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Abstract

Docker is a leading software container platform which has become increasingly popular in re-
cent years. It allows to package an application with its dependencies into a standardized, self-
contained unit called a container. Containers thus simplify the provision of applications because
they contain all the necessary packages and are easy to transport and install. They can be used
in software development to automate repetitive tasks, such as deploying and configuring devel-
opment environments, or simply launching software on any system. Docker provides his own
declarative scripting language (written in Dockerfiles) to create images for such containers. It
consists of declarative definitions and refers to the practice of scripting the provisioning of hard-
ware and operating system requirements concurrently with the development of the software it-
self. With a Dockerfile, a container image can be created repetitively without manual installation
or configuration steps. Therefore, they can often be found in respective source code reposito-
ries. This Bachelor thesis presents an exploratory empirical study with the goal to characterize
the Docker ecosystem, analyze the evolution of Dockerfiles, and lastly identify prevalent qual-
ity issues. It is based on a data set of 97’571 Dockerfiles, which are divided into three different
categories to contrast them: the entire data set, the top 100 and the top 1000 most popular Docker-
using projects. Most of the quality issues (28.6%) arise from missing version pinning (i.e., spec-
ifying a concrete version for dependencies). The most popular projects change more often than
the rest of the Docker population, with 4.95 revisions per year and 5 lines of code changed on av-
erage. Most changes deal with dependencies which are currently stored in a rather unstructured
manner. Furthermore, a rising trend of using lightweight images, for instance Alpine, has been
observed.






Zusammenfassung

Docker ist eine fithrende Software-Container-Plattform, die in den letzten Jahren stark an Popu-
laritat gewonnen hat. Sie erlaubt, eine Anwendung mit ihren Abhéngigkeiten in eine standard-
isierte, in sich geschlossene Einheit zu verpacken, die als Container bezeichnet wird. Container
vereinfachen somit die Bereitstellung von Applikationen, da sie alle notwendigen Pakete enthal-
ten und einfach zu transportieren und zu installieren sind. Sie konnen in der Softwareentwick-
lung eingesetzt werden, um repetitive Aufgaben zu automatisieren, wie z. B. das Implementieren
und Konfigurieren von Entwicklungsumgebungen oder simpel das Starten von Software auf je-
dem System. Docker stellt seine eigene Skriptsprache (geschrieben in Dockerfiles) zur Verfii-
gung, um Images fiir solche Container zu erstellen. Es besteht aus deklarativen Definitionen und
bezieht sich auf das Scripting der Bereitstellung von Hardware- und Betriebssystemanforderun-
gen parallel zur Softwareentwicklung selbst. Mit einem Dockerfile kann ein Containerimage ohne
manuelle Installations- oder Konfigurationsschritte wiederholt erstellt werden. Daher konnen sie
oft in entsprechenden Quellcode-Repositories gefunden werden. Diese Bachelor-Arbeit prasen-
tiert eine explorative empirische Studie mit dem Ziel, das Docker—Okosystem zu charakterisieren,
die Evolution von Dockerfiles zu analysieren und letztlich vorherrschende Qualitatsprobleme
zu identifizieren. Es basiert auf einem Datensatz von 97’571 Dockerfiles, welcher in drei ver-
schiedene Kategorien unterteilt wird, um diese gegeniiberzustellen: den gesamten Datensatz,
die Top 100 sowie die Top 1000 der meist verbreiteten Docker-basierten Projekte. Die meisten
Qualitdtsprobleme (28,6%) ergeben sich aus fehlender Versionsvereinigung (d.h. Angabe einer
konkreten Version fiir Abhéngigkeiten). Die populédrsten Projekte &ndern sich ofter als der Rest
der Docker-Bevolkerung, mit 4,95 Revisionen pro Jahr und 5 Zeilen Code, die im Durchschnitt
gedndert werden. Die meisten Anderungen befassen sich mit Abhédngigkeiten, die derzeit eher
unstrukturiert gespeichert sind. Dartiiber hinaus wurde ein steigender Trend der Verwendung
von leichten Images, wie zum Beispiel Alpine, beobachtet.
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Chapter 1

Introduction

Containerization, also known as container-based virtualization is an OS-level virtualization method [70]
for packaging, deploying and running applications without launching an entire Virtual Machine
for each application. Instead, multiple isolated systems, called containers, are run on a single
control host and access a single kernel [40]. Containerization has gained interest as a light-weight
virtualization technology to define software infrastructure [41] [25]. Containers are easily pack-
aged, lightweight and designed to run anywhere. Containers encapsulate discrete components
of application logic and are easily packaged, lightweight and designed to run anywhere. There is
only one underlying OS which takes care of the incoming hardware calls. The more agile environ-
ment facilitates new approaches, such as microservices and continuous integration and delivery.
Due to their rapid gained prominence in the software development community, the Docker con-
tainer format and runtime will form the basis of the new standard of Containers [48] [49]. Docker
allows, in addition to the Command Line Tool, to build Containers automatically by reading the
instructions from a Dockerfile. The content of the Dockerfile is declaratively defined and includes
Dockerfile instructions as layers to reach a certain infrastructure state [30], following the notion of
Infrastructure-as-Code (IaC) [32]. Docker supports fully automated builds for both public and
private repositories as well as for Github and Bitbucket [13].The whole Dockerfile context can be
executed with only one command: docker build and it will immediately build the isolated infras-
tructure. Since its imposition in 2013, repositories on Github have added 108560 Dockerfiles to
their projects (until Mars 2017).

1.1 Contribution

Containers are changing the way of how software developers build, maintain and monitor ap-
plications [1] and last but not least, its surrounding claim of enabling reproducibility [4]. This
thesis analyses the Docker ecosystem in terms of quality and their change and evolution behavior
within software repositories. In order to get a clear overview of the Dockerfiles it was crucial to
develop a tool chain that translates Dockerfiles and their evolution in Git repositories into a rela-
tional database model. Instead of selecting a sample of projects with Dockerfiles, the mentioned
framework mined the entire population of Dockerfiles on Github as of March 2017.

The results of this thesis can help standard bodies around containers and tool developers to
develop better support in order to improve the quality and drive ecosystem change, yet to adjust
existing tools based to the provided information and data of this thesis.

This thesis makes the following contributions with the empirical analysis:

Ecosystem Overview. Characterization of the ecosystem of Docker containers on Github by
analyzing the mined data. There section is divided into two parts.
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First, it examines the meta-information such as distribution of projects using Docker, broken
down by primary programming language, project size, and the base infrastructure (base image)
they inherited from.

Then, a drill down into the instructions and closer look at the commands which were used such
as the exposed ports, used packages, most commented instruction and many more. The results
show, among other things, that most inherited base images are well-established, but heavy-weight
operating systems, while light-weight alternatives are in the minority.

The reason may lay in the convenience to use already existing, known systems and their estab-
lished package managers. Additionally,it is easier to move legacy applications into containers
without re-constructing them.

Moreover, the analysis shows that there is a difference regarding the distribution of the followed
instructions depending on the base image.

Evolution Behaviour. Investigation of evolutionary aspects such as rate of changes, size of
changes, dependencies along the evolution of commits and more. There was a need to refine the
existing Diff-Tool of Git to increase the accuracy between two Commits. Finally, the Diff Processor
was able to perform classification of different kinds of changes between consecutive versions of
Dockerfiles. On average, Dockerfiles only changed 3.11 times per year, with a mean 3.98 lines
of code changed per revision. Nonetheless, there is evidence that more popular projects (higher
popularity, measured by metadata attributes) revise up to 5.81 per year with 5 lines changed.

Quality Assessment. Static quality Assessment of Dockerfiles on Github by classifying re-
sults of a Dockerfile Linter [37], which performs static code analysis by parsing the Dockerfile
into an AST and performing rules on top of the AST [38]. Most of the issues encountered consid-
ered version pinning (i.e., specifying a concrete version for either base images or dependencies),
accounting for 28.6% of quality issues.

This thesis makes following additional contributions:

1. It contains the tooling, data model, and mined data for 100k Dockerfiles and their evolution
as of October 2016

2. It provides a tool chain that parses Dockerfiles and stores it in a relational model. Fur-
thermore it (dockalyzer) captures structured evolution between subsequent versions in the
version control history

3. It provides the entire database (37 GB), queries and analysis scripts.

1.2 Outline

The remainder of this paper is divided into five chapters.

Chapter 2 Background provides the basic background on containerization technologies, Docker
and the associated Dockerfile as well as a brief insight in git and repository mining.

Chapter 3 Related Work gives a short and comprehensive view over previous research on this
field.

Chapter 4 Approach describes the tool chain, implementation details and the resulting data
set.
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Chapter 5 Results shows the main results of the analysis, seperated in four sections. Firstly
an overview of the Ecosystem, secondly the dependencies along the Packages, followed by an
evolutionary insight. The last part describes a quality assessment.

Chapter 6 Threats to Validity presents a discussion of the threats of validity of this thesis.






Chapter 2

Background

2.1 Virtual machines vs. Containers

2.2 Containers and Docker

In computing, a virtual machine (VM) is an emulation of a computer system. Virtual machines are
based on computer architectures and provide functionality of a physical computer [62]. Contain-
ers are based on an OS-level virtualization technique that provides virtual environments that en-
able process and network isolation. LXC provides operating system-level virtualization through a
virtual environment that has its own process and network space, instead of creating a full-fledged
virtual machine. LXC relies on the Linux kernel cgroups functionality that was released in ver-
sion 2.6.24. It also relies on other variations of namespace isolation functionality, which were
developed and integrated into the mainline Linux kernel.

2.3 Docker

Docker is built on top of LXC and adds image management and deployment assistance to vir-
tualize applications. Docker provides an automation and rapid provisioning of LXC cgroups
without requiring a VM. Docker provides an API that extends the functionality of LXC for build-
ing Platform as a Service (PaaS) offerings [56]. It aims to improve reproducibility of applications
by enabling bundling of container contents into a single object which can be deployed across
machines [9]. Docker containers allow you to put the application and dependencies together
and isolate from other containers and make it easily portable from one environment to another.
The Docker image is the building block for these application containers - these images are built,
shared, updated and then deployed as containers [29].

2.4 Dockerhub

Docker Hub is a cloud-based registry service which allows users to link code repositories, build
images and test them, stores manually pushed images and links them Docker Cloud so can deploy
images to their hosts. It provides a centralized resource for container image discovery, distribu-
tion and change management, user and team collaboration, and workflow automation through-
out the development pipeline. The Docker Official Repositories are a curated set of Docker repos-
itories that are promoted on Docker Hub [14].
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2.5 Dockerfile

Docker can build images automatically by reading the instructions from a Dockerfile. A Dock-
erfile is a text document that contains all the commands a user could call on the command line
to assemble an image. It is a similar concept as the recipes and manifests found in infrastructure
automation (IA) tools like Chef!' or Puppet?. Using docker build users can create an automated
build that executes several command-line instructions in succession [14].

2.1 Listing (INSTRUCTION)

# Comment
INSTRUCTION arguments

The instruction is not case-sensitive. However, convention is for them to be UPPERCASE to
distinguish them from arguments more easily [14]. This subsection provides a brief explanation

of some of the available instructions to provide a basic understanding of the format for the re-
maining thesis. FROM The first instruction must be ‘FROM’ in order to specify the Base Image

from which Docker is building.

2.2 Listing (FROM Instruction)

# Example
FROM ubuntu

MAINTAINER(deprecated) Before: This is a non-executable instruction used to indicate the
author of the Dockerfile. The LABEL instruction should be used in favor, it is a much more flexible
version.

2.3 Listing (MAINTAINER Instruction)

Before

MAINTAINER <name>

Now

LABEL maintainer "sali.zumberi@uzh.ch"

RUN This instruction allows to execute a command on top of an existing layer and create a
new layer with the results of command execution. It is often used to retrieve dependencies and
install and compile software.

