
Bachelor Thesis
September 27, 2017

Continuous Web
Performance
Engineering

An industrial case study on end-user load
testing

Lukas Bösch
of Wangen, Schweiz (10-719-557)

supervised by
Prof. Dr. Harald C. Gall

Christoph Laaber

software evolution & architecture lab

Bachelor Thesis

Continuous Web
Performance
Engineering

An industrial case study on end-user load
testing

Lukas Bösch

software evolution & architecture lab

Bachelor Thesis

Author: Lukas Bösch, lukas.boesch90@gmail.com

Project period: 01.04.2017 - 01.10.2017

Software Evolution & Architecture Lab
Department of Informatics, University of Zurich

Acknowledgements

It has been a long time since the start of this thesis. During the time period working on it I
have learned a lot about scientific research and performance engineering. However without the
involvement of many other people I would not be where I am right now.

At first I want to thank my colleagues from the performance engineering team in the finan-
cial institution. They gave me a lot of valuable input in the field of performance engineering
and load testing. Especially Frank and Josef supported me during the creation of this thesis with
their practical experience in this field. I also got valuable linguistical feedback from Johnny and
Svenja. Many thanks go to my supervisors from the university and the company.

Last but not least I want to thank my supervisor Christoph Laaber who gave me valuable
input to the scientific research of performance engineering. He also helped me creating this
document with his academic experience.

Thanks a lot to all of you!

Abstract

The evolution of software development methodologies affects all parties involved. Shifting
from long-iterative, big bang models to continuous, agile methodologies leads to different chal-
lenges, advantages and disadvantages. This thesis focuses on performance engineering in a
continuous development methodology. Therefore a case study is conducted in a financial in-
stitution where this change is ongoing. The process of end-user load testing on the browser
API is presented. It is analysed in what extent it is possible to integrate it in the continuous
methodology. Opportunities to automate different steps are explicitly looked out for in order
to further increase the efficiency of the load testing process as the main challenge faced is the
closer time restriction. At the end a quantitative evaluation is done based on the conducted case
study. The previous approach will be compared to the presented approach. The evaluation of
the case study shows that the presented approach costs less than the previous approach.

Zusammenfassung

Eine Veränderung des Softwareentwicklungsprozesses hat Einfluss auf alle involvierten Parteien.
Der Wechsel von lang-iterativen, ’big bang’ Modellen zu kontinuierlichen, agilen Methoden
bringt verschiedene Herausforderungen sowie Vor- und Nachteile mit sich. Diese Bachelorar-
beit betrachtet die Sicht eines Performance Engineers als Teil innerhalb dieses Prozesswechsels.
Veranschaulicht wird diese Sicht in einer Fallstudie bei einer finanziellen Institution durchge-
führt. Der bisher verwendete Prozess des Lasttestens wird im Bezug auf die Aufgabenstellung
präsentiert. Des weiteren wird analysiert, in welchem Ausmass es möglich ist, diesen Prozess
in eine kontinuierliche Methodik zu integrieren. Möglichkeiten zur Automatisierung einzelner
Schritte dieses Prozesses werden aufgezeigt, um der engeren Zeitrestriktion gerecht zu werden.
Am Schluss wird eine quantitative Evaluation, welche auf der Fallstudie basiert, durchgeführt.
Der bisherige Ansatz wird mit dem präsentierten verglichen mit dem Ergebnis, dass der präsen-
tierte Ansatz in der Fallstudie besser ist als der bisherige.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Research Questions . 3
1.3 Scope . 3
1.4 Background of the Financial Institution . 4
1.5 Structure of the Thesis . 5

2 Current State-of-the-Art Performance Engineering 7
2.1 Scientific Research . 7
2.2 Industrial Best-Practices . 8
2.3 Comparison of the current Industry Best-Practices and the Scientific Research . . 9
2.4 Performance Testing in the Financial Institution 10

3 Related Work about Performance Engineering 13
3.1 Application Performance Management . 13
3.2 GUI Test Case Implementation Strategies . 14
3.3 Performance Evaluation . 15

3.3.1 Benchmarking . 15
3.3.2 Profiling . 15

3.4 Load Testing . 16
3.4.1 Automatic Detection of Performance Incidents 16
3.4.2 Detecting Software Performance Anti-Patterns 16
3.4.3 Predicting Performance with respective models 17

3.5 Different challenges in Web Performance . 17
3.5.1 Latency . 18
3.5.2 Throughput . 18
3.5.3 Scalability . 18
3.5.4 JavaScript . 19

4 Approach 21
4.1 Prerequisites of this approach . 21
4.2 Design of the Load Test . 22

4.2.1 Use Case Definition . 22
4.2.2 Types of Load Patterns . 23
4.2.3 Selection of Load Patterns . 25
4.2.4 Workload Calculation . 25

viii Contents

4.3 Test Implementation . 26
4.3.1 Using Functional Test Implementations as Performance Test Cases 26
4.3.2 Efficiency and Maintainability of the Test Implementation 27

4.4 Client-Side Performance Metrics . 32
4.5 Server-Side Performance Metrics . 33
4.6 Observation and Analysis of Incidents . 35

5 Case Study: Integrated Advisory Portal 39
5.1 Overview . 39

5.1.1 Architecture . 39
5.1.2 Performance Aspects . 40

5.2 Test plan . 40
5.2.1 Use Case Definition and Implementation 40
5.2.2 Test Infrastructure . 40
5.2.3 Workload Calculation . 40
5.2.4 Test Execution Schedule . 42
5.2.5 Exceptional Workloads . 43

5.3 Results . 43
5.3.1 Client-Side Metrics . 43
5.3.2 Server-Side Metrics . 45
5.3.3 Analysis of the WAN-Bridge Benchmark 48
5.3.4 Incidents identified . 49

6 Evaluation 53
6.1 Quantitative Evaluation . 53

6.1.1 Methodology . 53
6.1.2 Number of Tested Days and Executions . 53
6.1.3 Error Cost Calculation . 55

6.2 Discussion . 57
6.2.1 Number of Testing Days and Executions 57
6.2.2 Error Cost Calculation . 57
6.2.3 Pitfalls of Graphical User Interface (GUI) Test Implementation 57

7 Closing Remarks 59
7.1 Research Question 1 . 59
7.2 Research Question 2 . 59
7.3 Threats to Validity . 61

8 Glossary 63

Contents ix

List of Figures
1.1 SCRUM Sprint Overview . 4

2.1 Magic Quadrant for APM suites 2016 . 8
2.2 Current Testactivities in the Development Process 11
2.3 Exemplary Release Plan of a Trimestrial Release 12

4.1 Increasing Load . 24
4.2 Regular Load . 24
4.3 DOM tree example parent-child . 29
4.4 DOM tree sibling example . 30
4.5 DOM tree search step 1 and 2 . 31
4.6 DOM tree after the merge of the nodes with distance 1 to the target node 31
4.7 Formal Analysis of a Response Time observed by the End-User 37

5.1 Testing Infrastructure Setup . 41
5.2 Median Response Times for the Daily Regular Load Tests 44
5.3 Transaction Flow Overview for a Load Test . 46
5.4 Example of Execution Trace Analysis . 47
5.5 Data Storage Example . 48
5.6 Memory Example . 49
5.7 Average Response Time Chart WAN-Bridge Test 50

6.1 Availability of the System under Test (SuT) between June and September 2017 . . 54

7.1 Testactivities with this Approach . 60

List of Tables
4.1 DOM example properties . 28
4.2 DOM example class vs. id . 29

5.1 Latency Settings for the WAN-Bridge Test . 49

6.1 Testing Days Comparison between the Approaches 54
6.2 Software Cost Factors from the Nasa Technical Report [60] 56

List of Listings
4.1 Example Time Measurement in the Test Script . 32

x Contents

Chapter 1

Introduction

The motivation for this thesis is based largely on the widespread adaption of agile software
development methodologies across all industries. The shift from big bang approaches like the
waterfall model to faster iterative models like Scrum is challenging all involved parties from
the developers to the testers and finally to operations [46]. Also there is a shift in project or-
ganization as the developer, tester and operation responsible is not strictly separated anymore.
Continuous integration requires a fast flow of information between the parties hence moving
closer to each other to minimize communication overhead.

This shift also influences the whole testing process. There is the need to test and deliver
results as fast as possible to reduce the time-to-market. The shift to an iterative approach makes
the interpretation of test results of software functionality fairly straight-forward, yet the de-
sign and analysis of performance testing poses new challenges. Load testing requires more
resources to execute as there is the need to have a dedicated environment to deliver significant
and accurate results. The test design decision can differ for each individual application and is
highly dependent on the non-functional requirements of the application. In order to verify the
non-functional requirements, the test implementation is needed on the browser’s GUI level to
measure true end-user response times including the browser processing time.

The automation of load testing activities includes test implementation, execution and analy-
sis. This thesis tries to deliver possible solutions to integrate performance tests in an agile, con-
tinuous web development process. The focus for the test implementation is laid on client-based
scripting on the GUI level in this thesis. To evaluate the effectiveness of the solutions provided
a case study is conducted in one project. This happens in a financial institution where over 70
% of the performance tests are executed through the browser API and therefore implemented
on the GUI level.

1.1 Motivation
Motivating Example. John Doe is a performance engineer in a financial institution. He re-
ceives a load test request from an application inside the financial institution. The developing
team of the application uses the waterfall model. They are engineering for two and a half
months and want to assure their software’s quality. This should happen in the last two weeks
before they plan to go live during the user acceptance test stage. John receives the use case and
respective test data and immediately starts planning and implementing his load test. After he
implemented the end-user use case on the GUI two days have already passed. He defines a
test plan according to the time he is given for testing. He plans to execute three different test

2 Chapter 1. Introduction

runs with different workload definitions and execution duration. So from the third to the fifth
day he is executing his planned test runs and analyzes the captured metrics. John detects that
the throughput was not reached in all of the test runs and the login response time was longer
than expected. Through further analysis of these incidents he discovers an implementation
error leading to the abortion of several use case executions. In the server side monitoring he
also identifies a long running query on the database. He reports this incident to the develop-
ing team. On the eighth day, three days before the release, he can retest as the incidents were
reported as solved. The retest and the analysis are finished on the tenth day and last day of test-
ing. The beforehand identified incidents were retested successfully. However through reaching
the expected throughput for the test runs, John further identifies a deadlock exception during
one test execution. But there is no more time for fixing or retesting this incident according to the
release plan. So the developing team now has two possibilities. They can delay the go live to
fix and retest the occurred deadlock exception. The second option is to accept that these dead-
lock exceptions will occur and go live according to the release plan. Either of these options is
optimal.

Now imagine the developing team would shift to the SCRUM framework [56] instead of the
waterfall model. What changes would apply to John Doe? Could he still implement his load
tests in the same way? These two questions are put together into research questions 1 in 1.2.
Further what challenges does he face? Are there any advantages or disadvantages compared to
the load testing with the previous approach? These questions are reflected in research question
2 in 1.2.

Motivating Research. In web applications in general the psychological aspect is an impor-
tant driver in optimizing performance. According to Nielsen [47] “The numbers about human
perception and response times have been consistent for more than 45 years.” He uses the term
response time which equals the time a user waits after an action until he can interact with the
software again. According to his research the illusion of an instant response time is below 0.1
seconds. A response time between 0.1 and 1 second load times keep our thoughts flawless. At
response times from 1 to 10 seconds we can barely keep our attention. Any further increase of
response time leads to complete loss of our attention. This aspect is especially critical in daily
used business applications where employees need to keep their focus on the job at hand which
is nearly impossible with page load times that are higher than 1 second or even 10 seconds.
This is not only influencing their current speed of work but also their long-term happiness and
mental fatigue with the workplace and firm.

One could argue that during long load times you can perform other tasks. Czerwinski [18]
in her study on workplace interruptions refutes that this is really helping productivity as the
switching of tasks is psychologically exhausting and for every iteration the time to resume the
original task increases disproportionately also decreasing motivation and developing mental
fatigue. Another study was performed by Züger et al. [79] where they evaluated the disrup-
tiveness of knowledge workers.

The behaviour of our mind is not the only aspect that influences the perception of response
times. The rising expectations of users in the past decade also indicates that more focus needs
to be laid on software performance. This is shown through two different studies Akamai [4]
from 2006 stated that the average online shopper expected pages to load in 4 seconds or less.
The second and more recent one from 2014 [26] states that 49 % of users expect pages to load in
2 seconds or less.

Slow Performance, which includes load times and response times, does not only have an im-
pact on users perception and mental health it can also lead to a permanent abandonment of the
Website. As Akamai [3] states slow performance even leads to a higher number of permanent

1.2 Research Questions 3

abandonments than temporary outages.
Performance not only impacts the user’s behaviour and perception but also impacts appli-

cations which gain revenue on sites. Every 100ms of latency on amazon.com costs them 1%
sales. The duration to load google results also result in a drop of traffic: "Half a second delay
caused a 20% drop in traffic. Half a second delay killed user satisfaction." [40]. Google also
correlated latency with the number of searches per user which decreases by 0.2% to 0.6% with
a web search latency of 100 to 400ms. [12] Performance can even impact the download rate of a
browser as Mozilla showed in their statistic. [59].

1.2 Research Questions
Driven by the previously elicited problem statements, this thesis covers two research questions:

Research Question 1: To what extent is it possible to integrate the process of perfor-
mance testing focusing on browser Application Programming Interface (API) test imple-
mentation in a development process which follows the SCRUM framework?

This question covers an explanation of the current process of load and performance testing.
It asks what changes are necessary to apply when integrating it in an early stage of the devel-
opment process. The process will be integrated in a project inside the financial institution and
shown as a case study. A focus in answering this question will be laid on the analysis of the
load tests including the path to identify the root cause of performance incidents.

Research Question 2: What are the challenges, advantages and disadvantages of an
earlier integration of load and performance testing?

A general analysis of this approach and a comparison to the current load testing process will
be performed in order to answer this question. The main challenge is the time constraint as the
time window to execute and analyse load and performance tests is dependent on the release
cycles. Therefore the process needs to be optimized time- and effort-wise. Opportunities in
automating single steps of the load testing process will be identified and presented to conquer
the time constraint for the continuous testing approach.

1.3 Scope
The emphasis in this thesis is laid on the load and performance test process with the browser
API test implementation. The reason of the focus on browser API test implementation lies in
the completeness of the test. It is able to measure the true end-to-end performance which will
be observed by the user including JavaScript executions on the DOM-tree and rendering times.
It also enables the complete analysis of measured slow response times from the client. This

4 Chapter 1. Introduction

Figure 1.1: SCRUM Sprint Overview
[56]

includes the measurement of true asynchronous requests which is difficult to implement with a
protocol based test over HTTP.

The thesis covers the whole process including the prerequisites, design, client-side metrics,
server-side metrics and the analysis of a browser API load and performance test. The main idea
is to implement it in the agile development framework SCRUM where potentially shippable
product increments are deployed after each sprint as depicted in figure 1.1 At the end of a
sprint the potentially shippable product is not necessarily released. It is an increment that is
fully functional making it ready for browser API performance tests.

During the description of the process suggestions for optimizing the single steps are pre-
sented to further decrease the overall effort. This will also be further shown and evaluated
through a case study. In the case study a browser API load test is implemented in a project
within a financial company. This project follows the SCRUM framework with potentially ship-
pable product increments created every two weeks.

1.4 Background of the Financial Institution
The case study is taken in a financial institution which both develops their own software for
internal usage, as well as purchasing packaged software. The author of this thesis is employed
as a part time employee during the period of time where the case study was taken. This section
gives a quick overview of the financial institution. The financial institution is globally present

1.5 Structure of the Thesis 5

with the headquarter located in Zurich. Amongst others, offices are located in Frankfurt, Hong
Kong, London, Singapore, Tokyo and Montevideo. The number of employees rapidly increased
during the last decade. Until the creation of this thesis the company employs over 6000 people.
70 % of the in-house applications are using a browser interface which is an additional driver of
this thesis to focus on web performance testing.

1.5 Structure of the Thesis
This thesis will be structured in six chapters:

1. Introduction: The introduction contains the main motivations and describes the research
questions.

2. Related Work: This chapter gives an overview of the recently performed research in the
field of performance engineering. It covers the whole process of load testing, from test
implementation to the analysis, different challenges in web performance and research on
the usage of Application Performance Management (APM) tools.

3. Approach in this Thesis: This thesis’ general approach is shown. An in-depth view of the
requirements, test implementation, test planning, test execution and the analysis will be
given.

4. Case Study: The approach will be integrated in a project at the company. This chapter
shows the complete implementation and results of the implemented tests will be pre-
sented focusing on the analysis and issue identification.

