ai,w denotes the average attribute vi expe-
riences when vi applies the individual weights wij on the attributes aj it observes from
its neighbors vj .

ai,w = 0.5 +
∑ki

j=1 (aj − 0.5) ∗ w′
ij (6.6)

Vertex vi then estimates the difference between the weighted average attribute ai,w
and its own attribute ai and decides to adopt a proportion of the difference depending
on its resistance ri and the diffusion step tn.

a
′
i = ai − ((ai−ai,w)∗(1−ri))

tn
(6.7)

Note that as the number of time steps tn increases, the proportion of the weighted
average attribute ai,w that is adopted decreases. Furthermore, as vertices update their
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attribute whenever at least one of their neighbors changes its attribute and as the propor-
tion of the weighted average attribute that is adopted decreases over time, the diffusion
process is not guaranteed to automatically halt after a finite number of steps.

6.3 Experiments

We used the BA-, DM- and WS-networks that we generated to simulate the spread of an
attribute a within our dynamic diffusion model. In order to have comparable starting
conditions for all three network models, we initially activated and set attributes ai = 1
for one percent of the top most influential neighbors of the top most influential vertices
in the network. Influence was measured by vertex degree, such that vertices with a
high degree were considered highly influential. All other vertices vi ∈ V were initially
neutral and had attribute ai = 0.5. Furthermore, we set ri = 0 for all vertices vi ∈ V ,
except for those vertices that were initially activated, these vertices had ri = 1. We
configured the diffusion process to halt for a single vertex after 10, 000 steps. That is,
the diffusion process on the entire network stopped after all vertices have participated in
exactly 10, 000 steps. For each network, we calculate Sa0 , the sum of all attributes ai of
all vertices vi ∈ V before the diffusion process starts and Sa1 , the sum of all attributes
ai of all vertices vi ∈ V after the diffusion process has stopped. The difference between
Sa0 and Sa1 shows how far the attribute could spread within the network. We call the

fraction
Sa1
Sa0

the diffusion coverage.

Figure 6.1 shows the distribution of the diffusion coverage for BA-networks in the top
diagram, for DM-networks in the middle diagram and for WS-networks in the bottom
diagram. It shows that the diffusion coverage is highest in DM-networks and, on average,
lowest in WS-networks. It also shows that WS-networks display the highest variation
in diffusion coverage. We think that this is because of the degree distribution in WS-
networks. In WS-networks, vertex degrees are normally distributed and the majority of
vertices have the same degree, i.e. the average degree, and hence, similar to what could
be observed in Chapter 5, randomly selecting a subset of highest-degree vertices can lead
to a high number of different possible target sets with substantially different results for
the diffusion process in networks with similar structures.
Centola (2010) and Centola and Baronchelli (2015) have studied the effects of network

structure on the spread of behavioral adoption in networks of interacting individuals.
In their experiments, they could show that in highly clustered networks social behaviors
spread more quickly. Initially, our hypothesis was that we might experience a similarly
quicker attribute diffusion in highly clustered BA-, DM- and WS-networks. The clus-
tering coefficients for all BA-networks we generated are consistently equal to 0. The
mean clustering coefficients for all DM-networks we generated is 0.7387 with variance
3.95607e−6, i.e. very stable. The mean clustering coefficients for WS-networks for which
we also had enough computational resources to both, calculate clustering coefficients and
simulate our model, is 0.13720 with variance 0.03233. Calculating the correlation be-
tween the diffusion coverage and the clustering coefficient for the three network models
separately shows only a very weak correlation between the two metrics. Nevertheless, we
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Figure 6.1: Distribution of diffusion coverage for BA-, DM- and WS-networks (Barabási
et al., 2000; Dorogovtsev & Mendes, 2002; Watts & Strogatz, 1998)

found that in DM-networks, which on average have the highest clustering coefficient, the
diffusion coverage was on average the highest and in BA- and WS-networks, which on
average have very low clustering coefficients, the diffusion coverage was also signficantly
lower. Although from this perspective, it appears that we find a similar correlation
between attribute diffusion and clustering coefficients, the exact nature of the relation-
ship could not be revealed and the hypothesis could neither be entirely invalidated nor
proven.
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Limitations