For example, if there is a pre-condition to install JAVA before running an application, then an
appropriate command to install JAVA on top of base image can be executed like this:

2.4 Listing (RUN Instruction)

FROM ubuntu
RUN apt-get update && apt-get install java

Thttps:/ /www.chef.io/chef/
Zhttps:/ /puppet.com/
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CMD The major difference between CMD and RUN is that CMD doesn’t execute anything
during build time. It just specifies the the intended process for the image. Whereas RUN actually
executes the command during the build time.

There can be only one CMD instruction in a Dockerfile, if there are more, only the last one is
affective.

2.5 Listing (CMD Instruction)

CMD "echo" "Hello World!"

LABEL It’s possible to assign metadata in the form of key-value pairs to the image using this
instruction. It is important to notice that each LABEL instruction creates a new layer in the image,
so it is best to use as few LABEL instructions as possible.

2.6 Listing (LABEL Instruction)

LABEL version="1.0" description="This is a sample desc"

EXPOSE A Container may need to listen on specified ports, while a service is running in the
container. The EXPOSE instruction opens these ports.

2.7 Listing (EXPOSE Instruction)

EXPOSE 8080

ENYV This instruction can be used to set environment variables in the container.

2.8 Listing (ENV Instruction)

ENV var_home="/var/etc"

COPY This instruction is used to copy files and directories from a specified source to a desti-
nation (in the file system of the container).

2.9 Listing (COPY Instruction)

COPY ubuntu

ADD Although ADD and COPY are functionally similar, COPY is preferred from an objective
point of view. That is because it is more transparent than ADD. COPY only supports the basic
copying of local files into the container, while ADD has some features (like local-only tar extrac-
tion and remote URL support) that are not immediately obvious. Consequently, the best use for
ADD is local tar file auto-extraction into the image, as in ADD rootfs.tar.xz /.. [12].

2.10 Listing (ADD Instruction)

ADD http://www.site.com/downloads/sample.tar.xz /usr/src

ENTRYPOINT The ENTRYPOINT Instruction specifies a command that will always be exe-
cuted when the container starts.
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For example, if there is only one application installed within an image that should run whenever
the image is executed.

Besides this, all the elements specified using CMD except the arguments, will be overridden. They
will be passed to the command specified in ENTRYPOINT.

2.11 Listing (ENTRYPOINT Instruction)

CMD "Hello World!"
ENTRYPOINT echo

VOLUME The VOLUME instruction creates a mount point with the specified name and marks
it as holding externally mounted volumes from native host or other containers.

2.12 Listing (VOLUME Instruction)

FROM ubuntu

RUN mkdir /myvol

RUN echo "hello world" > /myvol/greeting
VOLUME /myvol

This Dockerfile results in an image that causes ‘docker run’, to create a new mount point at
/myvol and copy the greeting file into the newly created volume.

USER This is used to set the UID (or username) to use when running the image.

2.13 Listing (USER Instruction)

USER daemon

ARG The ARG instruction defines a variable that users can pass at build-time to the builder.

2.14 Listing (ARG Instruction)

ARG buildno

WORKDIR This instruction is used to set the currently active directory for other instructions
such as RUN, CMD, ENTRYPOINT, COPY and ADD. Note that if a relative path is provided, the
next WORKDIR instruction will take it as relative to the path of previous WORKDIR instruction.

2.15 Listing (WORKDIR Instruction)

WORKDIR /a
WORKDIR b

WORKDIR ¢

RUN pwd

This will output the path as /a/b/c.

ONBUILD This instruction adds a trigger instruction to be executed when the image is used
as the base another image. It behaves as if a RUN instruction is inserted immediately after the
FROM instruction of the downstream Dockerfile. This is typically helpful in cases where a static
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base image is needed, with a dynamic config value that changes whenever a new image has to be
built (on top of the base image).

2.16 Listing (ONBUILD Instruction)

# Example
ONBUILD RUN rm -rf /usr/temp

Dockerfiles provide a simple and easy way to create Docker images with very minimal pro-
gramming effort required.

2.6 Version control system and Repository Mining
2.6.1 Git and Github

The Java based repository miner and Analyser used algorithms based on Git and loaded Software
Repositories from Github.

Git is a version control system (VCS) for tracking changes in computer files and coordinating
work on those files among teams. It is especially used for software development [55], but it can
also be used to keep track of changes in any text files. As a distributed revision control system it
is aimed at speed [64], data integrity [66] and providing support for distributed workflows [65].

Github is a web-based Git or version control repository and Internet hosting service. It offers
all of the distributed version control and source code management (SCM) functionality of Git.
It provides features like access control and several collaboration features such as bug tracking,
feature requests, task management, comments and wikis for every project [23].

GitHub offers both plans for private and free repositories on the same account [24] which
are commonly used to host open-source software projects [36]. As of April 2016, GitHub reports
having more than 14 million users and more than 35 million repositories, thus making it the
largest host of source code in the world [21].

2.6.2 Repository Mining

Mining software repositories (MSR) is an important area of research.The main purpose is to an-
alyze the rich data available in software repositories to uncover interesting and actionable infor-
mation about software systems, projects and behaviours in software engineering. There is also an
international workshop on MSR, which has been established under the umbrella of an/the inter-
national conference on software engineering (ICSE) in year 2004 [8]. Github makes it possible to
clone thousands of projects, therefore it is well suited for repository mining, even if it brings some
perlis with it [35].
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2.6.3 Automated Deployment Workflows

As mentioned above, Docker Hub offers the ability to connect to Continuous Integration (CI), De-
livery (CD) or Git systems to automate the build to test and deploy workflow. Automated builds
can be setup from source code management systems such as Github and Bitbucket to build a new
image to Docker Hub every time a newly committed code passes the integration test. It ensures
that the resulting image is built exactly as specified in the Dockerfile and that the image is up
to date, meaning that in each stage of the application development process all your application
configurations remain constant. Webhooks allows to connect Hub to CI/CD tools that can auto-
matically run integration tests or deploy every time a new image is pushed to Hub, drastically
speeding up the application development, test and production.

Automated u k
O GitHub —= e CI/CD tools ]

Dockerhub
Code changes / Deploy
Commit
\ 4
\_ o Application
] Environments

Figure 2.1: Graphical lllustration of an automated deployment workflow
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Related Work

3.1 Ecosystem Analyses

Since the work by Messerschmitt and Szyperski in 2003 [44], research on software ecosystems in a
software engineering setting has been around for more than a decade. Since then, empirical anal-
ysis of software ecosystems grew in popularity and got an important aspect of software ecosystem
research [58]. Serebrenik et al. conducted a meta-analysis by surveying 26 authors of the research
field of software ecosystems in which they list the challenges of different topics. Statistics, Vi-
sualization and Comparison are the main challenges of an Analysis of Ecosystem [58]. Related
work addressed challenges on aggregating data [47], evolution of ecosystems [10] [10],visualiza-
tion [39] [51] [68], characterizing ecosystem maturity [2] and on how to aggregate software quality
metrics [47]. Some works did comparisons between software ecosystems [18] [16] [67]. Jansen et
al. looked at ecosystems from different point of view. Alongside technical aspects their work also
considered the business facets of software ecosystems, thus they defined software ecosystems as
a set of businesses functioning as a unit and interacting with a shared market for software and
services, together with the relationships among them. Their findings are collected in an research
agenda for software ecosystems [31]. Blincoe et al. analyzed ecosystems in Github and found
that most ecosystems are centered around one project and are interconnected with other ecosys-
tems. Following Blincoe et al. the predominant types of ecosystems are those that develop tools
to support software development [3].

3.2 Empirical Analyses over specific Ecosystems

There are also many Empirical Analysis of software ecosystems that involve around a specific
framework or programming languages. Wittern et al. conducted an empirical analysis of the
JavaScript package ecosystem, one of the largest software ecosystems. Their work confirmed
npm! to be a striving ecosystem with ongoing and even accelerating growth of packages and
increasing dependencies between them [69].

A work from Raemaekers et al. present a dataset containing basic metrics, dependencies, and
changes with some aggregate statistics about Maven?, a popular package manager for Java [52].

Another work regarding Maven runs FindBugs, a tool that examines Java bytecode to detect
numerous types of bugs and identifies bugs in the source code of libraries shared in the same
ecosystem. The dataset was obtained from the Mavencentral repository ecosystem [45].

Thttps:/ /www.npmjs.com/
thtps: / /maven.apache.org/



26 Chapter 3. Related Work

Daniel M Germén et al. did an analysis of the statistical computing project R* [22] which
shows a super-linear growth with a strong set of core packages.

An other work enhanced this analysis and tried to find out how an ecosystem evolves. Their
finding show that the success of the R ecosystem relies on a strong commitment by a small core
of users who support a large and fast growing community [50] .

Another paper presents an overview of the open source Ruby* ecosystem and lists its ele-
ments, characteristics, descriptives, roles and relationships. They gathered the needed data using
the Git decentralized source code management system and applied social network and statistical
analysis techniques for their analysis [34]. The paper provides a graph visualization of the whole
ecosystem as well as some more descriptive graphical representations about selected character-
istics of packages, including downloads and package size. Their analysis shows that the Ruby
ecosystem exists out of a couple very distinctive roles developers fulfill. It also shows that within
the Ruby ecosystem only a small ‘core” of approximately 10% of all developers and gems (Ruby
packages) are dominant within the ecosystem, similar to the finding of R ecosystem [50].

Grechanik et al. [27] did research on the structural characteristics of the source code of 2080
randomly chosen Java open source projects. To do so he answered 32 research questions related
to classes and packages, constructors and methods, fields, statements, exceptions, variables and
basic types, and evolution/maintenance activities occurring on the projects.

3.3 Analysis of laC Ecosystems

The Internet-speed of things has changed the way software companies deliver value to their cus-
tomers. The boundless adoption of lean principles and agile methodologies [54] has provided
evidence for the need of continuous activities which are important for software development in
today’s context [20].

Related work on modern software engineering concepts such as continuous deployment [53],
cloud computing [7] and containerization increasingly more significance.

MclIntosh et al. conducted work on build systems such as the Java-based systems. They stud-
ied the evolution of build systems based on two popular Java build languages (i.e., ANT and
Maven) from two different perspectives: (1) a static perspective, where they examined the com-
plexity of build system specifications using software metrics adopted from the source code do-
main; and (2) a dynamic perspective, where the complexity and coverage of representative build
runs are measured [42].

Later, they published a paper where they studied low-level, abstraction-based, and framework-
driven build technologies as well as tools that automatically manage external dependencies. Their
findings are that modern and framework-driven build technologies need to be maintained more
often and these build changes are more tightly coupled with the source code than low-level
or abstraction-based ones. However, build technology migrations tend to coincide with a shift
from build maintenance work to a build-focused team, deferring the cost of build maintenance to
them [43].

Jiang and Adams have analyzed the co-evolution of the IaC code with the production and
test code, and compared them with build files [32]. Their findings are that infrastructure files are
large and churn frequently, which could be an essential factor for introducing bugs. Furthermore,
they found out that the infrastructure code files are coupled tightly with the other files in a soft-
ware project, especially test files, which implies that testers often need to change infrastructure
specifications when making changes to the test framework and tests.

Shttps:/ /www.r-project.org/
4https:/ /www.ruby-lang.org/
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So far, there is only little research on how to develop and maintain IaC code. Related work in
this field has been shown by Hummer et al.. They proposed and evaluated a model-based testing
framework for IaC. An abstracted system model will be utilized to derive state transition graphs,
based on systematically generated test cases for the automation. The test cases are executed in
light-weight virtual machine environments. Their prototype targets the popular IaC tool (Chef®),
but the proposed approach is general.

Existing empirical studies related especially to Docker typically focus more on performance
aspects, in most of the cases there is a comparison of container performance and overhead with
traditional virtualization techniques [19, 46,59, 60].

Also a very interesting usage of Docker is mentioned by Cito et al. and Boettiger et al.. They
have concurrently proposed that containerization technology may be an important game changer
in making systems and software engineering research more reproducible by using Docker con-
tainers to distribute reproducible research. This should be seen as an approach that is synergistic
with, rather than an alternative to, other technical tools for ensuring computational reproducibil-
ity [4,9].