5. Evaluation: An evaluation of this approach based on the case study provided will be
taken.

6. Closing Remarks: In the final chapter a conclusion of this approach will be drawn and
future research questions posed.

Chapter 2

Current State-of-the-Art
Performance Engineering

In this chapter I will provide the current state-of-the-art performance engineering activities of
the scientific community, the industrial standards and the current standard process in the com-
pany. The focus in these evaluations is laid towards the process and its single steps of the load
and performance testing. Therefore excluding scientific research of browser API testing as this
is specific for the conducted case study. At the end, a comparison of the scientific research and
the industrial processes is done based on the expositions made in the first two sections.

2.1 Scientific Research
This section delivers an overview of the scientific research that is related to this thesis. The
findings are then used to compare the scientific research with the industrial best-practices. The
scientific research is further presented in chapter 3.

Merriam-Webster Online Dictionary delivers a definition of the term science [19]: "knowl-
edge or a system of knowledge covering general truths or the operation of general laws es-
pecially as obtained and tested through scientific method". As per this definition, science is a
"state of knowing", gaining knowledge through observation and verify the gained knowledge
with scientific methods. In the scientific research of performance engineering and information
technology in general there additionally is the delivery of possible solutions to these observa-
tions. Further examples of scientific research is given in the continuation of this section.

Research is made on creating performance models to try to predict a system’s performance
based on architectural design [65] or load test results [37] [32].

Effort is also spent on identifying typical performance anti-patterns and their root cause [50]
[73] [65]. They deliver valid solutions in identifying these common anti-patterns and also help
in finding the root cause of these issues. These common anti-patterns include Blob, Circuitous
Treasure Hunt, Empty Semi Trucks, Tower of Babel, One-Lane Bridge, Excessive Dynamic Al-
location, Traffic Jam, The Ramp and More is Less.

Oftentimes, scientific research focuses on identifying isolated performance problems and
their root cause but there is also research in the field of automatic analysis of load test results
and the automatic modification of load test results [32]. Driven by industrial requirements there
is also research on current APM tools and the automatic identification of performance problems
according to the data collected by APM tools such as AppDynamics [6] or DynaTrace [21] [5]
[35] [1].

8 Chapter 2. Current State-of-the-Art Performance Engineering

Figure 2.1: Magic Quadrant for APM suites 2016
[28]

Research on GUI-level testing strategies is also done by the scientific community either on
automating GUI test scripts [52] or by bringing the load test design closer to real usage by
examining real user thinktimes [53].

2.2 Industrial Best-Practices
The focus in this section will be laid towards the industrial best practices for load and perfor-
mance testing.

To identify the current industry standards regarding tooling support we can take a look on
the currently successful vendors of standard performance testing software and APM. Assuming
that the demands of the market meet the supplies of the vendors according to the supply and
demand principle. In order to achieve that we take a look on the Gartner Magic Quadrant [27]
of 2016 about APM which is depicted in figure 2.1.

The fact that there exists an own magic quadrant for APM tools shows the importance of per-
formance monitoring in the industry. This includes the monitoring of productive environments
as well as the analysis of load testing activities during pre-production phases. This versatility
in usage and the unused potential are other reasons why APM tools relish increasing attention
in the industry and define a performance monitoring standard.

As software in general is a supportive service for the industry there exists the concept of
service-level agreement (SLA) [58] to define quality metrics that the software needs to fulfill.
In order to validate SLA’s before deploying a software, load and performance testing can be

2.3 Comparison of the current Industry Best-Practices and the Scientific Research 9

performed.
The goal is not laid towards identifying certain performance problems. Companies want to

assure that the application can cope with the load it has to deal with. In order to achieve this it
is important that the performance test come as close to the productive usage of an application
as possible by implementing real end-user use cases on the browser interface as tests. As reli-
ably as possible one is able to make a statement and a prediction on how the application will
perform including back-end and front-end performance, especially including rendering times
and asynchronous requests.

2.3 Comparison of the current Industry Best-Practices
and the Scientific Research

As the industry is practice focused on the utilization of applications and science is more general
(or theoretical), Merriam-Webster delivers another definition of science linking it with practice
[19]: "a system or method reconciling practical ends with scientific laws". This definition states
that science can also be defined as the formal explanation of practical ends. For performance
engineering, scientific research is able to observe the practical use, analyse and formalize it and
then deliver possible solutions.

In other words, research is able to deliver results on different requirements that the industry
poses acting as a problem solving instance. An example for this can be found on the research
spent in APMs as there is scientific effort spent in the generalisation of the execution trace which
is done by different APMs. If there is a general representation of execution stack traces it will
be possible to automate the analysis of them [48].

For further comparison the scientific research presented in this thesis is compared to the
solutions provided by an APM provider. The scientific research oftentimes delivers solutions
to single problems. The APM solution is able to gather monitoring data of one application out
of the box. Therefore it is possible to further identify performance problems based on the data
collected. Since this data is collected within one data center for different tiers the automatic
analysis can even include monitoring data from other tiers. On the other hand scientific re-
search does not deliver this kind of overview and consideration of multi-tier analysis. For large
multi-tier systems an APM is a very useful tool to identify performance incidents and help in
analyzing their root cause fast. However for optimizing single tiers, like a database, scientific,
open-source solutions are the better option. Also APM solutions are very expensive and there-
fore present a good tool for companies who can afford them. Another pitfall of APM solutions
are the non-trivial usage as it offers such a vast field of functionality and data. Therefore it is
hard for a developer to effectively use an APM to find what he desires without any instructions.

As a summary APM is able to give an overview of large software systems. When the limits
are reached and the incident is categorized, scientific research helps in optimizing incidents or
single tiers. APMs are not yet ready to be used effectively by a developer whereas scientific re-
search delivers solutions which can be used directly by integrating performance metrics in the
development environment. An example can be found by Cito et al. [15] where they made per-
formance metrics accessible through an eclipse [25] plugin. In practice there can occur simple
slips which also need to be identified. For example if the log level ’debug’ is deployed the CPU
usage is heavily increased for each transaction. These kind of problems are rarely dealt with in
scientific research but are problems faced in practice which need to be identified and solved.

10 Chapter 2. Current State-of-the-Art Performance Engineering

2.4 Performance Testing in the Financial Institu-
tion

In this financial company there are already several testing activities integrated in the project
team. Performance testing is not part of the development process in project teams yet and is
performed by a separate team independent of the project team. The performance testing is
always the last stage where it is already very hard to fix some performance issues. Through
the presented approach we want to deliver a solution to take a step to the desired state where
performance testing activities are included in the development process. This has several key ad-
vantages. The developing team will be able to detect performance issues closer to the point of
time where it was introduced. The developer is then able to better remember his own thoughts
during the development of the code which caused the performance incident in the first place.
Assuming that the performance incident is due to an erroneous design decision the design can
be rethought at a point in time where it is quite easy to redesign the software. Zimran [78]
states:"The earlier the detection of performance problems or dependencies the less expensive
they are to fix.". Amongst others this can include design patterns chosen or database table de-
sign decisions. Especially database table design can influence performance significantly if the
size and growth of the tables during the execution times are not considered. If such an issue
is detected close to the point of development the redesign can happen with much less refac-
toring work than if it was discovered when the functionality of the application is completely
developed.

Functional end-user test cases and unit tests are common practice but separated from per-
formance testing activities. Although test cases that could be used for performance testing
are already available, dedicated use cases for performance tests are developed separately and
therefore this test development work is duplicated. This is historically grown as performance
testing started out as fire fighting activities after end-user complaints during production. By
now performance testing already shifted left in the software life-cycle (from after deployment
to pre-deployment). This approach wants to further shift-left and enable performance testing
in a developing phase. As the progression is by now with the consideration of continuous
deployment and development in the future these phases will move closer to each other and
most probably to a point where they can’t strictly be distinguished. An overview of the cur-
rent testactivities in the development phase is shown in figure 2.2. It shows the amount of test
activities conducted in each phase of the software life-cycle. Additionally, the different testing
environments are shown in the boxes below the life-cycle phases. It is visible that the current
performance test activities are the highest during the test phase of the realization. Especially
performance test activities are started at the UAT environment during the test phase.

Example of the Previous Approach. In non-agile developing teams the company standard
release plan contains four releases per year. An exemplary release plan is found in figure 2.3.
During these three month cycles of development the performance testing phase has a duration
of two weeks in the UAT phase. This includes the test design, implementation, execution and
analysis. As we can already see there is more time in the system test phase where no perfor-
mance testing is happening as of now. As depicted in section 1.3 this thesis tries to apply to an
agile development process and utilize the potentially shippable product increment for testing
every two weeks. The different phases in this exemplary release plan happen in every cycle
depicted in figure 1.1. The test environments are built up and maintained throughout the de-
velopment process making such a release plan obsolete. This fact also enables the continuous
testing throughout the development process. In other words this shift-left of testing activities is

2.4 Performance Testing in the Financial Institution 11

Figure 2.2: Current Testactivities in the Development Process

enabled by the change of the development process. This fact theoretically answers the research
question 1 in section 1.2. The practical evaluation in the case study is done in subsection 6.1.2.

12 Chapter 2. Current State-of-the-Art Performance Engineering

Fi
gu

re
2.

3:
E

xe
m

pl
ar

y
R

el
ea

se
P

la
n

of
a

Tr
im

es
tr

ia
lR

el
ea

se

Chapter 3

Related Work about
Performance Engineering

This chapter provides a brief overview of current scientific research topics, should give an
overview on the challenges faced for this thesis and present additions to the approach taken
in this thesis. Starting with the APM because it is mentioned and referred to in the subsequent
sections. The subsequent sections cover the different steps of the performance test process: Im-
plementation, performance evaluation, load test. Finally different current challenges in web
performance are discussed as this the thesis focuses on web performance load testing.

3.1 Application Performance Management
This section covers scientific related work about the use of APMs. Since this approach uses an
APM solution for the server-side analysis they are highly relevant for this thesis. For large-
scale-systems and web applications APM Tools are important tools to ensure software quality
and monitor the application during the operations phase. Of course they can also be used to
analyse load test results prior to a release as a load test just tries to simulate the productive
phase of a system. Therefore oftentimes the same methods as research presents for the analysis
of APM data during operations phase can be used.

The effectiveness of APM Tools (AppDynamics [6], New Relic [54], Dynatrace [21] and
Kieker [39]) is evaluated by Ahmed et al. [1] with sample java applications. The test work-
load stayed the same but the code between the benchmarks was modified with performance
regressions. They evaluated which APM Tool is able to detect and find the root cause of the
previously inserted regression. The APM Tools were able to detect the performance regressions
but identifying the root cause was challenging and time consuming. Especially when mining a
large data set they identified the lack of common APM tools of manually extending their func-
tionality individually. In our case of load testing business applications with a limited number
of users this is only a minor issue in both testing/development phase and production phase.

Since there are a lot of stakeholders involved in a software development process especially
in large companies there has been research on how APM data can be made more accessible
to people with little to no technical background or knowledge. Heger et al. [34] state: "APM
is not a purely technical topic anymore, as there is also a need for support of business activi-
ties and vice versa". Walter et al. [71] present research in this direction. They have the vision
of declarative performance engineering, where the user can address his concerns with a high
level language, which then automatically translates to the respective methods, techniques and

14 Chapter 3. Related Work about Performance Engineering

tools of the established performance engineering. This requires a high grade of automation of
performance engineering activities which is a similar goal that this thesis tries to achieve.

Research focusing on the analysis of APM data is performed by Angerstein et al. [5]. They
focus on large enterprise systems and a very high amount of transactions monitored. There-
fore there is a need for decreasing the amount of transactions to be analysed by a performance
engineer. Angerstein et al. identified that oftentimes there are similar problems with similar
or even the same root cause. For that matter, they try to group the performance incidents by
aggregating them, for example with the k-means algorithm, making the analysis more efficient
as the number of problems decrease.

An approach in the automatic analysis of APM data also deliver Heger et al. [35] with their
collaborative project diagnoseIT. They try to improve the usage of APM solutions by automat-
ing the performance problem detection as the manual process is error-prone and very time-
consuming. The focus is also laid on the identification of the root cause of performance prob-
lems.

3.2 GUI Test Case Implementation Strategies
This section covers different test implementation strategies than the one used in this thesis.
Therefore they deliver either an addition to this approach or an extension for deeper, more
specialized root cause analysis. Pradel et al. [52] present an interesting approach of automatic
generation of GUI-Level tests. Based on JavaScript events an inferred finite state model of the
user interface is used. The states correspond to a specific view which contains a finite number
of JavaScript events that will switch the view and put it in another state. The algorithm then
tries to identify tuples of events that slow each other down with each successive execution by
randomly triggering events.

A problem still lies in the definition of the states as they are only identified on the docu-
ment title and URL. As there are a lot of applications in the firm where the triggered events
don’t change the document title or the URL the algorithm couldn’t identify a different state af-
ter triggering an event. Another possible problem is the complexity of the first algorithm which
increases quadratically with events. Although the number of events is finite, there can be ap-
plications with such a large number of events that the algorithm’s execution time significantly
increases.

Ermuth et al. [23] present an interesting approach by combining micro-events such as clicks
or mouse overs and combining them to macro-events. Therefore they deliver an extension of
the above mentioned approach and optimize it by enabling the algorithm to cover more events.

The previously mentioned Automated GUI test case implementations have the goal to eval-
uate responsiveness problems and can be executed in addition to the approach taken in this
thesis to further increase the software’s quality and performance.

Another approach is the identification of workload dependent performance bottlenecks (WDPB)
presented by Xiao et al. [76]. With the approach in this thesis, the problem of WDPBs is only
covered for the number of users through the peak workload definition. The approach in this
thesis doesn’t consider single user workload-dependent issues during the execution of the use
cases. Therefore the approach from Xiao et al. can be used as an addition.

Implementing realistic User Behaviour in the Load Test Script. Research is also performed
on the thinktimes of performance test scripts. Ramakrishnan et al. [53] state that the need to
implement the test cases with realistic thinktimes as the user needs a different amount of time
for different actions during his visit on a webpage. Sometimes he needs to check his input in

3.3 Performance Evaluation 15

a text file or he needs to search different entries in a list. To reproduce that performance test
scripts use thinktimes between different user actions. Ramikrishnan et al. offer an algorithm
to evaluate real user thinktimes based on webserver logs. If there is an APM tool available
it would be possible to also extract these thinktimes automatically from it through the REST
API. This is definitely nice to have for the performance test to generate more realistic load and
possibly identify different bottlenecks than by normally or randomly distributed thinktimes. In
this case study normally distributed thinktimes were used because of the lack of a productive
environment.

3.3 Performance Evaluation
This section covers different aspects of performance evaluation excluding load testing which
will be covered in the section 3.4. However it includes two techniques which help in optimizing
software quality. Benchmarking can be used for subsequent load test executions and testing
different global locations like in subsection 5.2.5 or testing different application configurations.
The profiling technique used in this load testing approach is byte-code instrumentation from
the APM therefore making it related to this thesis.

3.3.1 Benchmarking
A possible solution for performance regression testing would be the one provided by Heger,
Happe and Farahbod [33]. The ability to identify possible regressions according to builds and
methods would be really nice cost effective feedback. Modern APM solutions already provide
an evaluation of the method, which is consuming most of the time and a possibility to com-
pare different executions of the same method. Heger et al.’s method is closer to the developer
which is also important as it follows the DevOps paradigm and delivers operations data to the
developer. It is an addition to the approach in this thesis where we measure synthetic end-user
response times and identify issues in the APM.

In the case study a geographic location benchmark is executed and analysed in subsection
5.3.3. Automated benchmarks are also executed between the subsequent deployments of the
application through daily test executions to assess the relative performance between the possi-
bly shippable product increments. This is described in subsection 5.2.4 of the case study.

3.3.2 Profiling
Profiling in this approach is done by the APM through a byte-code instrumentation at the start
of the application and therefore the data will be used to identify the root cause of issues. It is
configurable, as it is possible to instrument particular methods or components of an application
deeper if needed by adding respective sensors.

Svogor [68] used execution time profiling and power consumption to determine, whether
CPU, GPU or FPGA is more efficient in the software components namely image filtering and
object detection.

Callan et al. [13] developed a profiling with zero overhead based on electromagnetic ema-
nations. No instrumentation is needed for their profiling computations but a lack of accuracy
is observed, in their example they profiled with 94% accuracy. The approach needs a time-
intensive training phase with instrumented and uninstrumented code to map the executions

16 Chapter 3. Related Work about Performance Engineering

through the electromagnetic emanations. The APM used in this approach has monitoring over-
head but the CPU consumed by the instrumentation is self-monitored to control the monitoring
activities.

