
Master Thesis
February 7, 2017

Algorithmic
Extraction of

Microservices from
Monolithic Code

Bases

Genc Mazlami
of Glarus Nord GL, Switzerland (09-923-061)

supervised by
Prof. Dr. Harald C. Gall

Jürgen Cito

software evolution & architecture lab

Master Thesis

Algorithmic
Extraction of

Microservices from
Monolithic Code

Bases

Genc Mazlami

software evolution & architecture lab

Master Thesis

Author: Genc Mazlami, genc.mazlami@uzh.ch

Project period: 8.8.2016 - 8.2.2017

Software Evolution & Architecture Lab

Department of Informatics, University of Zurich

Acknowledgements

This thesis constitutes the final steps towards the completion of my master studies in com-
puter science. This thesis was as rewarding as it was challenging. Without the support of some
persons, this thesis would not have been possible in this form. Here, I would like to take the
chance to thank them.
First and foremost, I would like to thank Jürgen Cito, PhD student at the Software Evolution and
Architecture Lab at UZH. Without his great coaching, his creative suggestions and his critical ex-
amination of my work, this thesis would not have been possible. Thank you for your support and
for the great collaboration, Jürgen.
I would also like to thank Dr. Philipp Leitner, Senior Research Associate at the s.e.a.l. lab at UZH.
His experience and comments in scientific aspects of this thesis contributed important assistance.
Furthermore, I thank Prof. Dr. Harald Gall for giving me the opportunity to work on this thesis
at the Software Evolution and Architecture Lab of the University of Zurich.
Last but not least, my gratitude goes to friends and family. Special thanks to my sister Marigona,
who never hesitated to read through the script and suggest linguistic improvements. Also, I want
to thank my dear friends Joel Scheuner and Dominik Schöni – master students at the s.e.a.l. lab –
for their ongoing motivation, fruitful discussions during my thesis and the great friendship. Fi-
nally, I would like to thank my parents for their neverending support, motivation and inspiration
during the years of my studies.

Abstract

Driven by developments such as mobile computing, cloud computing infrastructure, DevOps
and elastic computing, the microservice architectural style has emerged as a new alternative to the
monolithic style for designing large software systems. Monolithic legacy applications in industry
undergo a migration to microservice-oriented architectures. A key challenge in this context is the
extraction of microservices from existing monolithic code bases. While informal migration pat-
terns and techniques exist, there is a lack of formal models and automated support tools in that
area. This thesis tackles that challenge by presenting a formal microservice extraction model to
allow algorithmic recommendation of microservice candidates in a refactoring and migration sce-
nario. A set of three coupling strategies is defined to mine structure information from monolithic
code bases. A graph-based clustering algorithm is designed to extract microservice candidates
from the model. The formal model is implemented in a web-based prototype. A performance
evaluation demonstrates that the presented approach provides adequate performance. The rec-
ommendation quality is evaluated quantitatively by custom microservice-specific metrics. The
evaluation results exhibit satisfactory scores in all of the considered metrics. The results show that
the produced microservice candidates lower the average development team size down to half of
the original size or lower. Furthermore, the size of recommended microservice conforms with
microservice sizing reported by empirical surveys and the domain-specific redundancy among
different microservices is kept at a low rate.

Zusammenfassung

Angetrieben durch Entwicklungen wie Mobile Computing, Cloud Computing Infrastrukturen,
DevOps und Elastic Computing hat sich die Microservice-Architektur als neue Alternative für
den Entwurf grosser Softwaresysteme etabliert. Existierende monolithische Systeme werden hin
zu Microservice-Architekturen migriert. Eine entscheidende Herausforderung in diesem Kon-
text ist die Extrahierung von Microservices aus bestehendem monolithischem Quellcode. Hier-
für existieren zwar informelle Migrations-Schemata und Techniken, jedoch gibt es einen Man-
gel an formalen Modellen und automatischen Werkzeugen zur Unterstützung in diesem Bere-
ich. Diese Arbeit präsentiert ein formales Extrahierungsmodell, das es erlaubt Empfehlungen
für Microservices in einem Refactoring-Szenario algorithmisch zu generieren. Drei Strategien
zur Aggregierung struktureller Information von monolithischem Quellcode werden vorgestellt.
Des Weiteren wird ein Graphen-basierter Extrahierungsalgorithmus hergeleitet, der aus dem
formalen Modell Empfehlungen für Microservices extrahiert. Das vorgestellte formale Model
wird in einem webbasierten Prototyp implementiert. Eine Performance-Evaluation des Proto-
typs demonstriert zufriedenstellende Leistungscharakteristiken. Die Qualität der extrahierten
Empfehlungen wird durch spezifisch definierte Metriken evaluiert. Die Experimente liefern in
allen betrachteten Metriken adäquate Ergebnisse. Die durchschnittliche Grösse der Entwicklung-
steams wird durch die empfohlenen Microservices mehr als halbiert. Des Weiteren entspricht die
resultierende Grösse der Microservices derjenigen, die in empirischen Studien erhoben wurde
und die Redundanz zwischen den Domänen einzelner Microservices wird tief gehalten.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Contribution and Research Questions . 2
1.3 Thesis Outline . 3

2 Background 5
2.1 Monoliths . 5
2.2 Microservices . 6

2.2.1 Definition . 6
2.2.2 Benefits . 7
2.2.3 Challenges . 8

3 Related Work 11
3.1 System Decomposition . 11
3.2 Software Maintenance and Evolution . 12
3.3 Reverse Engineering . 13
3.4 Microservices . 14
3.5 Research Gap . 16

4 Extraction Model 19
4.1 Basic Extraction Process . 19
4.2 Construction . 19
4.3 Clustering . 21

5 Extraction Strategies 23
5.1 Logical Coupling . 24

5.1.1 Definition . 25
5.1.2 Example . 26

5.2 Semantic Coupling . 27
5.2.1 Definition . 28
5.2.2 Example . 29

5.3 Contributor Coupling . 31

viii Contents

5.3.1 Definition . 31
5.3.2 Example . 33

5.4 Combination of Strategies . 34

6 Clustering Algorithm 37
6.1 MST-Based Graph Clustering . 38
6.2 Analysis . 41

7 Implementation 43
7.1 Use Cases . 43
7.2 Architecture . 44
7.3 Back-End . 45

7.3.1 History Computation . 47
7.3.2 Logical Coupling Engine . 48
7.3.3 Semantic Coupling Engine . 49
7.3.4 Contributor Coupling Engine . 50

7.4 Front-End . 51

8 Evaluation 55
8.1 Sample Selection . 56

8.1.1 Criteria . 57
8.1.2 Sample Projects . 59

8.2 Performance . 59
8.2.1 Logical Coupling Strategy . 61
8.2.2 Contributor Coupling Strategy . 62
8.2.3 Semantic Coupling Strategy . 63

8.3 Quality Metrics . 64
8.3.1 Size Aspect . 65
8.3.2 Team Aspect . 65
8.3.3 Domain Aspect . 67

8.4 Results . 68
8.4.1 Average Microservice Size . 68
8.4.2 Team Size Reduction . 70
8.4.3 External Communication Ratio . 72
8.4.4 Average Domain Redundancy . 74

9 Conclusion 77
9.1 Outcomes . 78
9.2 Limitations and Future Work . 80

A Appendix 83
A.1 Repository Source List for Sample Projects . 84
A.2 Welch T-test results for the average microservice size (ams) 85
A.3 Welch T-test results for the team size reduction ratio (tsr) 86

Contents ix

A.4 Welch T-test results for the external communication ratio (ecr) 87
A.5 Welch T-test results for the average domain redundancy (adr) 88
A.6 Installation and Setup of the Prototype . 89

A.6.1 Back-End . 89
A.6.2 Front-End . 89

x Contents

List of Figures
4.1 Construction step from the monolith M to the graph representation G. The con-

struction step utilizes coupling strategies to transform the monolith M into a undi-
rected, weighted graph G. 20

4.2 The clustering step decides which edges of the graph to delete in order to compute
microservice extraction of the original monolith M 21

5.1 Example Monolith for Logical Coupling Computation. The rectanglesA -E denote
class files, HM represents the change history, and i1 - i5 represent the history inter-
vals. An arrow from a history interval to a class file indicates a modification to that
file during that interval. 26

5.2 Resulting coupling graph for the example presented in Figure 5.1 27
5.3 Resulting coupling graph for the classes A,B and C generated by the semantic cou-

pling strategy. The dotted connection between nodes C and B indicates a theoretical
edge with edge weight 0, so that the edge is not considered in the coupling graph. 31

5.4 Example Contributor Situation of a Monolith Before the Contributor Coupling Com-
putation. F1 to F7 represent the contributors of the monolith. The rectangles A to
E represent the class files, and the connections between contributors and classes
imply a change by that contributor on that class. 33

5.5 Resulting contributor coupling graph representation of the monolith from Figure 5.4 34

7.1 Conceptual architecture diagram of the prototype 44
7.2 UML class diagram of the data model for the back-end resources 45
7.3 Repository view in the front-end component that implements use case U1. 52
7.4 Screenshot of the extraction view which allows the user to configure the decompo-

sition parameters and trigger the analysis. 53
7.5 UML Class Diagram of the Representation Types between Front-End and Back-End 53
7.6 Screenshot of the graph view which enables the user to browse through computed

microservice recommendations. 54

8.1 Plot of the execution time as a function of the commit count for the logical coupling
strategy . 61

8.2 Plot of the execution time as a function of the history length for the logical coupling
strategy . 62

8.3 Execution time as a function of the history length for the contributor coupling strategy 63
8.4 Execution time as a function of the code size for the semantic coupling strategy . . 64
8.5 Boxplot of the average microservice size (ams) results for the sample projects . . . 69
8.6 Boxplot of the team size reduction ratio (tsr) results for the sample projects 70
8.7 Illustrative example for centralized star structure on a coupling graph 71
8.8 Boxplot of the external communication ratio (ecr) results for the sample projects . . 72
8.9 Boxplot of the average domain redundancy (adr) results for the sample projects . . 74

Contents xi

List of Tables
8.1 Monolith Projects used in Evaluation . 60

A.1 Repository locations for the sample projects . 84
A.2 T-test results for all pairs of strategy combinations with respect to average microser-

vice size . 85
A.3 T-test results for all pairs of strategy combinations with respect to team size reduction 86
A.4 T-test results for all pairs of strategy combinations with respect to external commu-

nication ratio . 87
A.5 T-test results for all pairs of strategy combinations with respect to average domain

redundancy . 88

List of Algorithms

1 MST Clustering Algorithm . 38
2 Identification of Connected Components . 40
3 Depth First Search . 40
4 Reduce Large Clusters . 41
5 Split Component . 41

xiv LIST OF ALGORITHMS

Chapter 1

Introduction

In recent years, the software engineering community has seen a tendency towards cloud comput-
ing [BYV+09]. The changing infrastructural circumstances pose a demand for architectural styles
that leverage the opportunities given by cloud infrastructure and tackle the challenges of building
cloud-native applications.
An architectural style that has drawn a substantial amount of attention in the industry in this
context — as for instance in [Ła15,Ric14,Fow14,Thö15,New15] — is the microservices architecture.
This thesis aims to explore and formalize some of the most important aspects of the challenge of
migrating from a monolithic (legacy) application to a microservice oriented architecture. In the
following, the motivation for the topic and contribution of the thesis is presented.

1.1 Motivation
As elaborated further in Section 2.2.2, a microservice architecture has several benefits and advan-
tages over the traditional monolithic style. An example of such a benefit is the fact that services
are independently developed and independently deployable [Ric14], which enables more flexible
horizontal scaling in IaaS environments and technology heterogeneity.
It is therefore no surprise that big internet industry players like Google and eBay [Hof15], Net-
flix [Mau15] and many others [Ric14] have undertaken serious efforts for moving from initially
monolithic architectures to microservice-oriented application landscapes. What these efforts all
have in common is the fact that identifying components of monolithic applications that can be
turned into cohesive, standalone services is a tedious manual effort that encompasses the anal-
ysis of many dimension of software architecture views [Ric14] and often heavily relies on the
experience and know-how of the expert performing the decomposition.
Identifying components to be extracted as services is not only important when moving from ex-
isting monolithic applications. It can also be used as a design methodology when building new
systems from scratch:

"You shouldn’t start with a microservices architecture. Instead begin with a monolith,
keep it modular, and split it into microservices once the monolith becomes a prob-
lem." [Fow14]

2 Chapter 1. Introduction

Newman explains the rationale behind the monolith-first approach with the fact that determin-
ing the correct service boundaries is very difficult and costly [New15]. Therefore it often makes
sense to start with a monolithic approach until the domain model of the application has fully sta-
bilized [New15].
In both of the aforementioned cases, the question of how to break up a system into components,
which in turn are extracted as services, plays a key role [Fow14]. While refactoring and archi-
tecture processes in other software engineering disciplines such as object-oriented design are
supported by numerous automated and tool-supported techniques, architects of microservices
have no such option at hand when refactoring monolithic applications. Because of the typically
very high complexity and maintenance costs of legacy monoliths, these refactoring efforts are
very demanding and challenging [SRK+09]. Extracting microservices from such monoliths not
only demands technical experience by the architect, but also requires domain knowledge of the
business area. This indicates a great need for tool-based and automated support in these refac-
toring scenarios. Hence, this thesis aims to collect available microservice extraction know-how
and heuristics from research and industry, and formalize it with the goal of building a tool proto-
type that enables engineers to identify extractable microservices in monoliths in a semi-automatic,
tool-supported manner.

1.2 Contribution and Research Questions
As of today, there exists no formal collection or model that captures strategies that can be used to
algorithmically analyze monoliths with the goal of microservice extraction. Therefore, the goals
of this thesis are manifold.
The first goal is to find a formal extraction model that acts as a generic approach for the extraction
of microservices from static information of monolithic code bases. It is a goal of this thesis to
provide an approach that is easily automatable so that refactoring effort and interaction of the
architect that performs the extraction is minimized. Therefore, dynamic methods relying on run-
time analysis of the monoliths are not considered. Hence, the first research question is as follows:

RQ1: What is the design of a formal extraction model that uses static information
to extract microservices from monolithic code bases?

The first research question can further be divided into more specific sub-goals. One of those
goals is to find and compile a collection of formal strategies or heuristics that can be used to mine
static information of monolithic code bases:

RQ1.1: What formal strategies can be constructed to mine monolithic code bases for
information that helps in the extraction of microservices?

The other partial goal is then concerned with the question of how to make use of the informa-
tion structures generated by the strategies in order to create recommendations for microservices
to be extracted:

1.3 Thesis Outline 3

RQ1.2: What algorithm can use the information aggregated by the extraction strate-
gies to extract microservice candidates?

The formal extraction model presented in this thesis is the contribution resulting from RQ1.
The second contribution of the thesis builds on the formalisms resulting from RQ1. The formal
model is validated by designing and building a research prototype that takes a monolithic code
base as an input and automatically detects the parts that are suitable for extraction as microservice
candidates. Thus, the second research question is:

RQ2: How can we build a research prototype that implements the formal extraction
model and automatically detects candidates for microservice extraction?

The second research question is further divided into two sub-questions so that the prototype
can be evaluated properly:

RQ2.1: What is the performance of the implemented prototype with respect to exe-
cution time?

To that end, an evaluation is designed with a specific set of sample code bases from open-
source projects and a series of performance measurement experiments is conducted to answer
RQ2.1.

RQ2.2: What is the quality of the microservice recommendations generated by the
prototype?

Research question RQ2.2 is tackled by defining a set of microservice-specific metrics that can
be automatically measured in a large scale manner. The sample projects are evaluated with respect
to those metrics in order to give an answer to RQ2.2.

1.3 Thesis Outline
The thesis is structured as follows:

• Chapter 2 lays out the background information on the topics of monolithic and microservice
architectures and elaborates on their characteristics, advantages and drawbacks. Special
attention is given to the definition of the term microservice. Furthermore, the relations and
implications between concepts like DevOps, cloud computing, continous delivery and scalability
are explained.

• Chapter 3 provides a brief review of related research work that ties to the topic of this the-
sis. The related work is found mostly in the areas of system decomposition, program com-
prehension, software maintenance and reverse engineering. Prior attempts at solving sim-
ilar problems in related areas are presented and potentially promising techniques and ap-
proaches from other software engineering research fields are listed. Also, the recent research
on microservices in general and decomposition and extraction in particular is reviewed.

4 Chapter 1. Introduction

• Chapter 4 presents the basic formal approach that is used to tackle the research questions
introduced above. The formal notion of a monolith and microservices as interpreted in
this thesis are introduced. The graph representation used to capture structured information
about the monolith to be decomposed is introduced.