In industry, the usage of containers in Paa$S is becoming mainstream, and the Linux Containers
are becoming a defacto standard but still have a long way to go before widespread adoption.
Some of the Cloud Providers are already using Containers to provide a fine-grained control over
resource sharing [15]. Following Dua et al. containers have a bright future especially in the PaaS
use case, provided there is more standardization and abstraction from the underlying kernel and
Host OS.

Cito et al. conducted research on the quality aspects of Docker IaC code. The dataset and
tooling for these analyses is based on this thesis. A randomly selected representative sample
of Dockerfiles of 560 repositories was built. According to their measurements 66% of Dockerfiles
could be built successfully with an average build time of 145.9 seconds, while 34% of builds failed
in 90.5 seconds. Following Cito et al. integration of quality checks into the “docker build" process
to warn developers early about build-breaking issues, such as version pinning, which can lead to
more reproducible builds [33].

No existing research has investigated in an empirical Analysis on the Docker Ecosystem, the
evolution of Dockerfiles, dependecies within the containers or empirical studied about the open
source ecosystem of Docker. The present thesis tries to show an overview of the ecosystem, de-
pendencies, maintenance and evolution and quality aspects and wants to provide useful infor-
mation and data for further research.

3.4 Mining Software Repository

Providing or offering software repository data is not new field and can be seen as related to
“Data as a Service” or “Information as a Service” [11]. The data being provided was usually
limited to the meta-data or elements of the repository such as files [26]. Github is a repository of
repositories [23], therefore its elements are repositories themselves. As opposed to existing meta
repositories such as OHLOH or FLOSSMOLE [28], lean GHTorrent® allows researchers to request
a specific slice of the full GHTorrent dataset, on a per repository basis. All a researcher has to do is
compile a list of repository names with the support of the provided MySQL query interface, rather
than being forced to analyse the entire collection searching for the proverbial needle [26]. Services
like BOA integrate the repository analysis tasks in the web-based interface [17]. This thesis uses
an approach, which is not cited or mentioned in related work yet. It uses Google BigQuery” to

Shttps://www.chef.io
®http:/ /ghtorrent.org/lean.html
"https:/ /cloud.google.com/bigquery/what-is-bigquery
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get the specific repositories.



Chapter 4

Approach

This chapter describes the end-to-end process of the whole application, which supports the min-
ing, processing, analysing and extracting phase of this thesis. After a short overview of the overall
system architecture, it shows the resulting data model together the data processing section, where
it presents the conceptual logic of the various important computations, such as the parser, which
transforms an given Dockerfile to a structural object and outputs it as a json File. Furthermore,
it examines the evolution parser, which takes an software project as input and processes through
the commit history and finally outputs all information regarding a Dockerfile to a database. This
section also includes a self written Diff Processing Tool, which has been a necessary requirement
for achieving a very high data quality. The last chapter containts some brief information about
the implementation.

One goal of this thesis is to compare Docker usage in the general population of GitHub projects
to how the tool is used in outstanding projects. Therefore, this thesis introduce two additional
samplings in the database: Top-100 and Top-1000 repositories containing Dockerfiles. To retrieve
these two samples, the repositories were ordered by the number of star gazers (a measure for
popularity) and selected 100 and 1000 unique repositories respectively. In order to foster repro-
ducibility and follow-up studies, this thesis provides a comprehensive reproducibility package,
containing tool chain, database, queries and analysis scripts. The tool chain consists of two sep-
arate Java projects. Docker Parser [72] is responsible for parsing and storing Dockerfiles in a
relational database (Postgres'), and Dockolution [71] computes structural changes between all re-
visions in a repository. The Entire database(37 GB) is exported and available on our university’s
archive server?. All of this analyses (SQL queries to the database, R and Python scripts to produce
plots) are also available on GitHub? for inspection and reproduction.

4.1 Dataset

To enable this research, it was necessary to retrieve a list of repositories that contain Dockerfiles
from the public GitHub archive on BigQuery* in January 2017. BigQuery hosts more than 2.8
million open source projects on Github since the middle of 2016 [61]. GitHub’s BigQuery dataset is
based on the GitHub Archive Project, a project that aims in taking snapshots of GitHub at specific
points in time, storing and making them accessible for everyone. It contains about 1.5TB of data.
The observation period for revisions and changes that was mined to analyze evolution behavior

https:/ /www.postgresql.org/

2Database Export Link omitted for double blind review

3Queries and Scripts GitHub Link omitted for double blind review
4https://cloud.google.com/bigquery/public-data/github
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was from the first Dockerfile commit that appeared in the repository until January 2017. The
initial list contained over 324255 Dockerfiles in 78723 GitHub projects. It was required to query
the needed files from the public github archive. The provided csv File consisted of tuples, each
tuple being associated with two attributes: Repository Name and path to the Dockerfile. Instead
of rebuilding the .git url from the existing repository name, it was necessary to send request to
the GitHub API to get additional metadata for each project of the list, such as the owner type,
owner name, used programming languages, project size, number of forks, issues, or the number
of watchers. Due the restriction of 5000 requests/h, the Github API Miner changed the User after
the limited rate was exhausted. After a first assessment of the consolidated data, it was crucial
to remove repositories that were forks from other repositories to avoid biasing our analysis with
duplicate entries. Almost two-thirds of the initial project list were concerned. This would have
been particularly problematic, as especially large, popular projects such as Kubernetes® nginx®
or docker/docker itself are forked very frequently. Therefore the first behavioural pattern was
identified. Developers apt to fork big and popular projects. The reason is that big projects offer a
lot of predefined basic and also advanced Dockerfile templates. The resulting study population
for this analysis consisted of 97571 unique Dockerfiles originating from 48102 GitHub projects.

4.2 Overall System Architecture

This section presents the overall system architecture of the Java-based tool chain (see Figure 4.1.1t
consists of three different kinds of components and supports and facilitates the entire process
from the raw data to the final data visualizations. The three different kinds are the following:

1. Data Mining from Google BigQuery and expansion with GitHub API assistance
2. Multi-threaded Data extraction and Processing
3. Output to Database and Data analysis

It starts with enhancing the data from BigQuery with additional information, by using the Github
AP]J, as described in the section above. With this meta-data it was possible to inspect the first in-
sights of the docker ecosystem, which are related to the given project meta-data. The second part
dives into the project content itself by feeding the consolidated data into main application. In ad-
dition to that, it was also necessary to set a number of threads as parameter. Out of performance
reasons the University of Zurich provided a Linux Server to increase the performance, which al-
lowed to start 50 threads at once. Each thread cloned a Project Repository first and then continued
with searching the Blob’ for the Dockerfile, which represents the content of a file in a tree. Then
it iterates above the entire tree and gathers the associated Revisions to a Collection, which finally
represent the History of that File. Index 0 represents the first Revision.

It continues by iterating though this collection and reproducing for each Revision the corre-
sponding Dockerfile. Each Dockerfile is parsed to an Object. Furthermore it adds information
about the used base image in the From Instruction by using the Dockerhub Api ® such as rating
stars, or whether it is a official or automated build. Then it starts enhancing the main Object,
which contains the mentioned Collection of Dockerfile Revision. It simply adds the project meta-
data to it and also performs a statical code analysis of the latest Revisions by parsing the Dock-
erfile into an AST and performing rules on top o the AST. Finnally, the Evolution Tracker goes
through the list of Revisions and gathers for each of them the changed files within that revision.

Shttps:/ /github.com/kubernetes /

Ohttps:/ /github.com /nginx

"https:/ / git-scm.com /book/en/v2 /Git-Internals-Git-Objects
8https: / /docs.docker.com/v1.4/reference/api/docker-io_api
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It uses a certain range before and after the revision. The range in this thesis is set to three. That
means it gathers three revisions before and after the corresponding Dockerfile revision. Lastly the
Diff Processor, compares two Revisions and identifies the differences between them. This thesis
categorized the different types of differences (Change Type): ADD, MODIFY and DELETE with
subcategories for each instruction, which enables a much simpler and more fine-grained evolu-
tion analysis. The final Object is then persisted with a synchronized method to the database.
Figure 4.1 visualizes the declared process.

) &

Project P Object Evolution Diff
Cloner CLELF Extender @ Tracker Processor

Figure 4.1: Overall System Architecture

4.3 Datamodel

Figure 4.2 shows the Entity Relationship of the data model. Each project on GitHub stores one to
many Dockerfile entities that contain metadata about the repository and the file such as number
of forks, network counts, open issues, owner type, project size in KB etc. Our database consists
of (97'571 Docketfiles distributed across 48'102 projects). Each Dockerfile has one to many violated
rules381'439. Each Dockerfile contains one to many Snapshots (Revision with additional informa-
tion) (347°904 revisions), which reflect every commit on this Dockerfile. The initial commit that
adds a Dockerfile to a GitHub project is also modeled as a revision, hence every Dockerfile has at
least one revision. Each Snapshot needs at least one Instruction to be valid. There are two types
of Instructions: Single Instructions with a one to one relation and Instructions, which can appear
multiple times in a Dockerfile as one to many relation. Instructions like CMD, ENTRYPOINT
and RUN also have one to many parameters (7°598'453). For two consecutive snapshots (before
and after a change) of Dockerfiles, the Diff processor (see Section 4.4.3) compute structural differ-
ences, and stores the entity Diff (351’389 diff objects ) with one to many Diff Type entities for each
instruction (2'557°047 changes). A Diff Type is a structured change.
Table 4.3 presents a short description for the non-trivial attributes:
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table attribute description
FROM CURRENT boolean: if snapshot is the lastest one
FULL_NAME full image name (e.g. python:2.7)
IMAGENAME only image name (e.g. python)
IMAGEVERSION only image version (number) (e.g.2.7)
IMAGEVERSIONSTRING only image version (string)
DIGGEST only version tag

4 different cases:

1. standalone: does not belong

to an instruction

2. before: name of instruction,
COMMENT INSTRUCTION which this comment belongs to

3. commented out: name of

instruction, which is

commented out

4. header: header of dockerfile

COMMENT content
RUN EXECUTABLE exec (e.g. java)
RUN_PARAMS summary of all parameters (e.g. -jar -test)
DOCKERFILE REPO_PATH repository name
DOCKER_PATH path to Dockerfile
CREATED_AT project creation date

date when dockerfile was added
FIRST_DOCKER_COMMIT the project (extracted from
corresponding revision

COMMITS number of revisions
SNAPSHOT FROM_DATE publishing date of the revision
TO_DATE date of next revision
IMAGEISAUTOMATED boolean:' if base image is build
automatically from github
boolean: if base image is an official
IMAGEISOFFICIAL dockerhub build
STARCOUNT rating starts of the base image
in dockerhub
3 types:
CHANGED_ -ADD
FILES CHANGETYPE - DELETE
- MODIFY
INSERTIONS insertions made in this file
DELETIONS deletions made in this file
actual range index
(commit before or after dockerfile
revision.
RANGE_INDEX - 0 is the revsion, where

the dockerfile was changed;

- 11is one revision after the dockerfile commit;

- 1is one revision before)

inspection range (e.g. 6: three revisions
RANGE_SIZE before and thre after the dockerfile revision,

which is assigned to 0)

Table 4.1: Description of non-trivial attributes
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Figure 4.2: Relational data model to support queries for data analysis.
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4.4 Data Processing

This section presents the basic concepts behind the tool chain and can be used for similar projects.