3.4 Load Testing
Although load testing is a part of performance testing in section 3.3 it will be covered in a
separate section because it is an essential part of this thesis. In chapter 4 an entire load testing
process is presented. Load testing is used to verify a system’s capability of dealing with a certain
load pattern making it a useful instrument to evaluate software quality.

3.4.1 Automatic Detection of Performance Incidents
The automated detection of performance problems based on load test results delivers Jiang [37].
He uses the repository of load test results in order to verify functional correctness and evaluate
performance criteria automatically by generating respective models.

Grechanik et al. [32] created a dynamic load test approach, where they automatically modify
the input data based on the previous results and are then able to detect other performance
problems with the subsequent test executions. This is performed on GUI test cases created by
performance engineers. Their approach can automatically detect and, to a certain degree, isolate
performance problems. It is an extension to conventional load testing and focuses on different
sets of input data.

Walter et al. [70] give an approach to evaluate SLAs during different stages of the software
life cycle by validating them through model-based and measurement-based analysis.

3.4.2 Detecting Software Performance Anti-Patterns
There is research effort spent in the automatic detection of performance anti-patterns which
is related to the topic of this thesis as it delivers another approach in detecting performance
incidents in an early stage of the development. Peiris and Hill [50] present an approach of
classifying and identifying such performance anti-patterns by only using system performance
metrics, ignoring source code or application metrics. They achieve that with a non-intrusive
machine learning approach but they don’t mention the usage of an APM tool. If they would
include such an APM tool in their analysis, not only could they use system performance metrics
but also application metrics to a certain degree to further improve their approach.

Another approach in automatically detecting typial software performance anti-patterns de-
liver Wert, Happe and Happe [73]. They also require a test system and a usage profile and
use them to uncover performance problems including their root causes in Java-based three-tier
enterprise applications. They also create a "Performance Problem Hierarchy" to further clas-
sify the performance problems, which seem to be a common practice to minimize the effort of
identifying performance problems in large-scale-systems.

There are a few special techniques that focus on specific systems or applications to detect
performance antipatterns [65] [16] [17]. All these approaches deliver significant results for their
posed problems but don’t deliver a generic approach or only focus on identifying performance
antipatterns on an architectural level. However it is related to the topic of this thesis and deliv-
ers another solution in detecting performance incidents during the development phase.

3.5 Different challenges in Web Performance 17

3.4.3 Predicting Performance with respective models
Woodsite et al. [75] define two major performance engineering approaches:

1. Measurement-based performance engineering

2. Model-based performance engineering

This section shows related work about the model-based approach.
There are performance engineering research studies about predicting the software’s perfor-

mance on different workloads based on collected APM data. Instead of manually analysing the
system, these other approaches try to automatically generate a performance model or different
performance models and predict the applications capabilities and response times based load
test results. As Brebner [9] suggests, it is often useful to build multiple competing models to
validate their correctness. He also states that if there is not enough information to buid one
single "über" model it is possible to build multiple specialised models for different purposes.
In comparison to manually analysing, the automatic generation of performance models is more
efficient, both time and effort wise. It is also possible to calculate different kind of loads with the
same datasets, if this is necessary. If the load can reliably be estimated, this advantage doesn’t
carry weight. With load testing you can measure the end-users true response times for single
actions instead of only calculating the response time distribution. To summarize, load testing
delivers deeper insights but is less scalable in terms of time and effort. Load Testing can also be
used to verify the correctness of the predictions of the automatically generated models.

Brebner [10] presented 3 Projects where he tried to predict the response time distribution
and the maximum capacity of the applications. He uses the APM’s REST interface to extract
the collected data which are necessary to build the model. Currently there is no standard repre-
sentation of APM data and different vendors propose different representations, so this is a hard
task to generalize and automate. One downside is the smallest error rate, which can be pretty
high. Also the model’s complexity rapidly increases with a larger amount of transactions mon-
itored. Other problems also are the error rate of the load tests due to erroneous functionality.
That is a disadvantage compared to the manual analysis, where these errors can be ignored and
the analysis isn’t stopped.

A similar example deliver Willnecker et al. [74] with a concrete example. They integrated
Dynatrace in a Java EE application and generate a standard model (Palladio Component Mod-
els, PCM), which then can be analysed by existing simulation engines. In contrast to the previ-
ous examples, Willnecker et al. only create one model, which is error-prone in the case that it
has specific requirements to be met for creating the model. PCM [49] is an open source software
project, which provides the analysis of four quality dimensions (Performance, Reliability, Main-
tainability and Costs) based on input from the different developers. Research on this approach
is supported by the German Research Foundation (DFG), for example the short overview of
the PCM provided by Becker et al. [8]. In this paper the structure and the usage of the PCM
approach is further discussed and evaluated based on a case study.

3.5 Different challenges in Web Performance
This section shows current research in web performance testing and engineering. It gives an
overview on the current challenges and possible solutions to problems identified in web ap-
plications. The subsections are selected based on the challenges mainly faced in the financial
institution and the case study. For example bandwidth is excluded because for internal usage

18 Chapter 3. Related Work about Performance Engineering

there exist ensured bandwidth. Latency is further discussed in subsection 5.2.5. Throughput
is covered in section 4.4 and subsections 4.2.4 and 5.2.3. Scalability is not discussed deeply in
the approach but can be covered through the infrastructure monitoring discussed in subsec-
tion 4.5. Since the case study implements JavaScript in the front-end which causes performance
problems it is also included here and further discussed in subsection 5.3.4.

3.5.1 Latency
Since the company has offices spread around the world latency naturally becomes a problem.

In large-scale web applications, which should be accessible all around the world, there are
different challenges in performances and specifically in Latency. According to Sundaresan [62],
Latency is becoming a major performance bottleneck. The requirements on the user interfaces
are rising as those are becoming more and more important for the applications. There need to
be high quality pictures and nice page design which can lead to very high page sizes. If the page
size becomes bigger the impact of the latency is rising as these large files need to go through the
network. There are different ways to deal with large files e.g. enabling compression.

Another engineering aspect where the latency can become a bottleneck are the number of
messages sent through the network. The number of messages sent through the network also
have a correlation with the sizes of the files to be sent. Concerning performance engineering,
the number of messages sent has to be minimized as for every message sent, the doubled latency
(round-trip-time) has to be added to the end user’s response time.

3.5.2 Throughput
The problem of throughput optimization for cloud-native relational database conquered Ver-
bitski et al. [66]. They stated that after the optimization of their database structure to further
improve their databases throughput they identified the network as the next bottleneck. This
example shows, that in order to optimize throughput in an application, the performance bottle-
neck needs to be identified to maximize throughput. The problem of throughput optimization
includes all of the response time contributors in an application. The methodology is heavily re-
lated to this thesis as the identification of the performance bottleneck can be achieved through
load testing.

Setting realistic thinktimes, as Ramakrishnan et al. [53] propose, is also an instrument in
end-user use cases to reach realistic throughput in a load test. However it doesn’t deal with op-
timizing throughput in the analysis process, it only helps at the implementation and replication
of realistic user behaviour. Throughput optimization for HTTP is described by Rodge et al. [55]
in their work. They present tweaks in system settings to optimize throughput. These can be
used additionally to this approach when identifying a throughput problem on communication
basis.

In regard to the approach taken in this thesis throughput is an important metric. It shows
the systems capability of dealing with a certain load which is a key metric describing the quality
of software. Internal applications define the throughput

3.5.3 Scalability
Scalability can be partitioned in two major dimensions, as per Sedaghat et al. [57]:

1. Horizontal Elasticity: Varying number of VMs

3.5 Different challenges in Web Performance 19

2. Vertical Elasticity: Varying the capacity of VMs

Sedaghat et al. evaluated the cost efficiency of varying number of VM’s and varying capacity
of VM’s by using price/performance ratio. They optimized the number and capacity of VM’s
based on the utilization cost. The scalability based on cost optimization will not be further
discussed in this approach. The decision of how to optimally scale in case of a sizing issue
detected during a load test is an addition to this approach. An example evaluation of vertical
scalability of a database deliver Cheng et al. [14]. They increased the number of cores for two
heave queries and showed, that at a certain number of cores a plateau is reached where the
performance won’t get better with the addition of more cores. They assumed that the reason
for this was the message overhead.

As discussed in the previous subsection 3.5.2 it is possible to identify the performance bottle-
neck through load testing. The server infrastructure is one factor that can limit the throughput.
If an increase of infrastructure is needed the decision in which dimension to scale up is needed.
This makes the problem of scalability relevant in solving infrastructure related incidents.

3.5.4 JavaScript
The current state of practice in web applications was researched by Nederlof et al. [45]. They
evaluated 4’211 randomly selected sites and concluded that:

1. 90% of the sites performed DOM manipulations after they are loaded, making the sites
highly dynamic.

2. W3C standard violations and structural errors are widespread and have the potential to
break applications.

3. Performance Related Guidelines are underused, 40% of the sites have blocking JavaScript’s.

These findings show, that the client-side development potentially has room for performance
improvements because of the dynamics, the error-prone development and ignored guidelines
during the development process.

Ahn et al. [2] state that improvements in browser interface test suites can be achieved by
focusing on the optimization of JavaScript. Although JavaScript has no concept of types, the
Chrome V8 compiler defines types. In order to achieve performance improvements, they modi-
fied the compiler such that the definition of types by the compiler is performed 36% faster with
20% decreased allocated heap memory.

Mehrara et al. [41] state that the performance bottleneck in web applications. Client-side
computation is preferred to avoid high network traffic and increase the responsiveness of ap-
plications. With this evolution, there is a need to optimize client-side performance as it is con-
suming more resources and therefore consumes more execution time.

Na et al. [44] confirm that JavaScript is getting more computation heavy. The reason for this
can be identified with the introduction of the HTML5 standard. They also try to optimize the
JavaScript performance by optimizing the compiler and extending it with parallelization.

In this approach it will be possible to identify the client as bottleneck, finding the root cause
won’t be possible. The research is also focusing on optimizing the compiler [2] [44] to improve
performance.

This thesis executes the test cases on the browser API. Therefore the involvement of JavaScript
related incidents can be a key factor during the identification process of client-side related inci-
dents. This thesis doesn’t dive deep in the incident identification process of JavaScript related
incidents. However it will be possible to categorize an occurred incident as a JavaScript incident
fast during the analysis.

Chapter 4

Approach

This chapter describes the general approach taken in this thesis. It covers the prerequisites for
this approach, the test design, the test execution and the analysis of the executed tests. Hence it
is a step-by-step description of the load test process focusing on browser GUI implementation
and browser API execution. Possible solutions for optimizing single steps are elicited because
the main challenge faced is the closer time constraint compared to the previous, big bang ap-
proach. These optimizations include test implementation, execution and analysis. The whole
process is then integrated in a project in chapter 5.

4.1 Prerequisites of this approach
This section defines this approaches’ prerequisites and briefly discusses, if these prerequisites
can be met with the more agile approach.

Load Generator. For this approach, measuring the true response times of the end user to
capture the whole user experience and enable a complete analysis, the load injected needs to be
on the GUI level. In contrast to protocol level testing, this approach also measures JavaScript
executions on the DOM-tree, delivering true user experience response times. This adds an
additional dimension to be considered in the analysis which will be discussed in the chapter
client-side performance measurements 4.4

APM as a monitor. For the server-side analysis, an APM is needed to monitor the test execu-
tion.

Dedicated SuT. For the performance test to deliver useful and representative results it is im-
portant, that these performance tests are executed on a dedicated environment, to decrease the
impact of noise which would falsify the results of the executed performance tests. If there is
an APM integrated in the environment to be tested, occurring noise can be identified when ob-
serving the systems behaviour (e.g. web requests, cpu consumption, memory usage etc.) before
and after the test run. If noise is identified on the dedicated SuT it has to be removed. Other-
wise the results of the performance tests are falsified and can’t be used to reliably determine the
software’s quality.

22 Chapter 4. Approach

4.2 Design of the Load Test
The design of a load test contains the definition of the performance relevant use cases, the
different types of load patterns to run for the SuT and the workload calculation. For subsequent
test executions in the development phase the design of the load test is done at the beginning.
Hence this section is showing the advantages in detail to answer a part of research question 2
in section 1.2.

4.2.1 Use Case Definition
The test case definition for applications in the financial sector are composed out of business
workflows. They have a clear structure and test data requirements. The test data can contain
user credentials and can additionally have other fields like portfolios and instruments. The
structure includes the single steps during the workflow. Each click and input is predetermined
by the business workflow.

Business Workflow. Information about the business workflow for an application are gained
from business representatives which are the future users of the system. An excerpt from the
case study with measurements included looks like the following:

1. Type the url in the browser.

2. Start measurement ’M1’.

(a) Press Enter.

(b) Wait for Login Screen.

3. End measurement ’M1’.

4. Type your credentials.

5. Start measurement ’M2’.

(a) Press Login.

(b) Wait for the portfolios to be loaded.

6. End measurement ’M2’.

7. Type ’123456’ in the portfolio search box.

8. Start measurement ’M3’.

(a) Click on search.

(b) Wait for portfolio ’123456’ to be displayed.

9. End measurement ’M3’.

The data to be typed in the performance test is denoted as test data.

4.2 Design of the Load Test 23

Test Data. The test data needs to be created from the application developers. Optimally, the
test data consists of real production data. For the financial sector however, data security is a
key factor and the usage of unencrypted real user or consumer data is not permitted. As the
encryption and decryption negatively influences the performance, the usage of anonymized real
user data is needed. Test data is also an important source of performance problems. An example
occurred in the case study in subsection 5.2.5. An additional test run needed to be created to test
the system based on the test data input scalability. The impact can occur on both client-side and
server-side. In the client-side it can cause a memory overflow or long interface loading times.
On the server-side it can also cause large database loading times or slow executions of certain
methods.

4.2.2 Types of Load Patterns
There exist different types of load patterns in web performance end-to-end load testing to de-
termine an applications quality in regard to performance. In the following section the different
types of load patterns will be described which will be used for the case study. There are other
types like a stress test that won’t be covered in this thesis. First the description of the two general
types increasing load and steady-state are described. The steady-state load then can further be
distinguished between regular load, peak load and long running load. For illustration purposes
the load graphs from the case study are used. The case study is deeper discussed in chapter 5.
The detailed explanation of the abbreviations can be found in subsection 4.2.4.

Increasing Load. In an increasing load test, the load generated will be built up slowly, start-
ing with a small amount of transactions. This load is used to determine the point of failure
for the application. If this point is reached, we can identify the bottleneck of the application
through the APM and therefore gain more knowledge about the limits of the application. An
illustration can be found in figure 4.1. The duration of an increasing load is not determined
by time. The end of an increasing load test is reached when a predefined amount of transac-
tions fail due to unresponsiveness of the SuT. Unresponsiveness can either be defined through
reaching a response time cap or by the number of http errors per second received from the SuT.

The numbers used in the following explanation are further described in subsection 4.2.4.
The speed on which the transactions per minute are increased should be chosen conservatively
because the point of failure can be evaluated more precisely the slower the increase happens.
The point of failure is expressed through the amount of transactions per hour executed. The
increase of transactions per hour is controlled by the addition of virtual users executing use
cases with the same goal session time. To evaluate the exact point of failure the virtual user
addition speed needs to be adjusted based on the transaction execution time. Let the first virtual
user finish one transaction then add another virtual user to the test.

Theoretically it is possible to decrease the GST instead of adding virtual users. It would
enable a more precise evaluation of the point of failure as the GST is a floating number whereas
the number of virtual users is an integer. However it falsifies the real usage of the application as
the goal session time is an evaluated value which inherently includes realistic thinktimes. Also
by increasing virtual users instead of GST it is possible to determine the point of failure not only
through the maximum amount of transactions but also through the maximum amount of users.

24 Chapter 4. Approach

Figure 4.1: Increasing Load

Figure 4.2: Regular Load

Steady-State. In a steady state performance test, the load generated stays the same through-
out the whole execution. It can contain ramp-up and ramp-down times. A ramp-up is done
at the start of the test, where the number of transactions per hour are slowly increased until
the defined steady-state load is reached. The ramp-down is the respective opposite, where at
the end of the performance test, the number of transactions per hour is reduced until it reaches
0. It is also possible to define a warm-up time where no measurements are taken. The steady-
state load can further be refined in the next three workloads. In this approach we don’t have a
warm-up time. However the ramp-up time is statically set to 15 minutes.

Regular Load. The regular load test is executed to validate the SuTs capability to deal with
regular day in usage. An illustration can be found in figure 4.2.