• Chapter 5 lists the extraction strategies used to aggregate information from monoliths in
a structured way so that the extraction model presented in Chapter 4 can utilize the in-
formation to recommend microservice candidates. Rationale and related work behind the
strategies is outlined. Furthermore the formal definition of the strategies is given, together
with a short running example for each of the strategies.

• Chapter 6 elaborates on the technique that is used to cut the graph representing the origi-
nal monolith down into cohesive connected components that correspond to microservices.
The most important parts of the algorithm are outlined in pseudo code, and an asymptotic
complexity analysis is given.

• Chapter 7 explains the architectural design of the web application prototype that imple-
ments the presented model. Furthermore, important and specific details of the implemen-
tation of the strategies are described and a complexity analysis for the implementations is
given.

• Chapter 8 aims to validate the presented extraction approach and the implemented proto-
type by running a series of performance and quality experiments on a list of sample repos-
itories. Specifically defined metrics are used as proxies for different aspects of the achieved
recommendation quality.

• The thesis is concluded by Chapter 9, where a summarization of the main outcomes is given
and a brief look at limitations of the work and possible future improvements is given.

Chapter 2

Background

Unlike most other terms and concepts in the technical disciplines, monoliths and microservices
have no clear, distinct definition in the formal sense. Therefore, this chapter introduces the terms
and lays out background information on the respective areas.

2.1 Monoliths
A traditional (enterprise) web application back-end component is a prime example for a mono-
lithic application [Fow14]. Monoliths usually consist of a single logical module or program that
runs in a single process or executable. A monolith mostly implements a complex domain model
with multiple separate domain entities and relationships among them. It is built as a single unit
and therefore a change to one subpart of the monolith requires the entire application to be rebuilt
and redeployed [Fow14, New15]. Also, the entire monolith is usually built on the same technol-
ogy stack and programming language. An exception to this characteristic are monoliths written
in one of the JVM-based1 languages and frameworks, which enables the monolith to use different
languages, as long as they run on the underlying JVM.
As a consequence of the singular nature of monoliths, scaling a monolithic application (e.g., in
an Infrastructure-as-a-Service (IaaS) environment) is achieved by replication of the entire unit on
multiple instances behind a load balancer [VRMB11]. This approach is often referred to as hori-
zontal scaling. This scaling method is fairly simple to employ for monoliths, but it comes with the
drawback of being very coarse-grained: If a single subpart of the monolith experiences overload-
ing, the entire monolith needs to be replicated, thus potentially wasting resources.
Although monoliths are singular, contained units, it is important to note that monoliths exhibit
internal componentization [Fow14]. Monoliths are designed - if done properly - with low cou-
pling and high cohesion as a design strategy [RV04] and hence have internal modules or compo-
nents that are decoupled from each other using language-provided techniques such as methods,
classes, packages or namespaces [Fow14]. Internal communication between the components in a
monolith occurs through method invocation or function calls. Still, fault isolation in monoliths is
difficult; if a submodule of a monolith fails, the entire application fails.

1JVM: Java Virtual Machine [SSB12]

6 Chapter 2. Background

Monoliths are in principle fairly simple to build and develop, since there are numerous frame-
works available that support fast prototyping and productivity, especially in a traditional three-
tier web-environment. Also, most integrated development environments (IDEs) are designed
with the development of monoliths in mind.
In general, monoliths are the right approach for many standard problems. But they come with
a lot of drawbacks when it comes to scalability and fault tolerance. Trying out new technologies
that differ from the stack in use within a monolith is nearly impossible. Over their life cycle,
monoliths tend to grow in an organic manner. It is non-trivial to fight this entropy while adding
functionality. Hence, very often, monoliths end up in a situation where engineers are hesitant to
introduce major refactorings or structural changes that would be beneficial to the design in fear
of breaking critical parts.

2.2 Microservices

" Gather together those things that change for the same reason, and separate those
things that change for different reasons." (Single Responsibility Principle) [Mar02]

2.2.1 Definition

Literature review shows that the term microservice is not formally defined [Fow14, Thö15]. New-
man describes microservices as small, autonomous services that work together and are focused
on doing one thing well [New15]. This implies that a microservice focuses on a concise, specific,
and clearly defined section of the problem domain. Evans introduced the concept of bounded con-
text [Eva04]. A bounded context contains the domain entities that are relevant only to that context,
and shares only the entities that are needed for communication with other bounded contexts in
the domain. Literature on microservices [Fow14, New15] suggests building services according to
the identified bounded contexts in the domain, allowing for cohesive and decoupled services that
concentrate delivering the resources or functions related to their respective bounded context only.

The microservice architecture composes one single large application from a suite of microservices
which communicate with each other through lightweight mechanisms such as HTTP or remote
procedure calls [Fow14]. In essence, it is a new form of componentization: A component is not a
class, package or library but an independently deployable service that runs in its own processes.
Microservices take the traditional software architecture principle of loose coupling and high cohesion
[LJK+01] to the extreme. As a consequence, the communication mechanisms are as lightweight
as possible and carry no business logic – this principle is sometimes also referred to as smart
endpoints and dumb pipes [Fow14].

2.2 Microservices 7

2.2.2 Benefits
Microservices have attracted high attention in industry because of the several advantages they
provide over monoliths. In the following, some of those benefits are outlined.

Independently Scalable and Deployable

The fact that a microservice is independently deployable and hence independently scalable en-
ables a much more fine-granular and efficient horizontal scaling of applications where only cer-
tain services are scaled up or down depending on their respective load instead of scaling up the
entire monolith. Propagating changes into a production environment is much easier and less
prone to risks and failure, since only the concerned microservice goes through the deployment
pipeline. Ultimately, this leads to a much faster reaction time upon changes in the business envi-
ronment [New15] and a higher velocity when correcting errors.

Heterogeneous Programming Languages

Since the services in a microservice architecture are decoupled from each other as much as pos-
sible, it is feasible to write different microservices in different programming languages and tech-
nology stacks and still compose a harmonic application. This allows the teams to use the right
tool for the job depending on the domain of the service they are currently working on – e.g., using
a low level language such as C for performance-critical components and Java for enterprise busi-
ness logic. Also, it enables a much more effortless replacement of a service by a service written in
an entirely different programming language, thus eliminating any long-term commitment to one
technology. Replacing or rewriting an entire microservice is much less involved than replacing a
component of a monolith.

Module Boundaries and Interfaces

Microservices have very firm module boundaries. The modularity of an application composed of
microservices is therefore much more stable or stringent since it is harder to move around code
across service boundaries [Fow14]. A change to a microservice should usually have no impact
whatsoever on the other services and components in the application.
Since services act as components, the public interfaces of such components are much more ex-
plicit [Fow14]. The public interface is defined by the set of communication endpoints that the
service provides to the outside world. In contrast, most programming languages don’t have good
mechanisms for explicitly defining public interfaces [Fow14].

Resilience and Fault Isolation

A microservice architecture can drastically improve the resilience of an application compared to
a monolithic structure. Resilience can be described as the ability to successfully accommodate
unforeseen environmental perturbations or disturbances [Lap08]. An example of such an unfore-
seen event can be the failure of a subcomponent due to erros in the code or invalid state. In a

8 Chapter 2. Background

monolithic environment, the entire application often runs in the same process on the same ma-
chine or instance. If one of the parts of the monolith experience a failure, the whole application
fails and is hence unavailable to respective users. In resilience engineering, a well-known pattern
to protect systems against failures of subparts that cascade throughout the entire application is
the bulkhead pattern [Nyg07]. As its name suggests, it follows the principle of watertight bulk-
heads in a ship’s hull that prevent water from flooding additional segments of the ship in case
of water ingress. Microservices are a prime example for an implementation of the bulkhead pat-
tern [New15]. They divide the system into separated segments across which occuring failures can
not propagate. Hence, failures in a microservice remain local to the affected microservice. This
aspect makes it much easier to isolate errors in a system.

Microservices and Organization

According to Conway’s law [Con68], organizations which design systems are constrained to
produce designs which are copies of the communication structures of these organizations. In
software engineering, evidence of Conway’s law can be observed when teams are divided into
database architects, server-side engineers and front-end developers and consequently those teams
end up building three-tiered applications consisting of a persistence layer, business layer and pre-
sentation layer. Moreover, in a traditional development organization, software engineers are re-
sponsible for the development, while operations teams are responsible for the deployment and
operation of the application in production. All these separations – database architects vs. back-
end engineers, development vs. operations – cause friction and communication overhead, in-
creasing feedback time and reducing velocity when fixing errors. In this context, the microservices
practice and the DevOps paradigm [BWZ15] propose small cross functional teams that are orga-
nized around business or domain capabilities, and hence are responsible for one service [BHJ16].
By consequence, a team combines people with all different skill sets needed for the end-to-end
devlopment of a service. The team includes front-end developers, back-end engineers, database
architects and operation or DevOps engineers. This approach has the advantage that it minimizes
the interaction with other teams and reduces the communication overhead [Fow14].

2.2.3 Challenges
Despite all the benefits mentioned in the previous section, microservices are not the holy grail of
software engineering. All of the mentioned advantages only take full effect if microservices are
designed properly. Also, they come with some difficulties and challenges, which shall be outlined
in the following.

Expensive Communication

In contrast to monoliths, all inter-component communication in a microservice architecture is
achieved by network protocols. Those remote calls are more expensive and tend to have higher
latency than built-in function calls or method invocation as used in monoliths. Furthermore, de-
signing communication APIs for each microservice can be a challenging task. Simply replacing

2.2 Microservices 9

method invocations or function calls by remote network equivalents is not an option when trans-
forming a monolith into a suite of microservices, since it may lead to chatty protocols that cause
unnecessary overhead [Fow14].

Complexity

A microservice architecture carries some additional complexity. First, the application landscape
has much more moving parts, and hence much more operational complexity [Ric14], thus requir-
ing a high degree of automation in the areas of continuous deployment, delivery, and monitoring.
Another known challenge when building microservices is service discovery [New15]. Horizontal
scaling is one of the main advantages of microservices, and hence, engineers designing and em-
ploying microservices to build scalable systems will face the challenge of finding (network-) lo-
cations of specific services in a dynamic environment where different services scale up and down
independently and may change their host frequently. Developers have to deal with the complex
task of providing service discovery mechanisms for their systems, either via using one of the sev-
eral publicly available solutions (such as ETCD 2, Consul 3 or Netflix’s Eureka 4), or by developing
a custom service discovery mechanism.
The task of writing higher level tests, such as integration tests or end-to-end tests of features, is
further complicated by the distributed nature of microservices. Testing a service requires stub-
bing of all the downstream services used by the service-under-test [New15] and ensuring the
system-under-test uses the correct stubs.

The CAP Theorem

In addition to the challenges that were outlined in the previous section, the distributed nature of
microservices causes issues that can be explained by the CAP Theorem [GL02]. The CAP The-
orem [GL02] states that, in a distributed system (such as a microservice architecture), one can
only achieve two of the three requirements consistency, availability and partition tolerance simulta-
neously. This implies practical problems when dealing with microservices: In an environment
such as IaaS, where microservices can be horizontally scaled – potentially in different data cen-
ters – there is a need for synchronization mechanisms between the data storages of the replicas
of said horizontally scaled microservices. If the data storages lose connection, and thus cannot
synchronize, the system is in a so-called AP-state [New15], meaning it is still available despite
network partitioning. But we have sacrificed consistency, since the data in the data storages are
not congruent anymore. Analogous examples can be found for a system in CP-state (e.g., sacri-
ficing availability). Microservices are inherently affected by this theorem, and engineers need to
consider it before employing microservices.

2 ETCD: https://github.com/coreos/etcd
3 Consul: https://www.consul.io/
4 Eureka: https://github.com/Netflix/eureka

https://github.com/coreos/etcd
https://www.consul.io/
https://github.com/Netflix/eureka

10 Chapter 2. Background

Decomposition

As suggested in [Fow14, New15], applications should not be built from scratch following the
microservice approach. Instead, existing monolithic code bases should be transformed into mi-
croservices by careful decomposition. Decomposing a monolith requires profound knowledge of
the respective application domain in order to align the resulting services with the bounded con-
texts of the domain entities the that the services represent. It also involves analyzing and resolving
dependencies between components and determining where to draw the service boundaries be-
tween the components of the monolith and determining the size of each service. All these tasks
are inherently manual and require great amounts of experience in terms of software design and
architecture. Finding the right boundaries is non-trivial even for experienced engineers. Hence,
deriving formal strategies for decomposition and implementing them in a support tool – as is the
goal of this thesis – may advance the state of the art in the area of microservice architecture and
design.

Chapter 3

Related Work

Due to the fact that the microservice architectural style is still a recent development in the software
engineering and cloud computing community, no extensive body of academic research has been
formed yet. This chapter outlines the relevant existing microservice literature but also takes a
glance at prior research in traditional software engineering disciplines that is relevant in terms
of methodology and techniques. These disciplines include fields such as reverse engineering,
system decomposition and maintenance.

3.1 System Decomposition
Decomposing software systems has been an important branch in the software engineering re-
search discipline since the early days. Extracting microservices from monoliths is the next evo-
lutionary form of the original challenge of decomposing systems. Parnas et al. were among the
first to systematically investigate the criteria that should be used when decomposing systems into
modules [Par72]. Parnas presents two decompositions for the same computational problem based
on different criteria and performs a qualitative comparison of the resulting modularization struc-
ture with respect to properties such as changeability, comprehensibility, and development effort.
The results indicate that a decomposition based on the processing flow of the algorithm is much
less favorable with respect to the mentioned properties than the alternative decomposition based
on the principle of information hiding. According to Parnas, every module "is characterized by its
knowledge of a design decision which it hides from all others." [Par72]
In [KNS+], Komondoor et al. present an approach to extract independent online services from
legacy enterprise business applications. Because of changed customer demand and business en-
vironment, many enterprises attempt to enable online processing of business events, in contrast
to the batch-oriented transaction processing that dominated the previous decades of business
computing [KNS+]. The authors note that the resulting challenge of migrating monolithic legacy
applications is a labor-intensive and manual task, and that the tool support and automation in
that area is not satisfactory. The paper presents a static analysis-based approach that is tailored
towards the imperative nature of batch processing programs in legacy languages such as COBOL.
The approach uses backwards data flow slicing to extract highly cohesive services. A qualita-
tive evaluation of the approval is performed, finding that the resulting decomposition is precise

12 Chapter 3. Related Work

enough in four out of five cases.
Decomposing and modularizing systems has also been a research topic in the context of re-
engineering of large monoliths, as for instance in [TVB12]. The authors argue that re-architecting
monoliths is usually an ad-hoc process that does not follow principles or methodology. To tackle
this, an structured manual technique is presented which allows to extract code fragments in a
monolith that belong to a specific concern and extract them into cohesive modules. The extrac-
tion is achieved by a series of refactoring templates that are applied depending on source code
context of the fragments where the concern is present [TVB12]. The resulting architecture gathers
code fragments belonging to the same concern into the same class file. The effectiveness of the
approach is evaluated by applying it to a monolith and measuring coupling and cohesion metrics
such as CBO 1 and LCOM 2 [CK94].

3.2 Software Maintenance and Evolution
The research area of software maintenance and evolution is an insightful source for techniques
and approaches for challenges such as program comprehension, change prediction and architec-
ture recovery. Some of the techniques lend themselves to an application in the context of decom-
posing monoliths to microservices as well.
Coupling metrics are generally regarded as an effective basis for reengineering and remodular-
ization of software systems [LJK+01,BDLMO10,BDLMO13]. Gall et al. [GHJ98,GJK03] introduced
the notion of logical coupling between components or source code artifacts. The authors argue that
identifying dependencies among code artifacts using traditional coupling and cohesion metrics
has several inherent problems. One issue is the fact that dependencies between code artifacts
may be hidden and implicit, i.e., they may not be contained in code or documentation. Software
engineers often have implicit knowledge about those dependencies [GJK03]. There is a need to
make this knowledge explicit. Thus, the logical coupling metric is introduced. Logical coupling
is computed based on the number of co-changes of source code entities in the repository his-
tory [RPL08]. The final logical coupling between two code artifacts is defined as the number of
times the artifacts were changed at the same time in the revision history of the source code. Ac-
cording to [RPL08], the rationale behind logical coupling is that "entities which have changed
together in the past are bound to change together in the future". This can be an indicator that
said entities change for the same reasons. Following the single responsibility principle [Mar02],
such entities should be gathered together. As outlined in 2.2.2, the single responsibility principle
is an important design guideline when defining a microservice architecture. Hence, the logical
coupling metric may provide a useful basis for a microservice decomposition strategy.
Coupling measures usually indicate structural properties of systems. But especially in the con-
text of microservices, semantics of modules are of high importance. Decomposing a monolithic
application involves knowing the semantics and domain of the application (see 2.2.3). There-
fore, the notion of conceptual coupling, introduced by [PM06], provides a promising basis for de-

1CBO: Coupling between Object Classes
2LCOM: Lack of Cohesion of Methods

3.3 Reverse Engineering 13

composition strategies. Poshyvanyk et al. [PM06] present a set of metrics based on the semantic
information shared between source code artifacts. The term was coined "conceptual coupling"
since it expresses the strength of conceptual similarities among artifacts [PM06]. Measuring the
conceptual coupling between two code artifacts involves several techniques from information
retrieval (IR). Source code elements (such as classes or methods) are seen as documents in a text
corpus. As a first step, a term-by-document matrix of said corpus is generated using latent seman-
tic indexing (LSI) [Dum04]. Next, the matrix is transformed into what the authors call semantic
space, where each document is represented as a vector. This is achieved using the singular-value-
decomposition (SVD). The conceptual coupling between two documents or code artifacts is then
denoted by the cosine of the two vectors [PM06]. The measure is evaluated both theoretically
and through a case study with an implemented prototype, which indicates that the conceptual
coupling metrics are able to reveal effectively existing (domain) coupling between artifacts that
would be overlooked using traditional coupling metrics.