4.4.1 Dockerfile Parser

Dockerfiles is very simply constructed and consists of declarative instructions. An Instruction
starts with a new line and should be the first letter (see more information in section 2.5. The
instruction is not case-sensitive. Therefore, it is very well suited for parsing it to an POJO’. The
decision to parse the files is based on the fact that it facilitates the mapping to a relational database
also as well as an higher data accuracy. Furthermore, it allows to do more precise data analysis
due the advanced level of details (see Figure4.2). Before the parsing process starts, the file is
"flattened" by transforming multiple instructions, which claim multiple lines, to one line. This
Example shows how this looks like:

4.1 Listing (Flattening of an Instruction)

RUN service postgresql start & & \
su postgres -c "createuser -d - -s root" # Can also be written as:

RUN service postgresql start & & su postgres -c "createuser -d -r -s root"

Then the parsing process starts from top to bottom by reading the first word of each line and
recognizing the corresponding instruction. Each instruction has a method which includes the
parsing logic. There are two different kind of Instructions, single instructions occur once and
other multiple times, thus, it was necessary to use Collections for them. Another minor difficulty
was the form of the declared attributes. There are two possible syntax forms. Shell form and Exec
form. This increases the complexity by adding another condition on top of the parsing method.

4.2 Listing (Shell and exec syntax)

# shell form, the command is run in a shell, which by default is /bin/sh -c on Linux or cmd
/S /C on Windows
RUN <command>

# exec form
RUN ["executable", "param1", "param?2"]

Lastly, another special case were instructions with parameters such as CMD, ENTRYPOINT
and RUN. Therefore, it was necessary to collect them in lists with a many to one relation to the
instruction. Finally the parsed object was used in the further processes. The Dockerfile Parser is
also available as an independent application, which creates a json file.

4.4.2 Evolution Tracker

Each Snapshot contains all changed files within a specified range size. Figure 4.3 presents a vi-
sualization of range index and size. This thesis uses range index six, which leads to 144'938°718
database entries. The application takes the range size as a input argument.

9https: / /en.wikipedia.org/wiki/Plain_old _Java _object
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Range Size =4

Figure 4.3: Example of Range index with Range size=4

Range index

Revisions:

parent

dockerfile

. children

In order to collect the files, it was required to walk through the commit tree. This Algorithm 1

shows the implemented concept of this tree-walker:
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Algorithm 1 Collect changed files for rangelndex = «

Input: dockerCommit ¢, rangelndex x
Output: list of changed files

list tempCommits < empty
list allCommits + git.repository.get ALICommits()
list changedF'iles < empty
boolean foundCommit < false
finder:
if x < 0 then
index < 0
for commit of all_commits do
if commit.getID = c.getID then
add commit to tempCommits
while not foundCommit do
if index = x then
for tempcommit of tempCommits do
changedFiles + getFilesFromCommit(tempcommit)
end for
foundCommit < true
break finder
else
list parentCommits <— empty
for tempcommit of tempCommits do
for tempcommit.getParents() do
add parent to parentCommits
end for
end for
list tempCommits < parentCommits
end if
decrement index
end while
end if
end for
else if z > 0 then
list childrenCommits < empty
walker:
for childofallCommits do
for parent of child.getParents() do
for tempcommit of tempcommits do
if parent.getld = tempcommit.getID then
add child to childrenCommits
increment index
break walker
end if
end for
end for
end for
list tempCommits < childrenCommits
else
changedFiles < getFilesFromCommit(commit)
end if
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4.4.3 Diff Processor

After retrieving all changed files within a Revision, the key processing step begins. The idea
behind the implemented Diff Processor is that the provided version control system of git is not
precise enough for the applied use cases, for instance inaccurate and wrong diffs due the white
spaces, new lines etc. All the information is structured, since all Versions of a specific dockerfile
are transformed into Snapshot objects. Therefore, it was straightforward to compare the values
of two adjacent snapshots. This means, that two snapshot will have one common Diff Object.
Again, it has to be considered that there are two kinds of instructions. Instructions, which can
appear multiple times, have to be matched before the comparison. First, it removes the inter-
section between two lists, then it recognizes the new state, then it has to be checked either if its
new or has been deleted. If that is the case, then the corresponding change Type is assigned to it.
The remaining changes are assigned as update change types and those types are mapped to two
value pairs, where the first value is the old and the second is the new one. There are three differ-
ent Change Types: ADD, DELETE, and UPDATE, and each of them has further distinctions. In
total there are more than 20 different change types, for instance if a version number has been up-
dated to the FROM instruction, the database entry will be: UpdateType.imageVersionNumber.
Therefore, almost every type of change is recorded. The most difficult part was the mapping
of the parameters in instructions like RUN, CMD or an Entrypoint. Thus, a scoring model de-
cides the mapping by counting the identical parameters, for instance if the old snapshot has
an instruction: RUN -a -b -c java and the new snapshot include two different instructions:
RUN -a -b -d javaandRUN -a -x -y java,it would select the first one as an UpdateType.params
and the second one as a AddType.run. It is not certain that the author had exactly applied this
changes, but we are sure the result is more confident than the version control system of git, which
would show them both as two new added lines.

Figure 4.4 shows a visualized example for instruction X, which can have parameters. X can
be a RUN, CMD or an Entrypoint instruction. The right side depicts the corresponding database
tables.
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old Snapshot.X new Snapshot.X diff_snap Table

snapshot_id = 1 snapshot_id =2
diff_id
: :

A -a-b-c -a-b-d 1 2
B -g-j-i A -a-x-y
C - X X X © - XXX .
G — diff Table
Diff_id mm-m-_

i DD-MM-YYYY

diff_types Table

mmm

1 n X -g-j-i null B DelType.Executable 1
2 X -a-b-c -a-b-d A UpdateType.Parameter 1
3 X null -a-x-y A AddType.X 1
4 X null - X X -X G AddType.X 1
Diff Object DiffType Object

diff id=1

Figure 4.4: Example of an instruction with parameter handled by the Diff Processor

4.5 Implementation

This subsection lists the relevant notes of the implementation. First the project is implemented in
Java'? and based on Maven, a build automation tool which is used primaly for Java projects. To
process this large (1.524 terabytes) amount of data it was necessary to develop a multi-threading
approach where each thread clones the project, mines the data and saves the extracted informa-
tion to a postgres database as described in section 4.1. Postgres!! is an open source relational
database. It was necessary to optimize the application to satisfy defined requirements of min.
1000 project/h. In the end it was able to process 2000 projects/h, which makes it more flexible
detecting mistakes in the collected data. The other side of multi-threading in Java led to Heap
size problems, which is a well known issue [63] . First the entire list with all Dockerfiles was feed
into the application, and after 5000 to 6000 finished projects the application heap size was full,
this was because jvm used more than 98% for garbage collection and only 2% of the heap was
recovering. Therefore, it was crucial to split the project-list to chunks and optimize the chunk size
until the best results were achieved. The final size was 1000 projects/chunk. One of the most
important libraries used by this application is JGIT'2, a pure java library implementing the GIT
version control system, but also some methods from Gitblit!® were used. Gitblit is also based on

Ohttps:/ /java.com/de/download/
Uhttps:/ /www.postgresql.org/
2https:/ /eclipse.org /jgit/

Bhttps:/ /github.com/ gitblit/ gitblit
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JGIT. GSON,a Java library that can be used to convert Java Objects into their JSON representa-
tion, is used for transforming the parsed Dockerfile Objects into json files. To access the API of
Dockerhub it makes use of a fully Java implementation of docker, provided by Spotify!>. This
application also uses super-csv'® to assure fast reading and writing of big CSV Files. Finally, it
makes also use of Hibernate 7, an object-relational mapping (ORM) tool for the Java program-
ming language. The final size of the database is 37 GB. !TEX root = ../thesis.tex

Mhttps:/ /github.com/google/gson

Bhttps:/ /github.com/spotify /docker-client
16http:/ /super-csv.github.io/super-csv/index.html
http:/ /hibernate.org/
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Results

This section discusses the main findings along four dimensions. Firstly the Docker ecosystem
is characterized, then a brief insight into the dependencies within a dockerfile will is presented,
followed by an overview of the maintenance and evolution of Dockerfiles and to finish the chapter
an assessment of quality issues of projects using Docker. At the end of each section, there is a short
summary of the conducted findings.

5.1 The Docker Ecosystem

A way to classify the Docker ecosystem is to identify the types of project, which use Docker and
to analyze what Docker is used for in these projects. Each sub-section inspects the characteristics
of the projects containing Dockerfiles.

5.1.1 Project size Distribution

Figure 5.1 shows histograms of the size of projects in the recorded data set, as reported by the
GitHub REST API! As described in Chapter 4, there is a consideration of the overall data set
as well as the Top-100 and Top-1000 projects as described. Evidently, projects in the Top-1000
and even more in the Top-100 are of larger size. This fact likely a general effect and must not be
necessarily true only for projects using Docker. Of all repositories, an unusual high amount of
projects has a size between 130 and 150 KB. Upon manual inspection, many of these repositories
seem to consist of solely a readme a license file, and a Dockerfile. This suggests a clear separating
of JaC code and software project code. It is very interesting that popular packages have another
intended purpose of using Docker, in this case they include the Dockerfile within the software
source code whereas as not so popular project use the repository for dedicated purpose. The
median project size for all three categories are:

» Top-100 = 19718 KB
« Top-1000 = 5685 KB
- all = 300 KB

There seems to be a correlation between popularity and project size. An explanation for this could
be that developers try to separate packaging or deployment concerns from an application.

Thttps://developer.github.com/v3/
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Figure 5.1: Distribution of project sizes

5.1.2 Programming Language Distribution

Figure 5.2 presents the distribution of primary programming languages across the checked projects.
As almost every project includes more than one language, these statistics refers to the language
that accounts for the majority of source code (as measured in file sizes) into consideration. As
mentioned in Section 4.1, the data was collected from GitHub’s public REST API. In addition to
the core data set, Figure 5.2 presents excerpts from the GitHub data available on Google’s Big-
Query service.?2 The primary programming languages of 2.8 million GitHub repositories have
been queried from this public data set. Figure 5.2 shows that Docker projects are frequently dom-
inated by shell scripts, while such repositories in general are less usual on GitHub. A common
way to run multiple processes inside a Container is to call a bash script from an instruction like
CMD, RUN or ENTRYPPOINT, which is an anti-pattern according to the dockers best practices
guide. This could explain why Shell is so present.

Languages like Go are often used for Docker projects. This can be explained by the fact that a
lot of open source tools for Docker are written in Go, for instance Kubernetes. This was one of the
reasons for removing fork-projects because one fifth of all dockerfiles where forked from kuber-
netes 3. Other popular open source tools for docker are dockersh 4 prometheus5 and weave®. All
of them are being used in the TOP-100 projects. Most of the tools are only usable as containers in
applicable docker environment, therefore they include a Dockerfile as well.

On the other hand, there are relatively underrepresented languages like PHP or Java. The
most used language in GitHub is Javascript, which is also very often used by projects with
dockerfiles.