Peak Load. The peak load test is executed to assess the SuTs ability to deal with a higher
amount of transactions than the regular load. These higher loads occur on special occasions like
a presidential election where the trading of financial products heavily increases. Schematically
it looks the same as the regular load depicted in figure 4.2 only the amount of transactions per
hour and virtual users is increased.

4.2 Design of the Load Test 25

Long Running Regular Load. A long running regular load test is used to determine the
applications behaviour over a regular business day (usually 8 hours). The focus for this test
doesn’t lie in the end-user response times but rather in the behaviour of the infrastructure. If
there is a possible memory leak it is possible to identify it with a long running regular load
test. It is also able to identify client-side memory issues when multiple sessions are executed
subsequently. Graphically it is the same as the regular load depicted in figure 4.2 only with a
longer maximum running time.

4.2.3 Selection of Load Patterns
The selection of a load pattern can differ for each application. It is dependent on the critical
performance factors of each application and what the goal of the performance testing activities
are. For example in our sample case study of the portfolio risk calculator, the testing of the
standalone software from the external provider was focused on meeting the internal require-
ments on this part of the software. It was important to gain knowledge about the capabilities
and boundaries of this software and if the portfolio risk can be calculated in a certain amount
of time. So we decided to implement different types of increasing load as input (increasing
amount of portfolios, increasing amount of positions, increasing amount of parallel requests).

In other cases, it is more suitable to verify the capability of the software to deal with an esti-
mation of a regular daily load. This is especially the case, if the application is already deployed
and in productive use as we then already have the number of users and transactions which the
application needs to deal with. Steady-State selection in the workload definition would be the
right choice in that case.

If there is a suspicious growth of memory consumption observed in the regular load test,
indicated by a constant growth of old generation memory increase with or without any garbage
collection activities, a long running regular load test is an ideal way to verify a possible memory
leak.

4.2.4 Workload Calculation
The definition of the workload for end-user use cases consists of three measures which correlate
with each other. They need to be defined for each load type.

• Transactions per hour (Tx/h)

• Goal Session Time (GST) in Seconds and including the thinktimes

• Number of Virtual Users (VUser)

The goal session time determines the execution time of one use case to reach the wanted
throughput. The correlation of the three measures is as follows:

Tx/h = 3600
GST V User

In order to achieve a wanted throughput in the form of the number of transactions, it is
possible to either vary the GST or the number of virtual users. This can be useful, if you don’t
have enough testing infrastructure to simulate a large amount of virtual users.

26 Chapter 4. Approach

As for internal applications with a finite number of users, the definition of a regular day
workload can easily be done. When a system already is in productive usage, the regular day
workload can be observed. If it is a new system, the workload has to be evaluated. High
peak usage of an application, for example on special occasions like a presidential election, is
tested with the doubled amount of transactions than the regular workload if no production
data is available. Otherwise an analysis of the usage over a year is needed to determine the
load generated on peak usage days.

Calculating the Workload. The calculation of the workload starts with the evaluation of the
user group identifying the number of users. To get the number of transactions on a regular
day, a business representative needs to be contacted. The number of transactions naturally
comes by the business requirements regarding the number of business transactions executed.
By multiplying the number of users with the number of transactions per user the daily number
of transactions can be determined. This can be mapped with the desired execution time of the
performance test. In comparison to the previous approach (non-agile) there is no difference in
calculating the workload. When transferring from development to production the workload can
be redefined based on the productive monitoring data. The need for continuous verification of
the defined workload arises in the agile approach. Therefore regularly validating with current
productive data is necessary.

4.3 Test Implementation
In agile development the length of the cycles where a shippable product increment is created is
not fixed. It can be reduced to a minimal amount of time as elicited in section 1.3. This poses
a challenge in the test implementation. The discussion in reducing time for the test implemen-
tation includes a brief discussion of using functional test cases and reducing the time spent for
maintaining the test implementation in subsequent deployments.

4.3.1 Using Functional Test Implementations as Performance
Test Cases

A resource optimizing choice would be the usage of test cases, which are already maintained
by the project team as Ferme et al. [24] already suggested. This section covers a brief discussion
about using functional test cases for the performance test. Note that in this case, unit tests are
not included in this evaluation as they only execute fractions of code. Additionally they do not
follow rigorous performance evaluation strategies which is depicted by Georges et al. [29].

Advantages. The usage of common test cases for functional and performance tests saves im-
plementation time of the test cases and ensure the maintenance of them. Especially considering
the fact, that the application is changing in every deployment and therefore increasing the prob-
ability of a change in the test case requiring the tester to update his implementation of the test. If
this has to be done for functional test cases and performance test cases separately, the overhead
of effort increases.

Disadvantages. In practice the common usage of test cases can be difficult, as there are dif-
ferent tools in use for functional and performance tests. If there are already two different, in-
dependent teams and tools for performance and functional testing, it will be hard to combine

4.3 Test Implementation 27

the test cases. Another disadvantage depict the differing quantity of test cases for functional
and performance tests. Functional testing needs to cover a large number of test cases whereas
performance testing focuses on fewer cases with an actual performance impact. Therefore a
selection of test cases with performance impact would be needed.

Summary. In financial applications with a predefined workflow and known use cases, the
usage of functional test cases is currently not needed. However if in the near future the deploy-
ment cycles further decrease in time, the combination of the test cases could save time for the
maintenance, when the cases differ between deployments. To achieve such a state, the different
testing teams need to have compatible tools which will be an obstacle to be surpassed.

4.3.2 Efficiency and Maintainability of the Test Implementa-
tion

Motivating example. Imagine John Doe implements a use case for the first time. The effort
spent for the initial implementation is high compared to subsequent release executions. This is
because the navigation, the element to be validated and the measure starts and stops need to
be scripted (depicted in section 4.4 and subsection 4.2.1). In the next release an interface change
is implemented by the developer. This needs an adaption in the test script because the DOM
properties or even the DOM element type could have been changed. Therefore the tester needs
to update the navigations and the elements to be validated. This is additional implementation
effort that needs to be spent in order to successfully execute the performance test. This can take
a large amount of time to achieve as John always needs to revisit the respecting screens in the
GUI to update the test script. In order to decrease this implementation effort some efficient
methods are presented in this subsection. As this also is a recurring task every two weeks it is
worth investing time to optimize the effort spent.

Choosing an efficient XPath locator. As we navigate the use case through the DOM-tree in
a browser, changes in the DOM-tree require changes in the script. Therefore, the selection of the
identificators for DOM elements need to be chosen as generic as possible. An example for this
fact is the following wait for function, where the identifier of the DOM element only contains
the element node H1:

BrowserWaitForProperty("//H1", "textContents", "Add Transaction")

In contrast to the identifier with a property added to the node, this identifier is more robust to
changes in the GUI. A change of node properties will not affect this wait for function making it
less vulnerable to interface changes and if there is a change of this type of element, the update
only requires the information of the new element node. However a lot of DOM nodes can
have the same type and for the identification, a unique property is needed. It is important that
the developer implements unique properties for important nodes. In the following examples
and possible solutions it is assumed, that the developer implemented the unique property ’id’
somewhere in the DOM-tree, not necessarily on the target node.

DOM elements can contain a lot of different properties which aren’t good choices for the
identification. For illustration we can take a look on table 4.1.

In the selection of the best property we have to consider it to be as unique as possible. We can
generally exclude boolean values and integers as they won’t be unique. If we also consider the

28 Chapter 4. Approach

Property Value
aria-level 0
aria-posinsert 0
aria-setsize 0
autofocus false
class button
contenteditable inherit
disabled false
draggable false
hidefocus false
id splashCloseButton
spellcheck false
tabindex 0
textContents OK
type submit

Table 4.1: DOM example properties

maintainability aspect, we can also exclude ’textContents’, as button names or text in general is
likely to change between releases for example due to cosmetic reasons. This leaves us with the
properties class, id and type. In this example, choosing the ’id’ as DOM identifier is the best
choice in consideration of uniqueness and maintainability. However there can be cases where
the id isn’t the ideal choice. Take a look at the example in table 4.2 of DOM properties and
values.

If the ’id’ itself contains numbers that look like an enumeration as in this example, the’
i’d is very likely to increase by 1, or modified in another way, for the next release. In this
case the better choice would be to take the class as DOM identifier for the higher grade of
maintainability.

As the DOM elements are ordered in a tree structure, it is also possible to choose the parent
or child nodes as a locator point. An example locator where the parent node is used with an
identifier to reach the desired subtree is the following:

//DIV[@id=’portfolioListZone’]//H3

With the same example we are able to show the possibility of using a sibling as the first
locator if there isn’t another node with a maintainable and unique identifier:

//DIV[@id=’portfolioListZone’]/..//H3

This can be useful if the desired object and the parent node don’t have unique and maintain-
able properties for the identification. Another advantage in regard to performance is the usage
of absolute paths (denoted with ’/’) in contrast to the relative path (denoted with ’//’). Using
the relative XPath has a negative effect on the response time. It can cause a delay in the range

4.3 Test Implementation 29

Property Value
aria-level 0
aria-posinset 0
aria-setsize 0
class portfolio-list-area home
contenteditable inherit
disabled false
draggable false
hidefocus false
id p123456
spellcheck false
tabindex 0

Table 4.2: DOM example class vs. id

Figure 4.3: DOM tree example parent-child

of milliseconds in finding the desired node.
All of the above mentioned decisions about choosing the right property for identification

can be applied to the property to be validated with the exclusion of using other nodes than the
target node.

The idea for the following algorithm is from me, the author of this thesis. To the best of my
knowledge this algorithm was not published in this context by anyone else.

Proposal for Automating the Selection of the DOM Identifier. With these operations you
are able to navigate the whole DOM-tree from top to bottom and from bottom to top. Therefore
you are able to find ideal properties for the locator. It is even possible to automate this process
with basic tree operations. In order to achieve the shortest path from the first locating node,
you could use this node as a starting node for the breadth-first search algorithm. The usage
of breadth-first search is needed in this approach as this search first looks for the immediate
child nodes. After the first child level search of this node, check the parent node as it has the
same distance as the target nodes children. With these two steps, we covered all the nodes with

30 Chapter 4. Approach

Figure 4.4: DOM tree sibling example

distance 1 to the target. The next step is the merge of the target node and all the nodes within
distance one to the a new node restarting the algorithm at the beginning. Note that the steps
1 and 2 can be switched. The graphical illustration can be found in the figures 4.5 and 4.6. To
summarize the algorithm in four steps:

1. Breadth-first search on the targets immediate child nodes

2. Check the target’s parent

3. Merge the target node, its immediate children and its parent to a new node

4. Treat the new node as the target node and start from step 1

With this algorithm you are able to find the closest node (in regard of number of nodes passed
through) that has a unique and maintainable locator. As elicited before, the search criteria for
the node properties should be chosen as the id of the node with no numbers in it.

Creating Functions for Recurring Test Steps. In order to keep the test implementation
maintainable it is necessary to generalize recurring test steps. Especially in test suites with
multiple use cases in the same screen it is desired to not have duplicated XPath locators. This
is possible in a utilities file of the test suite where the recurring test steps need to be located.
For example in our case study the addition of multiple instruments was needed. In a regular
test script that would be achieved by copy pasting the test steps and therefore multiple times
the same locators. If they then change in a subsequent release you have to change this locator
on three different lines of code. The creation of a method called ’addInstrument("Instrument
Identifier")’ is desired because we don’t create XPath locator duplicates making the test script
more maintainable.

However if you outsource test steps in this way you have to keep in mind that the add
instrument operation can have different execution times for different instruments added. If this
is the case the timer name also needs to be modified with some kind of identifier to keep them
separated. In our case the timer name would be added with the instrument identifier.

4.3 Test Implementation 31

Figure 4.5: DOM tree search step 1 and 2

Figure 4.6: DOM tree after the merge of the nodes with distance 1 to the target node

32 Chapter 4. Approach

4.4 Client-Side Performance Metrics
The client-side performance measurements include measuring end-user response times. These
are then further aggregated to performance metrics further discussed later in this section. The
end-user measurements are taken by the following scheme:

MeasureStart("UC1_TimerName");

BrowserClick("XPath-locator-to-a-button", BUTTON_Left, "TimerName");

BrowserWaitForProperty("XPath-locator-to-a-DOM-element", "Property-to-be-validated",

"Expected Value of the Property");

MeasureStop("UC1_TimerName");

Listing 4.1: Example Time Measurement in the Test Script

The timer is identified with a string, the prefix stands for the use case to have a better
overview in test suites with a large number of use cases. As the navigation happens on the
browsers DOM-tree, XPath expressions will be used to locate the desired nodes. These are the
first parameters in the click and the wait for function. You are also able to right or left click
with the second parameter in the click function. The third parameter is used to associate the
click with the corresponding timer name. This parameter is also used to later identify the web
requests in the APM that were executed after the click (described in subsection 4.6). Amongst
the XPath expression, the wait for property function also contains a validation property name
and the expected value. After the specified DOM node in the wait for function is displayed in
the browser, the measurement is stopped.

The ’BrowserWaitForProperty’ function is necessary as there can be asynchronous requests
that aren’t triggered by the click. For example subsequent JavaScript executions after the click
can cause subsequent requests to the server. These requests then aren’t measured with the
’BrowserClick’ function. With the wait for function we are able to measure the whole response
time.

In the following paragraphs, the client-side metrics that are captured during a load test run
are presented. Of course there are more metrics like the number of http requests sent or the
number of bytes sent. These are used for the in-depth incident analysis and are also manifested
in the metrics captured. The thresholds for the metrics need to be defined according to the size
of the generated load. Increasing load tests for example naturally have a high error rate, as this
is supposed to happen and a regular load test has lower response times than a peak load test.

Response Times. The previously introduced time measurements are implemented in the test
script following the performance relevant end-to-end use cases. Each response time measure-
ment is saved and the aggregated metrics are then further used for the analysis. The aggregated
metrics used for the initial analysis include:

• Average Response Time

• Standard Deviation

• 90th Percentile

• Maximum Response Time

The thresholds usually are defined on the average response time and the throughput. The
standard deviation is used to check the deviations of the measurements for a test run. The 90th

percentile can additionally be used to analyse deviations between test runs when benchmarking

4.5 Server-Side Performance Metrics 33

an application. The maximum response time can also be an indicator that there are very few
outliers in the collected measurements which aren’t represented in the standard deviation or the
90th percentile. If the maximum response time highly deviates from the 90th percentile, higher
percentiles need to be analyzed in order to check on the number of outliers. It is hard to evaluate
which metrics are important for the analysis of a load test. For example it is also possible to
include other metrics such as different percentiles. In order to not have too much numbers to
analyse this approach only includes the listed metrics above for the initial analysis. The choice
of which percentile to include lies in the definition given by the applications requirements. They
decide on which percentile they want to have a performance assurance.

Errors. The error rate of a load test is observed by the number of transactions failed and the
number of transactions passed with success. In this case a transaction is equal to one use case.
Errors can have different root causes. Through the virtual users perspective there are four types
of errors that can be observed:

1. HTTP Errors: Errors caused by the back-end.

(a) 401: Can occur if there is a change in the user setup and the test user doesn’t have
access to the application anymore. Especially during the development process, this
can occur when executing automatically triggered load tests.

(b) 500: Oftentimes occur during high load tests where the back-end can’t deal with the
large amount of transactions generated through the load test.

2. JavaScript Errors: Errors on the GUI

3. Validation Errors: Occur, if there are test script issues. These can be fixed by updating the
test script or making it more stable regarding XPath locators.

4. Test data Errors: Occur when using wrong test data. They usually can be observed in an
error message generated by the application itself.

Throughput. The throughput is defined by the number of transactions successfully com-
pleted. This metric has strong correlation with the response times and the error rate, as both
of them influence the throughput. If the response times are slow, the goal session time can’t
be held and the throughput isn’t reached. If the error rate is too high the throughput can’t be
reached because not enough transactions successfully complete.

4.5 Server-Side Performance Metrics
In this approach we are using Dynatrace [21] to gain server-side performance metrics. It is
able to monitor applications during runtime through byte-code injection at the start up [22].
The agent, which is installed on the SuTs webserver, sends the bytecode to the collector where
it is modified according to the defined instrumentation. There is also an option to monitor
client-side metrics in the APM. Since we are measuring the client-side metrics through the load
generator this feature is not used in this thesis.

34 Chapter 4. Approach

Infrastructure. The infrastructure monitoring covers the CPU consumption, the memory us-
age, the network utilization and the disk I/O on the web server. The APM automatically plots
the infrastructure data over time in charts simplifying the observation of changes during run-
time. You are also able to see the activities on the webserver before and after a load test, ensuring
the idleness of a webserver and the behaviour during the load generation and afterwards. The
different instrumented processes on the web server are also made visible and can be used for
deeper analysis.