3.3 Reverse Engineering

Reverse engineering is defined as the process of analyzing a subject system to create represen-
tations of the system in another form or at a higher level of abstraction [CC90]. The process for
decomposing monoliths to microservices proposed in this work is very similar to reverse engi-
neering as it includes creating higher-level representations of the system to be decomposed as a
first step (see Section 4.1). Hence, reverse engineering techniques are taken into account in this
related work section.
As the authors of [BH98] argue, many existing systems lack proper architectural documentation.
Reverse engineering research proposes using automated tools and techniques to recover the ar-
chitecture of a system. In [BH98], Bowman et al. indicate that recovering the architecture of a
system usually means extracting the relationships between artifacts from the implementation of
the system. The authors propose the use of the organization structure of development teams as
a source for discovering such relationships. The approach is founded on Conway’s Law [Con68],
which postulates that the structure of a system will reflect the structure of the team that built
it. So by analyzing the organization structure of developers, the interconnections between the
subsystems can be discovered – the authors denominate this with the term ownership architecture.
However, the proposed method has the drawback that the subsystems have to be clustered first,
using any other reverse engineering technique. The authors run a small evaluation in [BH98] and
come to the conclusion that studying the organization structure – e.g., by mining revision control
histories – performs at least as well as recovering subsystem relationships from documentation
artifacts.
Stroulia [SS02] notes that the context of reverse engineering and software maintenance has shifted
away from the traditional purpose of understanding the structure of a program. As more and
more applications move to distributed environments such as the World Wide Web, the main ob-
jectives of reverse engineering and maintenance also move towards system migration of legacy
application into distributed environments [SS02]. As a consequence, new reverse engineering

14 Chapter 3. Related Work

techniques and models are focused on run-time measurements of applications through dynamic
analysis [SS02]. Prior work [Bal99] illustrates how analyzing the frequencies of execution paths
through a program can help understanding and decomposing a program. The extraction of mi-
croservice from monoliths can be regarded as a special case of migration of a legacy system into a
distributed environment that also includes decomposing an existing program. Dynamic analysis
is therefore a viable method for gathering information to extract microservices from a monolith.

3.4 Microservices

General Microservices Research

As a young research discipline, the microservices field has not yet seen a large body of research
work. Pahl and Jamshidi conducted a systematic secondary study and reviewed and classified the
existing research body on microservices [PJ16]. In their secondary study, the authors investigated
21 studies published in the years 2014 and 2015. It is the first study of this kind for microser-
vices. Their findings indicate that microservices research is still immature and in a formative
stage [PJ16]. Furthermore, the results of the review indicate that the microservice research body
needs more experimental evaluation of the presented solutions and benefits. The authors detected
a specific lack of tool-support for microservices in the current state of the art. The secondary study
discovered that the microservices community suggests a number of patterns for microservice mi-
gration, refactoring and architecture [PJ16]. A good part of these efforts and patterns is only
conceptual and the review reveals a higher number of use case studies than technology solutions
and tool support studies, a fact which the authors consider as a sign of immaturity for the re-
search field [PJ16]. The secondary study is concluded with an outlook of coming research trends
in the field. The authors name microservice migration, architectural refactoring and intelligent
technologies for microservice discovery in repositories as important aspects regarding method-
ology and tool support [PJ16]. This shows that there is a clear research need for research efforts
such as the one presented in this thesis.
One of the first studies to investigate industrial practices in services computing is [SCL15], where
service computing practices in 42 companies of different sizes were empirically studied. The
work has been conducted with specific attention to the recent microservice trend in service com-
puting [SCL15]. Among the questions discussed in their survey, there were several topics with
relevance to the goal of this thesis. Service size and complexity was collected. The results imply
that services vary in size, but extreme values such as very small services with under 100 LOC or
very large services with more than 10000 LOC are rarely encountered in practice. Another result
that is of interest in the context of this thesis is the observation that services are dedicated. In other
words, the respondents reported that the services they’re involved in typically are dedicated to
relatively narrow and concise tasks [SCL15]. This principle is revisited in the following sections
on microservice background in Chapter 2.2 and in the motivation of the proposed microservice
decomposition strategies in Section 5.

3.4 Microservices 15

Migration to Microservice Architectures

Migration of legacy code bases to microservice-style architecture has been identified as an im-
portant trend in the microservices field, as described in the first paragraph of this section. A
comprehensive collection of microservice migration patterns is presented in [BHJ15]. The migra-
tion patterns listed in [BHJ15] are informal conceptual refactoring suggestions that can be ap-
plied to a monolithic code base depending on the specific initial situation. These patterns include
specific migration procedures for decomposing a monolith into microservices. The authors use
mainly two rationales in those procedures. One relies on the concept of bounded context adapted
from domain-driven design. The suggested migration procedure involves identifying concluded
bounded contexts in the domain model of the monolith and create separate microservices for
the identified bounded contexts. The suggested approach is also present in standard microser-
vice architecture literature such as [New15]. Bounded contexts and the domain information on a
monolith are therefore promising starting points and are further discussed in Chapter 2, 5 and 8
of this thesis.

Microservice Extraction from Monoliths

The uprise of the microservices paradigm also spawned efforts in the software engineering re-
search community that set the extraction of microservices from existing monoliths as a goal. An
example of such efforts is [LTV16]. The paper presents a systematic, manual approach to iden-
tify microservices in large monolithic enterprise systems. The authors propose the assumption
that monolithic (enterprise) systems have three main parts: client side (denoted as F for facades),
server side (denoted as B for business functions) and database (denoted by D). The organization O
that employs the monolith has several business areas ai. As a first step, the database tables dj ∈ D
are each assigned to a business area ai according to their respective domain. Next, a dependency
graph between all fk ∈ F , bl ∈ B and dm ∈ D is constructed based on static relationships such
as function calls. In the last steps, the dependency graph is traversed and candidate paths from
fk ∈ F to dm ∈ D are found for each database table dk in a specific business area ai. These
paths serve as the final microservice candidates. The source code of said candidates is inspected
and hence microservices are identified [LTV16]. An additional step introduces an API gateway
to make the deocomposition transparent to any kind of client that uses the system. The authors
perform a validation of their approach by applying it to a large banking system and qualitatively
inspecting the resulting microservices. The approach provides a valuable first step in the area
of monolith decomposition since it provides a somewhat formal definition of the terms monolith,
microservice and precisely and semi-formally describe decomposition technique. The limitation of
the work lies in the fact that some of the steps – like the mapping of database tables to business
areas – is dependent on deep domain knowledge of the system under investigation and by con-
sequence, requires manual interaction.
Another notable attempt at providing a structured way of identifying microservices in mono-
lithic code bases is done by the authors of ServiceCutter [GKGZ16]. The authors present a tool
that supports structured service decomposition. The internal representation of the system to be
decomposed is based on a catalog of 16 different coupling criteria that were abstracted from lit-

16 Chapter 3. Related Work

erature and industry know-how [GKGZ16]. Software engineering artifacts and documents such
as domain models and use cases act as an input source to generate the coupling values in the 16
different coupling variants. A consequence of the decision to use only documentation artifacts
as an information source and not the actual application source code is the fact that the amount
of interaction and domain knowledge required for the user of the ServiceCutter tool is higher.
The approach followed in [GKGZ16] builds a graph from the coupling criteria and the artifacts
that were fed to the tool. Using traditional community-detection algorithms from social network
analysis, the tool then supports the architect by suggesting cuts between nodes where internal
cohesion is high and external coupling is low. A small scale validation of the tool is conducted by
applying it to two sample projects, one of which is a fictional application for which artifacts and
documents were created specifically for the evaluation. Then, ground-truth is constructed by sug-
gesting an ideal decomposition of the sample application based on the author’s own experience.
The resulting decomposition suggested by the tool is then compared to the constructed ground
truth in order to rate the resulting decomposition on a three level scale. ServiceCutter presents
an interesting attempt to formally capture aspects that play a role when identifying services in
monolithic environments. The way source information is supplied to the tool is a drawback be-
cause the heavy-lifting in terms of information aggregation about the monolith is done by the
user. A very promising aspect of this work is the use of social network clustering algorithms to
identify densely connected components.

3.5 Research Gap

The research gap that this thesis attempts to close is mainly twofold. On one side, there is a large
body of prior work on traditional software decomposition and modularization approaches, as
indicated by the short summaries in the previous sections. These approaches include a great va-
riety of techniques from the use of traditional software metrics, utilization of repository mining
and information retrieval or static analysis techniques such as slicing. Among all those previous
solutions, there are none that are specifically designed for an application in a microservice extrac-
tion or monolith refactoring scenario.
On the other hand, there exists a small and recent body of work on the topics of microservice mi-
gration, extraction of microservices from monoliths or decomposition of monolithic applications.
Among these attempts at tackling the microservice extraction problem, there are almost none that
provide a fully automatable or formal approach that allows to be implemented in support tooling.
ServiceCutter [GKGZ16] presents a promising formal graph framework to capture monoliths and
compute cuts to decompose the monolith into service candidates, but it lacks the means of recov-
ering the necessary graph construction information from the actual monolith. Instead, it relies
on the software architect to manually define use cases and domain models in a specific expected
model in order to parse information about the structure. Therefore, the quality and precision
of the coupling graph will vary depending on the user’s input. Other microservice extraction
methods revisited in the previous sections of this chapters are limited to conceptual migration
and refactoring patterns that are mostly non-formal and therefore difficult to implement as au-

3.5 Research Gap 17

tomated tool support. Furthermore, the works mentioned in the previous section mostly lack a
quantitative evaluation. The validation of the approaches is limited to case studies on specific
monolithic applications and qualitative manual inspection of the resulting microservice decom-
positions.
This thesis aims to build on the best of both worlds – traditional reverse engineering and decom-
position techniques on one side and microservice extraction approaches and design principles
on the other side – to close the illustrated research gap. To that end, as a first contribution, an
extraction model that is able to properly abstract the problem of decomposing monoliths to mi-
croservices is presented. The second contribution of this thesis is the derivation and definition of
extraction strategies motivated by microservice-specific properties and guidelines. Finally, quan-
titative metrics specific to the microservice recommendation use case are defined to evaluate the
presented work through a series of experiments on a sample set of monoliths.

Chapter 4

Extraction Model

This chapter proposes a formal graph-based extraction model as a solution to RQ1. Graph-based
representations of software, source code and artifacts has been used as a technique in prior re-
search [GJK03, GKGZ16]. The model presented in the following sections utilizes the insights of
previous employments of graph-based models such as in [GKGZ16] to extend them to an ex-
traction process that involves notions for the information aggregation from source code and a
subsequent microservice extraction based on this information.

4.1 Basic Extraction Process
All of the extraction strategies outlined in more detail in Chapter 5 are embedded into a generic
extraction process. This extraction process comprises of three extraction stages or representations:
the monolith stage, the graph stage and the microservices stage. There are two transformations
between the stages: The construction step transforms the monolith into the graph representation,
and the clustering step decomposes the graph representation of the monolith into microservices.
The transformations performed during the construction step differ according to the extraction
strategy in use (cf. Chapter 5). The algorithm performing the clustering step is explained in detail
in Section 6.

4.2 Construction
The starting point is always an actual code base or repository of an implemented application from
some form of version control system such as Git 1. The aspects of a code base that are important
to the extraction process are captured by the monolith representation. A monolith M is a triple

M := (CM , HM , DM)

where CM is the set of class files, HM is the change history and DM is the set of developers that

1https://git-scm.com/

https://git-scm.com/

20 Chapter 4. Extraction Model

1c

2c

3c

4c

5c

1h 3h
2h nh1nh

startt endt

:MH

:M

11v

1v

2v

3v

4v 5v

6v

7v

8v

9v

10v

 1ew
 2ew

 3ew

 9ew

 6ew

 7ew

 5ew
 4ew

 10ew

 8ew

 11ew

 12ew

 13ew

 14ew

 :,VEG

construction

Figure 4.1: Construction step from the monolith M to the graph representation G. The construction step

utilizes coupling strategies to transform the monolith M into a undirected, weighted graph G.

contributed code to the monolith M . Each class file ck ∈ CM has a file name, a file path which is
assumed to be unique in the monolith M and file contents in the form of text.

The change history HM of a monolith M is defined as an ordered sequence of change events:

HM := (h1, h2, . . . , hn)

Each change event hi is defined as a triple hi := (Ei, ti, di), where Ei is a set of classes from the set
CM that were added or modified by the change event hi, ti is the timestamp at which the change
event occurred, and di ∈ DM is the developer that committed the corresponding change.
The monolith is transformed into the graph representation by the construction step, as illustrated in
Figure 4.1. The construction step employs one of the coupling strategies presented in Chapter 5 to
mine the information in the monolith and create an undirected, edge-weighted graph G. In the
graph G = (E, V), the vertices vi ∈ V each correspond to a class file ci ∈ C from the monolith.
Each graph edge ek ∈ E has a weight defined by the weight function. The weight function is de-
fined as:

w : E 7→ IR

4.3 Clustering 21

11v

1v

2v

3v

4v 5v

6v

7v

8v

9v

10v

 1ew
 2ew

 3ew

 9ew

 6ew

 7ew

 5ew
 4ew

 10ew

 8ew

 11ew

 12ew

 13ew

 14ew

1v

2v

3v

5v

 1ew
 2ew

 11ew

11v

9v

10v

 9ew

 10ew

4v

6v

7v

8v

 6ew

 7ew

 4ew

 14ew

 :,VEG

1S

2S

3S

clustering

Figure 4.2: The clustering step decides which edges of the graph to delete in order to compute microservice

extraction of the original monolith M .

The weight function determines how strong the coupling between the neighboring edges is ac-
cording to the coupling strategy in use. A higher weight value indicates a stronger coupling. Note
that not all classes ck ∈ C from the original monolith will result in a corresponding vertex vi ∈ V .
There may be classes that do not exhibit any coupling to any other class when using the coupling
strategies, which would lead to the class being discarded from further processing in the graph.

4.3 Clustering

The graph representation is then cut into pieces to obtain the candidates for microservices. This is
achieved by the clustering transformation using the graph clustering algorithm outlined in Chap-
ter 6.
The clustering results in the microservice recommendation DM for the monolith M . Formally, a
microservice recommendation is a forest DM consisting of at least 1 and at most N connected com-
ponents Sj . A connected component Sj in the forest is referred to as a microservice, while N
denotes the number of microservices in the recommendation DM .
Each microservice Sj is a connected, directed graph Sj = (CSj , RSj), where the vertices of the
graph consists of the set CSj

of classes in the microservice Sj . The set CSj
is a proper subset of the

22 Chapter 4. Extraction Model

set of classes in the monolith: CSj
⊂ C. The set RSj

denotes the set of relations or edges between
the class nodes ck ∈ CSj .