2https://cloud.google.com/bigquery/public-data/github
3https: //github.com/kubernetes /kubernetes

4https:/ /github.com/ Yelp/dockersh

Shttps:/ /github.com/prometheus/prometheus/

6https: / /github.com/weaveworks/weave
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Figure 5.2: Distribution of top 15 languages in our dataset

5.1.3 Base Images

The mandatory base image which is specified as the first instruction (cf. Section 2.5) helps to do
a high-level classification and identification of Docker usages. A base image specification is a
tuple of the form (namespace/)name (:version). In every case, a name is used to identify
an image, and often to indicate the content of the image. For so-called “official” images, such
as ubuntu or node, the name is the sole identifier of an image. Non-official images — or in other
words automated builds — further depend on a namespace. It consists of two parts: The first part is
usually the name of the organization or user who maintains the image, as it is the case in GitHub,
and the second one is the name of the image.Additionally, a base image specification can contain
a version string which can be a specific version number (like 1.0.0) or a more flexible version
query (like latest), (see Section 2.1 for more information). Overall, the Dockerfiles assessed
contained 9’298 unique base image specifications. Figure 5.3 shows the 15 most commonly used
base images in our dataset overall and how often they are used in the Top-1000 and Top-100
projects. The figure shows a strong representation of Linux distributions, including ubuntu,
debian, centos, alpine, and fedora. Notably 14 out of the 15 most common base images are
official ones —among all 12’001 images, only 148 (1.4%) are official. Furthermore, it is remarkable
that of the overall assessed projects, 43.2% of the thousand most used images have a version
number attached to the base image, whereas this figure is 36% for the TOP-100 and only 12.3% for
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the TOP-1000. The result shows a negative association between popularity and whether a version
number is attached to the base image. Software developers might be interested in the version
they are going to use.
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Figure 5.3: Percentage of usage of 15 most commonly used base images

So far, the use of Docker is still unclear. To create more clarity a manual classification of the top
25 images used in the overall data, the Top-1000, and the Top-100 into 5 types will help to under-
stand its usage. This method allows to cover significant parts of the overall data, as the 25 most
commonly used images account for 71% of usage across all images. “OS” are base images that
contain a blank operating system, without further software being installed. “Language runtime”
images additionally contain a runtime needed to execute applications written in a specific pro-
gramming language. “Application” base images come bundled with an application, a database or
a web server. Base images specifications that contain placeholders for parameters to be filled out
at runtime are marked as “variable”, e.g., { {namespace}}/{{image_prefix}}base:{{tag}}.
Finally “other” denotes images that do not fit clearly into any of the above categories, for exam-
ple scratch, an empty image, busybox or a collection of UNIX utilities. Figure 5.4 shows that
the operating systems dominate in all three data sets. Within the OS section, ubuntu is the most
frequent one followed by debian and centos.Those three are followed by the language runtime
base images section. As mentioned above, node is ranked first place ahead of python and golang.
The low number of application base images may be, on first sight, surprising. However, the here
analyzed Dockerfiles likely define application images themselves. The presented numbers do not
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necessarily reflect the actual usage amounts of base images, it is a only a rough subdivision.
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Figure 5.4: Percentage of base image types across top 25 images

5.1.4 Instructions

Each instruction creates a layer within a container, starting with the base image as the lowest
layer. Therefore, instructions are a good indication of how projects are built. Table 5.1 lists a
percentage breakdown of the instructions used in the assessed Dockerfiles, as well as the fraction
of repositories that use instructions at least once, across possibly multiple Dockerfiles associated
with the repository. RUN is the instruction that is clearly used the most in Dockerfiles, thus it is
not surprising that it is ranked first. Notably, RUN and COMMENT instructions make up 56% of a
typical Dockerfile. The remaining instructions (ADD, CMD, COPY, ...) are used in many Dockerfiles,
but only represent small fractions of code. Instructions, which support or act as a placeholder,
such as Label, USER and ARG are used very infrequently in practice (1% and less than 1% of all
Dockerfiles, respectively).

Most instructions are used relatively evenly across the data sets (entire population, Top-1000,
Top-100). One exception is the significant lower usage of the MAINTAINER instruction in the
top views, which is used to set the author of a Dockerfile. The instruction has recently been
deprecated and it may be harder to clearly assign a single maintainer in larger projects. Another
exception is the WORKD IR instruction, that is used to set the directory for RUN, CMD, ENTRYPOINT,
COPY and ADD instructions to run in. This instruction is more often used in the top repositories.
To this regard, top repositories follow prescribed best practices to use WORKDIR over cd in RUN
instructions.”. A interesting observation is that the instruction ENV is ranked as number three,
whereas ARG took the last place, although there is only one small difference between them,namely
the execution time. The ARG instruction defines a variable that users can pass at build time to the
builder with the docker build command while the ENV instruction sets the environment variable

"https://docs.docker.com/engine/userguide/eng-image/dockerfile_best-practices/#/
workdir
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Table 5.1: Percentages of instructions and repositories using instructions at least once
Repos using

instructions (at

least once)
T1000 | T100

Instructions

All

Instruction All | T1000 | T100
RUN 0.40 0.41 0.48
COMMENT 0.16 0.14 0.15
ENV 0.06 0.07 0.09

FROM 0.07 0.08 0.07

ADD 0.06 | 0.05 | 0.02

CMD 0.04 0.04 0.03

COPY 0.03 0.04 0.03

EXPOSE 0.04 0.04 0.03 | 0.45 0.43 0.42
MAINTAINER | 0.04 0.04 0.03

WORKDIR 0.03 0.03 0.03

ENTRYPOINT | 0.02 0.02 0.01

VOLUME 0.02 0.02 0.01 | 0.17 0.19 0.16
LABEL 0.01 0.01 0.00 | 0.01 0.02 0.02
USER 0.01 0.01 0.01 | 0.10 0.10 0.08
ARG 0.00 0.00 0.00 | 0.00 0.00 0.00

and persist the value when a container is running from the resulting image. The analysis might
indicate that developers prefer to define everything needed inside a container instead of passing
values during the build. Probably IaC Code is seen as a kind of deployment-package, that should
not need any interaction during the build.

The following sub-section takes a closer look at the RUN, COMMENTS, CMD and HEALTHCHECK
instructions.

RUN

Given that RUN instructions are used so prevalently to implement Dockerfiles, this sub-section
tries to identify the kind of commands that are being issued by RUN instructions within containers.
A categorization of the commands executed in RUN will be presented. First, by sorting by usage
and manually classifying six categories from the top 100 results:

dependencies package management or build commands, such as apt-get or pip
filesystem UNIX utilities used to interact with the file system, such as mkdir or cd

permissions UNIX utilities and commands used for permission management, such as
chmod

build/execute build tools such as make
environment UNIX commands that set up the correct environment, such as set or source

other remaining commands

The majority of commands (>70%) can be classified as belonging to either dependencies (~45%)
or filesystem (~30%). There are not many major differences between the overall population and
the top projects on GitHub. Interestingly, Top-100 projects use 13.5% build or execute commands,
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compared to only 5.3% in all projects. A potential explanation is that popular projects themselves
are often used as a base for other Dockerfiles and thus need more commands to build their own
source. This effect is visible in the permissions categorization, where the overall population uses
more permissions than the popular projects. From an architectural perspective it makes sense
to use permissions above a fully functional container. Thus, it might be possible that users of
popular projects try to add their customizations as additional layer on top of the stack.

Table 5.2: Breakdown of RUN instructions in six categories

Instructions
Category Examples All | T1000 | T100
Dependencies apt-get, yum, npm, pip, mvn 0.452 0.447 0.452
Filesystem mkdir, rm, cd, cp, touch, In 0.304 0.293 0.294
Permissions chmod, chown, useradd 0.073 0.052 0.023

Build/Execute | make, python, service, install 0.053 0.083 0.135
Environment set, export, source, virtualenv 0006 001 0002
Other 0.113 | 0.115 | 0.094

COMMENTS

Table 5.1 clearly shows the usage of the functionless instruction COMMENT. This sub-section tries
to attain a better understanding of the comments inside a Dockerfile.

Table 5.3: Percentages of Comments before an Instruction

Instructions

Instruction All | T1000 | T100
RUN

ENV 0.09 0.14 0.10
FROM 0.07 0.07 0.04
COPY 0.05 0.05 0.07
ADD 0.11 0.04 0.03
EXPOSE 0.06 0.03 0.03
CMD 0.03 0.03 0.06
WORKDIR 0.02 0.02 0.03
VOLUME 0.02 0.01 0.01
ENTRYPOINT | 0.01 0.01 0.0
USER 0.01 0.01 0.0
LABEL 0.00 0.00 0.0
MAINTAINER | 0.00 0.00 0.0
ONBUILD 0.00 0.0 0.00
ARG 0.00 0.0 0.00

The RUN Instruction is placed first in all three data sets. An explanation could be the nature
of it, which allows a broad oppertunity of use. According to the data set, a lot of the comments
on the RUN instruction where description of the execution itself, which might indicate a need
of additional information for other developers, which supports the finding, that dependencies
trigger most of ambiguities in Dockerfiles. Notably, the ADD instruction is more commented in
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Table 5.4: List of most frequent words or all Instructions

Instruction most frequent words sorted in descending order

RUN install, dependencies, packages, add, prerequisites,
create, update,build, directory, file

ENV development, only, currently, environment, install,
variables, git, setting, version, install

FROM image, base, build, Dockerfile, pull, ubuntu, base,
version, file,start

COPrY copy, to, and, app, install, source, add, files, bundle,
dependencies

ADD install, start, packages, available, work, npm,
manually, add, script, files

EXPOSE port, server, 3000, livereload, default, http,
container, web, 80, api

CMD default, command, run, container, start, system,
server, script, application, execution

WORKDIR working, directory, define, set, install, application,
build, dir, change, app

VOLUME to, add, for, allow, volume, define, logs, backups,

databases, config
ENTRYPOINT | command, script, container, default, run, commands,
allow, containers, nested, wrap

USER user, created, rest, package, "postgres’, ‘apt-get’, root,
run, change, switch
LABEL labels, consumed, build, Red, service, hat, used, info,

searching, tenet
MAINTAINER | maintainer, author, file, /, the, imgae, details, name,

thx, info

ONBUILD build, install, and, project, copy, directory, user,
dependencies, instructions, change

ARG user, setup, permissions, superuser, match, host,

user, build, arguments, into

overall packages than in the popular ones. A closer examination of the 10 most frequent words
for each instruction in the overall dataset show the following;:

There are also discrepancies between the instructions, for instance words from the RUN in-
struction are describing more or less the use cases of this instruction, whereas EXPOSE uses more
specific words such as ports, protocols (http). As expected, frequent words from ONBUILD in-
structions indicate a mix of different instructions. It reflects exactly the nature of it. The conducted
dataset also includes instructions, which have been commented out. The information content of
those not high. The RUN instruction is the most out commented instruction, followed by ENV,
ADD. Commenting out a piece of code rather than removing it from the file could point out that
it is important to keep it. The information value keeping it is higher compared to removing it
completely. A closer look at some RUN instructions, which have been commented out, shows that
most of them are commands where something is installed(apt-get install), printed out (echo) ,
updated or removed.
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EXPOSE

EXPOSE instruction informs Docker that the container listens on the specified network ports at
runtime. It has to be considered that exposing a port does not make the port accessible to other
containers. Actually 33% of all Dockerfiles use this instruction. Table 5.5 shows the 20 most used
ports, which account for 70% of usage across all used ports. To get a better understanding of
the most used ports, a mapping to the underlying image helped to classify the corresponding
container and its purpose. Port 80 is ranked first, followed by port 8080, which is also used for
HTTP. The main difference between these two is, that it is necessary to have superuser rights on
the server to use the standardized HTTP port 80. It is possible that the specified running Container
has limited rights for security reasons. Notably, three database providers are listened, which
shows that the best practice-rule "one-process" per Container is respected in this case. Many
language-specific webservers are listened, such as pyhton, php, ruby and definitively javascript
and shows the dominance of images of the category Language Runtime.

Table 5.5: 20 most used ports

rank port usage
1 80 HTTP
2| 8080 HTTP
3] 3000 | Javascript Server
4| 35729 |[764315 Livereload
5 22 6.32303 Secure Shell
6 443 5.29340 HTTPS
7 5000 | 484152 Python Server
8| 8000 | 427345 Python Server
9 9000 | 335356 PHP Server
10| 3306 | 268866 MySQL
11| 5432 2.66929 PostgreSQL
12| 8888 2.42722 HyperVM HTTPS
13| 6379 | 157511 Redis
14| 9200 | 151701 Elasticsearch
15| 8081 146214 HTTP/Alternativ
16| 27017 | 1.28139 mongoDB
17| 9300 | 1.18779 Elasticsearch
18 53 1.10064 Domain Name System
19| 4567 | 083920 Ruby
20( 8302 | 076819 Supervisor
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CMD and ENTRYPOINT

The CMD Instruction defines the default arguments or an Entrypoint instruction. However, a user
can overwrite these commands or pass in and bypass the default parameters from the command
line when the container is running, whereas the ENTRYPOINT instruction is the program to run
the given command. It is recommended to use ENTRYPOINT when a container should act as an
executable and when a command always needs to be executed. If the default commands and/or
argument should be alterable, CMD should be preferred. A manual classification of six categories
from the top 100 of both instruction resulted in:

Server official server software node, nginx, apache, gunicorn, redis-server

Database also server, but with specialization in databases servers postgres, iinfluxdb,
mysql, mongodb

Tools supervisord, grunt, Unix utilities, npm
Language Runtime java, python, dotnet, rails, php

Other shell scripts like: run.sh, start.sh and other self written scripts, Unix com-
mands, openssh ssh daemons

Table 5.6 presents the results, which account for 70% of usage across all used CMD and RUN
executables. Both of them have the same rankings, but with some differences. A closer look into
the ‘Other’ Category shows that more than 30% bash scripts are executed in the CMD instruction
and more than 40% in the Entrypoint instruction, which is quite high. A possible explanation
for this fact is that there might be instructions which always have to be executed and this could
be exactly the nature of an executable. Executing a bash script is a way to circumvent the "one
process per container'-rule (see 5.3.2) for more informations). Tools like e.g. npm, grunt etc.
need arguments to run, and thus it fits exactly in the nature of CMD instruction. The amount of
used tools in the Entrypoint is less than half of CMD. Lastly, specific Server applications such as
databases are also less used in the Entrypoint session, whereas Server applicatins and Language
Runtime based applications seems to be used identically.