For deeper analysis on the CPU consumption in percent and memory usage, the APM offers
the capturing of snapshots for the CPU, memory and threads. They can be taken at any time for
deeper analysis of incidents. A full memory snapshot shows all the data from the heap show-
ing the classes, objects and references enabling the identification of space consuming structures.
The thread dump shows the currently running threads for an agent and their CPU time con-
sumption. The CPU snapshot shows the idle time and busy time including the instrumentation
overhead (in seconds) from the agent. However these snapshots need to be taken carefully as
they increase the monitoring overhead.

Data storage. The data storage monitoring shows the time consumption for the instrumented
database enabling the identification of time consuming queries throughout a load test. If the
precondition of an idle environment is fulfilled, the identification of frequently executed queries
is possible during the regular load test. These are opportunities to efficiently optimize the
databases performance with high impact.

Execution Trace. The execution trace in Dynatrace is called PurePath. It shows the method
calls and their time consumption including the database queries executed and the exceptions
occurred, if any. For each executed method, the Dynatrace agent is collecting the following
properties:

• Execution Time

• Breakdown: % of Execution time spent for CPU, I/O, sync, wait or suspension

• Class

• API

• Agent where the code is executed

• Thread Name

With these collected data you are able to identify high execution time contributors for a PurePath.
Through sorting the PurePaths in descending order, you’re able to identify the slowest requests
sent to the webserver during a load test for further analysis.

Errors and Exceptions. The bytecode injection also traces uncaught exceptions, HTTP er-
rors, log messages and browser errors. Again with the precondition of an idle SuT the count
of exceptions and errors can be shown for the executed load test. This is useful to show the
improvements or decrease between different benchmarking runs or test executions between
different releases during a development process.

4.6 Observation and Analysis of Incidents 35

Transaction Flow. The transaction flow gives a summary of the horizontal transaction flow
of the instrumented webservers and all the different entities . The response time contribution of
each entity is summarized and shown as percentage response time contribution. Additionally,
the number of calls per minute is shown between the different entities to give further indications
of possible n+1 problems [51]. It is possible to view a single PurePath transaction flow or give a
complete overview of a performance test run.

Fine-Tuning of the APM: Trade-Off between Overhead and Granularity. The monitoring
overhead is dependent on the configuration of the APM on the granularity of your monitoring
activities. An example for the configuration of the APM needed is the instrumentation of the
memory sensor and creating automatic snapshots of the whole memory. This is a configuration
needed if you have indications of a memory leak but it also increases the monitoring cost and
can therefore have a negative impact on the applications response times. So there is a trade-off
on how much monitoring is needed to identify the issues you want to exploit. This is especially
important if you have the APM integrated in the production environment. In order of achieving
the optimal configuration, load and performance testing is also an essential part.

The usual process in achieving a good enough monitoring granularity is by doing it top-
down starting with a default configuration. This should be chosen to have as less impact on the
performance as possible. If you find performance issues, where the root cause can’t be iden-
tified with your current APM configuration, you can selectively modify it to finer granularity.
Always keep in mind, that this modification in monitoring granularity can have a negative ef-
fect on the applications performance but in order to finding the root cause of an issue, this is
sometimes needed. In the retest you can verify the performance issue and also observe the
added monitoring overhead. If the impact of the monitoring overhead doesn’t have an impact
on the applications performance it is recommended to keep the new configuration if it helped
identifying the issue. Therefore you are able to monitor this issue in the productive environ-
ment.

Over time there will be multiple APM configuration changes which raise the monitoring
overhead. The monitoring overhead can reach critical amounts which significantly influence
the performance. This critical amount is individual for each instrumented tier and has to be
individually evaluated. If a critical amount is reached it is important to be able to see all the
modifications you have done and undo the unnecessary and solved ones. Therefore it is impor-
tant to keep track of the monitoring modifications and possibly prioritize them on the impact
and their benefits on securing the software quality. The same problem face Heger et al. [35] in
their diagnoseIT work. They stated that they want to focus on adaptive instrumentation and
also efficient techniques to manage trade-offs between measuremet detail and system perturba-
tion.

4.6 Observation and Analysis of Incidents
With the proposed approach we are able to correlate the user actions with back-end processes
which is key in categorizing or even identifying the root causes. The incidents in this case
are defined as observed slow response times or errors. These errors can also be caused by test
implementation incidents. In our case these incidents are identified during the analysis process.

Correlating Client-Side Metrics with Server-Side Metrics. The correlation between the vir-
tual user actions and the started back-end process on the webserver happens through a HTTP

36 Chapter 4. Approach

header information. An additional field is added to the request sent from the browser to enable
the identification in the APM. The field contains three string values:

• Scriptname: The name of the test script.

• Timername: The name of the started timer.

• Virtual Usergroup: The name of the virtual user group from which the request was sent.

This information is then added to the according PurePaths in the APM therefore enabling the
correlation between user interaction and the triggered back-end processes. It enables the anal-
ysis of single user actions, separate use cases or the whole test run. The virtual user group is
an additional implementation variant in the test script. It can be useful if the simulation of dif-
ferent types of users is necessary, for example if there are two different sets of test data you can
implement two different user groups and analyse them separately in the APM. To visualize this
correlation take a look at figure 5.1. The load from the client/load generator contains this ad-
ditional Dynatrace header in each request sent from client to the SuT. This information is then
passed through with the monitoring data to the Dynatrace collector.

Analysis of Single User Actions. The analysis of single user incidents during a load test
can have two different observations. Either it is a response time which is out of the norm or
an error is observed. As previously elicited, an observed error can be caused by a wrong test
implementation or an SuT issue. The application issue is further distinguished between a client-
side error or a server-side error. The client-side error needs to be further analysed in the browser.
The server-side error and the observed extraordinary response time can be further identified
and analysed in the APM with the previously introduced correlation including the timer name
and the timestamp.

The analysis of an observed slow response time can be formalized to a certain extent in order
to isolate the root cause. The formalization approach can be found in figure 4.7. It is a decision
tree where the response time contributions are used as decision rules. At first the comparison
between the measured end-user response time and the respective server contribution is done.
This categorizes the incident into either a client-side incident or a server-side incident. This
distinction is important as the further analysis is highly dependent on it. For a client-side inci-
dent the browsers’ developer tools are used for a further categorization. The further client-side
analysis is described in subsection 4.6.

The server side analysis with this approach is done with the APM. To further categorize the
incident the most time consuming tier needs to be evaluated. If this tier is a web or application
server the analysis of the respective PurePath is necessary. If the database tier is the most time-
consuming the queries executed need to be further analysed based on their execution times. If
another subsystem is identified as the most time consuming tier the analysis starts again with
on the categorization for a server-side incident.

Analysis of a Test Run. Through the correlation between the client-side user interactions and
the server-side processes it is possible to analyse the virtual users average response times and
the server-side processing time and compare them. If there are significant differences between
these two metrics, the root cause of the incident lies either in the communication or on the client.
With this fairly simple analysis we can already narrow down the search for the root. The deeper
analysis on the server-side is equivalent to the single user action analysis.

4.6 Observation and Analysis of Incidents 37

Figure 4.7: Formal Analysis of a Response Time observed by the End-User

Analysis of Client-Side Incidents. If a client-side incident occurred the analysis starts in
the browser using the browsers developer tools. Turning on UI responsiveness monitoring
further narrows down the identification of the root cause. It is possible to identify the most time
consuming action in the browser. With the developer tools it is also possible to identify client-
side memory issues. Through the creation of a browser memory dump the identification of the
most resource intensive objects is enabled. Another useful function is the network analysis tool.
You are able to identify the number of requests sent and the size of the requests which can be
root causes for slow response times. This analysis happens manually through executing the
user action that caused the incident.

Of course there are other tools that can be used to analyse client-side incidents.

User Experience Management (UEM). This is an addition to the APM solution. It can mon-
itor end-user behaviour and also includes JavaScript injection. The nice thing of this solution
is the real-time analysis during the load test and there is no manual execution of the test step
needed. Although it delivers the same functionality as the browser developer tools, the analysis
in this thesis is showed for the browser developer tools for illustration as the UEM option is not
freely available.

Pagespeed/YSlow. Google with Pagespeed [31] and Yahoo with YSlow [77] deliver analysis
tools for evaluating the performance of a web page. They include their rules of best practices
and statically analyse the website. Amongst other things, the rules include server compression,
caching options and compression of images.

Chapter 5

Case Study: Integrated
Advisory Portal

This chapter describes the load testing approach for a project inside the company. The project
is an merge of two different applications, which were already in use in the company. The client
suitability tool delivered recommendations about the investment choices for a customer for cer-
tain portfolios and instruments according to his individual investment profile. The second ap-
plication contains all the information about the portfolios and instruments therefore delivering
the business data for the client suitability tool.

As the backend logic will stay the same in the new application, the previous two applications
will communicate with each other through microservices. A completely new user interface is
also part of the development.

The application team deploys a new release every two weeks on a dedicated test environ-
ment where the performance testing will happen. The revision of the GUI will be performed
increasingly holding on to the business workflow, in other words starting from the first step
and finishing at the last step. This enables the end-to-end performance test to evolve during the
development process.

5.1 Overview
This section is used to give a brief overview over the SuT. It has various interfaces to other
systems, which won’t be discussed in detail in this section.

5.1.1 Architecture
The SuT is set up as a three tier .NET application. The tiers are as follows:

• Web Server with 2 Processes:

– Case Manager

– Investment Dashboard

• Application Server Case Manager

• Database Server

40 Chapter 5. Case Study: Integrated Advisory Portal

The connections to the other systems are built up during the development phase, starting with
only mockups and slowly attaching the other systems. Through our use case all these tiers are
set under load.

5.1.2 Performance Aspects
As all the tiers are set under load through our test, the response time contribution of each tier is
an important metric in finding the bottleneck of the SuT.The response time contribution of each
tier can also be used to identify the most performance critical tier where an optimization would
have the biggest impact on the performance. It can also be a good starting point for the analysis
of an incident as we efficiently narrow down the problem to the respective tier where the root
cause most probably lies.

5.2 Test plan
The creation of the test plan contains the definition of the performance relevant use cases and
the workload definition including the selection of the load patterns.

5.2.1 Use Case Definition and Implementation
The use case definition in the integrated client suitability tool follows a straightforward work-
flow based on the business’ requirements, therefore we will only have one use case. However
the challenge in the use case and implementation lies in the changing GUI through the devel-
opment cycles. The use case needs to be redefined according to the changes and additions in
the user interface. Every two weeks there is the need to revision the use case and adapt the test
script to the GUI. In order to decrease the updating efforts, the test script needs to be imple-
mented as maintainable as possible. Updating test scripts could negatively affect the response
time. This can only be identified during the analysis.

Test Data. Input data for the use case consist of two different data sets, the test users and
financial instruments to be added. This list and the access rights for our test users are provided
from the development team. Additionally, the selection of the portfolio is done by iterating
through the portfolio list in the interface.

5.2.2 Test Infrastructure
The testing infrastructure is as depicted in figure 5.1: The end user results are collected and
accessed on the Silk Performer Master. The APM monitoring test results are collected on the
Dynatrace collector and can be accessed through a fed client. For this test execution, 5 load
agents are needed to simulate the 42 virtual users. The WAN-Bridge test can only be executed
with one load agent because of infrastructure constraints.

5.2.3 Workload Calculation
Number of Concurrent Users. The calculation of the number of concurrent users is made
data concerning the usage of the application

5.2 Test plan 41

Figure 5.1: Testing Infrastructure Setup

42 Chapter 5. Case Study: Integrated Advisory Portal

• C = average number of concurrent users

• n = number of users accessing the system

• l = average length of usage

• t = time period of concern = working hours in minutes

The formula is a heuristic approach taken in the financial institution. It is as follows:

C = n*L/T

The employees which will access the application are predefined by the number of users using
the previous applications today. In our case, we can start calculating with 1500 users per day.
The average length of usage is also predefined to be 15 minutes. The time period of concern is
a regular workday, 9 hours or 540 minutes. If we insert these numbers in the formula, we get
the average number of concurrent users per day, rounded up to 42, which we will use for our
regular workload.

Number of Transactions. The business usage evaluation shows that there is 1 use case per
hour per user as the peak number of transactions. This number of transactions will be used for
the peak load test. The regular load therefore is defined as half of the number of transactions as
the peak load, 750 transactions per hour.

Selection of the Load Pattern. To validate the regular day usage of the system, the steady-
state load is executed. The ramp-up time will be used to simulate realistic usage scenarios, as
it is very unlikely that all the users will start using the application at the same time. The peak
workload with the doubled amount of transactions will also be executed with a steady-state
load with warm-up time. To verify the throughput of the system, the steady-state tests will run
1 hour with an additional 15 minutes ramp-up time.

5.2.4 Test Execution Schedule
The regular load test will be executed daily to get a performance baseline. The daily execution
also helps in validating the test script after the deployment of a new release as there will be
changes in the GUI. The changes can also affect test data problems. An example for this was
a change in the instrument setup on a new release. Some of the instruments provided by the
application team weren’t compatible with certain portfolios anymore causing the failure of half
of the executed use cases making the test invalid. In another release, the user setup was updated
on the applications side. The user group changed from the old access group to a new one and
the test users suddenly didn’t have access to the SuT anymore.

These daily regular load tests will be executed automatically based on a schedule. This exe-
cution schedule can be modified according the other workloads which will be necessary when
adding other workload patterns to the test execution. As it is enough to execute the exceptional
workloads once a release the schedule is modified accordingly. They will be executed as soon
as the load test is running stable again after a new deployment.

The tool used for scheduling the workloads is Silk Central [42]. It is from the same vendor
as the load generator used which is Silk Performer. Therefore the scheduler is compatible with

5.3 Results 43

the test implementation and workload definition. Once scheduled for each cycle the workload
definition and test schedule do not have to be manipulated anymore.

The additional test executions were added during the development phase and after their
addition executed with each new release.

5.2.5 Exceptional Workloads
As we now have a longer period of time to execute load and performance tests, we can perform
more test runs to conquer certain problems.

WAN Bridge Test. As the application will be used from different global locations, tests where
the traffic is sent through the WAN bridge [11] are executed to measure the response times for
different locations. Another reason to execute such a test is the importance of the latency as
depicted in subsection 3.5.1. The configurations for the latency, packet-loss and bandwidth are
taken from the internal measured data for the locations to be tested. The number of concur-
rent users will be decreased because for a comparison between the locations, there is no need
to simulate the whole regular load. Additionally there is a hardware constraint for the load
generation through the WAN bridge as we can only use one load agent.

Long Running Regular Load Test. The long running regular load test is primarily used to
watch the behaviour of the infrastructure. The runtime of this test is 8 hours and the workload is
defined like in the regular load test. The metrics we are interested in are the memory usage and
the CPU consumption. This test can validate the sizing of the memory and the CPU with this
test run. Additionally this test is also able to observe the behaviour of the memory to identify
a possible memory leak. This can only be verified if the heap memory gets full during the test
run and the garbage collection is successfully performed without the end user observing any
performance degradation or even errors.

Data Input Scalability Test Run. The defined use case is running with adding only one in-
strument during the workflow. To test the scalability of the SuT an additional regular load test
is executed with the addition of three instruments. As the addition of three instruments instead
of one affects the subsequent steps in the use case, a whole new test run is needed to test the
application for data input scalability. Adding more than three instruments would affect the
throughput in a negative way, the addition of more than three instruments for a load test isn’t
possible. The addition causes the execution of three more clicks and input of two more text
fields which causes too much time to reach the desired GST.

5.3 Results
In this section the test results will be presented. Due to failed builds and development issues,
the SuT wasn’t available during some releases. Therefore some releases could not be tested.

5.3.1 Client-Side Metrics
In this subsection the results of the daily executed tests are briefly discussed. The client-side
measured response times for the daily test executions can be found in figure 5.2. The load used
is defined in subsection 5.2.4.

44 Chapter 5. Case Study: Integrated Advisory Portal

The biggest improvement in response time can be found in the ’UC01_02_SelectUniverse’
timer between June 6 and June 30. We identified a database query with long execution time
through the analysis in the APM. The application team put an index on the respective query
which decreased the response time from 10 seconds to a stable 3 seconds. The previously men-
tioned deployment also decreased the functionality. This can be seen in the stop of the respec-
tive measurements. They were included again in the deployment from July 10. New steps were
added as new functionality was introduced.

Between July 10 and August 16 there were several incidents that caused the deployment to
fail or the test execution to fail. These incidents include:

• Change in the user set up causing our test users to not have access to the system.

• Adding interfaces to subsystems causing the use case to fail in early execution steps.