Chapter 5

Extraction Strategies

As outlined in Chapter 3, the fields of software maintenance, reverse engineering, program com-
prehension and decomposition provide numerous options and techniques that lend themselves
to be applied in the context of microservice extraction. Generally, the techniques can be divided
into static and dynamic approaches.
Dynamic analysis measures program properties during execution time. As noted in the related
work section 3.3, dynamic analysis is already established as a tool for the migration of legacy sys-
tems to distributed environments and as an aid in software decomposition. Both of these tasks
also play a role when extracting microservices from a monolith. Dynamic analysis techniques are
particularly well suited in this case because some of the main driving factors behind the concept
of microservices are inherently dynamic in nature: independent scalability and fault isolation (see
Section 2.2.2). By taking those two design goals as guidelines, it is possible to devise strategies
that employ dynamic analysis techniques to extract microservice candidates from a monolith. An
example strategy would be concerned with the varying resource consumptions and execution
times of different parts in the monolith, thus extracting services based on CPU, I/O or network
utilization. Another strategy can be constructed based on dynamic program flow paths from
endpoints towards the back-ends of the monolith. In that case, one might combine parts of the
monolith into a microservice if the parts are frequently on the same dynamic program flow paths.
Despite the apparent eligibility of dynamic analysis techniques for the use case at hand, there are
serious caveats. Taking dynamic measurements of programs during run time requires that the
application under investigation is at hand in an executable form. This implies that the program
builds successfully, has all the third party dependencies that are needed and has sufficient doc-
umentation or scripting to run the program and any necessary container or server software. But
having an executable program alone is not enough. The program must be targeted with load (
e.g. requests to a web application). The load data should represent the conventional load that
the program usually experiences in a real-world environment. Measuring properties during run
time requires prior injection of measurement infrastructure into the software, a task commonly
referred to as program instrumentation. All these issues highlight the fact that dynamic analysis is
highly involved in practice and that the space of potential programs one can run dynamic analy-
sis on is greatly reduced by the above-mentioned requirements. The goal of RQ1.1 is to formalize
extraction strategies that are applicable to a wide range of candidate projects and support as much

24 Chapter 5. Extraction Strategies

automation as possible. These goals contradict with the limitations posed by the requirements of
dynamic analysis and hence, this thesis does not conduct further investigation of dynamic analy-
sis strategies.
Static analysis usually involves building the abstract syntax tree (AST) of the program under in-
spection and then running the desired form of analysis on the AST. From a software maintenance
and evolution perspective, software metrics [CK94] play an important role in static program anal-
ysis, especially when dealing with object-oriented programs. Software metrics and static analysis
techniques exhibit several advantages. Software metrics are well studied in the research field and
are established tools in the software maintenance portfolio. For most of the well-known metrics
and techniques, implementations exist in multiple programming languages. Research indicates
that metrics are a good predictor for software defects [NBZ06] and help in identifying poorly
designed software artifacts during maintenance [KR87]. But in the context of microservice ex-
traction, the task is different from defect prediction or design issue detection. It is essentially a
recommendation problem: The approach should recommend a set of microservice candidates to
extract given the original monolith. If heavily simplified, this recommendation problem can be
broken down the question: Which classes belong together in the same microservice? Traditional
software metrics [CK94] and static analysis fail to provide assistance or valuable information in
such a case. Assume that class c1 and class c2 from a monolithM are tightly coupled to each other
– by coupled we mean coupling as in CBO (coupling between object classes) [CK94] in this case.
What does this tight coupling between c1 and c2 imply if we want to recommend microservice
candidates? Is this an indicator that c1 and c2 belong to the same microservice? The high coupling
value between the two classes can be an indicator of poor design but it also might be intentional.
This simplified example illustrates that metrics which investigate only the static structure of a pro-
gram are not well suited for a microservice extraction use case. Static approaches employed in our
use case should therefore also include information sources external to the actual code structure of
the monolith. Therefore, the strategies that were designed in this thesis rely on information such
as the revision history of the monolith (logical coupling strategy), the team structure (contributor
coupling strategy) and semantic information (semantic coupling strategy).

5.1 Logical Coupling

The Single Responsibility Principle [Mar02] states that a unit of software componentization should
have only one reason to change. By consequence, software design that follows the principle
should gather together the software elements that change for the same reason [Mar02].
Furthermore, one of the main benefits and design goals behind the concepts of microservices is
to enforce strong module boundaries [Fow14]. Strong module boundaries and adherence to the
Single Responsibility Principle provide benefits in case of a change: If a developer has to make a
change to a system, they only need to locate the module to be changed and only need to under-
stand that confined module. In contrast, in a software design where responsibilities are spread
across the entire system, identifying and understanding parts that are involved in changes is
much more involved.

5.1 Logical Coupling 25

What both of the above-mentioned arguments have in common is the fact that they are founded
on the change of software elements such as class files. Hence, in order to obtain microservices that
provide the mentioned benefits, it is essential to analyze the changing behavior of the original
monolith. Class files that change together should consequently also belong to the same microser-
vice. This constitutes the rationale behind the logical coupling strategy, which is defined in the
following sections.

5.1.1 Definition
Above, it was noted that files and classes that change together should be considered as an infor-
mation source for microservice extraction from monoliths. But what does changing together mean
formally in the concept of software engineering and maintenance?
Gall et al. coined the term logical coupling as a retrospective measure of implicit coupling based
on the revision history of an application source code [GJK03]. In the original formulation, the
history of an application is defined as an interval of fixed-length sessions [GJK03, RPL08]. Recall
the definition of the change history HM of a monolith M from Section 4.2. Each predefined fixed
length session from [GJK03] maps to a change event hi ∈ HM as defined in Section 4.2. That means
each for each change event hi := (Ei, ti, di) the set of changed classes Ei contains all class files
that were changed during the predefined session starting at ti.
In this thesis, only changes that add a new file or changes that modify files without deleting them
are considered during the computation of the logical couplings.
Let the classes c1, . . . cn ∈ Ei be the pairwise distinct classes that were changed in that respective
change event.

l 6= k =⇒ cl 6= ck

Let δ be a function that takes two classes as arguments. Function δ indicates whether the two
distinct class files c1, c2 have changed together in a certain commit hi ∈ HM :

δhi
(c1, c2) =

1 if c1 and c2 were modified in commit hi

0 else

Now let ∆ be the aggregated logical coupling for the class files c1, . . . , cn:

∆(c1, . . . , cn) =
∑

h∈HM

δh(c1, . . . , cn)

In the construction step, the strategy employs the aggregated logical coupling ∆ to compute the
weights on the edges of the graph G. Let el = (ci, ck) be an edge on the graph G representing the
original monolith. Then the weight w(el) is computed by:

w(el) = ∆(ci, ck) (5.1)

26 Chapter 5. Extraction Strategies

A

C

B

D
E

:MH

2i1i 3i 4i 5i

Figure 5.1: Example Monolith for Logical Coupling Computation. The rectangles A - E denote class files,

HM represents the change history, and i1 - i5 represent the history intervals. An arrow from a history interval

to a class file indicates a modification to that file during that interval.

The graph G is constructed by computing edge weights as in Section 5.1 for all pairwise dis-
tinct class files ck ∈ C of the monolith M := (CM , HM , DM).

5.1.2 Example
To illustrate the computation of the logical coupling strategy on a hands-on example, let’s imagine
a monolith with a change history as depicted in Figure 5.1.

The small segments on HM represent commits, while an arrow from a commit box towards a
file indicates that the corresponding file was changed in that commit. The computation iterates
through the intervals i1 to i5 and creates coupling weight pairs for all pairs of files that were
changed at each interval. Let ∆(A,B) denote the current coupling value between two files A and
B. For the current example the iteration would look as follows:

i1: ∆(A,C) = 1

i2: ∆(A,C) = 2

i3: ∆(B,C) = 1 and ∆(B,D) = 1 and ∆(C,D) = 1

i4: ∆(B,D) = 2 and ∆(D,E) = 1 and ∆(B,E) = 1

i5: ∆(D,E) = 2

For all of the encountered class pairs, the latest coupling values are taken over into the graph
representation as weights on the edges between the corresponding files. In the case of the exam-
ple, the resulting graph is depicted in Figure 5.2.

5.2 Semantic Coupling 27

A

C

B D

E

2

2

1

1

2

1

Figure 5.2: Resulting coupling graph for the example presented in Figure 5.1

5.2 Semantic Coupling

In Section 2.2.1, the notion of bounded context from domain-driven design was introduced as a
possible design rationale for microservices and their boundaries. According to that rationale, each
microservice should correspond to one single defined bounded context from the problem domain.
This results in scalable and maintainable microservices that focus on one responsibility. So it is
desirable to infer a extraction strategy from said concept. The issue with this design principle is
that it is inherently informal, requires manual expert know-how and thus is hard to capture in a
formal strategy. One possibility from prior work that enables to formally identify entities from
the problem domain is by examining the contents and semantics of source code files through
information retrieval techniques [MV99, MM01, KDG07, PM06].
Basically, the strategy should couple together classes that contain code about the same "things"
– things as in domain model entities. As prior work [MM01, KDG07] has shown, identifiers and
expressions in code (variable names, method names and so on) can be used to identify high level
topics or domain concepts in source code. The semantic coupling strategy was constructed to use
these expressions and identifiers as input with the term-frequency inverse-document-frequency
method [Ram03]. It computes a scalar vector for a document given a predefined set of words. By
computing these vectors for class files in the monolith and then computing the cosine similarity
between vectors of pairwise distinct classes, the semantic coupling strategy can compute a score
that indicates how related two files are in terms of domain concepts or "things" expressed in code
and identifiers. Note that despite relying on the same rationale and motivation as the conceptual
coupling [PM06] mentioned in Chapter 3, it uses different computation techniques.

28 Chapter 5. Extraction Strategies

5.2.1 Definition
The semantic coupling strategy looks at all pairwise distinct classes ci, cj ∈ CM in a monolith
M := (CM , HM , DM) with i 6= j. For each pair of classes ci, cj the procedure described below is
executed.

Tokenization
First, each of the class files tokenized, which results in a set of words Wj = {w1, w2, . . . , wn} for
each class cj . During the tokenization process, all special characters and symbols specific to the
programming languages used in the classes will be filtered out. The set W will now contain all
identifiers from the code of the respective class.

Stop Word Removal
There are words or identifiers in class files that are not related to any actual domain concept or
entity of the application, but are identifiers that belong to the programming language or frame-
work in use. Examples of such words are public, class or package in the Java programming
language. Examples for a framework-specific word are controller or view in Rails, or model
in Django. In the next step, these words are filtered out of the set Wj ,Wi for both of the class files
cj , ci.

Term Extraction
In the next step, the term list T = {t1, t2, . . . , tk} is constructed by combining all the wordswl ∈Wj

from the first class with all the words wl ∈Wi in the second class. This term list serves as the basis
for the computation of the tf-idf vectors for each class.

Vector Computation
The procedure continues to compute a vector V ∈ Rn for the word list Wj for the class cj and
analogously a vector X ∈ Rn for the class ci and its word list Wi. The dimension n of the vectors
V and X is equal to the size of the term list T computed in the previous step. The k-th element
of the vectors is formed by computing the tf-idf (term-frequency inverse-document-frequency)
value [Ram03] of the k-th term in the term list T with respect to the corresponding word list.
X is therefore computed by

∀ tk ∈ T : xk = tf(tk,Wi) ∗ idf(tk,Wall)

and analogously for V

∀ tk ∈ T : vk = tf(tk,Wj) ∗ idf(tk,Wall)

The variables vk and xk in the above equation denote the k-th element of vectors V and X respec-
tively. Wall is the set of all word lists of all class files in the current computation – in this example
Wall := {Wi,Wj}. In the following, the details of the functions tf(. . .) and idf(. . .) are outlined.

5.2 Semantic Coupling 29

Term Frequency
The raw term frequency f(tk,Wi) of a term tk ∈ T with respect to a document or list of words Wi

is defined as the number of times that the term tk is found in Wi [LTSL09]. To avoid corruption
of the result caused by unusually high raw frequency of a term in a specific document, the log-
arithmic term frequency [LTSL09] is used as a term frequency measure for the semantic coupling
strategy. It is defined as:

tf(tk,Wi) =

0 if f(tk,Wi) = 0

1 + loge(f(tk,Wi)) else
(5.2)

Inverse Document Frequency
The inverse document frequency measures how rare or common a given term tk is across a set of
documents or word lists Wall := {W1,W2, . . . }. Assume that n is defined as the number of docu-
ments / word lists a term t occurs in:

n(t) = {Wi ∈Wall : t ∈Wi}

The inverse document frequency is then defined as:

idf(tk,Wall) = log

(
|Wall|
n(tk)

)
(5.3)

Similarity Computation
After the vector computation using the tf and idf measures, there are two vectors X and V , one
for each word list of the respective class. By using the cosine between the two vectors, the simi-
larity of the two original classes with respect to the semantics of their identifiers and contents can
be computed. Let ek ∈ E be the edge between the class files ci and cj in the graph G representing
the original monolith M . The weight w(ek) of the edge is defined by:

w(ek) = cos(θ) =
V ·X
||V || ||X||

=

n∑
i=1

vi · xi√
n∑

i=1

v2i

√
n∑

i=1

x2i

(5.4)

where vi and xi are the elements of the vectors of V and X and n is the size of the vectors and the
size of the term list T .

5.2.2 Example
To construct an example for the semantic coupling strategy computation, three fictional class files
A, B and C are presented. The class files only contain already filtered and cleaned tokens. For the

30 Chapter 5. Extraction Strategies

sake of simplicity and brevity, programming language constructs such as control flow or reserved
keywords are not displayed in the classes. The contents of the three classes are depicted below:

Class A

customer
product
address
account
profile

Class B
customer
username
address
lastlogin
profile
account

Class C
product
cart
checkout
price

The computation is carried out by permuting all pairwise combinations of all classes in the
monolith. In the case of this example, this means the pairs (A,B), (A,C), and (B,C). For each
pair (A,B), the term list T (A,B) is constructed and then used to compute the tf-idf vectors for
the two classes of the pair.
For the pair (A,B), the term list is T (A,B) = [customer, product, address, account, profile, user-
name, lastlogin]. Using the formulas for the term frequency in 5.2 and inverse document fre-
quency in 5.3, the tf-idf vectors for the class files A and B are computed.
Vector X contains the tf-idf values for the class A with respect to term list T (A,B):

X = [1, 1, 1, 1.41, 1, 1, 1, 1, 0, 1, 0]

For the file B, the vector Y contains the tf-idf values with respect to T (A,B):

Y = [1, 1, 1, 0, 1, 1, 1, 1, 1.41, 1, 1.41]

The semantic similarity coupling that corresponds to the weight on the graph edge eAB between
the class files A and B is then computed as:

w(eAB) = cos(X,Y) = 0.73

The coupling for the pair (A,C) is computed analogously. The term list for (A,C) will obviously
contain slightly different tokens: T (A,C) = [customer, product, address, account, profile, cart,
checkout, price]. For the sake of simplicity, the explicit values of the vectors X and Y for the class
files A and C are omitted. The resulting coupling for the edge eAC is:

w(eBC) = cos(X,Y) = 0.23

The last pair (B,C) performs the same procedure as the other pairs, but further details of the
vectors and term list are omitted. The semantic coupling on the edge eBC is:

w(eBC) = cos(X,Y) = 0

5.3 Contributor Coupling 31

A

BC

0.730.23

0

Figure 5.3: Resulting coupling graph for the classes A,B and C generated by the semantic coupling strategy.

The dotted connection between nodes C and B indicates a theoretical edge with edge weight 0, so that the

edge is not considered in the coupling graph.

The coupling value of 0 can also be intuitively explained, since classes B and C contain no com-
mon tokens at all. In practice, this case will be extremely rare.
The computed edge weights are then used to construct the coupling graph as in the logical cou-
pling example before:

5.3 Contributor Coupling
As indicated in Section 3.3, prior work on reverse engineering has successfully employed team
and organization information to recover relationships among software artifcats that stay undis-
covered otherwise [BH98]. Other research has shown that analysis of code authorship allows to
identify experts for certain software artifacts and components among the developers of a project.
Related research [BH98] shows that it is possible to recover an ownership architecture from ver-
sion control systems. Such ownership architectures reveal team structures and communication
patterns between teams of different components of the software.
Well-organized teams are a main concern when migrating a project to microservices. Section
2.2.2 describes how the microservice paradigm proposes cross-functional teams of developers or-
ganized around domain and business capabilities. One of the main objectives of the team and
organization philosophy in the microservice paradigm is to reduce communication overhead to
external teams and maximize internal communication and cohesion inside developer teams of the
same service.
The contributor coupling strategy aims to incorporate these team-based factors into a formal pro-
cedure that can be used to cluster class files according to the above-mentioned viewpoints. It does
so by analyzing the authors of changes on the class files in the monolith’s version control history.

5.3.1 Definition
Recall that in Section 4.2 a monolith was defined as a triple M := (CM , HM , DM) of the set of
classes CM , the set of historic change events HM and the set of contributing developers DM . The
following procedure is applied to all class files ci ∈ CM in the monolith M .

32 Chapter 5. Extraction Strategies

The first step for computing the contributor coupling involves finding all history change events
hk ∈ HM that have modified the current class ci. Let γ(hk) denote a function that returns the set
of changed class files Ek from the change event hk = (Ek, tk, dk). Then the set of change events
where class ci was involved is denoted by H(ci) and defined as:

H(ci) = {hk ∈ HM |ci ∈ γ(hk)}

Let σ(hk) denote a function that returns the uniquely identifiable author dk ∈ DM that contributed
the change event hk to the monolith M . Then, the set of all developers that contributed to the
current class file ci are denoted by D(ci):

D(ci) = {dx ∈ DM | ∀ hk ∈ H(ci) : σ(hk)}

After computing the set D(ci) for all classes ci ∈ CM in the monolith M , the coupling can be
computed. In the graph G representing the original monolith M , the weight on any edge el is
equal to the contributor coupling between two classes ci and cj which said edge connects in the
graph. The weight is defined as the cardinality of the intersection of the sets of developers that
contributed to class ci and cj :

w(el) = |D(ci) ∩D(cj)| (5.5)

5.3 Contributor Coupling 33

5.3.2 Example

A

C

B

D

E

F2

F3

F4

F1

F7

F6

F5

Figure 5.4: Example Contributor Situation of a Monolith Before the Contributor Coupling Computation. F1

to F7 represent the contributors of the monolith. The rectangles A to E represent the class files, and the

connections between contributors and classes imply a change by that contributor on that class.