Table 5.6: Camparison of CMD and ENTRYPOINT Instruction

Category CMD | ENTRYPOINT
Other

Tool 29% 12%
Language Runtime | 15% 14%
Server 9% 8%

Database 5% 1%
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5.2 Maintenance and Evolution

This section analyzes the dataset in terms of maintenance and evolution of Dockerfiles. By defini-
tion a revision represents a change to a document’s contents or a modification to a part such that
the part remains interchangeable within its previous variation [57]. In this thesis every revision
is formed by a commit that added, removed or modified at least one line in a Dockerfile. For
every Dockerfile, this section uses revisions per year as a metric to define how often it is updated.
The first commit of a Dockerfile on Github is also a revision, so every Dockerfile has at least one
revision. The transition from a revision to a newer revision is defined by a diff. A Diff consists
of changes. This thesis tries to categorize the changes, which belong to a Diff. This section starts
with the rate of change, followed by the magnitude of change and finally the nature of change.

5.2.1 Rate of Change

Figure 5.5 visualizes yearly revisions for all studied Dockerfiles. Evidently, Dockerfiles generally
are not changed often. The arithmetic average of the number of yearly revisions over all files is
3.13. However, this mean is biased, as the distribution appears to closely follow a power law, with
67.15% of Dockerfiles being revised 0 to 1 times per year, 9.69% 3 times and 5.76% 4 times after
the initial commit. Section 5.1.3 concluded that there is some evidence, that users build on top
of popular projects, which are public and free to use. Interestingly, Dockerfiles belonging to the
Top-100 and Top-1000 projects are in fact updated substantially more often, with an arithmetic
mean of 5.72 and 4.35 revisions per year respectively. Taken together, with the results discussed
in Section 5.1, we can conclude that more popular projects are not only larger, but also maintained
more actively.Thus users, who build on top of popular projects, do that consciously, because they
expect more maintenance indirectly from them. From a software development perspective, this
is a very good use of the module pattern. A big disadvantage of this behavior is that it could be a
problem, if users build to many dependencies on top of the popular project. For the Top-100 and
Top-1000 samples, no power law can be observed. Furthermore, the slope of the distribution is
flatter than predicted by a power law, i.e., more Dockerfiles are revised more frequently. A reason
for that could be the increase of dependencies inside the container.

30 . All
» . Top-100
9
E . Top-1000|
x 20+
3}
o
(=)
N
s}
X

-
o
1

T
15 20

.h'l'i‘iiual__..L

Revisions Per Year

Figure 5.5: Distribution of yearly revisions
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5.2.2 Magnitude of Change

This subsection takes a closer look at the size of revisions in terms of addition, modifications and
removal of instructions. All initial commits have been filtered out for this analysis, thus only
revisions that actually modify an already existing Dockerfile are considered. Evidently, revisions
on Dockerfiles are typically small, with an average of only 3.48 lines of code in Dockerfiles being
changed. 80.39% of all revisions consist of 5 lines of Docker code changed or less. Figure 5.6
depicts the number of total, added, removed or modified lines of Docker code per revision. Plot
5.6 shows the data of the entire set, because no significant difference for the Top-100 and Top-1000
projects as compared to the entire data set have been observed. A classification of the revisions
into additions, modifications and removals shows that most changes to Dockerfiles consist of
instruction additions (47.44%), followed by the removal (33.17%) and modification (19.40%) of
instructions.
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Figure 5.6: Distribution of revision sizes measured in lines changed

Docker started in 2013 and has on average released 3 new versions per month. Table 5.7 shows
the Evolution of Version/per month starting Mars 2013 on the left side. Next to it, the number
of releases (without RC) and also the three kind of changes on a Dockerfile: del, ins, mod. The
last column finally shows the amount of new Dockerfiles per month. First, it is very obvious that
Docker has a clear Roadmap of its software. Interestingly, the average of its changes is very linear,
thus Dockerfiles have not been much affected from new releases of the main application, since it
actually builds the files. There are only a few outliers. The first one occur in November 2013,
where many lines were deleted but also many new lines where added. A closer look into to these
time ranges shows that a project called ‘docker-scientific-python’, which has a Dockerfile with
more than 50 lines of code for for each python version, added and deleted many dependencies
during that time. Its Dockerfiles consists of 20-30 RUN instructions, which is quit high. After
these changes have been made public, the projects which used their Dockerfiles, also started up-
dating their files, which increased the del, adds and ins in November 2013. Again, it shows that
maintaining dependencies can cause a wave of changes, if the causer is a popular project. An-
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other result, which stands out is: May 2014. A brief look at the change types shows that 25% of all
Dockerfiles have changed the underlying image. Most of the images have been ubuntu images.
It is very interesting that less than one month before the change, Ubuntu 14.04 has been released.
There is a high certainty that the layer above the base images have to be modified, in particular
the RUN instructions. In conclusion, new releases of Docker does not affect the maintenance of
Dockerfile from a software development perspective.
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Table 5.7: Docker Releases mapped to monthly insertions, deletions and modifications on Dockerfiles

Date del ins mod

Docker Releases #| YYYY [ MM| sum | counts | avg sum | counts [ avg sum counts | avg | new Dokerfiles
v0.4.8 - v0.5.1 3| 2013| 7 84 49 1.71 86 49 1.76 26 49 0.53 46
v0.5.2-v0.6.1 412013 | 8 371 394 0.94 750 394 1.9 134 394 0.34 154
v0.6.2- v0.6.3 2| 2013 9 317 291 1.09] 556 291 1.91 105 291 0.36 106
v0.6.4 - v0.6.5 2| 2013 | 10 375 299 1.25 685 299 2.29 153 299 0.51 228
v0.6.6 - v0.6.7,v0.7.0-rc1 - rc7, v0.7.0 4| 2013 | 11 § 1380 457 - 1810 457 - 287 457 0.63 253
v0.7.1,v0.7.2 2| 2013 | 12 842 495 1.7 1395 495 2.82 275 495 0.56 294
v0.7.3 -v0.7.6 412014 1 1863 939 1.98] 2267 939 241 605 939 0.64 390
v0.8.0,v0.8.1 2| 2014 2 1646 1028 1.6 2510 1028 | 2.44 700 1028 | 0.68 552
v0.9.0,v0.9.1 2| 2014 | 3 1838 1179 | 1.56 ] 2628 1179 | 2.23 808 1179 | 0.69 525
v0.10.0 1| 2014 | 4 2336 1395 | 1.67 | 3154 1395 | 2.26 1042 1395 | 0.75 488
v0.11.0,v0.11.1 2|1 2014 5 2500 1458 | 1.71 3573 1458 | 2.45] 1281 1458 - 762
v0.12.0,v1.0.0,v1.0.1 3] 2014| 6 5495 3120 | 1.76 § 6990 3120 | 2.24) 1627 3120 | 0.52 1066
v1.1.0-v1.1.2 312014 7 3365 2305 | 1.46 | 4989 2305 | 2.16 1869 2305 | 0.81 1181
v1.2.0 1| 2014| 8 3927 2791 | 1.41] 5616 2791 | 2.01 2116 2791 | 0.76 1764

0| 2014 | 9 5725 3220 | 1.78§ 7297 3220 | 2.27] 2312 3220 | 0.72 1422
v1.3.0,v1.3.1 2( 2014 | 10 § 5574 3619 | 1.54§ 8273 3619 | 2.29 2826 3619 | 0.78 1704
v1.3.2 1] 2014 | 11 § 4921 3322 | 1.48) 7805 3322 | 2.35] 2534 3322 | 0.76 1790
v1.3.3,v1.4.0-v14.1 5| 2014 | 12 § 4302 3868 | 1.11§ 7416 3868 | 1.92 2661 3868 | 0.69 2032
v1.5.0-rc1 - v1.5.0-rc4 412015| 1 7668 4274 | .79 10125 | 4274 | 237 3257 4274 | 0.76 2108
v1.5.0 1| 2015| 2 8624 5277 | 1.63§ 9155 5277 | 1.73 | 4424 5277 | 0.84 2285
v1.6.0-rcl -rc2 1]2015| 3 7153 5188 | 1.38 § 11053 | 5188 | 2.13 ] 3603 5188 | 0.69 2659
v1.6.0-rc3-rc7,v1.6.0 21 2015| 4 8628 5291 | 1.63 § 11861 | 5291 | 2.24] 3863 5291 | 0.73 2707
v1.6.1,v1.6.2,v1.7.0-rcl 3| 2015| 5 9035 5786 | 1.56 § 13544 | 5786 | 2.34] 4567 5786 | 0.79 2974
v1.7.0-rc2 --rc5,v1.7.0 2| 2015| 6 8055 6222 | 1.29 § 12305 | 6222 | 1.98] 4607 6222 | 0.74 2884
v1.7.1-rcl --re3,v1.7.1,v1.8.0-rcl 3| 2015 7 8804 6278 1.4 § 13925 | 6278 | 2.22] 5011 6278 0.8 3400
v1.8.0-rc2-rc3,v1.8.0,v1.8.1 3(2015( 8 7726 6009 | 1.29§ 12658 | 6009 | 2.11] 4115 6009 | 0.68 3331
v1.8.2-rc1, v1.8.2 2| 2015 9 8684 6692 1.3 § 13192 | 6692 | 1.97] 5211 6692 | 0.78 3266
v1.8.3 ,v1.9.0-rcl-rc4 212015 | 10 10459 | 6838 | 1.53 | 14306 | 6838 [ 2.09] 529 6838 | 0.77 4030
v1.9.0-rc5,v1.9.0,v1.9.1-rc1, v1.9.1 412015 | 11 § 12098 | 7849 | 1.54 16364 | 7849 | 2.08 6532 7849 | 0.83 3713

0| 2015 | 12 § 9914 7376 | 1.34§ 15404 | 7376 | 2.09] 5595 7376 | 0.76 3961
v1.10.0-rc1-rc2 1| 2016 | 1 § 10215 | 7589 | 1.35f§ 14660 [ 7589 | 1.93 ] 5922 7589 | 0.78 3539
v1.10.0-rc3-rc4, v1.10.0,v1.10.1-rc1, v1.10.1,
v1.10.2-rc1, v1.10.2 62016 2 13068 | 8667 | 1.51f 17753 | 8667 | 2.05] 6782 8667 | 0.78 3725
v1.10.3-rcl-rc2, v1.10.3, v1.11.0-rcl-re3, 3| 2016 3 || 11897 | 8550 [ 1.39f 16881 | 8550 | 1.97 ] 6718 8550 | 0.79 3698
v1.11.0-r¢3-rc5,v1.11.0, v1.11.1-rcl, v1.11.1 412016 | 4 11427 | 8467 | 1.35 15673 | 8467 | 1.85] 6302 8467 | 0.74 3403
v1.11.2-rcl 1] 2016 5 11931 | 8806 | 1.35f 16817 | 8306 | 1.91) 6808 8806 | 0.77 3222
v1.11.2, v1.12.0-rcl -rc2 2| 2016 6 9163 7598 | 1.21§ 13380 | 7598 | 1.76 | 6217 7598 | 0.82 3379
v1.12.0-rc3 -rc5,v1.12.0, docs-v1.12.0 3( 2016 7 9923 7183 | 1.38§ 13776 | 7183 | 1.92] 5611 7183 | 0.78 2807
docs-v1.12.0,v1.12.1-rcl-rc2, v1.12.1 3| 2016 8 9159 7053 1.3 § 12746 | 7053 | 1.81] 5287 7053 | 0.75 _
v1.12.2-rc1-rc3, v1.12.2, v1.12.3-rcl,
v1.12.3 42016 9 8973 7325 | 1.22 § 13244 | 7325 | 1.81] 5578 7325 | 0.76 3833
v1.13.0-rc1-rc3 1| 2016 | 10 j§ 11510 | 8212 1.4 § 16068 | 8212 | 1.96 ] 6698 8212 | 0.82 3732
v1.13.0-rc3, v1.12.4-rcl-rc2 2| 2016 | 11 jj 11005 | 8341 | 1.32§ 16077 | 8341 | 1.93 ) 6327 8341 | 0.76 3697
v1.13.0-rc3, v1.12.4-rc1, v1.12.4,
v1.12.5-rcl, v1.12.5, v1.13.0-rc4 6| 2016 | 12 | 11231 | 8648 | 1.3 | 16842 | 8648 | 1.95] 6687 | 8648 [0.77 3551
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5.2.3 Nature of Change

Table 5.8 goes deeper into the nature of changes to Dockerfiles. It lists all currently supported
instruction types as discussed in Chapter 2.2, and specifies how many changes refer to an instruc-
tion of the respective type. The table does not include results for LABEL, USER, and ARG because
their changes accounted for less than 0.2% in all categories. 55% of all changes relate to RUN in-
structions.