• Adding new environments in the deployment pipeline which caused the deployments to
fail.

• Unavailability of employees due to summer holiday period. This can cause delays on the
resolution of any kind of incidents.

Between August 17 and August 18 there are 4 timer which significantly increased. Through
the analysis of the respective timer in the APM the identification of a slow database query was
possible which was executed during all the steps affected. This finding was reported to the
application team. They were able to identify a growth of a database table between the two
executions which was caused by a functional tester.

Between August 23 and August 28 a significant change in the GUI caused additional time
in implementing the test. Additionally another interface to a subsystem was added causing the
use case to fail and not execute the last 5 steps.

Figure 5.2: Median Response Times for the Daily Regular Load Tests

5.3 Results 45

5.3.2 Server-Side Metrics
In this subsection some exemplary screenshots from the APM are presented and discussed.
These are used for illustration purposes and should give the reader a more visible insight in the
analysis of the APM results.

Transaction Flow. The analysis in the APM starts by taking a look at the transaction flow in
figure 5.3. This gives an overview of the response time contributions of the tiers affected over
the tested period of time. This is an example taken from a daily load test defined in subsection
5.2.4. The tiers defined in the subsection 5.1.1 can be found in this transaction flow overview.
Additionally the browsers response time contribution is shown as a separate tier. In this case
it is also the most time consuming tier shown by the percentage of response time contribution.
The amount of inter-tier communication is indicated by the number of calls per minute for ex-
ample between the application server and the SQL server there are 168.24 per minute. These
are calculated for the duration of the load test and in this case defined for a regular load test.
As mentioned in subsection 4.5 it is also possible to view the transaction flow of a single trans-
action/PurePath. In this single PurePath transaction flow the identification of the application
server is possible as it is visible in figure 5.4 in the first step. The transactions processing time
was 1.1 seconds on the application server which is 48.58 % of the whole response time for the
transaction. The next step in the analysis is to look at the execution trace.

46 Chapter 5. Case Study: Integrated Advisory Portal

Fi
gu

re
5.

3:
Tr

an
sa

ct
io

n
Fl

ow
O

ve
rv

ie
w

fo
ra

Lo
ad

Te
st

5.3 Results 47

Execution Trace. The execution trace for a single web request is triggered by a click in the
GUI. It is shown in the second and third step of figure 5.4. It is not the complete trace but should
give an indication on how the execution times of the methods are visualized. The summariza-
tion of the data available is found in subsection 4.5. It is visible that the web request took 1115.14
seconds of execution time. It is also indicated in the second step that there occured an exception.
Further breaking down the PurePath gives us the method and the unhandled exception thrown
which is shown in step 3. Detailed information on the exception is shown in the last step of the
exemplary analysis including the exception stack trace.

Figure 5.4: Example of Execution Trace Analysis

Data storage. The data storage summary view shows all the executed queries during the load
test. An example can be found in figure 5.5. Here the queries are ordered according to the av-
erage execution time to identify the longest queries executed during the load test. The APM
enables the sorting after all the metrics visible in the screenshot. Important ones are the average
execution time and the number of executions per query. It enables the identification of perfor-
mance critical queries in terms of overall executions during a load test. Drilling down the query
with the longest average execution time of 30’088.96 milliseconds leads to the corresponding
PurePath/transaction in step 2 of the example. Further drilling down the PurePath the method
which queried the SQL on the database is shown with the query in step 3. Additionally it is
visible through all the steps of this analysis that an exception occurred on the database. The
final step shows additional information to the query. To capture further details to this query the
byte-code instrumentation needs to be modified to capture more metrics on the database. This

48 Chapter 5. Case Study: Integrated Advisory Portal

Figure 5.5: Data Storage Example

is a general rule in all the analysis in the APM.

Infrastructure. The APM plots the CPU usage, memory consumption, network utilization
and disk space. This is also done for the single processes. In this example the load test execution
is shown in the CPU usage as it starts at 0 % utilization and raises up to constant 15 % during the
test execution. In this overview sizability problems can be indicated by high CPU usage or high
memory consumption. It is only an indicator and needs further clarification if there is a sizing
problem. This is dependent on the workload and the planned sizing by the architect. It could
also be that in the deployment the configuration has changed. If the heap size got smaller this
influences the load test and therefore the change of the memory size can be identified through
the load test.

The memory example depicted in figure 5.6 shows the memory consumption. It increases
during a load test constantly indicating a possible memory leak. To verify a memory leak is
present a long running test execution would be needed which brings the memory to its capacity
limit. The behaviour then should be proper garbage collection otherwise a memory leak is
identified. In this case a single process was started with the wrong parameters and allocated a
heap size which was too small. This is shown in the second step of the example. The heap is
filled up and the garbage collection did not clean up the whole heap for seven hours.

5.3.3 Analysis of the WAN-Bridge Benchmark
With the previously introduced WAN-Bridge Test in subsection 5.2.5, a test execution of a local
execution and a Singapore execution was conducted. The load was reduced due to test infras-
tructure constraints, but both location benchmarks were executed with the same load to enable
the comparison between the response times. The settings used for Zurich and Singapore were
the following:

5.3 Results 49

Figure 5.6: Memory Example

Zurich Singapore
Latency (ms) 1 173
Bandwidth (MB/sec) 100 100
Packet-loss (%) 0 0.4

Table 5.1: Latency Settings for the WAN-Bridge Test

As we are comparing these two different settings with the identical test setup, it is not nec-
essary to compare the APM monitoring results with each other. The only reason for response
time changes are caused by the network settings with the WAN-Bridge. Therefore we analyse
the measured end-user response times depicted in figure 5.7.

The 90 % series depict the 90th percentile meaning that 90 % of the measured response times
are below that value.

The timers that have the same execution times for the two runs don’t include a request to
the web server (03_OpenPortfolio, 07_AddTransaction, 071_SearchInstrument and 12_Distribu-
tionNext). These user actions only cause client-side processing time in the browser. The other
measured response time all include various HTTP requests between the client and the server.
The deeper analysis can be found in subsection 5.3.4 in the paragraph GUI Incident.

5.3.4 Incidents identified
Amongst several unhandled exceptions which were easily identified by the exception overview
in the APM, some other incidents that required deeper analysis were identified during the tested
time period. They are described in the following paragraphs. Also the presented incidents
were not solved in the first iteration as the resolution lead to other incidents. An example is
the CSS-file incident because the resolution included larger JavaScript files and therefore the
performance was not optimized in the first iteration.

GUI Incident. The analysis of the first step in our use case (InitialNavigation) starts with the
distinction between client-side incident and server-side incident. To achieve this rough catego-
rization we compare the end-user response time with the processing time in the back-end. For

50 Chapter 5. Case Study: Integrated Advisory Portal

Figure 5.7: Average Response Time Chart WAN-Bridge Test

comparison we use the average response time for one test run, which was 2.4 seconds. The cor-
relating processing time gathered through the APM was roughly 150 milliseconds. This leaves
us at the conclusion, that the root cause of this incident is not located on the server side. The
next step is the distinction between a client incident or a communication/network incident. In
this analysis the usage of the browsers developer tools is helpful. The manual execution of the
user action with the Internet Explorers UI Responsiveness function gives a response time con-
tribution overview. The two main contributors in this case are HTML parsing with 1 second
and script evaluation with 1 second. These are the main contributors to the measured end-user
response time of 2.4 seconds.

Analysis of Observed Errors. During the regular load test execution, the virtual user ob-
served various HTTP 500 errors. These errors caused the failure of 280 use cases out of 756.
As HTTP 500 errors are usually caused by a server side root cause, the analysis in the APM is
required. During the test execution the APM registered 1120 internal HTTP 500 error responses
and 560 on transaction entry. In the respective Pure Paths we are able to identify the cause of
the HTTP 500 errors with various occurred exceptions. There were 3 different exceptions which
caused the transactions to fail. Two of them involve a subsystem, which wasn’t able to deal
with the load that was generated. The third exception is a deadlock exception in the database.
The related SQL query can also be identified in the APM. It is a query which saves the currently
active workflow data in the database. To further illustrate the problem we need to elicit the
intended usage of this workflow.

The user can start any suitability proposal and do all the steps required to finish the case
immediately. As this is not always possible for the employee to perform the whole suitability
proposal, the application automatically saves each modification of the suitability proposal in the
database with a delta SQL query. Between the various steps during the workflow this updating

5.3 Results 51

query is the same SQL statement. This is also the query which gets deadlocked 19 times during
the regular load test execution. In the APM we can create a Pure Path overview with all the
deadlocked transactions. In this overview we are able to identify that there are always two or
more Pure Paths started within 1 second, which can be an additional hint in finding the root
cause of the deadlock. The next step is the addition of deeper instrumentation in the database
to get more insights in this update process. The further analysis isn’t completed yet while I’m
writing this thesis. It is still a good example in the analysis of observed errors and exceptions
during a load test.

Large CSS-File Incident. During the latency test execution the timer 04_CreateCase had the
second highest diversity of average response time. The significant change of test setup is the
increase of latency from 1 ms to 173 ms. Therefore the analysis starts on the client-server com-
munication. We compare the single user action while observing the client-side network com-
munication. The summarization shows a 1.07 Megabyte CSS-File which is transmitted over the
network and therefore influenced heavily by the latency. This net round trip time for 1 ms la-
tency averages at about 125 milliseconds and for 173 ms latency it is over 9 seconds. Therefore
the according recommendation is to enable gzip compression on the web server and compress
the CSS-File.

Chapter 6

Evaluation

This chapter covers the quantitative evaluation and a brief discussion on the results of the qual-
itative evaluation.

6.1 Quantitative Evaluation
This section covers the quantitative evaluation of the previous approach and the proposed ap-
proach in terms of testing time and an example cost calculation for an occurred error.

6.1.1 Methodology
The methodology chosen for the evaluation of the amount of testing is a simple heuristic. To
evaluate the previous approach exemplary data from previous projects is used. Evaluating this
approach the case study is used and used for comparison with the previous approach. The
error cost calculation for one exemplary incident identified is taken from the NASA technical
report [60].

6.1.2 Number of Tested Days and Executions
The number of tested days is strongly dependent on the developing team. If the build, the
deployment or interfaces to peripheral systems are failing on the SuT it isn’t possible to run any
load tests with the approach taken. As a performance tester it is not really possible to influence
the build and deployment process. With this approach the tester is completely dependent on
this process.

Proposed Approach. An example from the case study is the two-week outage because of a
change in the user setup during the testing period which was another unexpected stop to the
load test activities. An availability overview of the SuT is given in figure 6.1. In this graph,
not available means that the deployment wasn’t functionally ready to perform the workflow
defined in the use case. During most outages, either the investment dashboard or the case
manager wasn’t available at all. During the whole ’not available’ time of the application there
were some test executions, where the first few measurements could be taken, but it wasn’t
possible to generate the whole load defined.

54 Chapter 6. Evaluation

Figure 6.1: Availability of the SuT between June and September 2017

Approach Previous Proposed Difference
Days of Testing 10 22 12
Days spent for implementation 2 5 3
Tested Releases 1 4 3
Days spent for implementation per Release 2 1.25 0.75
Days spent for Execution & Reporting 6 11 5
Days spent for Incident Analysis & Reporting 2 6 4
Successful Test Runs Executed 6 18 12

Table 6.1: Testing Days Comparison between the Approaches

Previous Approach. To evaluate the number of testing days for the previous approach, we
need to make assumptions on the test implementation and setup, as these two metrics differ
from the proposed approach. The reason for this is found in the implementation of the test
script for the whole workflow in contrary to the evolutionary implementation during the de-
velopment process. Another metric to be evaluated is the number of days available for testing
activities for the previous approach. For this comparison we use the number of UAT testing
days from the exemplary release plan described in section 2.4. The time period taken for the de-
velopment is the same in both cases. In the exemplary release plan we have a trimestrial release
which covers 3 months of total time to production. The evaluation from the case study also
covers three months. The time spent analysing a load test run will be distinguished between
the different types of load test run. In the previous approach the execution of a regular load test,
a peak load test and a long running regular load test was executed. The complete time invested
for the regular load test run is one and a half days because it is the first test execution and for
the peak and long running test run it was one.

In the comparison, depicted in table 6.1, the assumption is taken that the SuT is available for
the whole testing period of two weeks. Although this advantageous assumption for the pre-
vious approach the number of days of testing is heavily increased in the proposed approach.
The days spent for the implementation per release tested are reduced due to the evolutionary
development of the test script and due to the maintenance methods presented in section 4.3.
The number of test runs is heavily increased due to the daily executed regular load test. How-
ever these numbers don’t show the addition of the exceptional workloads to the releases tested.

6.1 Quantitative Evaluation 55

These have evolved through continuously testing and evaluating the problems of the applica-
tion. The examples can be found in subsection 5.2.5. Especially the addition of the data input
scalability test run would have never happened in the previous approach.

The time spent for the test implementation is decreasing for subsequent test runs. For the
same deployment the implementation happens only once. For subsequent deployments the
implementation time decreases as the script only needs to be updated according to changes or
added steps in the workflow. This results in a higher number of test executions for the proposed
approach with decreasing effort.

6.1.3 Error Cost Calculation
The error cost escalation with the previous approach and the proposed approach are compared
regarding the phase of development where they were detected and fixed in. This is done with
the normalized cost-to-fix estimates from the NASA technical report from Stecklein et al. [60].
They summarized different studies of software error cost factors in order to compare it with
system cost factors.

For calculation purposes an assumption needs to be taken. In the SCRUM framework
the duration of the sprint is the implementation phase. The testing done on the potentially
shippable product increment is the testing phase. These phases happen in a two week cycle.
Comparing it with the previous development approach depicted in 2.4 these test activities al-
ready happen during the development phase. Therefore comparing the error cost factors can
be achieved through the comparison of error cost calculations between test and development
phase.

The cost-to-fix estimates for the implementation phase, based on the NASA technical re-
port [60], is 10X to 26X and for the test phase it is 50X to 177X. Dividing these numbers by 10 to
get a normalized version for the implementation phase results in the software cost factors de-
picted in table 6.2. The multiplicator is the factor by which the cost is increased. Therefore the
cost-to-fix an identified incident is 5 to 6.8 times smaller than in the previous approach. These
multiplicators are gained through dividing the cost-to-fix estimates of the testing phase with
the development phase.

Cost Comparison. In order to evaluate the cost effectiveness of the proposed approach a few
assumptions and numbers are needed. First the internal costs for a performance engineer and
a developer are the same. For illustration purposes the further calculation uses a daily salary
of 1’500 Swiss francs. The additional costs caused for the proposed approach compared to the
previous one are from the performance engineer. In our case study these are additional 12 days
of testing which results in 18’000 Swiss francs. The corresponding calculation is as follows:

• C = additional cost

• d = daily salary of a performance engineer

• t = additional days of testing

C = d ∗ t

Based on internal statistics the cost-to-fix an incident result in 2 days effort in the testing
phase. This is a general average to simplify the calculation. Included in these costs are the

56 Chapter 6. Evaluation

Sofware Cost Factors
Development 1X - 2.6X
Test 5X - 17.7X
Operations 10X - 100X
Multiplicator between Development & Test 5 - 6.8

Table 6.2: Software Cost Factors from the Nasa Technical Report [60]

implementation cost by the developer and cost to build and deploy the fixed version. This
results in 3’000 Swiss francs of cost-to-fix for each incident. Based on the previously elicited
cost-to-fix multiplicators, this cost can be reduced to 441 to 600 Swiss francs per incident. The
resulting savings are 2’400 to 2’559 Swiss francs. In summarization the calculation is as follows:

• s = cost-to-fix savings per incident

• ct = cost-to-fix an incident during testing phase

• m = cost-to-fix multiplicator between testing and development

s = ct− (ctm)

Dividing the additional costs by the cost-to-fix savings per incident gives us the number of
incidents to be identified to equalize the cost:

• i = break-even point of cost = number of incidents to be identified and fixed to equalize
cost

i = C
s

After the identification of 8 incidents over 3 months of testing the proposed continuous
approach costs less than the previous approach as i = 18′000

2′400 = 7.5. In our case study the
identification and resolution of 13 incidents was achieved during these 3 months. These 13
incidents result in a savings of 31’200 Swiss francs and finally yield in 13’200 Swiss francs less
cost.

By inserting the additional cost per day for a performance engineer instead of the complete
additional cost we get a general answer. For each day of continuous testing 0.625 incidents need
to be identified in order to at least equalize the cost compared to the previous approach. In other
words the performance engineer has 1.6 days of continuous testing to identify an incident. This
is the reciprocal value to the previous calculation.

The calculation does not take into account the increase in quality of the software. This would
increase the value of the proposed approach even more but it is impossible to put up effective
numbers for that.