Figure 5.4 represents the initial contributor participation situation in a monolith to illustrate an
example of how the contributor coupling is computed. Note that the step of recovering the devel-
opers for each file from the history HM is omitted for simplicity. First, a mapping from the class
to the set of contributors that modified it is constructed:

S(A): { F2, F3, F1, F7 }

S(B): { F3, F4, F2 }

S(C): { F6, F1, F7 }

S(D): { F4, F5 }

S(E): { F1, F6, F7, F4 }

Then, all the contributor sets of the class files are compared in a pair-wise permutation to find the
contributor couplings between the classes. Let w(A,B) denote the resulting contributor coupling
weight on the edge between classes A and B:

w(A,B) = |S(A) ∩ S(B)| = 2

34 Chapter 5. Extraction Strategies

A B

E D

C

1

3

1

2

11

2

Figure 5.5: Resulting contributor coupling graph representation of the monolith from Figure 5.4

w(A,C) = |S(A) ∩ S(C)| = 2

w(A,E) = |S(A) ∩ S(E)| = 2

w(B,D) = |S(B) ∩ S(D)| = 1

w(B,E) = |S(B) ∩ S(E)| = 1

w(D,E) = |S(D) ∩ S(E)| = 1

w(E,C) = |S(E) ∩ S(C)| = 3

The corresponding graph that is constructed from the contributor coupling weights w(·, ·) for the
example from Figure 5.4 is depicted in Figure 5.5.

5.4 Combination of Strategies
In order to exploit the potential information gain of the presented strategies to the full extent, the
coupling weights from the three strategies can be arbitrarily combined to form the weights on the
edges of the graph.
The strategies produce coupling values with greatly varying magnitudes. This is due to the fact
that some of the strategies rely on absolute aggregation or summation of the values, while other
strategies such as the semantic coupling compute normalized values in the range [0, 1] .
Therefore, the combination of the values to form a single weight on the graph edge needs to
include weight factors to control the impact of the different strategies. Let w(ei,j) denote the
weight of the edge ei,j connecting the classes ci and cj . Furthermore letwLC ,wCC andwSC denote

5.4 Combination of Strategies 35

the resulting coupling weight for the mentioned classes generated by the logical coupling (LC),
contributor coupling (CC) and semantic coupling strategy (SC) respectively. Then the weights are
combined by:

w(ei,j) = cLC · wLC(ei,j) + cCC · wCC(ei,j) + cSC · wSC(ei,j) (5.6)

The values of the weighting factors cLC , cCC and cSC are given as user input.

Chapter 6

Clustering Algorithm

The construction step utilizing the strategies defined in Section 5 results in a graph representation
of the original monolith M . The resulting graph G = (E, V) is a undirected weighted graph. The
weights are defined by the coupling strategies in use. The next step in the extraction process is to
cut the graph G into (connected) components that will represent the recommended microservice
candidates. Formally, this means deleting edges ek ∈ E from the graph in such a manner that the
remaining connected components converge to a satisfactory result. The partitioning of the graph
must take the weights w(e) on the edges into account when deciding on which edges to delete.
In the presented extraction model, a high weight w(ek) on an edge ek between two class vertices
ci and cj implies that the classes ci and cj belong to the same service candidate according to the
utilized strategies. Consequently, the algorithm should primarily favor edges with low weights
for deletion.
In the course of this work, the first attempt on decomposing the graph G involved a naive ap-
proach that defined a cutoff threshold τ and deleted all edges ek where w(ek) < τ . The cutoff
threshold t was chosen by sorting all edges in ascending order according to weight and selecting
a certain percentile level of the sorted values as the cutoff τ . Despite tweaking and varying the
percentile level, this approach produced less than satisfactory results. The resulting partitioning
of the graph tended to form a low number of very large clusters, while often no other clusters
remained besides these large ones. Independent of the candidate project that was tested and in-
dependent of the chosen percentile values, the results did not improve significantly. Upon further
investigation of the approach, it became apparent that deleting all edges below a certain thresh-
old has two major shortcomings. First, deleting all edges below the threshold leads to destruction
of all microservice candidates that have a higher average internal coupling or weight than adja-
cent edges, but whose weights are still under the threshold. This causes the number of resulting
service candidates to be too small. The second shortcoming is that the approach suffers from the
formation of extraordinarily large clusters. This is mainly caused by situations where some of
the connecting edges have weights lower than the intra-component average, but above the cutoff
threshold τ . Intuitively these edges should be deleted so that the large cluster is partitioned into
highly cohesive components. Because of the nature of the cutoff, this does not happen.
The revision of the partitioning algorithm resulted in a crucial insight on how to select the best
edges for deletion. To increase the partitioning effect caused by the deletion of a single edge,

38 Chapter 6. Clustering Algorithm

not the entire graph is considered during extraction, but only the minimum spanning tree (MST).
By definition, every time an edge in a MST is deleted, it causes the MST to partition into two
connected components. Similar techniques are used in social network analysis [GN02] to detect
cohesive communities. Using the MST has the effect of increasing the tendency to create multiple
components and create less large clusters. Another realization was the fact that it is very difficult
to determine when to stop partitioning the graph. As a consequence, the algorithm must take the
number of targeted partitions as an input parameter.
The above-mentioned observations were formalized and implemented in the MST-based graph
clustering described below.

6.1 MST-Based Graph Clustering

Algorithm 1 presents a pseudocode notation of the algorithm implemented to divide the graph
into microservices. The first step of the procedure is the weight inversion.

Algorithm 1 MST Clustering Algorithm
function CLUSTER(edges, npart, s)

for e ∈ edges do
e.weight← 1

e.weight . Invert edge weights
end for
edgesMST ← KRUSKAL(edges) . Compute minimum spanning tree
edgesMST ← SORT(edgesMST) . Sort the MST edges ascending according to weights
edgesMST ← REVERSE(edgesMST)

n← 1

while n <= npart do
edgesMST [0].delete()

n← COMPUTECOMPONENTS(edgesMST)
end while
components← REDUCECLUSTERS(edgesMST , s) . Handle components that exceed size s

end function

Weight Inversion

In the previous section, it was noted that the extraction should be executed on the minimum
spanning tree of the graph representing the monolith. But it is also desired that class nodes that
have a high weight on the edges between them remain in the same microservice candidates or
connected components. By directly computing the minimum spanning tree, this reasoning would
be defeated. Hence, the weights w(ek) on the edges ek ∈ E in the graph G = (V,E) have to be
inverted:

6.1 MST-Based Graph Clustering 39

w(ek) =
1

w(ek)

With this conversion, the minimum spanning tree MST (G) of the graph G will preserve the most
important edges according to the computed couplings or weights.

MST Computation

The next step is the computation of the minimum spanning tree MST (G). In this work, the
KRUSKAL algorithm [Cor09] is used to compute the minimum spanning tree. Since the KRUSKAL
algorithm is a well-known standard algorithm for minimum spanning tree problems, it will not
be discussed in more detail here.

Edge Sorting

The goal is to partition MST (G) by deleting edges with low coupling. Let edgesMST be the set of
edges that make up the minimum spanning tree MST (G). The set edgesMST is sorted according
to their inverted weight, and then reversed so that edges with the highest inverted weight – and
thus the lowest coupling – occur first in the list.

Iterative Edge Deletion

As noted above, the number of partitions to be achieved is assumed to be available as an input
parameter to this algorithm. Let this number be denoted by npart. The initial number of cur-
rent connected components is always n = 1, since the procedure starts with an entire minimum
spanning tree. The algorithm iteratively repeats the following steps until n >= npart:

• Remove the edge with the highest inverted weight from the list of edges in the minimum
spanning tree. Since the edges were sorted in the previous steps, this means removing the
first edge in the list.

• Traverse the remaining edges and compute the number of connected components that the
edges span up, the variable n is updated with this computed value. The depth first search
(DFS) strategy is used to detect the number of connected components, which is illustrated
in algorithms 2 and 3.

The iteration ends when n grows to be equal to or larger than npart.

40 Chapter 6. Clustering Algorithm

Algorithm 2 Identification of Connected Components
function COMPONENTS(nodes)

components← ∅
for n ∈ nodes do

if n.visited == false then
component← ∅
n.visited = true
component.add(n)
DFS(n,component)
components.add(component)

end if
end for
return components

end function

Algorithm 3 Depth First Search
function DFS(node, component)

for neighbor ∈ nodes.neighbors do
if neighbor.visited == false then

neighbor.visited = true
component.add(neighbor)
DFS(neighbor,component)

end if
end for

end function

Handling Exceptionally Large Components

To tackle the above-mentioned problem of having a few extraordinarily large components in the
extractions, the resulting connected components after the edge deletion are checked against a
predefined size threshold s. All connected components whose number of contained class nodes
is larger than this threshold s are divided further by deleting the class node with the highest
degree. This reduces the size of the clusters while keeping internal coupling inside the remaining
connected components high. This procedure is outlined in algorithm 4. The splitting function
that divides large clusters into smaller ones is presented in algorithm 5.

6.2 Analysis 41

Algorithm 4 Reduce Large Clusters
function REDUCECLUSTERS(components, s)

while SIZE(components) > 0 do
components← SORT(components)
components← REVERSE(components)
largest = components[0]
if SIZE(largest) > s then

components[0].delete()
splitted = SPLIT(largest)
components.add(splitted)

else
return components

end if
end while
return components

end function

Algorithm 5 Split Component
function SPLIT(component)

nodes← NODES(component)
nodes← SORT(component)
nodes[0].delete()
return COMPONENTS(nodes)

end function

6.2 Analysis

The complexity of the presented algorithm in algorithm Listing 1 is determined by the complex-
ity terms of the subprocedures performed step-by-step. Let’s denote the time complexity with
respect to the number of edges |E| and the number of vertices |V | of the graph.
The first step where the edge weights are inverted has a complexity ofO(|E|) by iterating through
the entire set of edges once. KRUSKAL’s algorithm for finding the minimum spanning tree of a
simple, connected and weighted graph has a worst case complexity of O(|E| log(|V |)) [GT08].
The sorting algorithm used to sort the edge list is not specified further, but for this analysis
the theoretical lower bound for comparison-based sorting is taken into consideration, which is
O(|E| log(|E|)). This complexity is achieved by very common sorting algorithms such as merge-
sort and quick-sort [GT08]. The reversion step after sorting the edges has to iterate once through
the entire list, thus requiring O(|E|) time. The loop that iteratively deletes edges and computes
the remaining connected components iterates npart times, since n is always initiated with the

42 Chapter 6. Clustering Algorithm

value of 1. As noted, the computation of the connected components is achieved by a depth-first
search, which has a worst case complexity of O(|E| + |V |) [GT08]. For the graphs at hand, the
number of edges |E| is usually comparable or higher than the number of vertices |V |. There-
fore, the complexity can be simplified O(|E|). Taking the loop repetitions into account, the entire
while-loop results in a worst case execution time of O(npart · |E|). As a last part of the com-
plexity analysis, the cluster reduction function in algorithm 4 is investigated: The while loop
executes at most O(|E|) steps, with O(|E| · log(|E|)) for the sorting routine and O(|E|) for the
reverse function. The splitting function defined in algorithm 5 is also called inside the loop. It has
combined complexity of O(|E| · log(|E|)) since the sorting inside the split function dominates the
other operations asymptotically. For the entire reduce function, the combined complexity equals
to O(2 · |E| · log(|E|)) +O(|E|) and hence can be simplified to O(|E| · log(|E|)) for the entire func-
tion.
The overall complexity is computed by adding the complexities of the several parts listed above:

O(|E| log(|V |))︸ ︷︷ ︸
KRUSKAL

+O(|E| log(|E|))︸ ︷︷ ︸
sorting

+O(|E|)︸ ︷︷ ︸
reverse

+O(npart · |E|)︸ ︷︷ ︸
edge deletion loop

+O(|E| · log(|E|))︸ ︷︷ ︸
cluster reduction

As noted above, the number of edges |E| is usually comparable or higher than the number of
vertices |V |. Therefore, the complexity terms for the KRUSKAL algorithm and for the sorting
procedure can be ignored since they are asymptotically dominated or equal to the complexity of
the cluster reduction. Also, the term, O(|E|) for the reverse function can be ignored since it has a
slower growth than the remaining terms. These steps give a resulting complexity of:

O(|E| · log(|E|)) +O(npart · |E|) (6.1)

By applying the sum rule for the big-o notation [Pre08] as follows:

O(f(n)) +O(g(n)) = O(max(f(n), g(n)))

the simplified complexity of the MST-based clustering algorithm is:

O(max(log(|E|), npart) · |E|) (6.2)

Chapter 7

Implementation

The derived strategies, extraction model and clustering algorithm have been implemented in a
research prototype. The settings in which the prototype is intended for use are refactoring scenar-
ios where engineers and developers have the goal of extracting microservices from a monolithic
code base as a part of a migration towards a complete microservice architecture. The prototype
presented here is to be understood as a support tool which points the developer towards the most
promising candidates for microservice extraction rather than an out-of-the box recommendation
tool that comes up with complete and cohesive microservices that can be directly adapted and
deployed.

7.1 Use Cases
Although the presented extraction model (cf. Section 4) and the corresponding strategies and
clustering algorithms are designed to work on repositories of any class-based object oriented pro-
gramming language, for the prototype, the space of possible input repository types was restricted
for the sake of simplicity. The prototype supports repositories with projects written in Java, Ruby
or Python. Those three technology stacks were chosen due to their wide usage in web applications
and microservice-oriented applications throughout industry and the open-source community. In
the following, a brief summary of the actual use cases the prototype supports is given.

U1: Clone
The prototype allows the user to clone a publicly accessible Git repository via its HTTPS uniform
resource identifier (URI). The given repository is automatically copied by the prototype to the
local storage of the machine. The cloning process always checks out the master branch of the
corresponding Git repository.

U2: Extract
The application provides a graphical user interface that enables the user to select a previously
cloned repository for microservice extraction. The user interface redirects the user to a view where
the decomposition parameters (cf. data model description in 7.2) can be configured and the ac-
tual extraction process can be triggered. A successful extraction process returns the results and

44 Chapter 7. Implementation

Repository View

Extraction View

Decompositions
View

Graph View

CloneService

Logical Coupling
Engine

/d
ec

o
m

p
o

si
ti

o
n

s
/r

e
p

o
si

to
ri

es File
Handling

Semantic Coupling
Engine

Contributor
Coupling Engine

Repository
Controller

Extraction
Service

GraphClus
terer

Decomposit
ions

Controller

Extraction
Controller

DecompositionRepository

Object
Relational
Mapping

Database

File
System

HTTP POST

HTTP POST

HTTP GET

HTTP GET

HTTP GET

HTTP GET

Front-End

Back-End

Storage

Figure 7.1: Conceptual architecture diagram of the prototype

redirects the user to a view where the extracted classes are visualized in a graph. Nodes of the
graph represent the extracted classes, while edges represent the connections between the classes.

U3: View
The user has the option to view a list of all previously performed extractions. The list displays a
unique identifier for each extraction and displays information about the specific decomposition
parameters and repository used in that exact extraction. By selecting a specific extraction of the
archived list, the graph representation of the results is again displayed to the user.

7.2 Architecture
The prototype should provide a simple user interface for the user to enter the decomposition pa-
rameters defined in Section 5 and select a certain code base or monolith that shall be analyzed for
extraction. Due to its many advantages such as ubiquitous accessibility or lack of need for instal-
lation and updates from the user perspective, the prototype was designed as a web application.
Architecturally, the prototype takes the form of a traditional three-tiered web application con-
sisting of front-end, back-end and a data storage. Since the nature of the problem domain and the
approach is more computation-intensive than it is data-intensive, a simple relational database ful-
fills all the data-storage needs for the prototype. Hence, PostgreSQL 1 was chosen as a main data
storage.