RUN instructions make up 40% of all instructions (cf. Table 5.1), this type of instruction appears
to be changed more frequently than others. Table 5.8 also lists the subcategories of it (e.g., de-
pendency management, file system) and reveals a similar distribution for Dockerfiles in general
(cf.Table 5.2). Interestingly, RUN instructions are often added or removed (59% and 61% respec-
tively), but less frequent modified (29%).

FROM instructions are frequently modified (29%), but almost never added or removed. The
reason behind this is that, the base image is mandatory and the foundation of each Container.
Everything is built up on it. Section 5.2.2 presented a rare case, where a base image was updated
to the latest ubuntu image, which leads, as a consequence to many changes on the layer above
it. Consequently, Dockerfiles typically contain exactly one FROM instruction and if there are more
than one, then the last one is selected. An update to this instruction may indicate a switch to a
different base image, or a version change.

Table 5.8 presents the same data for the Top-1000 and Top-100 projects. Largely, no significant
differences can be observed for these projects. However, the Top-100 projects appear to be mod-
ifying the FROM instruction less frequently than other projects (23% for the Top-100 versus 29%
in the entire population). This might which may be explained by projects with a large user base
being more conscious of significant changes such as updating the base image.

Table 5.8: Relative changes of all Docker instruction types.
All Top-1000 Top-100
Add | Mod | Rem

Dependencies 0.35
Filesystem | 0.26 | 024 | 042 | 025 | 0.24 | 0.23 \ 041 | 022 | 024 | 024 | 037 0.2

Permissions | 0.06 | 0.06 | 0.07 | 006 | 005 | 006 004 | 0.05 | 003 | 003 | 00 | 0.04

Build/Execute | 0.04 | 0.04 | 003 | 0.05 | 0.06 | 0.05 0.05| 007 | 01 | 0.09 | 0.06 | 0.14
Environment | 0.01 | 001 | 001 | 0.01 | 001 | 001 002 | 00 | 0.01| 0.01 | 0.01 | 0.0

COMMENT | 0.12 | 0.12 | 011 | 012 | 009 | 009 0.10 | 0.09 | 0.10 | 0.10 | 0.10 | 0.09

ENV | 0.07 | 0.06 | 013 | 005 | 007 | 005 0.6 | 0.05 | 0.10 | 0.06 | 0.16 | 0.12

FROM | 0.06 | 0.00 | 029 | 0.00 | 0.07 | 0.00 | 0.31 | 0.00 | 0.00 | 0.04 | 026 | 0.00

ADD | 0.05| 0.05| 0.05 | 0.06 | 006 | 005 006 | 0.07 | 0.02 | 0.02 | 0.01 | 0.03

cMD | 0.05 | 0.04 | 0.06 | 005 | 004 | 004 004 | 004 | 003 | 003 | 0.04 | 0.02

copYy | 0.03 | 0.04 | 003 | 0.03 | 003 | 0.04 003 | 003 | 0.04 | 0.05| 0.03 | 0.04

EXPOSE | 0.02 | 0.02 | 0.01 | 0.02 | 0.01 | 002 001 | 001 | 002 | 002 | 001 | 0.01

MAINTAINER | 0.01 | 0.01 | 0.02 | 0.00 | 0.01 | 0.00 0.04 | 0.00 | 0.01 | 0.00 | 0.02 | 0.01

WORKDIR | 0.01 | 0.02 | 0.00 | 0.02 | 0.01 | 001 0.00 | 001 | 0.01 | 0.02| 0.00 | 0.02

ENTRYPOINT | 0.02 | 0.01 | 0.02 | 0.02 | 0.01 | 001 002 | 001 | 003 | 0.01 | 0.04 | 0.03

VOLUME | 0.01 | 001 | 001 | 001 | 001 | 001 0.00 | 0.01 | 001 ]| 0.02 | 0.00 | 0.01

Distribution of Images over time

Section 5.1.3 presents a distribution of images and also categorized them into five types. The
following subsection presents a distribution over the time for the two big categories: OS and
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Language Runtime. Figure 5.7 shows the dominance and the fast growth of ubuntu, but also the
fact that there is space for new images. For instance, alpine started growing in October 2010 and
had the strongest growth after ubuntu. If the trend continues, it will catch up with centos and
maybe debian as well. Alpine® contains a light-weight operating system. It actually has a size
of only 4MB [6], in comparison to ubuntu 180MB [6]. It is clear that users prefer smaller base
images, since they can be downloaded, built and started faster. Figure 5.8 shows the distribution
of Language Runtime Images. The green line shows the automated build of Node, whereas the
red one shows the official build. This reinforces the fact that, user use more likely an official
image, and then build their layers on top of it, instead of creating everything from the scratch.
At the beginning of their containerization in 2015, all (with exception of the green one) had a fast
growing time. Java lost speed, whereas the rest is still growing.
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Figure 5.7: Distribution of OS images over time

8https://alpinelinux.org/
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Change of Dependencies

Dependencies are changed a lot, corresponding Table 5.8. A closer look at the change types shows
that in most of the cases a whole RUN instruction is added, followed by adding parameters to an
existing RUN instruction. Less than 10% of the parameters are maintained.

Table 5.9: Change types for RUN Instruction

Change Type Yo description

AddType_RUN new RUN Instruction
AddType_PARAMTER 22.6 | new parameter in existing RUN Instruction
DelType_RUN 22.6 | removal of whole RUN instruction
DelType_PARAMTER 15.1 | removal of parameter in RUN Instruction
UpdateType_ PARAMTER 8.6 | update of parameter
UpdateType_EXECUTABLE_PARAMETER 0.5 | update of executable and its parameters
UpdateType_ EXECUTABLE 0.2 | update of executable




58 Chapter 5. Results

5.3 Quality of Dockerfiles

This section focuses on the quality aspects of Dockefiles and is based on a set of best practices
evolved [12] from Docker itself for describing images in Docker’s declarative language. Best prac-
tices are used to maintain quality as an alternative to mandatory legislated standards [5].Thus,
best practices are helpful to avoid common mistakes (e.g., using ADD instead of COPY) and they
also help to increase the quality of static code by giving hints to the formation of code. Best prac-
tices also exist for various programming languages or other IaC languages (e.g., Puppet, Chef).

In order to identify how Docker repositories on GitHub comply to those best practices this
thesis relies on a Dockerfile linter [37], which is based on the aforementioned best practices and
contributions by the GitHub community. This linter, which runs also in a Docker container, parses
a given Dockerfile and checks adherence to a set of rules representing the best practices on top of
the resulting AST. Every Dockerfile in our data set is executed by the linter and the reported rule
violations are added to the database.

5.3.1 Most Violated Rules

violated Rule |description Top-1000 | Top-100
DL3020 Use COPY instead of ADD for files and folders. 13.87% 7.14%
DL3008 Pin versions in apt get install, 12%
DL3015 Avoid additional packages by specifying --no-install-recommends.
DL4000 Specify a maintainer of the Dockerfile. | :
DL3009 Delete the apt-get lists after installing something. B.07% 8.26% 13.42%
DL3006 Always tag the version of an image explicitly. 6.72% 5.44% 2.78%
SC2086 Double quote to prevent globbing and word splitting. 5.76% 7.00% 5.85%
DL3003 Use WORKDIR to switch to a directory. 4.83% 6.69% 8.07%
Using latest is prone to errors if the image will ever update. Pin the version
DL3007 explicitly to a release tag. 2.51% 2.09% 1.43%
DL3013 Pin versions in pip. 2.34% 2.41% 6.14%
DL3012 Provide an email adress or URL as maintainer. 1.50% 1.06% 0.71%
Do not use sudo as it leads to unpredictable behavior. Use a tool like gosu
DL3004 to enforce root. 1.19% 0.95% 0.21%
DL3005 Do not use apt-get upgrade or dist-upgrade. 0.94% 0.71% 0.57%
DL3014 Use the -y switch. 0.92% 1.01% 0.21%
DL4001 Either use Wget or Curl but not both. 0.92% 0.79% 2.07%
5C2046 Quote this to prevent word splitting 0.80% 0.62% 1.50%
DL3002 Do not switch to root USER. 0.77% 0.39% 0.29%
SC2164 Use cd ... || exit in case cd fails. 0.69% 0.63% 0.07%
5C2154 var is referenced but not assigned. 0.46% 0.65% 0.14%
DL3000 Use absolute WORKDIR. 0.45% 0.54% 0.14%
52028 echo won't expand escape sequences. Consider printf. 0.34% 0.33% 0.07%
SC2016 Expressions don't expand in single quotes, use double quotes for that. 0.34% 0.18% 0.14%
SC2006 Use s{STATEM ENT) instead of legacy 'STATEMENT’ 0.22% 0.32% 1.14%
S5C1091 no ShellCheck access 0.13% 0.14% 0.14%
SC1001 This \c will be a regular 'c' in this context. 0.10% 0.00% 0.36%

Table 5.10: 25 most violated rules reported by the linter
Table 5.10 shows the 25 most violated rules reported by the linter. After providing a short
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overview about the quantity of rule violations, the following subsections focus more on specific
rules and the differences, which have been identified among the considered segments of the pop-
ulation.

Overview

Dockerfiles violate 3.2 rules on average across the entire population, while Dockerfiles of the Top-
100 most prominent projects violate 3.4 rules and Dockerfiles of the Top-1000 projects 3.7 rules
on average. One potential reason is that more popular projects tend to have more sophisticated
Dockerfiles, thus the chances for violating rules is higher than for simple Dockerfiles with only a
few instructions. Focusing on the Top-100 and their Dockerfiles, 18 projects out of the Top-100 do
not violate a single rule. This is similar to the Top-1000, in which 201 projects (i.e., 20%) conform
to all of the rules checked by the linter. Across the entire population, this is the case for 14% of
the repositories. There is a clear correlation between the amount of RUN instructions and the
amount of violated Rules. Dockerfile with less than 4 RUN instructions concern only 21% of all
violated rules, Dockerfiles with less than 7 RUN instructions concern half of all violated rules and
files with 16 or less instructions concern almost 78%. Therefore, an increase in number of used
dependencies expenses in quality.