6.2 Discussion 57

6.2 Discussion
This section covers a brief discussion of the previously performed qualitative evaluation. Ad-
ditionally the pitfalls of GUI test case implementation is discussed.

6.2.1 Number of Testing Days and Executions
Regarding the total number of days available during the development phase the number of
complete test executions is rather disappointing. That is because of the availability of the SuT
and the strong dependency on the developers. The complexity of the SuT is also a factor which
needs to be considered. The build and deployment process is error-prone in such complex
systems with subsystems. Through these subsystems a lot of dependencies for the deployment
process are created. If on of the interfaces to subsystems or sub-subsystems fails the SuT is not
available for testing.

However in comparison to the previous testing approach the number of test executions and
available days for test executions is heavily increased. This is due to the comparably low im-
plementation cost after the initial implementation. The time spent for analyzing the load test
results also decreases over time because the performance tester gains more knowledge over
time about the system.

6.2.2 Error Cost Calculation
We already know that the earlier an incident is identified the cost to fix it can be drastically
reduced. With the proposed approach we were able to identify performance incidents earlier
than two weeks before deployment. This helps a project team in categorizing and prioritizing
the occurred incident. The proposed approach is especially efficient if a critical error occurs.
With the proposed approach the development team has more time to fix the incident before
going live with the application. We are able to show that the proposed approach is more cost-
efficient than the previous approach after identifying eight or more incidents. However this
calculation does not consider the benefits achieved by the increased quality of the software. It
is almost impossible to put the increased quality up in effective numbers as this would include
an analysis of the end-users perception and saving in time.

6.2.3 Pitfalls of GUI Test Implementation
Implementing performance tests on already completed deployments creates a strong depen-
dency on the successful deployment of the SuT. This is a big pitfall as already shown in the
evaluation in subsection 6.1.2. If the SuT is not available due to various reasons the perfor-
mance engineer can’t execute any tests. These reasons are further presented in subsection 5.3.1.
Another pitfall is the amount of time spent for the implementation. In the continuous load test-
ing approach the need for updating the test scripts rises after each sprint soaking up time for the
performance engineer. Even slightest changes in the GUI like refactoring a button can increase
the implementation overhead.

JavaScript executions may also be causes of failing use cases. The test execution happens
through a headless browser with the browser API. There are JavaScript executions which can’t
be reliably triggered through the headless browser. Therefore some test cases will fail certain
steps. An example occurred in the case study. When filling a search field the results should
dynamically pop up in a window. In the test execution with the headless browser this pop up

58 Chapter 6. Evaluation

didn’t show up for about 20 % of the use cases executed. There exist two workarounds for that
problem. Either the script retries the step until it is successful which increases the execution time
of these transactions. The other possible workaround is triggering the JavaScript event through
executing a JavaScript in the browser console during the load test. It is not a completely reliable
solution as it also can fail. It is trial and error to see which of these workarounds is more stable.
As this implementation pitfall is only shown after a load test it can take few test executions to
figure out the best implementation.

Chapter 7

Closing Remarks

In this chapter the research questions from section 1.2 are answered based on the results col-
lected. Further, threats to validity are discussed.

7.1 Research Question 1
The research question covers the possibility of applying the previously used approach for load
and performance testing on the browser API. The theoretical answer is delivered in section 2.4
and the evaluation of the practical application in the case study is answered in subsection 6.1.2.

Theoretical Answer. The theory is mainly based on the different development approaches.
The previous approach of trimestrial releases did not allow an early implementation of test ex-
ecutions on the GUI through the browser API. With the agile approach of SCRUM it is possible
to execute these tests after each cycle because there is a potentially shippable release as a result.

Practical Answer based on the Case Study. In the case study the number of tested days
and test executions increased compared to the existing approach with the same development
time. This results in the addition of more and different kind of workloads executed. The gain
of performance and quality knowledge is also increased due to the large amount of testing.
Directly answering the question, it is possible to completely implement the existing approach
in an earlier and more agile stage of the software development process. It is even possible to
extend it with additional workload definitions and schedule them for future test executions on
subsequent releases.

7.2 Research Question 2
The second research question covers the further evaluation of the challenges, advantages and
disadvantages compared to the previous approach.

Challenges. The time for testing a release stayed the same compared to the previous ap-
proach for our case study example because of the chosen cycle length of two weeks. However
this is not a fixed value. For further decreases of release cycle length the main challenge lies
in the shorter time period for the whole testing process. This includes reducing the time spent

60 Chapter 7. Closing Remarks

Figure 7.1: Testactivities with this Approach

for the test implementation and the analysis. The test execution time can be reduced by the
automatic execution of workloads. Possible improvements in the test implementation are dis-
cussed in section 4.3. A rather formal approach of the analysis of performance incidents based
on measured slow response times is given in subsection 4.6.

Advantages. The advantages of integrating the tests earlier in the development process are
discussed in chapter 6. We can see the number of test executions heavily increased. Also work-
loads for individual problems could be evaluated and executed for each release as presented
in subsection 5.2.5. These could be added to the automatic test execution schedule depicted
in subsection 5.2.4. With them being automatically executed for each release the continuous
monitoring of certain incidents occurred in the past is possible.

The incidents identified in subsection 5.3.4 can also be dealt with in the subsequent sprint. In
our case study example this was done by reengineering the GUI for the large css-file incident.
Identifying incidents earlier also helps in prioritizing the incidents properly. In the previous
approach there was less time for solving the incidents. The incident solutions with the previous
approach often included the implementation of workarounds instead of solving the root cause
of the incident.

Another advantage is the gain of knowledge by the performance tester. As mentioned in
section 2.4 the performance engineer is in a separate team and not involved in the development
process of a project. Therefore the first phase is getting to know the SuT. If this gained knowl-
edge can be used continuously, as in the agile approach, it is more efficient than when it is used
for only testing one release.

The test activities from the previous approach depicted in section 2.4 included a shift-left in
the proposed approach which is shown in figure 7.1.

Disadvantages. The time, and therefore money, spent for testing is increased heavily. It is
hard to compare the use of the approach taken in this thesis to the previous approach. Pon-
dering if it is worth investing more time for performance testing in such an early phase where
a lot of changes are still happening is difficult. It definitely increases the quality of the soft-

7.3 Threats to Validity 61

ware. Evaluating the efficiency between the existing and the proposed approach is impossible
to achieve.

An additional disadvantage is the close involvement in the project. The tester gets an in-
depth view of the project through the continuous involvement during the development process.
This can lead to project blindness with the loss of the outside view. Especially for negative test
results, the neutral opinion can be influenced due to the sympathy to the project team which
could cause falsified test reports. Another example is the

7.3 Threats to Validity
In the following section threats to validity of this thesis are further elicited.

Only one Example. The evaluation is based on only one exemplary case study. It is not a
general evaluation and prove that this approach is working efficiently. The example taken is
done for a fairly small test suite with only one use case. For larger test suites with more use
cases the time spent for implementing and analysing can be completely different. Logically,
for more test cases the time and effort spent for the implementation is be increased. It is not
evaluated if this effort increases linearly or exponentially. The same counts for the analysis of a
test run.

Focus on the Financial Institution. Only focusing on the load and performance testing for
financial applications with a predefined workflow is a special case and not a general solution.
The use case definition depicted in subsection 4.2.1 is simplified by that fact. Also the work-
load definition and calculation depicted in 4.2.4 is simplified. They don’t have to be evaluated
continuously as it would be the case for publicly accessible applications with a high variance in
usage.

Performance Test Suite. The usage of the performance test suite from Microfocus (Silk Per-
former [43] and Silk Central [42]) for the test execution, implementation and scheduling is a
simplification which is not open source and therefore not accessible to the public. It simplified
all the steps involved. For example the pacing with a GST (depicted in subsection 4.2.4) for the
test case would take more time with any other tool used. This would increase the implementa-
tion and execution time. Also the long term scheduling for the load tests is fairly easy with the
support of Silk Central.

Assumptions The assumptions made in the evaluation can be criticized. Especially that IT
professionals have the same salary is not realistic but simplifies the calculation. Otherwise
all involved parties in solving an incident would have to have single salaries as resolving an
error does not only include effort from the developer. It also includes deployment effort from a
separate responsible or involvement from a database responsible. Also the assumption on the
error resolution time can vary significantly depending on the error. For calculation purposes an
average value has been chosen.

Chapter 8

Glossary

Application Performance Management (APM). This is a monitoring solution, which will be
integrated in the environment to be tested. It will measure key performance metrics.

Benchmark. In software testing the term benchmark is usually used to evaluate the relative
performance of hardware components. However the oxford dictionary defines the term bench-
mark as follows: "A standard or point of reference against which things may be compared." [20].
Therefore in this thesis the term benchmark is used to assess the relative performance of differ-
ent geographic locations in subsection 5.3.3 or different releases in 5.2.4.

Environment. An instantiation (deployment) of the application to be tested. In a software
development process, there should be multiple environments dedicated to testing purposes.

Key Performance Metrics (KPIs). These are metrics used to determine the performance of
the application. These metrics include Memory consumption, CPU usage and response times
of either end-user actions, single method executions or SQL queries on the database. This also
includes the network impact on the performance (Network Utilization). KPI’s are defined for
specific workloads and therefore can differ for different kinds of load test runs.

Load generator. The tool to be used, to generate load on the environment. This can be done
through triggering unit test cases, functional test cases or end-user use case simulation on the
application to be tested.

Service Level Agreement (SLA). Definition: "A service level agreement (SLA) defines the
idea of a reliable contract between servic providers an their users. It contains the information
about the responsibilities, the scope, and the expected quality of service (QoS)." Walter et al. [70].
Additionally it includes the definition of KPIs for certain load pattern.

Test Run. A Test Run is an execution of a workload on the environment to be tested.

Thinktime. The thinktime refers to the time a user needs until he interacts with the applica-
tion. It can be time the user needs to read certain passages or find a button in the GUI. It doesn’t
include page load times or insertions of text.

64 Chapter 8. Glossary

Transaction. A transaction is one execution of a test case. In a performance test, these trans-
actions will be executed multiple times in order to get significant results on the response times.
To determine an applications performance, it is not enough the execute just one transaction
and measure the elapsed time because it doesn’t deliver statistically significant results on the
applications performance. To define a load, the measure transactions per hour is used.

User Acceptance Test (UAT). In the development lifecycle, this is the last stage of testing
before the deployment to production of a new release. It covers end-user use case execution
testing, including performance testing.

Workload. These are the definitions of the load patterns, which will be executed during a
single test run. In the case of executing unit tests or functional test cases, this contains the time
of the test execution and the number of executions of the respective tests during the defined time
period. In end-user use case simulations, there is additionally the definition of the number of
users to be used during the test period. The workload also specifies the type of the performance
test, which will have a great impact on the sizing of the previously defined numbers.

Bibliography

[1] T. M. Ahmed, C.-P. Bezemer, T.-H. Chen, A. E. Hassan, and W. Shang. Studying the effec-
tiveness of application performance management (apm) tools for detecting performance
regressions for web applications: An experience report. In Proceedings of the 13th Interna-
tional Conference on Mining Software Repositories, MSR ’16, pages 1–12, New York, NY, USA,
2016. ACM.

[2] W. Ahn, J. Choi, T. Shull, M. J. Garzarán, and J. Torrellas. Improving javascript performance
by deconstructing the type system. In Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’14, pages 496–507, New York, NY,
USA, 2014. ACM.

[3] Akamai. The impact of web performance on e-retail success. Akamai White Paper, 2004.

[4] Akamai. https://www.akamai.com/us/en/about/news/press/2006-press/
akamai-and-jupiterresearch-identify-4-seconds-as-the-new-threshold-of-acceptability-for-retail-web-page-response-times.
jsp, Nov 2006.

[5] T. Angerstein, D. Okanović, C. Heger, A. van Hoorn, A. Kovačević, and T. Kluge. Many
flies in one swat: Automated categorization of performance problem diagnosis results.
In Proceedings of the 8th ACM/SPEC on International Conference on Performance Engineering,
ICPE ’17, pages 341–344, New York, NY, USA, 2017. ACM.

[6] AppDynamics. https://www.appdynamics.com/. Accessed: 2017-07-21.

[7] W. Bays and K.-D. Lange. Spec: Driving better benchmarks. In Proceedings of the 3rd
ACM/SPEC International Conference on Performance Engineering, ICPE ’12, pages 249–250,
New York, NY, USA, 2012. ACM.

[8] S. Becker, H. Koziolek, and R. Reussner. Model-based performance prediction with the
palladio component model. In Proceedings of the 6th International Workshop on Software and
Performance, WOSP ’07, pages 54–65, New York, NY, USA, 2007. ACM.

[9] P. C. Brebner. Real-world performance modelling of enterprise service oriented architec-
tures: delivering business value with complexity and constraints. SIGSOFT Softw. Eng.
Notes, 36(5):85–96, Sept. 2011.

[10] P. C. Brebner. Automatic performance modelling from application performance manage-
ment (apm) data: An experience report. In Proceedings of the 7th ACM/SPEC on International
Conference on Performance Engineering, ICPE ’16, pages 55–61, New York, NY, USA, 2016.
ACM.

https://www.akamai.com/us/en/about/news/press/2006-press/akamai-and-jupiterresearch-identify-4-seconds-as-the-new-threshold-of-acceptability-for-retail-web-page-response-times.jsp
https://www.akamai.com/us/en/about/news/press/2006-press/akamai-and-jupiterresearch-identify-4-seconds-as-the-new-threshold-of-acceptability-for-retail-web-page-response-times.jsp
https://www.akamai.com/us/en/about/news/press/2006-press/akamai-and-jupiterresearch-identify-4-seconds-as-the-new-threshold-of-acceptability-for-retail-web-page-response-times.jsp
https://www.appdynamics.com/

66 BIBLIOGRAPHY

[11] W. Bridge. https://code.google.com/archive/p/wanbridge/.

[12] J. Brutlag. http://services.google.com/fh/files/blogs/google_delayexp.
pdf, Jun 2009.

[13] R. Callan, F. Behrang, A. Zajic, M. Prvulovic, and A. Orso. Zero-overhead profiling via
em emanations. In Proceedings of the 25th International Symposium on Software Testing and
Analysis, ISSTA 2016, pages 401–412, New York, NY, USA, 2016. ACM.

[14] L. Cheng, S. Kotoulas, T. E. Ward, and G. Theodoropoulos. High throughput indexing for
large-scale semantic web data. In Proceedings of the 30th Annual ACM Symposium on Applied
Computing, SAC ’15, pages 416–422, New York, NY, USA, 2015. ACM.

[15] J. Cito, G. Mazlami, and P. Leitner. Temperf: Temporal correlation between performance
metrics and source code. In Proceedings of the 2Nd International Workshop on Quality-Aware
DevOps, QUDOS 2016, pages 46–47, New York, NY, USA, 2016. ACM.

[16] V. Cortellessa, A. Di Marco, R. Eramo, A. Pierantonio, and C. Trubiani. Digging into uml
models to remove performance antipatterns. In Proceedings of the 2010 ICSE Workshop on
Quantitative Stochastic Models in the Verification and Design of Software Systems, QUOVADIS
’10, pages 9–16, New York, NY, USA, 2010. ACM.

[17] V. Cortellessa, A. D. Marco, and C. Trubiani. Performance antipatterns as logical predi-
cates. In Proceedings of the 2010 15th IEEE International Conference on Engineering of Complex
Computer Systems, ICECCS ’10, pages 146–156, Washington, DC, USA, 2010. IEEE Com-
puter Society.

[18] M. Czerwinski, E. Horvitz, and S. Wilhite. A diary study of task switching and interrup-
tions. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI
’04, pages 175–182, New York, NY, USA, 2004. ACM.

[19] M.-W. O. Dictionary. https://www.merriam-webster.com/dictionary/science.
Accessed: 2017-08-08.

[20] O. Dictionary. https://en.oxforddictionaries.com/definition/benchmark.
Accessed: 2017-09-07.

[21] DynaTrace. https://www.dynatrace.com/. Accessed: 2017-07-21.

[22] DynaTrace. https://community.dynatrace.com/community/display/
DOCDT65/Bytecode+Injection. Accessed: 2017-08-21.

[23] M. Ermuth and M. Pradel. Monkey see, monkey do: Effective generation of gui tests with
inferred macro events. In International Symposium on Software Testing and Analysis (ISSTA),
2016.

[24] V. Ferme and C. Pautasso. Towards holistic continuous software performance assessment.
In Proceedings of the 8th ACM/SPEC on International Conference on Performance Engineering
Companion, ICPE ’17 Companion, pages 159–164, New York, NY, USA, 2017. ACM.