1PostgreSQL: https://www.postgresql.org/

https://www.postgresql.org/

7.3 Back-End 45

0..*

Repository

- name : String
- remotePath : URL
- localPath : File

Decomposition

- id : long
- repository : Repository
- parameters : DecompositionParameters
- microservices : Set<Microservice>

DecompositionParameters

- logicalCouplingStrategy : boolean
- contributorCouplingStrategy : boolean
- semanticCouplingStrategy : boolean
- numPartitions : int
- intervalSeconds : int
- maxComponentSize : int

Microservice

- nodes : Set<ClassNode>

ClassNode

- className : String
- neighbors : Set<Pair<ClassNode, int>>

1 0..*

0..*

1 1

Figure 7.2: UML class diagram of the data model for the back-end resources

Communication between the front-end tier and the back-end is performed through HTTP re-
quests. The front-end sends HTTP requests to the back-end which in turn responds with the
requested resources. The HTTP request interface of the back-end is designed according to the
RESTful principles [Fie00]. The back-end is responsible for the computation of the presented
strategies and algorithms and also handles data management and queries towards the database.
The front-end uses the resources provided by the back-end to display the results of the microser-
vice extraction to the user in an intuitive manner.

7.3 Back-End
The back-end component is based on the well-known and widely used Java web application
Framework Spring 2. Using Spring’s notion of controllers, two RESTful resources are exposed
by the back-end to outside consumers via HTTP: The repository resource and the decomposition
resource.

Repository Resource
The repository resource represents a git repository, which is always the starting point for the
extraction use case of the prototype. As explained in Section 4.1, the extraction model on which

2https://spring.io/

https://spring.io/

46 Chapter 7. Implementation

the prototype is built on operates on monolithic code bases from version control systems. The
strategies are partially dependent on information from the version control systems such as file
changes, authors and timestamps (cf. Section 5.1 and section 5.3). Since this constitutes a research
prototype, the input source remains limited to one of the various version control systems. Due
to its near ubiquitous use throughout industry and research, Git 3 was chosen as a source format
for the code bases that are analyzed by the prototype. This allows to use some of the largest open
source software communities like GitHub and Bitbucket as sources for test projects to be used in
the evaluation of the prototype. By performing an HTTP POST request on the /repositories
route of the back-end, an external client – such as the front-end component – can store new Git
repository meta data in the database. At the same time, this request triggers the cloning process
of the given repository from its remote location to the local file system of the machine where
the prototype is deployed. The repository meta data – such as the remote path to the repository
location and the repository name – are passed as a HTTP request body on the POST request and
read by the back-end on the receiving side. For the Git-specific functionalities, JGit 4 was used as
a client library to aid with git specific API commands such as cloning, computing diffs between
revisions and retrieving files and contributors of a specific commit. Besides the possibility to
create and clone new repositories via a HTTP POST request, the repository resource allows to
request already existing repositories from the back-end either in bulk or by specifying the unique
repository id generated at creating time as a URL path variable.

Extraction Parameters
The repository resource also provides the decomposition action – not to be confused with the de-
composition resource. The decomposition action is a RESTful action that can be triggered for any
existing repository under the /repositories endpoint by simply calling the specific reposi-
tory path with the action name as a subroute: /repositories/{id}/decomposition. An
HTTP POST request on that path triggers an analysis and microservice recommendation for the
repository denoted by the id path variable. The configuration parameters for the recommen-
dation to be performed are passed as a DecompositionParameters object in the body of the
HTTP POST request. The DecompositionParameters object (cf. Figure 7.2) is then passed
to the DecompositionService by the receiving controller. The DecompositionService de-
termines which of the implemented strategies need to be combined based on the supplied De-

compositionParameters object and calls the corresponding coupling engine to compute the
couplings that represent the weights on the graph. There are three implemented coupling engines:
The LogicalCouplingEngine, the SemanticCouplingEngine and the ContributorCou-
plingEngine. Implementation details about the engine internals are discussed further below.
The couplings resulting from the coupling engines are then passed on to the graph clusterer com-
ponent which handles the extraction from the graph representation (cf. clustering phase in Section
4).

3 Git: https://git-scm.com/
4https://eclipse.org/jgit/

https://git-scm.com/
https://eclipse.org/jgit/

7.3 Back-End 47

Decomposition Resource
Furthermore, the back-end REST API provides the decomposition resource which represents
the result of a successful microservice extraction from a given repository. The decomposition
resource is exposed on the /decomposition path through HTTP GET requests either by get-
ting all existing decompositions in bulk or returning a specific decomposition instance if the
consumer has specified a id variable on the request path. Also, the corresponding decomposi-

tion object is returned after the extraction procedure triggered by the decomposition action on
the repository resource has finished its computation.

7.3.1 History Computation

The back-end contains a dedicated component that is responsible to generate an iterable list of
changes between commits of the repository. The JGit library is used to retrieve the Git log of
the corresponding repository. The returned log does not contain the actual changes of the com-
mits, but only meta information. Hence, the log has to be traversed. At each iteration step of the
traversal, the difference between the entire file tree at the current commit versus the file tree at
the previous commit is computed. In the prototype, the content of the changes is ignored, only
the change author, change type, timestamp and the involved file names are recovered. For each
commit, these data are stored into a ChangeEvent object, which is in turn appended to a list.
This resulting list of ChangeEvent instances is called the change history of the repository.
The history component needs to give special attention to the change types that it encounters. JGit
provides information about whether a change is an ADD, MODIFY, DELETE or RENAME opera-
tion. Multiple problems arise in practice when running the strategies on the change history.
One type of problem is caused by files that were deleted in the history, but still manifest ADD or
MODIFY changes in the history prior to being deleted. This leads to these files being processed
in the strategy and clustering, and hence resulting in the final microservice recommendations de-
spite not being present in the latest version of the monolith. Therefore, the history component
detects those cases and excludes them from any further processing in the strategies that follow.
The second problem arises from renamed files. If a file named A.java is modified or added in
the history, and in a later commit is then renamed to B.java and there are further modifications
of that file, the resulting graph representation will interpret both A.java and B.java as separate
files and nodes in the graph, despite the fact that A.java does not exist anymore. This is han-
dled by carrying and updating a lookup table that keeps track of all renames encountered during
the history traversal. At the end, the last valid name of each file is retrospectively applied to all
changes involving that file. This way, no coupling information gets lost, but still the mentioned
issue is prevented. As a sidenote, the Git version control system only interprets changes as RE-
NAME if the name is changed and not more than 50 % of the files contents are changed. If the
more than 50 % of the file content changes, Git considers this as a DELETE of the original file and
an ADD of a new file. This case is not covered by the history component in the prototype, since in
the semantics of the strategies, it makes sense to view those files as new files instead of renames.

48 Chapter 7. Implementation

7.3.2 Logical Coupling Engine

The LogicalCouplingEngine performs the computation of the logical couplings between class
files in the given repository. Its computation is dependent on the historyInterval parame-
ter from the DecompositionParameters object. The computation iterates over the entire git
change history of the given repository and divides it into intervals of the size given by histo-

ryInterval. For each of the intervals, all the class files that have been mutated during that
interval are collected into a set. Each of those sets of files are continuously appended to a list data
structure denoted by L.
For each of the sets of files in the list L produced above, the logical coupling engine computes
all possible pairwise permutations of files from that set. Formally, if Si denotes the set of files
modified at the i-th interval, this means computing the power set P (Si). The power set compu-
tation algorithm has a very high worst case complexity of O(2N) where N denotes the number of
elements or files in the set. During development and testing of the prototype, it became apparent
that the computation of the power set for sets with a size of N > 12 takes unacceptable amounts
of time for the computation. To guarantee tolerable execution times for the user, the power set
computation is therefore limited to sets with a maximum of 12 files.
The procedure maintains a hash table h for continuously storing and updating discovered logical
coupling values. The two file names of each pair act as a compound unique key for the pair from
the power set. Each time that pair is encountered in any power set during the iteration of the list
L, the compound key of the pair is looked up in the hash table h. If this pair was already encoun-
tered, the value returned by the hash table on the given compound key is incremented by one and
stored in the hash table h. If the hash table has no record of the compound key for the current file
pair, a new hash table entry is created for the key and the value it points to is initialized to 1.
After a complete iteration of the list L, the hash table h will contain all pairs of files that have
changed together and the number of times the conjoined change has occurred. The last step of
the procedure exports a list of edges, where each edge has the two class files as adjacent nodes
and the logical coupling from the hash table as a weight. The graph denoted by those edges is
then processed further by the clustering algorithm from Section 6.

Complexity

As mentioned above, the logical coupling strategy starts by dividing the history into intervals
and collecting the change events for each of the time intervals. For the following analysis, the
operation that collects all change events that lie in a certain time interval is assumed to have a
complexity of O(1). Let HM denote the history of the monolith M , then L(HM) gives the length
of the history in seconds. Furthermore, the DecompositionParameters object comes with a
parameter named intervalSeconds that determines the length of the intervals that the history
HM is divided into. The number of intervals is then defined as:

N =
L(HM)

intervalSeconds

7.3 Back-End 49

All the following steps are consequently executed N times. The repeated steps involve the com-
putation of the power set and the storage of the coupling pairs in the hash table. Let S be the set of
class files in an arbitrary interval. As described above, the recursive power set algorithm requires
O(2|S|) time. If c denotes the maximum number of couplings, the hash table used to keep track
of already discovered class file couplings has a worst case complexity of O(c) for insert, read and
update operations. An upper bound for the maximum number of couplings c can be estimated
easily. Let CM be the set of all class files of the monolith M If all the class files of the repository
are fully connected to each other – i.e., the representing graph is a full mesh or complete graph –
the number of edges, and hence the number of couplings to be kept in the hash table is bounded
by:

c ≤ |CM | · (|CM | − 1)

2

where |CM | denotes the number of classes in the monolith. Asymptotically the upper bound for
c can be reduced to O(|CM |2).
Hence, at each interval, the computational complexity is O(2|S| · |CM |2). For N intervals, the total
complexity of the logical coupling computation procedure results in

O(N · 2|S| · |CM |2) (7.1)

7.3.3 Semantic Coupling Engine
The SemanticCouplingEngine receives the git repository meta data as an input. The meta
data point to the location of the cloned repository on the local file system of the machine. The se-
mantic coupling procedure starts at the root of the repository file tree and traverses each class file
it encounters. It uses the visitor design pattern [Gam95] to perform the visiting operation on each
file it encounters. The visiting operation is responsible for reading, filtering and preprocessing
the contents of all the files.
The visiting procedure filters out files that are written in a different programming language than
Java, Ruby or Python, since the prototype and its use cases are optimized for those languages.
After reading the raw class file content, the content is tokenized into a list of keywords. The to-
kenization splits the content into keywords by division characters. Examples for such characters
are the space character, hyphens, underscores and all forms of brackets and parentheses. Also,
compound identifiers in camel case format are split into the atomic words they are made up of.
The tokenized list is then passed through a blacklist filter. This is necessary because the semantic
coupling strategy is very sensitive to the contents of a file. A great amount of the content in class
files is very generic and not related to any domain or business entity or problem. Tokens like the
reserved keywords for the different programming languages, but also commonly used keywords
in web frameworks such as controller, model or service will occur in a large part of the
class files without contributing any semantic information about the problem domain. Therefore,
all instances of these keywords are removed from the list of tokens before any further processing

50 Chapter 7. Implementation

steps are conducted. A similar problem arises – especially in open source projects – with license
headers in class files. A self-evident option would be to ignore comments, since license headers
are always on commented-out lines. But comments can contain valuable domain information,
therefore the comments are kept, but the typical keywords that occur in the most used licenses
are filtered out analogous to reserved keywords of programming languages.
The tokenized and filtered list of words is stored for each file that is encountered during the tree
traversal. The procedure continues to the computation of the cosine similarities. For this, all pair-
wise distinct class files are matched in a nested for loop, and their respective word lists – denoted
Wi and Wj in the definition Section 5.2 – are passed to the tf-idf computing component which
returns a similarity value of type double, with 0 meaning no similarity and 1 meaning complete
congruence between the two files.
Internally, the tf-idf component performs the exact steps described in Section 5.2: Term extraction
to form the term list of both files, vector computation for each of the files, and the cosine between
the vectors which returns the similarity. The computed similarity value equals the weight be-
tween the two class nodes on the edge list that is exported at the end of the strategy computation.

Complexity

The traversal of the file tree of a monolithM with a set of classes C executesO(|C|) read and filter
steps. Each of those steps performs the read and filter operations for each line of code in the class
file that is being visited. Hence, the read/filter sub-operation has a complexity of O(LOCavg)

where LOCavg denotes the average number of lines of code per class file in the monolith M . By
combining the O(|C|) for the traversal and O(LOCavg) for each sub-operation during the traver-
sal, the total complexity of the traversal procedure can be expressed byO(LOCtot), where LOCtot

denotes the total source lines of code for the entire monolith M .
For each of the class files read in the previous steps, the procedure computes the tf-idf vectors.
Since this operation’s complexity is directly dependent on the size of the token content of each
class, it is not considered any further in the worst case complexity analysis. This is because the
token content size and hence the vector computation is mainly determined by the LOCavg , which
is already factored into the complexity by now. The semantic coupling procedure then proceeds
to permute all pairs of distinct class files to compute their tf-idf similarities. For this permutation,
O(|C|2) steps have to be performed.
In total, this leaves us with a worst case complexity for the semantic coupling strategy of:

O(LOCtot) +O(|C|2) (7.2)

7.3.4 Contributor Coupling Engine
The contributor coupling procedure performed by the ContributorCouplingEngine expects
a list of change events as input. Each of the change events in the list keeps track of the files that
were modified at that certain change event and contains the unique identification of the author
who committed the change. In the concrete case of the prototype, the e-mail address from the

7.4 Front-End 51

version control system is used as a means of uniquely identifying authors.
In a first step, the input list of change events HM is traversed in order to create a hash table h that
links the names of the files (hash keys) with the sets of authors that have contributed to them (hash
values). To construct this hash table, the procedure iterates through the list HM change event by
change event. For each change event, all the files that were modified during that change event are
processed at once. Each of the files is put into the hash table h with its file name as a hash key and
the author that contributed the change event is added to the set of authors associated with that
key. After having processed all change events in this manner, the hash table h will finally contain
all modified class files with their associated contributor sets.
The computed contributor hash table h is then passed to the next stage, where the contributor
couplings between the class files are computed. This is achieved by combining all distinct pairs
of class files present in the hash table h and counting the number of contributors they share with
each other. In other words, for each pair, the cardinality of the intersection of their respective
contributor sets is stored as a coupling value between those files. The procedure is concluded by
exporting the couplings between the files as a list of edges between class nodes with the coupling
value as weight.

Complexity

As described above, the construction of the author lookup hash table h involves iterating through
the history HM of the monolith. The construction hence gives a complexity of O(|HM |). To com-
pute the number of shared contributors between all pairwise distinct class files, the procedure has
to perform a nested loop which examines all possible pairs of class files. Knowing that there are
|C|·(|C|−1)

2 possible pairs, one can deduce that the procedure needs to perform O(|C|2) processing
steps for computing the contributor coupling value for all pairs.
Therefore the total complexity of the contributor coupling strategy is defined as:

O(|HM |)) +O(|C|2) (7.3)

7.4 Front-End

The front-end of the prototype is based on the Angular2 5 web application framework. The used
framework allows clean separation of view code in HTML5 from the behaviour and front-end
logic, which can be expressed in TypeScript. TypeScript brings advantages of object-oriented lan-
guages such as classes, interfaces, inheritance and static typing to JavaScript environments and
thus helps in creating more readable and robust front-end code.
The front-end implements four views, as depicted in architecture diagram 7.1. The repository
view implements the starting point for the clone use case U1. It allows the user to clone Git repos-
itories by entering the remote HTTPS URI. Also, previously cloned and stored Git repositories are

5https://angular.io/

https://angular.io/

52 Chapter 7. Implementation

listed in the view. By choosing one of the listed repositories, the user can initiate the extraction
use case U2 and is redirected to the extraction view.

Figure 7.3: Repository view in the front-end component that implements use case U1.

The extraction view implements U2. It provides controls for configuring decomposition pa-
rameters such as the types and combination of coupling strategies to be used or the tweaking
of parameter values such as the history interval. Upon clicking the decompose button to trig-
ger the extraction of microservice candidates, the front-end component creates a Decomposi-

tionParameters instance with the configured values. The object is sent in the body of a HTTP
POST request to the /repositories/{id}/decompose endpoint on the REST API of the back-
end. The back-end computes the microservice extractions and returns them as a response to the
HTTP POST request. The response carries a representation of the microservices in the body. The
GraphRepresentation model was defined so the internal model of microservices used by the
back-end can be hidden from external consumers and only view-specific information and struc-
ture of the resulting microservices are returned to the front-end.

7.4 Front-End 53

Figure 7.4: Screenshot of the extraction view which allows the user to configure the decomposition param-

eters and trigger the analysis.