Version Pinning

The linter has rules for four types of version pinning violations: image version pinning (DL3006),
apt-get version pinning (DL3008), pip version pinning (DL3013), and usage of ":latest" (DL3007).
All of them report the absence of a concrete version, either for the base image (i.e., FROM), or for
a concrete package to be installed (i.e., RUN). If no concrete version is declared, then a scenario
can enter where a version is used, which is not compatible with the other components of the
container, especially for the base image, which acts as a foundation of the Container. Therefore,
best practices suggest to specify concrete versions, because version pinning forces the build to
retrieve a particular version regardless of what is in the cache [12]. 6.72% of all Dockerfiles across
the entire population violate the rule of image version pinning. Interestingly, when looking at the
Top-100 repositories, just 2.78% of the considered Dockerfiles violated this rule. Therefore, more
popular repositories might be more aware of bad practices associated with build failures.

Regarding the installation of specific packages (i.e., pip and apt-get version pinning), the most
popular repositories perform worse than the entire population. There are two possible expla-
nations for this. Firstly, this thesis makes an assumption that more popular projects have more
sophisticated Dockerfiles, hence more dependencies and therefore more RUN instructions to vio-
late these rules. This assumption is supported by the finding that the Top-100 projects on average
have more RUN instructions. Secondly, the purpose of popular projects is more general. Docker-
files, which use popular images as a base image use more customized packages, where specific
versions of packages are installed for an individual software project.
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Copy/Add.

One of the most prominent bad practices is to use the instruction ADD instead of COPY (DL3020).
Basically, both instructions provide similar functionality to add resources to an image. How-
ever, the ADD instruction supports additional functionality, for instance it allows downloading
resources from a URL and automatically unpacks compressed local files (e.g., tar, zip, etc). This
additional "magic" is considered as dangerous and can lead to accidental failures as long as de-
velopers are not aware of it, e.g., when the developer wants to add a zipped folder to the image
and ADD automatically unpacks it. Across all Dockerfiles, 18.9% violated the practice to prefer
COPY. Again, this is not the case for the Top-100 repositories with only 7.14%. This assumption
is supported by an inspection of the dataset. Table 5.9 presents the most used filetypes in a ADD
and COPY instructions. These 20 filetypes cover almost 81% of all filetypes and ADD Instructions
and 83% of all filetypes in the COPY Instruction. According to the nature of the ADD Instruction,
there should be only compressed filetypes on the list. Despite this fact, in reality the four file-
types which appear in the list in gray sum together to 10.6%, which proves the wrong use of this
Instruction. The COPY instruction has only less than 5% of compressed filetypes.

filetype add filetype copy

{.sh} 28.92% {.sh} 34.80%
{.json} 17.54% {.conf} 19.06%
{.conf} 16.64% {.json} 14.55%
{.bowerrc} 6.27% {.txt} 5.54%
{.gz} 4.20% {-py} 4.54%
{.jar} 3.99% {.ini} 3.18%
{.txt} 3.45% {.xml} 2.29%
{-py} 3.18% {.yml} 2.18%
{-ini} 2.80% {.is} 2.17%
{-xml} 2.08% {.jar} 2.11%
{.is} 1.36% {.lock} 1.35%
{yml} 1.30% {.gz} 1.10%
{.zip} 1.30% {.cfg} 1.08%
{-cnf} 1.16% {.xz} 1.07%
{.war} 1.11% {.php} 0.94%
{.cfg} 1.09% {.yaml} 0.90%
{-lock} 1.08% {.html} 0.85%
{.properties} 0.90% {.list} 0.79%
{-html} 0.82% {-sql} 0.76%
{.repo} 0.79% {.key} 0.74%

Figure 5.9: Top 20 used filetypes in ADD and COPY instructions

WORKDIR

By using absolute paths, the problem of running into problems when a previous WORKDIR in-
struction changes (DL3000). This rule is very less violated and can be also verified by the dataset,
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which shows that more than 95% of all Instructions observe this rule. Another rule concerning
the WORKDIR instruction is DL3003. The rational behind it is that changing a directory with
cd should be avoided, because most of commands can work with absolute paths. If it is really
necessary to change the current working directory, then WORKDIR should be used. According
to the conducted dataset 4.11% of all Run Instructions use ‘cd” as command. Interestingly, 8% of
the TOP-100 projects violates this rule, which is quite high.

Missing Maintainer Information

15.9% of all Dockerfiles do not use the MAINTAINER instruction specifying both name and email
address of the developer responsible for the image. Interestingly, for popular projects, this best
practice is violated more often with 21.7% for the Top-100 and 19.8% for the Top-1000 reposi-
tories. An assumption is that especially for more popular projects, more developers contribute,
thus maintenance is not assigned to an individual developer and consequently, the MAINTAINER
instruction is not used. This Instruction is deprecated since January 2017.

5.3.2 Multi-Process Management

One big advantage of applying the one-process-per-Container Rule is the separation of concerns,
which leads to higher uptime, for instance a database should not have to go down every time an
image has to be rebuild and it simplifies maintenance of the container due the fact that more pro-
cesses need more dependencies, which leads to higher maintenance outlay. By definition, Docker
container run a single process following the UNIX philosophy "do one thing and do it well".
However, for decades developers were used to run multiple processes in parallel (e.g., applica-
tion’s main process, worker processes for collecting and persisting logs, etc). Thus,the transition
from monoliths software architecture to microservices takes time. The Docker design practice is
to isolate every single logical component in a separate container: If new functionality is needed,
a new container is created for exactly this purpose.

Nevertheless, there exist cases where it is practical to run multiple processes inside a container
(e.g., the actual application and a Apache daemon). There are two possibilities to make multi-
ple processes run within a container: Either by writing a shell, script which starts all processes
by running the script with the CMD or ENTRYPOINT instruction or by using third party tools,
which addresses this issue (e.g., supervisord, runit, monit). Doing this manually is known to be
error prone. Section 5.3.1 shows that the most copied filetype with an occurrence of almost 35%
is shell. It is obvious that shell scripts are a way to bypass the limitation of executing only one
executable per Container. 28% of all Entrypoint Instructions execute a shell script or in other re-
lations, 5631 Dockerfiles. It is preferred to use it in the Entrypoint Instruction rather than in the
CMD Instruction, because of the nature of it. In Comparison to the third party tools,Supervisord is
by far the most common tool for multi-process management. It is also recommended from Docker
9.1686 repositories called supervisord in the CMD instruction, and 177 in the ENTRYPOINT instruc-
tion. God is ranked on second rank and used by 217 repositories in the CMD instruction, and 208
in the ENTRYPOINT instruction.s6 (i.e., s6-svscan) is on the third place and used by 38 repositories
in the CMD instruction, and 18 in the ENTRYPOINT instruction. Other tools including monit, runit,
system.d and upstart are used by 10 and less repositories.

An analysis of the supplied parameters to ENTRYPOINT and CMD instructions, shows the ac-
tual need of multiple-processes Containers. In total, 2381 projects (i.e., 3.4% of all Docker projects)
make use of such tools. One usage was identified within the Top-100 and 27 projects within the
Top-1000. This is less than expected due to the prominent coverage of these approaches in on-

https://docs.docker.com/engine/admin/using_supervisord/
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line resources (e.g., developer blogs).As this section only analyzed the execution of multi-process
tools in ENTRYPOINT and CMD instructions, the results might be lower than the actual population.
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Threats to Validity

This section presents the main threats to the validity of this thesis.

Construct Validity. An essential threat to construct validity is that the relational model might
not be an adequate representation of the different data sources we intended to study. This in-
volves capturing the version history of Dockerfiles broken down to a statement-level including
the addition, removal, and modification of concrete instructions, and the representation of the
violated rules reported by the Docker linter. Moreover, the used parser has to correctly interpret
Dockerfiles and write the extracted data into the chosen relational model. The tooling is based on
the assumption that Dockerfiles follow the standard naming convention Dockerfile without
supplied file type. his threat has been mitigated by manually inspecting and validating a small
fraction of parsed projects during construction of the parser as well as in the analysis phase.

Internal Validity. Threats to internal validity include potentially missed confounding factors
during result interpretation. For example, this thesis assumes that missing image version pinning
might be an explanation for a higher build failure rate in our build experiment. However, there
could be other factors such as failed test cases when building the actual application that lead to
the image build failure. Another threat to internal validity is our segmentation of the population
of Docker repositories. This thesis mitigated the effect of a selection bias towards the 100 and 1000
most popular Docker repositories by including the entire Docker population in all our analyses.

External Validity. This thesis consideres the entire population of Docker repositories on GitHub
to extend the generalizability of this study. Excluding forked repositories might limit the general-
izability to a certain degree. However, forked repositories without any changes compared to their
source repository could have led to result misinterpretation. Only Docker repositories on GitHub
have been considered. Consequently, it is not assured that the outcomes generalize to projects
hosted on other services, such as Bitbucket. Moreover, this thesis analyzed open source software.
Docker usage (e.g., languages, tools) and the compliance to best practices regarding the quality
of Dockerfiles might be different in closed source environments. The analyses are only based on
Docker and do not include other container technologies such as Linux containers (LXC).

The exactly same Threats to Validity have been made in the paper "An Empirical Analysis of
the Docker Container Ecosystem on GitHub " by Cito et al. [33] which is based on the used data
set .
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Conclusion

This thesis presents an approach of mining repositories with the latest technologies as well as
public data providers such as Google BigQuery. It provides a tool chain, which transforms an
given Dockerfile to a structural object and outputs it as a json File. Furthermore it examines the
evolution parser, which takes an software project as input and processes through the commit
history and finally outputs all information regarding a Dockerfile to a database. Basically, these
tools make it possible to conduct the first large-scale empirical study to analyze the ecosystem,
quality aspects and evolution behavior of Docker containers on Github. This study is based on
97571 Dockerfiles from 48102 projects, which is the entire population of non-forked projects as of
January 2017.
In the following, the findings of three main topics are revisited:

Ecosystem Overview. The results show that most of the Dockerfiles use an OS as its base
image. However, not all OS images are created equal. More established systems, such as Debian
and Ubuntu come bundled with their entire operating filesystem and can be around 180MB [6].
Other base images contain light-weight operating systems such as Alpine!, that are as small as
4MB [6]. Most projects use the larger OS as base images. An insight into the specific instructions
showed that the most commonly used instruction is the generic RUN. When breaking down the
RUN statement, 45% are used to define dependencies.

Evolution Behaviour. This thesis observes that Dockerfiles are not changed often, with a mean
of 3.11 to 5.81 revisions per year. Dependencies are over-proportionally represented in the change
behavior of Dockerfiles. The base image, which is the foundation of a Container does not change
a lot. A distribution of images over time showed that there is space for new images which are
characterized by their lightness. New Releases of Docker do not cause changes to Dockerfiles.

Quality Assessment. Given the finding that multiprocessing tools, such as supervisord are only
used by a minority of the Docker repositories (4%), there is no need for multi-process support
according to the results of this thesis. The Docker linter, provides valuable feedback concerning
the quality of Dockerfiles. Most of the violated rules can be verified with the conducted dataset.
The findings show that 28.6% of quality issues (as indicated by the Docker Linter) arise from
missing version pinning. Dockerfiles with less than 4 RUN Instructions concern only 21% o all
violated rules. Therefore, an increaase in number of used dependencies expenses in quality.

lhttps://alpinelinux.org/
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Future work. The provided data set can be used for more detailed analysis. For example
an inspection of the changed files within the Dockerfile revision could seek out dependencies
to JaC code, which might need to be maintained. An analysis in this field would help software
developers to create tools, which warn or remind developers to maintain the dependencies.

Another future work which make use of the provided dataset is a tool which is connected to
a database that maps all compatible dependencies to the corresponding base image. This tool
could be integrated, for instance, in a CI tool such as Jenkins to check the dependencies and give
valuable information about the state of the container. With the aid of this tool, a software devel-
oper would get immediately feedback about the build without fetching the Dockerfile through
the Continuous Delivery and Integration Pipeline. This tool could be also implemented as a plu-
gin to an existing CI tool such as Jenkins. This rapid feedback would help to increase the quality
of Dockerfiles with little effort.
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