[25] E. Foundation. https://www.eclipse.org/. Accessed: 2017-09-27.

[26] E. Fullerton. Akamai technologies - 2014 consumer web performance expectations survey.
Akamai Technologies - 2014 Consumer Web Performance Expectations Survey, 2014.

https://code.google.com/archive/p/wanbridge/
http://services.google.com/fh/files/blogs/google_delayexp.pdf
http://services.google.com/fh/files/blogs/google_delayexp.pdf
https://www.merriam-webster.com/dictionary/science
https://en.oxforddictionaries.com/definition/benchmark
https://www.dynatrace.com/
https://community.dynatrace.com/community/display/DOCDT65/Bytecode+Injection
https://community.dynatrace.com/community/display/DOCDT65/Bytecode+Injection
https://www.eclipse.org/

BIBLIOGRAPHY 67

[27] Gartner. http://www.gartner.com/technology/research/methodologies/
magicQuadrants.jsp. Accessed: 2017-08-08.

[28] Gartner. https://www.gartner.com/doc/reprints?id=1-3M8KIVD&ct=
161118&st=sb. Accessed: 2017-09-08.

[29] A. Georges, D. Buytaert, and L. Eeckhout. Statistically rigorous java performance evalu-
ation. In Proceedings of the 22Nd Annual ACM SIGPLAN Conference on Object-oriented Pro-
gramming Systems and Applications, OOPSLA ’07, pages 57–76, New York, NY, USA, 2007.
ACM.

[30] A. Georges, D. Buytaert, and L. Eeckhout. Statistically rigorous java performance evalua-
tion. Technical report, Department of Electronics and Information Systems, Ghent Univer-
sity, Belgium, 2007.

[31] Google. https://developers.google.com/speed/pagespeed/. Accessed: 2017-
09-18.

[32] M. Grechanik, C. Fu, and Q. Xie. Automatically finding performance problems with
feedback-directed learning software testing. In Proceedings of the 34th International Con-
ference on Software Engineering, ICSE ’12, pages 156–166, Piscataway, NJ, USA, 2012. IEEE
Press.

[33] C. Heger, J. Happe, and R. Farahbod. Automated root cause isolation of performance
regressions during software development. Technical report, Karlsruhe Institute of Tech-
nology, Karlsruhe, Germany, 2013.

[34] C. Heger, A. van Hoorn, M. Mann, and D. Okanović. Application performance manage-
ment: State of the art and challenges for the future. In Proceedings of the 8th ACM/SPEC
on International Conference on Performance Engineering, ICPE ’17, pages 429–432, New York,
NY, USA, 2017. ACM.

[35] C. Heger, A. van Hoorn, D. Okanovic, S. Siegl, and A. Wert. Expert-guided automatic
diagnosis of performance problems in enterprise applications. In 12th European Dependable
Computing Conference, EDCC 2016, Gothenburg, Sweden, September 5-9, 2016, pages 185–188,
2016.

[36] R. Heinrich, A. van Hoorn, H. Knoche, F. Li, L. E. Lwakatare, C. Pahl, S. Schulte, and J. Wet-
tinger. Performance engineering for microservices: Research challenges and directions. In
Proceedings of the 8th ACM/SPEC on International Conference on Performance Engineering Com-
panion, ICPE ’17 Companion, pages 223–226, New York, NY, USA, 2017. ACM.

[37] Z. M. Jiang. Automated analysis of load testing results. In Proceedings of the 19th Interna-
tional Symposium on Software Testing and Analysis, ISSTA ’10, pages 143–146, New York, NY,
USA, 2010. ACM.

[38] T. Kalibera, J. Lehotsky, D. Majda, B. Repcek, M. Tomcanyi, A. Tomecek, P. Tuma, and
J. Urban. Automated benchmarking and analysis tool. Technical report, Charles University,
Prague, Czech Republic, 2006.

[39] Kieker. http://kieker-monitoring.net/. Accessed: 2017-07-21.

[40] G. Linden. http://glinden.blogspot.ch/2006/11/
marissa-mayer-at-web-20.html, Nov 2006.

http://www.gartner.com/technology/research/methodologies/magicQuadrants.jsp
http://www.gartner.com/technology/research/methodologies/magicQuadrants.jsp
https://www.gartner.com/doc/reprints?id=1-3M8KIVD&ct=161118&st=sb
https://www.gartner.com/doc/reprints?id=1-3M8KIVD&ct=161118&st=sb
https://developers.google.com/speed/pagespeed/
http://kieker-monitoring.net/
http://glinden.blogspot.ch/2006/11/marissa-mayer-at-web-20.html
http://glinden.blogspot.ch/2006/11/marissa-mayer-at-web-20.html

68 BIBLIOGRAPHY

[41] M. Mehrara and S. Mahlke. Dynamically accelerating client-side web applications through
decoupled execution. In Proceedings of the 9th Annual IEEE/ACM International Symposium
on Code Generation and Optimization, CGO ’11, pages 74–84, Washington, DC, USA, 2011.
IEEE Computer Society.

[42] Microfocus. https://www.microfocus.com/de-de/products/
silk-portfolio/silk-central/. Accessed: 2017-09-14.

[43] Microfocus. https://www.microfocus.com/de-de/products/
silk-portfolio/silk-performer/. Accessed: 2017-09-19.

[44] Y. Na, S. W. Kim, and Y. Han. Javascript parallelizing compiler for exploiting parallelism
from data-parallel html5 applications. ACM Trans. Archit. Code Optim., 12(4):64:1–64:25,
Jan. 2016.

[45] A. Nederlof, A. Mesbah, and A. v. Deursen. Software engineering for the web: The state
of the practice. In Companion Proceedings of the 36th International Conference on Software
Engineering, ICSE Companion 2014, pages 4–13, New York, NY, USA, 2014. ACM.

[46] C. Nicoll. https://www.scrum.org/forum/scrum-forum/5625/
experience-report-move-waterfall-scrum. Accessed: 2017-09-20.

[47] J. Nielsen. ttps://www.nngroup.com/articles/website-response-times/,
June 2010.

[48] D. Okanovic, A. van Hoorn, C. Heger, A. Wert, and S. Siegl. Towards performance tooling
interoperability: An open format for representing execution traces. In Computer Perfor-
mance Engineering - 13th European Workshop, EPEW 2016, Chios, Greece, October 5-7, 2016,
Proceedings, pages 94–108, 2016.

[49] P.-S. PCM. http://www.palladio-simulator.com/. Accessed: 2017-07-25.

[50] M. Peiris and J. H. Hill. Towards detecting software performance anti-patterns using clas-
sification techniques. SIGSOFT Softw. Eng. Notes, 39:1–4, Feb. 2014.

[51] Phabricator. https://secure.phabricator.com/book/phabcontrib/article/
n_plus_one/. Accessed: 2017-09-22.

[52] M. Pradel, P. Schuh, G. C. Necula, and K. Sen. Eventbreak: analyzing the responsiveness of
user interfaces through performance-guided test generation. In Proceedings of the 2014 ACM
International Conference on Object Oriented Programming Systems Languages & Applications,
OOPSLA 2014, part of SPLASH 2014, Portland, OR, USA, October 20-24, 2014, pages 33–47,
2014.

[53] R. Ramakrishnan, V. Shrawan, and P. Singh. Setting realistic think times in performance
testing: A practitioner’s approach. In Proceedings of the 10th Innovations in Software Engi-
neering Conference, ISEC ’17, pages 157–164, New York, NY, USA, 2017. ACM.

[54] N. Relic. https://newrelic.com/. Accessed: 2017-07-21.

[55] A. Rodge, S. K. Soni, L. Chinnaga, P. Johari, J. Bose, C. Pramanik, and A. Bhide. Scalable
and optimal load generation for aws clients. In Proceedings of the 8th Annual ACM India
Conference, Compute ’15, pages 95–100, New York, NY, USA, 2015. ACM.

https://www.microfocus.com/de-de/products/silk-portfolio/silk-central/
https://www.microfocus.com/de-de/products/silk-portfolio/silk-central/
https://www.microfocus.com/de-de/products/silk-portfolio/silk-performer/
https://www.microfocus.com/de-de/products/silk-portfolio/silk-performer/
https://www.scrum.org/forum/scrum-forum/5625/experience-report-move-waterfall-scrum
https://www.scrum.org/forum/scrum-forum/5625/experience-report-move-waterfall-scrum
ttps://www.nngroup.com/articles/website-response-times/
http://www.palladio-simulator.com/
https://secure.phabricator.com/book/phabcontrib/article/n_plus_one/
https://secure.phabricator.com/book/phabcontrib/article/n_plus_one/
https://newrelic.com/

BIBLIOGRAPHY 69

[56] Scrum.org. https://www.scrum.org/resources/scrum-framework-poster. Ac-
cessed: 2017-09-07.

[57] M. Sedaghat, F. Hernandez-Rodriguez, and E. Elmroth. A virtual machine re-packing ap-
proach to the horizontal vs. vertical elasticity trade-off for cloud autoscaling. In Proceedings
of the 2013 ACM Cloud and Autonomic Computing Conference, CAC ’13, pages 6:1–6:10, New
York, NY, USA, 2013. ACM.

[58] SLA. http://www.service-level-agreement.net/. Accessed: 2017-09-26.

[59] S. Souders. https://blog.mozilla.org/metrics/2010/03/31/
firefox-page-load-speed-part-i/, Mar 2010.

[60] J. M. Stecklein, J. Dabney, B. Dick, B. Haskins, R. Lovell, and G. Moroney. Error cost es-
calation through the project life cycle. Conference paper, NASA Johnson Space Center;
Houston, TX, United States, 2004.

[61] C. Stewart and K. Shen. Performance modeling and system management for multi-
component online services. Technical report, Department of Computer Science, 2005.

[62] S. Sundaresan, N. Magharei, N. Feamster, R. Teixeira, and S. Crawford. Web performance
bottlenecks in broadband access networks. SIGMETRICS Perform. Eval. Rev., 41(1):383–384,
June 2013.

[63] M. D. Syer, Z. M. Jiang, M. Nagappan, A. E. Hassan, M. Nasser, and P. Flora. Continuous
validation of load test suites. In Proceedings of the 5th ACM/SPEC International Conference on
Performance Engineering, ICPE ’14, pages 259–270, New York, NY, USA, 2014. ACM.

[64] E. Thereska, B. Doebel, A. X. Zheng, and P. Nobel. Practical performance models for com-
plex, popular applications. Technical report, Microsoft Research, Cambridge, United King-
dom, 2010.

[65] C. Trubiani and A. Koziolek. Detection and solution of software performance antipatterns
in palladio architectural models. In Proceedings of the 2Nd ACM/SPEC International Confer-
ence on Performance Engineering, ICPE ’11, pages 19–30, New York, NY, USA, 2011. ACM.

[66] A. Verbitski, A. Gupta, D. Saha, M. Brahmadesam, K. Gupta, R. Mittal, S. Krishnamurthy,
S. Maurice, T. Kharatishvili, and X. Bao. Amazon aurora: Design considerations for high
throughput cloud-native relational databases. In Proceedings of the 2017 ACM International
Conference on Management of Data, SIGMOD ’17, pages 1041–1052, New York, NY, USA,
2017. ACM.

[67] G. Vergori, D. A. Tamburri, D. Perez-Palacin, and R. Mirandola. Devops performance
engineering: A quasi-ethnographical study. In Proceedings of the 8th ACM/SPEC on In-
ternational Conference on Performance Engineering Companion, ICPE ’17 Companion, pages
127–132, New York, NY, USA, 2017. ACM.

[68] I. Švogor. An initial performance review of software components for a heterogeneous
computing platform. In Proceedings of the 2015 European Conference on Software Architecture
Workshops, ECSAW ’15, pages 16:1–16:4, New York, NY, USA, 2015. ACM.

[69] J. Waller, N. C. Ehmke, and W. Hasselbring. Including performance benchmarks into con-
tinuous integratino to enable devops. Technical report, Kiel University, Kiel, Germany,
2015.

https://www.scrum.org/resources/scrum-framework-poster
http://www.service-level-agreement.net/
https://blog.mozilla.org/metrics/2010/03/31/firefox-page-load-speed-part-i/
https://blog.mozilla.org/metrics/2010/03/31/firefox-page-load-speed-part-i/

70 BIBLIOGRAPHY

[70] J. Walter, D. Okanović, and S. Kounev. Mapping of service level objectives to performance
queries. In Proceedings of the 8th ACM/SPEC on International Conference on Performance Engi-
neering Companion, ICPE ’17 Companion, pages 197–202, New York, NY, USA, 2017. ACM.

[71] J. Walter, A. van Hoorn, H. Koziolek, D. Okanovic, and S. Kounev. Asking "what"?, au-
tomating the "how"?: The vision of declarative performance engineering. In Proceedings of
the 7th ACM/SPEC on International Conference on Performance Engineering, ICPE ’16, pages
91–94, New York, NY, USA, 2016. ACM.

[72] C. Weiss, D. Westermann, C. Heger, and M. Moser. Systematic performance evaluation
based on tailored benchmark applications. Technical report, SAP Research, Karlsruhe,
Germany, 2013.

[73] A. Wert, J. Happe, and L. Happe. Supporting swift reaction: Automatically uncovering
performance problems by systematic experiments. In Proceedings of the 2013 International
Conference on Software Engineering, ICSE ’13, pages 552–561, Piscataway, NJ, USA, 2013.
IEEE Press.

[74] F. Willnecker, A. Brunnert, W. Gottesheim, and H. Krcmar. Using dynatrace monitoring
data for generating performance models of java ee applications. In Proceedings of the 6th
ACM/SPEC International Conference on Performance Engineering, ICPE ’15, pages 103–104,
New York, NY, USA, 2015. ACM.

[75] M. Woodside, G. Franks, and D. C. Petriu. The future of software performance engineering.
In 2007 Future of Software Engineering, FOSE ’07, pages 171–187, Washington, DC, USA,
2007. IEEE Computer Society.

[76] X. Xiao, S. Han, D. Zhang, and T. Xie. Context-sensitive delta inference for identifying
workload-dependent performance bottlenecks. In Proceedings of the 2013 International Sym-
posium on Software Testing and Analysis, ISSTA 2013, pages 90–100, New York, NY, USA,
2013. ACM.

[77] Yahoo. http://yslow.org/. Accessed: 2017-09-18.

[78] E. Zimran and D. Butchart. Performance engineering throughout the product life cycle.
CompEuro ’93. ’Computers in Design, Manufacturing, and Production’, 1993.

[79] M. Züger, C. Corley, A. N. Meyer, B. Li, T. Fritz, D. Shepherd, V. Augustine, P. Francis,
N. Kraft, and W. Snipes. Reducing interruptions at work: A large-scale field study of
flowlight. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems,
CHI ’17, pages 61–72, New York, NY, USA, 2017. ACM.

http://yslow.org/

	Introduction
	Motivation
	Research Questions
	Scope
	Background of the Financial Institution
	Structure of the Thesis

	Current State-of-the-Art Performance Engineering
	Scientific Research
	Industrial Best-Practices
	Comparison of the current Industry Best-Practices and the Scientific Research
	Performance Testing in the Financial Institution

	Related Work about Performance Engineering
	Application Performance Management
	GUI Test Case Implementation Strategies
	Performance Evaluation
	Benchmarking
	Profiling

	Load Testing
	Automatic Detection of Performance Incidents
	Detecting Software Performance Anti-Patterns
	Predicting Performance with respective models

	Different challenges in Web Performance
	Latency
	Throughput
	Scalability
	JavaScript

	Approach
	Prerequisites of this approach
	Design of the Load Test
	Use Case Definition
	Types of Load Patterns
	Selection of Load Patterns
	Workload Calculation

	Test Implementation
	Using Functional Test Implementations as Performance Test Cases
	Efficiency and Maintainability of the Test Implementation

	Client-Side Performance Metrics
	Server-Side Performance Metrics
	Observation and Analysis of Incidents

	Case Study: Integrated Advisory Portal
	Overview
	Architecture
	Performance Aspects

	Test plan
	Use Case Definition and Implementation
	Test Infrastructure
	Workload Calculation
	Test Execution Schedule
	Exceptional Workloads

	Results
	Client-Side Metrics
	Server-Side Metrics
	Analysis of the WAN-Bridge Benchmark
	Incidents identified

	Evaluation
	Quantitative Evaluation
	Methodology
	Number of Tested Days and Executions
	Error Cost Calculation

	Discussion
	Number of Testing Days and Executions
	Error Cost Calculation
	Pitfalls of gui Test Implementation

	Closing Remarks
	Research Question 1
	Research Question 2
	Threats to Validity

	Glossary