As depicted in Figure 7.5, a GraphRepresentation instance represents one single microservice
and aggregates all the nodes and edges between the nodes that belong to that microservice. The
nodes are of the type NodeRepresentation and have a unique id in form of a long integer, a
label to be displayed, which will be filled with the class name of the node, and the nodes store a
color value for their graphical visualization on the front-end. The colors are randomly generated
based on the structure of the services, i.e., all the nodes in a microservice have the same color,
while all microservices have distinct colors from each other. The edges are of the type EdgeRep-
resentation, and basically just link two NodeRepresentation instances together by their
unique ids.

GraphRepresentation

- nodes : Set<NodeRepresentation>
- edges: Set<EdgeRepresentation>

NodeRepresentation

- id : long
- label : String
- fullClassName : String
- color : String

EdgeRepresentation

- from : long
- to : long

1..* 1..*1 1

Figure 7.5: UML Class Diagram of the Representation Types between Front-End and Back-End

54 Chapter 7. Implementation

A successful extraction process returns an array of GraphRepresentation objects to the
front-end. The graph view is then responsible for displaying the extracted microservices in a
graph, as described in use case U3. It allows the user to zoom and pinch the graph and to open or
close microservices in order to see their details. For the rendering of the nodes and edges and the
layout of the graph, the VisJS 6 library was used. It helps in presenting a clean view of the graph
by using techniques such as gravitational force layout.

Figure 7.6: Screenshot of the graph view which enables the user to browse through computed microservice

recommendations.

Already performed extractions can always be looked up and reviewed again. This is enabled
by the decompositions view, which lists all successful previous extraction attempts together with
their repository and decomposition parameters. Upon clicking one of the decompositions in the
list, the graph view displays the microservices extracted during that extraction.

6http://visjs.org/

http://visjs.org/

Chapter 8

Evaluation

The introduction chapter stated two research questions for the implemented prototype and its
evaluation:

RQ2.1: What is the performance of the implemented prototype with respect to exe-
cution time?

RQ2.2: What is the quality of the microservice recommendations generated by the
prototype?

Therefore, the evaluation for the implemented prototype and the presented approach consists of
two aspects, the performance aspect evaluation that aims to answer RQ2.1 and the recommenda-
tion quality evaluation, which is the topic of interest in RQ2.2.
While the performance of the prototype can be evaluated in a straight-forward manner by record-
ing execution times with different input settings, the evaluation of the recommendation quality
is much more involved. As noted in the introductory section of this thesis, the microservice ar-
chitecture has no formal definition or notion that can be used as a ground truth for studies. The
standard literature on microservices [New15, Fow14] struggles to give a quantifiable or at least
formal characterization of the term microservice. Similar works and studies conduct qualitative
evaluation by manual inspection of the results as in [LTV16]. Surveys and inspections by experts
on the subject as a tool of qualitative evaluation can potentially deliver more meaningful insights.
In the specific context of microservices a qualitative inspection by experts comes with several
drawbacks and difficulties. The quality of the resulting microservice candidates is not a one-
dimensional aspect. The rating of the microservice recommendation depends highly on the con-
text and the motivation behind the refactoring effort that has lead to it. A microservice extraction
might have scalability as its main motivation, resulting in different quality requirements by the
expert than for a microservice extraction done to improve team structure and code maintenance.
It is therefore very difficult to come up with an expressive and precise set of dimensions on which
a survey could be conducted.
In related research fields, a favoured alternative approach to evaluate contributions such as the
one in this thesis has been the use of quantitative metrics as a proxy for the quality of the pro-
duced results. While there are clearly established and well-known quality metrics in fields such
as object-oriented design [CK94], the field of services computing – and especially microservices

56 Chapter 8. Evaluation

– exhibits a very scarce amount of such efforts. Propositions of metrics for service environments
such as in [PRFT07] are often based on traditional software metrics and slightly extended in some
aspects to accommodate the different requirements in a service environment. Other proposed
metrics suites for service environments [KAR+11, RKS+11] involve information about business
properties and business entities in their computation and hence are not easily obtainable directly
from the code base. The authors of [KAR+11] present a method to compute the conceptual cou-
pling between services using information retrieval techniques. The average domain redundancy
metric introduced in the following sections is built on a similar rationale, but takes a different
measurement approach that is more appropriate for the formal service model of this thesis. The
other metrics used in the quality evaluation are designed for expressiveness with respect to as-
pects that were deemed important in the very specific context of microservices. These aspects
include microservice sizing, team structure and team communication overhead.

All the results in the performance and quality evaluation sections in this chapter were obtained
through experiments conducted with the following algorithm parameters:

• numPartitions: 4

• maxComponentSize: 10

• historyInterval: 3600

• logical coupling weight factor cLC : 1

• contributor coupling weight factor cCC : 1

• semantic coupling weight factor cSC : 1

During testing and development of the prototype, the combination of the numPartitions and
maxComponentSize listed above showed to deliver the most promising results when it comes
to the sizing of the microservice recommendations. The historyInterval was set to the size of
an hour (3600 seconds) in order to balance the tread-off between a stringent interpretation of a
logical coupling – implied by a shorter historyInterval of a few hundred seconds as in [ZW04]
– and a larger interval size that generates stronger couplings while still preserving the co-change
semantics. The weights for the strategy factors are set to 1 for this initial evaluation since there is
no empirical evidence on the importance of the factors.

8.1 Sample Selection
As described in Section 7.2, the implemented prototype utilizes Git repositories as an input for
monoliths. Open-source projects and communities are a main source of input for evaluations such
as in this thesis. Benefits include open accessibility not only to code but also to meta-information
such as contributor info and change history. Also, open-source projects include a great variety of
project sizes and team sizes. These characteristics make open-source projects a prime candidate

8.1 Sample Selection 57

for the evaluation in this thesis. The largest and most prominent source for open-source projects
is GitHub 1 [LRM14].
To select viable candidate repositories of monoliths, several criteria were formulated. Technically,
the approach devised in this thesis and the prototype are able to handle any repository of any
class-based, object-oriented programming language. Nevertheless, the application context and
the research questions demand a more specifically confined set of criteria for test repositories.

8.1.1 Criteria

Application Type
The main drivers behind microservices have been the new demands posed by the inherently dis-
tributed nature of the world wide web and novel developments on the infrastructure side such
as cloud computing. Consequently it makes sense to limit the evaluation sample projects to web
applications.

Technology Stack
Since the entire extraction model presented in Chapter 4 is based on the premise that the mono-
lith under investigation is composed of classes, it is obvious that the set of sample projects will be
limited to projects written in a technology stack that adheres to this class-based nature.
A hard challenge in the decomposition of monoliths to microservices – or distributed systems in
general – is state. Having state – e.g., in the form of a database – in your application tremendously
increases the difficulty of scaling, distributing and decomposing said application. The approach
presented here overcomes this issue by assuming that all the candidate projects employ an object-
relational-mapping (ORM) system to handle domain model and data. In monoliths where an
ORM is used to handle data, the domain models and database tables are represented by plain
classes in the corresponding programming language used for the monolith. Thus, in the extrac-
tion model, the data entities defined by the ORM classes are treated like any other class in the
monolith and hence result in a corresponding graph node that is coupled to other classes and
potentially ends up in one of the recommended microservice candidates.
In combination with the above mentioned requirement that the applications should be web appli-
cations, the class-based ORM criterion further limits the space of potential candidate repositories
for evaluation. Applications that typically fulfill these requirements are based on traditional web
application technology stacks such as Spring 2, Java EE 3 in Java environments or Rails 4 and
Django 5 for Ruby and Python environments. Furthermore, empirical studies on practices in
(micro-) service computing revealed that Java is still the most prominent language to implement
microservices, followed by scripting languages such as Ruby or Python [SCL15]. It is therefore
clear that the projects considered for the evaluation are all web application projects written in

1https://github.com/
2https://spring.io/
3http://www.oracle.com/technetwork/java/javaee/overview/index.html
4http://rubyonrails.org/
5https://www.djangoproject.com/

https://github.com/
https://spring.io/
http://www.oracle.com/technetwork/java/javaee/overview/index.html
http://rubyonrails.org/
https://www.djangoproject.com/

58 Chapter 8. Evaluation

Java, Python or Ruby and employ an ORM solution such as the one provided by Hibernate 6 or
the database schema migration solutions in Rails and Django.

Repository Size
The size of a repository can be expressed along multiple dimensions. With regard to the per-
formance evaluation, the important size dimensions are the ones that impact the performance
of the strategies. The logical coupling strategy mainly depends on the size of the history of the
corresponding repository. The history size can be expressed either by the number of commits
in the history or by the length of the time window between the first and last contribution to the
repository. For the contributor coupling, the total number of contributors is the size metric that
we’re interested in. But this in turn also depends on the history size, since the history has to be
traversed to detect contributions by contributors. For the semantic coupling strategy, the source
code class files have to be read from disk and processed. Therefore, the size of the code in SLOC
(source lines of code) will be the main influencing factor of performance.
The history size of the projects should include an equal distribution of projects with large his-
tories (e.g., a large number of commits) and small histories. Young productive open source web
applications can be found with a commit count of a few hundreds, while larger and more active
projects can exhibit tens of thousands of commits. In this evaluation, the candidate repositories
must have at least 200 and at most 25000 commits in their history to be considered in the sample.
The team size of any of the repositories shall represent typical web application team scale found
in the industry. This means very large open-source projects with thousands of contributors will
not be taken into account for the evaluation. Candidate repositories must have at least 5 and at
most 200 contributors. This range of contributors mirrors the typical sizes of development teams
from small development agencies up to large internet leaders like Amazon or Facebook.
The criteria regarding the size of repositories in source lines of code (SLOC) are devised similar
to the history size. The evaluation includes repositories with varying SLOC counts to account for
the diverse monolith sizes that are present in practice and industry. A lower bound for the code
size is at 1000 SLOC while projects larger than 500’000 are also not taken into account.

Summary
In summary, the definitive criteria that must be fulfilled by a repository to be included in te eval-
uation boils down to the following: A repository must

• be open source

• use Git as a version control system

• contain a web application

• use a class-based ORM technology

• be written in Java, Ruby or Python

• have at least 200 commits in its history

6http://hibernate.org/

http://hibernate.org/

8.2 Performance 59

• have at most 25000 commits in its history

• have at least 5 contributors

• have at most 200 contributors

• contain at least 1000 SLOC

• contain at at most 500000 SLOC

8.1.2 Sample Projects
Table 8.1 summarizes all the monolithic repositories used in the evaluation that follows. The
SLOC of each project was measured using the unix tool sloccount 7, that has been previously
[Whe01] used to determine the size of very large open source projects such as the Linux kernel.
The commit and contributor counts for the projects are taken from the corresponding Git version
control information of the master branch of each repository.

8.2 Performance
In research question RQ2, the goal is to implement a prototype implementation of the devised
extraction model, strategies and clustering algorithm. The prototype is targeted at developers in
refactoring scenarios when moving from a monolithic software architecture to a microservice ori-
ented architecture. Besides the actual nature and quality of the microservice recommendations,
performance is a critical aspect when it comes to refactoring support tools for developers. The
prototype must show an acceptable scaling behaviour when confronted with large input data
sets.
In this part of the evaluation, the performance of the implemented algorithms shall be investi-
gated depending on different input projects of different sizes. The execution time of each of the
processing stages is used as a proxy for the performance of the prototype. Not every strategy
depends on the same input characteristics when it comes to execution time. Consequently, the
performance recordings of the different strategies are each contrasted with a different input vari-
able, such as history size, code size or team size of the input project – depending on the strategy
that is being evaluated.

7http://www.dwheeler.com/sloccount/

http://www.dwheeler.com/sloccount/

60 Chapter 8. Evaluation

Table 8.1: Monolith Projects used in Evaluation
Project Name Technology Commits Contributors SLOC
BroadLeaf DemoSite Java 1477 22 1301
Mayocat Shop Java 1670 4 33216
OpenCMS Java 21087 35 512294
TNTConcept Java 216 15 118356
PetClinic Java 545 32 1564
Sunrise Shop Java 1859 11 18820
Helpy Ruby 1650 42 9230
Spina Ruby 489 38 2468
Sharetribe Ruby 14940 46 53845
Hours Ruby 796 21 4268
Rstat.Us Ruby 2260 64 6807
Kandan Ruby 868 52 1553
Fulcrum Ruby 697 44 3085
Redmine Ruby 12990 6 87529
Chiliproject Ruby 5532 39 65171
DjangoCMS Python 15451 355 41631
Django Fiber Python 848 20 4686
Mezzanine Python 4964 238 11780
Wagtail Python 6808 205 48971
Mayan Python 6000 25 39225
Django-Shop Python 3451 62 8281
Django Oscar Python 6881 170 32272
Taiga Black Python 3226 38 58295
Django-Wiki Python 1589 64 8113

8.2 Performance 61

8.2.1 Logical Coupling Strategy

Figure 8.1: Plot of the execution time as a function of the commit count for the logical coupling strategy

As described in Section 5.1 and Section 7.3.2, the performance of the logical coupling strategy is
mainly determined by the size of the history of the test project to be analyzed. The performance
is evaluated against the commit count of each evaluation project and against the history length in
days. The history length corresponds to the number of days that have passed since the first con-
tribution to the project in the version control and the last contribution that was made.
The performance measurement is done by recording a first UNIX epoch timestamp tstart at the
point in the program immediately before the logical coupling strategy implementation starts pro-
cessing the ordered change historyHM of the monolithM . The second timestamp tend is recorded
immediately after the logical coupling routine has finished computing the edge list of the class
nodes and the weights on the edges. The logical coupling execution time tLC is then given by
tLC = tend− tstart. Figure 8.1 shows a plot of the execution time in milliseconds against the num-
ber of commits of the corresponding repository. The bullet points correspond to the measured
values while the black solid line is just used as a connector for better visibility. The blue trend
line indicates clearly that the execution time rises with the number of commits. Nevertheless,
there are some large variations of the execution times with spikes towards higher execution time
values. Examples are the execution time measurements around 5000 commits and arount 7500
commits. Points like these lie outside the grey-marked 95 % point-wise confidence interval.

62 Chapter 8. Evaluation

Figure 8.2: Plot of the execution time as a function of the history length for the logical coupling strategy

A similar constellation can be observed in Figure 8.2. Again, the trend line shows a flat increase
of the execution times when the history length rises, but there are some anomalies that lie outside
the grey interval.
These observations mostly confirm the theoretical understanding of the complexity and perfor-
mance behaviour that was derived in the asymptotic analysis of the logical coupling strategy
implementation in Section 7.3.2. The theoretical complexity of O(N · 2|S| · |CM |2) indicates that
the execution time will only partially depend on the history size, denoted by N . The spikes in the
plots above are attributed to sample repositories that exhibit certain change events in their his-
tory where the number of files that were modified is significantly higher than the usual number
of changed files. A few of those outliers per repository are enough to cause a significantly higher
execution time for the computation of the logical couplings because of the exponential behaviour
of the complexity depending on the number of changed files, as indicated by the 2|S| in the to-
tal complexity term, where |S| denotes the size of the sets which are involved in the power set
computation at each step (cf. Section 7.3.2).

8.2.2 Contributor Coupling Strategy
As described in Section 7.3.4, to compute the common contributors between class files, the con-
tributor coupling strategy routine has to traverse the historyHM of the monolithM and maintain
a hash table data structure that collects the new contributors that made a change to a file at a
certain change event hi ∈ HM . Therefore, the history size is the major influencing factor when it
comes to execution time. The execution time of the contributor coupling strategy tCC is measured
analogously to the logical coupling execution time.

8.2 Performance 63

Figure 8.3: Execution time as a function of the history length for the contributor coupling strategy

A plot of the execution time for the contributor coupling strategy depending on the size of history
in number of commits is shown in Figure 8.3. The trend line in blue and the 95 % confidence
interval marked by the grey area illustrate that the execution time scales in a flat linear manner
with the number of commits in the history of the repository that is being decomposed. There are
two clear outliers at around 6000 commits and 14000 commits with significantly higher execution
times.
By consulting the complexity derived for the implementation in Section 7.3.4, the observations
can be rationalized. The total complexity amounts to O(|HM |)) + O(|C|2) where |HM | is the size
of the history in number of commits and |C| denotes the number of class files in the repository that
is being decomposed. While the impact of the growing history sizeHM can be clearly observed in
the plot 8.3, the extreme outliers are attributed to sample projects where the number of class files
|C| is unusually high and therefore dominates the effect of the history size and leads to higher
execution times.

8.2.3 Semantic Coupling Strategy
Recalling the definition (cf. Section 5.2) and implementation (cf. Section 7.3.3), it becomes appar-
ent that the computation of the semantic coupling values is mainly dependent on the amount of
tokens contained in the input data set. In other words, the amount of code or identifiers is a direct
influence on the execution time of the semantic coupling strategy.