The experiments we conducted to evaluate the efficiency of our approach to estimate
target vertex sets that we discussed in Chapter 5 and the experiments we conducted on
the diffusion process within the diffusion model that we introduced in Chapter 6 both
use networks that were generated using models to create scale-free networks as described
by Barabási et al. (2000) and Dorogovtsev and Mendes (2002) and small-world networks
as described by Watts and Strogatz (1998). Various real-world network were shown
to display structures similar to those explained by the three models (Newman, 2003;
Nunes Amaral et al., 2000; Barabâsi et al., 2002; Kumar et al., 2006; Ugander et al.,
2011). Hence, we expect the networks we generated according to these models to exhibit
network structures that can also be found in real-world networks. Nevertheless, using
only artificially generated networks does not allow to make strong claims about the
performance in real-world networks. All claims that are made in this thesis concerning
the efficiency of the approach discussed in Chapter 5 and the quality of the diffusion
model discussed in Chapter 6 refer to networks that exhibit network structures exactly
as in Barabási et al. (2000), Dorogovtsev and Mendes (2002) or Watts and Strogatz
(1998). The diffusion model we proposed in Chapter 6 is based on assumptions we
consider reasonable but could not verify in the scope of this work. Additionally, to
provide comparable starting conditions for the diffusion processes in the three different
network models, we initially activated the top one percent most influential neighbors of
the most influential vertices in each network. This may not accurately reflect realistic
starting conditions for a diffusion process. Furthermore, the threshold model according
to Granovetter (1978) and the restrictions we set on the threshold for each vertex we
used for our approach in Chapter 5 to simulate the spread of an attribute in a network
might not be the best approximation of real-world networks.
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Future Work

In this chapter we share our thoughts on future work regarding our approach to estimate
target vertex sets as well as our dynamic diffusion model. We suggest a set of experi-
ments that could be conducted to study the efficiency of our approach and suggest how
the efficiency of our algorithm might be improved. Furthermore, we propose a set of
experiments that could be conducted to investigate the validity of our dynamic diffusion
model and suggest ways to enhance and extend our model.

8.1 Estimating Target Vertex Sets Using Influential Neigh-

bors

In Chapter 5 we introduced a novel approach to estimate target vertex sets that, if
initially activated, cause an influence cascade that eventually activates the entire network
for networks in a threshold model with threshold Ti = 0 for each vertex vi ∈ V . Our
approach has proven to be a good candidate for estimating such target vertex sets. We
have shown that the approach consistently returns good results in scale-free networks and
fails to provide good results in small-world networks in which vertex degrees are normally
distributed. The exact nature of the relationship between the efficiency of our approach
and underlying network structures could not be revealed. We suggest that in future
work further experiments regarding this relationship could be conducted, such that it
becomes clearer why the approach does not perform well in small-world networks, or
generally, if and in what network configurations the approach that we propose is able to
find valuable estimates for target vertex sets. Particularly, the efficiency of our neighbor
approach in real-world networks could be evaluated. Moreover, we suggest to compare
the efficiency of our neighbor approach to approximation algorithms as introduced by
Kempe et al. (2015) and Goyal et al. (2010). Furthermore, we suggest that the neighbor
approach can be enhanced and extended by using additional and or different metrics
to select locally influential neighbors. Particularly, experiments with a degree discount
heuristic as introduced by Chen et al. (2009) might significantly improve our approach.
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8.2 Dynamic Diffusion Model

In Chapter 6 we introduced a new dynamic diffusion model to simulate the spread of
a social behavior in a network of interacting individuals. With this model, we tried to
map real-world social behavior into a diffusion model. The results of the experiments
we conducted neither support nor invalidate a hypothesis as proposed by Centola (2010)
and Centola and Baronchelli (2015) that diffusion processes profit from highly clustered
network structures. We suggest that in future work further experiments regarding the
relationship between the efficiency of a diffusion process and the clustering of a network
in our dynamic model could be conducted. Moreover, we suggest to conduct experiments
regarding the validity of the model we propose. Particularly, future work could investi-
gate whether a model like ours is able to accurately capture a real-world diffusion process
using real-world networks with real-world diffusion information. Furthermore, we sug-
gest that our dynamic diffusion model can be enhanced and extended using additional
parameters and or fine-tuning existing parameters.
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Conclusions

We investigated the majority illusion in social networks, a phenomenon discovered and
introduced by Lerman et al. (2015) that tricks individuals in a network into thinking
that something is common, when in reality, it is not. In Chapter 3, we discussed the
importance of disproportionate experiences caused by the illusion in the context of social
contagion. In Chapter 4, we have shown how the majority illusion can be quantified on
a network level as well as a vertex-centric level. In Chapter 5 we investigated how a mis-
perception such as the majority illusion can be exploited in order to artificially promote
the spread of a social behavior in a network of interacting individuals. We introduced an
approach to estimate target vertex sets that uses ideas from the friendship paradox, Feld
(1991), Christakis and Fowler (2010) and Garcia-Herranz et al. (2014). We have shown
that the approach we propose is able to find good estimates for target vertex sets with
comparably small effort. In scale-free networks that exhibit structures as described by
Barabási et al. (2000) and Dorogovtsev and Mendes (2002), the approach consistently
out-performs a highest-degree approach, in which high-degree vertices are selected as
target vertices. In small-world networks that exhibit structures as described by Watts
and Strogatz (1998) and in which vertex degrees are normally distributed, the approach
that we propose returns target vertex sets which are, on average, twice the size of the
target vertex sets retrieved with a highest-degree approach. A relationship between
the vertex degree distribution and the efficiency of our approach for a given network is
suspected, but could not be shown. We think that the proposal we gave to estimate
target vertex sets has introduced an approach that has proven itself a good candidate to
estimate valuable target vertex sets with comparably small effort. Nevertheless, the ap-
proach requires further investigation with real-world networks as well as other networks
that exhibit various other structures, to be able to finally conclude whether it is capable
of performing with the same quality as approximation algorithms that were introduced
by Kempe et al. (2015), Goyal et al. (2010) and Chen et al. (2009). In Chapter 6 we
introduced an alternative dynamic diffusion model to simulate the spread of a social
behavior in a network of interacting individuals. Our model incorporates assumptions
about human behavior in the real world and considers the time dimension. In our model
we were unable to confirm a relationship between the extent and speed at which a so-
cial behavior spreads and the degree of clustering as suggested by Centola (2010) and
Centola and Baronchelli (2015). But we were also unable to disprove this claim in our
diffusion model. With our diffusion model we were able to capture some of the behavior
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that we could expect from real-world human interaction in the context of social con-
tagion. Nevertheless, the parameters we introduce and the model were not thoroughly
evaluated with regards to the quality of the diffusion process with real-world data and
thus, the accuracy of the model is unknown. We think that this thesis provides valuable
scientific contributions in the field of influence maximization in the context of network
phenomena such as the majority illusion.
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Appendix

A.1 Information About Relative Target Vertex Set Sizes

Tables A.1, A.2 and A.3 show the metrics we mentioned in Section 5.3.3 for the relative
target vertex set sizes we calculated from applying the neighbor approach and highest-
degree approach to the networks we generated.

Neighbor Approach Highest Degree Approach Performance Measure

Minimum 0.1297 0.1447 0.8176
1st Quantile 0.1415 0.1640 0.8572
Median 0.1437 0.1669 0.8626
Mean 0.1439 0.1668 0.8627
3rd Quantile 0.1459 0.1696 0.8688
Maximum 0.1557 0.1826 0.8966

Table A.1: Relative target vertex set size metrics and performance measure metrics for
neighbor approach and for highest-degree approach in BA-networks (Barabási
et al., 2000)

Neighbor Approach Highest Degree Approach Performance Measure

Minimum 0.1563 0.1246 0.8125
1st Quantile 0.1643 0.1911 0.8333
Median 0.1664 0.1959 0.8444
Mean 0.1661 0.1933 0.8649
3rd Quantile 0.1675 0.1995 0.8617
Maximum 0.1735 0.2062 1.3540

Table A.2: Relative target vertex set size metrics and performance measure for neighbor
approach and for highest-degree approach in DM-networks (Dorogovtsev &
Mendes, 2002)
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Neighbor Approach Highest Degree Approach Performance Measure

Minimum 0.1800 0.0100 0.4247
1st Quantile 0.3389 0.1729 1.2860
Median 0.4100 0.2500 1.6310
Mean 0.3863 0.2475 1.8610
3rd Quantile 0.4400 0.3150 1.9090
Maximum 0.4817 0.6475 24.0000

Table A.3: Relative target vertex set size metrics and performance measure for neighbor
approach and for highest-degree approach in WS-networks (Watts & Stro-
gatz, 1998)

A.2 Information About Diffusion Coverages

Table A.4 shows metrics for the diffusion coverages we retrieved with simulating the
spread of an attribute in a network in the dynamic diffusion model we introduced in
Chapter 6. These are the metrics we presented in Section 6.3.

BA-Networks DM-Networks WS-Networks

Minimum 1.042 1.133 1.023
1st Quantile 1.108 1.248 1.057
Median 1.148 1.275 1.075
Mean 1.145 1.276 1.111
3rd Quantile 1.175 1.307 1.126
Maximum 1.247 1.365 1.574

Table A.4: Diffusion coverage metrics for BA-, DM- and WS-networks (Barabási et al.,
2000; Dorogovtsev & Mendes, 2002; Watts & Strogatz, 1998)
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