64 Chapter 8. Evaluation

Figure 8.4: Execution time as a function of the code size for the semantic coupling strategy

To illustrate the scalability of the computation, Figure 8.4 shows the semantic coupling exe-
cution time of the projects presented in table 8.1 as a function of the size of the projects in SLOC
(source lines of code). The semantic coupling execution time is recorded as the difference be-
tween the start timestamp tstart immediately before the routine starts traversing the file tree of
the repository M and the end timestamp tend immediately after the semantic coupling weights
on the edges have been returned.
The performance indicated by the execution times measured on the sample projects confirm the
intuition that the performance of the semantic coupling strategy is mainly and directly impacted
by the total size of the code in the repository in source lines of code (SLOC). The growth takes
rather linear form, which means the SLOC factor dominates the impact of the number of classes
in the monlith, which – according to the asymptotic analysis presented in Section 7.3.3 – also
influences the complexity of the semantic coupling procedure in a quadratic manner.

8.3 Quality Metrics
Apart from the execution performance of the implemented prototype, the actual recommenda-
tions for microservice candidates to be extracted are the key aspect that has to be evaluated in
order to assess the value of such a tool in a microservice refactoring scenario. An optimal as-
sessment of the quality of the recommended extractions involves performing the recommended
extractions and then deploying the redesigned application. One could then monitor key metrics
such as response time, failure rate and effects on development team composition and communica-
tion overhead between development teams. Such an assessment is clearly not feasible to perform
at any non-anecdotal scale. Therefore, automatically measurable (static) metrics are devised and

8.3 Quality Metrics 65

used to indicate quality aspects of the computed extraction recommendation.

8.3.1 Size Aspect
Microservice granularity and size is one of the most intensely debated topics in the microser-
vice community, as for instance in [Til14, Mor15, Ła15, Bel16]. While the industry has proposed
multiple rules of thumb to determine the optimal size for a microservice, there seems to exist no
established consensus on microservice sizing and granularity. The microservice sizes proposed
by those informal rules varies from low microservices with only tens of SLOC, while others rec-
ommend microservices with up to thousands of SLOC.
A look at previous scientific work in the field reveals that there have not been many studies that
give attention to the subject of microservice size and granularity. One of the first papers to in-
vestigate microservice practices in the industry empirically is [SCL15]. In their work, the authors
performed a survey and among other things also investigated the typical size of microservices
employed in practice [SCL15]. Their results indicate that microservice sizes under 100 SLOC – as
proposed by some industry proponents [Cre14] – are very rare and are only reported by around
3 % of the respondents. The occurrence of very large microservice with more than 10000 SLOC
is equally low according to [SCL15], leaving the vast majority of microservices in the range from
100 SLOC to 10000 SLOC.

Average Microservice Size

Consequently, the resulting microservice sizes are checked against the values reported in [SCL15]
in order to indicate whether the granularity of the recommended microservices corresponds with
the granularity of microservices in practice. To that end, the average microservice size metric is in-
troduced, denoted by ams. Let S1, S2, . . . , Sn be the resulting microservices in a recommendation
dM for a monolith M . Furthermore, let loc(Si) be a function that returns the size of a microservice
in SLOC (source lines of code). Then, the ams metric is defined as:

ams(dM) =

n∑
i=1

loc(Si)

n
(8.1)

8.3.2 Team Aspect
In the background chapter, one of the factors that was introduced as a benefit and motivation
behind the concept of microservices was the improved team structure argument. Migrating to
a microservice architecture has the potential of minimizing the interaction with other teams re-
sponsible for other services and domain capabilities. Minimizing the interaction with external
teams directly translates to a reduced communication overhead and thus more productivity and
focus of the team can be directed towards the actual domain problem and service it is responsi-
ble for. As a proxy for communication overhead and interaction complexity between the teams

66 Chapter 8. Evaluation

of different microservices , the evaluation in this thesis uses team size metrics. In the following,
two metrics are defined that help to evaluate the resulting microservice recommendations with
respect to team and communication complexity.

Average Contributors per Microservice

The average contributors per microservice, denoted by cpm, denotes the average number of code au-
thors that worked on class files in a microservice. This metric is always computed for an entire
recommendation. To define the metric formally, let S1, S2, . . . , Sn be the recommended microser-
vices in a recommendation dM for a certain monolith M . Furthermore, let c(Si) be a function
that returns the number of contributors that authored changes to a microservice Si. Then, the
contributors per microservice cpm(dM) for that recommendation is defined as:

cpm(dM) =

n∑
i=1

c(Si)

n
(8.2)

Contributor Overlapping between Microservices

The second metric named contributor coupling between microservices, denoted by cov, describes the
average number of authors that are shared between the resulting microservices. Shared contrib-
utors act as an indicator of communication between teams of different microservices. A high
number of shared authors or contributors implies a large communication overhead between the
teams of the microservices, while a low number of shared number of authors consequently in-
dicates a cleaner seperation and allocation of teams to microservices. Again, let S1, S2, . . . , Sn

be the recommended microservices in an recommendation dM for a certain monolith M and let
cont(Si) be a function that returns the set of contributors that authored changes to a microservice
Si. Informally, the contributor overlapping cov(dM) for a recommendation dM is defined as the
sum of all cardinalities of the intersections between all possible pairs of microservices, divided by
the number of possible pairs of microservices. Formally, this means:

cov(dM) =

∑
i6=j

|cont(Si) ∩ cont(Sj)|

n·(n−1)
2

(8.3)

The denominator in Equation 8.3 can be derived by looking at the possible combination of distinct
microservices as a graph. If there are n microservices that we imagine as nodes in a graph, the
fully meshed graph made up of those nodes will have n·(n−1)

2 edges or pairings between them.

8.3 Quality Metrics 67

Combined Team Metrics

Since there are no absolute values against which the two above-mentioned team metrics can be
evaluated, they need to be set into a relative context for increased expressiveness.

External Communication Ratio
To assess how good or bad the relation between the internal team size and the communication
overhead for each team of the microservice is, the external communication ratio is introduced and
denoted by ecr. It is defined as the ratio between the contributor overlapping metric cov(dM) of a
recommendation and the average contributor per microservice metric cpm(dM):

ecr(dM) =
cov(dM)

cpm(dM)
(8.4)

An ecr value of 1 means that the resulting microservice recommendation does a poor job of al-
locating teams to microservices, since the amount of external communication overhead has the
same scale as the size of the microservice teams themselves. An ecr value of 0 would mean an
optimal – and in practice impossible – case where the microservice recommendation requires no
communication between the teams at all. On this normalized scale between 0 and 1, the evalua-
tion considers values below 0.5 to be acceptable while recommendations with an ecr > 0.5 should
be rejected.

Team Size Reduction Ratio
In order to evaluate if the team complexity and team size has decreased and hence improved, the
original team size of the monolith M is compared to the average contributors per microservice
in the recommendation dM of the monolith. To that end, the team size reduction ratio denoted by
tsr is introduced. Let cont(M) be a function that returns the size of the team that worked on the
monolith M. Then the tsr is defined as:

tsr(dM) =
cont(M)

cpm(dM)
(8.5)

8.3.3 Domain Aspect

As outlined in Section 2.2.1 and following, one of the main design principles when developing ap-
plications in a microservice architecture is the concept of bounded context. According to domain-
driven design [Eva04], the problem domain of an application can be viewed as a a set of bounded
contexts, with each of the bounded contexts having clear responsibilities and clearly defined in-
terface that defines which model entities are to be shared with other bounded contexts [New15].
Furthermore, the single responsibility principle [Mar02] commands that a microservice has a con-
cise and clearly defined responsibility. Also, a favorable microservice design avoids duplication

68 Chapter 8. Evaluation

of responsibilities across services. Thus, the evaluation uses a metric as a proxy to indicate the
amount of domain-specific duplication or redundancy between the services.

Average Domain Redundancy

To quantify the amount of repetition and redundancy in domain-topics occurring in the microser-
vices, the average domain redundancy is measured. The average domain redundancy of a recom-
mendation dM , denoted by adr(dM), is computed by averaging the similarities between all pairs
of microservices (Si, Sj) with i 6= j. The similarity between two microservices is computed by
the cosine similarity method analogous to the technique presented in Section 5.2 but is applied to
entire source code of the microservices instead of class files.
The similarity is computed with the tf-idf formulas 5.2 and 5.3 presented in Section 5.2 and always
takes a value between 0 and 1. If sim(Si, Sj) denotes a function that returns a similarity between
two microservices Si and Sj , the average domain redundancy is computed by:

adr(dM) =

∑
i6=j

sim(Si, Sj)

n·(n−1)
2

(8.6)

where n denotes the number of services resulting in the recommendation dM .

8.4 Results

8.4.1 Average Microservice Size
Figure 8.5 shows a boxplot of the distribution of the average microservice size (ams) for the sam-
ple presented in the beginning of this chapter. The presented ams values are in terms of SLOC
(source lines of code). Each project in the sample was tested with the prototype using 7 different
extraction strategies or combinations thereof. The strategies are abbreviated by CC for the con-
tributor coupling, LC for the logical coupling and SC for the semantic coupling strategy.
For all of the strategy combinations, the lower and upper quartile lies between 100 and 1000 LOC.
This indicates that the bulk part of the evaluated samples result in microservices with average
sizes comparable to the preferred microservice sizing reported by 43 % of microservice architects
and developers in one of the few empirical surveys on the topic [SCL15]. This is a sign that the
recommendation method presented in this thesis is sound and satisfactory with respect to mi-
croservice sizing.

The boxplot exhibits several outliers towards higher average microservice size values, with two
instances having values greater than 4000 LOC. These anomalies can be attributed to the basic
extraction model which considers entire classes as nodes. This means if the coupling strategy
produces a graph representation where such large classes occur as nodes, the entire class will
end up in a certain microservice and thus cause a rise in the average microservice size. Espe-
cially projects with larger or longer repository history, such as redmine, are susceptible to this kind
of behaviour since the long repository history implies an aged architecture and thus potentially

8.4 Results 69

Figure 8.5: Boxplot of the average microservice size (ams) results for the sample projects

detrimental artifacts such as very large classes with a high number of changes and a high number
of contributors. For both the logical and contributor coupling strategies this means that the re-
sulting coupling graph will have a very high degree of connectivity and therefore the tendency to
form microservices with higher size. It is therefore no surprise that both the extreme outliers with
ams > 4000 LOC are observed in experiments where contributor and logical coupling strategies
are combined, as in LC & CC and LC & CC & SC.
Another observation that stands out from Figure 8.5 is the fact that the median value of the aver-
age microservice size is very similar across all strategies and combinations. The box areas from
lower to upper quartile are also fairly uniform in size and position with only slight variations.
This indicates that the strategy combination that leads to the microservice recommendation has
only partial influence on the resulting size of the microservices. This conjecture is further con-
firmed by the t-tests performed to compare pairs of strategy combinations to determine whether
they’re significantly different. The p-values in the t-test results for the ams in table A.2 are con-
sistently lower than 0.05 and therefore indicate that there is no significant difference between the
strategy combinations with respect to average microservice size. Rather, the influencing factors
are the clustering parameters, as presented in section 6. Specifically, the numPartitions parame-
ter that determines how many edge-deletion iterations are performed on the minimum spanning
tree of the graph representation in the clustering algorithm and the parameter s that defines the
maximal connected component size for handling of extraordinarily large components have more
influence on the resulting average microservice size than the strategies used.
Combining this last observation with the sizing assessment in comparison to empirical data
above, one can conclude that the approach and the implemented protoype produces satisfactory
recommendations when it comes to microservice sizing, as long as the input parameters for the
MST clustering algorithm are chosen appropriately.

70 Chapter 8. Evaluation

8.4.2 Team Size Reduction

The evaluation results of the team size reduction metric for the different extraction strategy com-
binations are provided in Figure 8.6. A tsr value of 1 would imply that the new team size per
microservice is as large as the original team size for the monolith, while a lower value towards 0
would mean a clear reduction of the team size.
All of the experiment series exhibit median values below 0.5, independent of the strategy com-
bination used. All but one of the combinations also have the upper quartile below a tsr of 0.5.
These observations indicate that the extraction approach and strategies perform very well with
respect to team size improvement; the team size shrinks down half of the original size or even
lower in the majority of the experiments. Thus also potentially simplifying collaboration struc-
ture and development processes for the corresponding microservices.
Taking a look at the discrepancies between the results of the different basic extraction strategies,
it is clear that the semantic coupling strategy shows the best results in this metric, by significantly
outperforming both the logical and contributor coupling strategies. The t-test results in table A.3
support this claim: The test involving the LC and SC strategies has a p-value of 0.025, while the
comparison of the distributions for the CC and SC experiments shows an even more significant
difference with a p-value of 0.001.

Figure 8.6: Boxplot of the team size reduction ratio (tsr) results for the sample projects

The strategy combinations where the SC strategy is involved appear to consistently yield bet-

8.4 Results 71

ter team size reduction than the rest. A look at t-test results in table A.3 shows for instance that
the distributions for the LC & CC and the LC & CC & SC are significantly different with a p-value
of 0.004. Similar differences are implied by the p-values of the tests involving the other combina-
tions of the SC strategy.
Besides the occasional outliers, an observation that stands out is the higher upper quartile value
and the significantly higher upper whisker for the contributor coupling strategy, denoted by CC.
Upon detailed inspection of the experiment results, it becomes apparent that there are experi-
ments for certain projects where the team size reduction ratio is equal to 1, meaning that there has
been no reduction whatsoever. It is also interesting to observe that this occurs only in experiments
where the contributor coupling strategy is involved. The explanation for this is found by looking
at the coupling graph of the repositories before the MST clustering algorithm is applied. In all of
the cases where the tsr resulted in a value of 1, the coupling graph consisted of only one large
connected component with star shape. An example for this is shown in Figure 8.7.

photo_collections_photo.rb

structure_item.rb

3_create_alpha_spina_navigations.rb

attachment_collection.rb

spina.rb

frontend.rb

navigation.rbuser.rb

users_controller.rb

demo.rb

color.rb

navigation_item.rb

version.rb

Figure 8.7: Illustrative example for centralized star structure on a coupling graph

The high-degree node in the center corresponds to a class file that has been changed by every
single one of the contributors that participated in the history of the monolith. Following the defi-
nition of the contributor coupling, this file will be coupled to every other class file in the monolith.
The large number of contributors on the central file will also cause the couplings towards this file
to be very high in terms of weight, such that the minimum spanning tree results in a star shape

72 Chapter 8. Evaluation

as in Figure 8.7. The weights of the edges towards the outside of the star are weaker than the
ones near to the centre. This causes a degenerate behaviour of the clustering algorithm where
despite deleting the lowest-weight edge in every step, the number of components does not in-
crease but stays at 1 connected component. Only the outer nodes are iteratively cut away from
the star shape. At the end, the remaining graph will still always contain the central class node and
it will be the only remaining connected component and hence the only remaining microservice
candidate. This remaining candidate will by definition have the same team size as the original
monolith since the central node exhibits all of the contributors as the original monolith. This
manifests itself in a tsr value of 1 and thus skewing the distribution of the experiments where the
contributor coupling is involved towards higher tsr values. A possible countermeasure against
these situations is to include the time interval information in the computation of the contributor
coupling. This means, detecting couplings only when contributors have changed the same file in
the same fixed time interval – similar as in the computation of the logical coupling.
Despite the described phenomenon, the performance of the presented approach with respect to
the reduction of team size and complexity is clearly confirmed as satisfactory by the above results.

8.4.3 External Communication Ratio

The external communication ratio acts as a proxy for the amount of interfacing or communication
a microservice team is expected to have with the teams of the other recommended generated
microservices. It represent the percentage of the team’s members that also have links to other
microservices, and hence will necessarily generate the need for inter-team communication.

Figure 8.8: Boxplot of the external communication ratio (ecr) results for the sample projects

8.4 Results 73

Figure 8.8 shows that for the majority of the strategy combinations, the external communica-
tion ratio is rather low, with median values below 0.5 for the CC & SC, LC & CC & SC, LC & SC
and SC experiment series. These values can be considered quite satisfactory since the approach
that achieved those results did not impose any assumptions or requirements on the prior team
structure or development process but still manages to find microservice candidates that exhibit
such low ecr values.
There are also less satisfying observations in the evaluation results in Figure 8.8. A closer investi-
gation of the boxplot reveals that some of the upper whiskers and upper quartiles are very high,
with values between 0.8 and 1.0 for the whiskers and values very close to 1.0 for the quartiles.
Again, it is evident that all but one of the strategy combinations that exhibit these high values
involve the contributor coupling strategy. The detailed experiment results provide more insight
about this. It becomes apparent that the skew towards high values is caused by several reposito-
ries that exhibit ecr values of 1.0 after the microservice extraction. Upon further comparison to
the numbers of the previous experiment about the team size reduction, it is clear that these values
are caused by the same sample projects. As described in detail in the section above, the contribu-
tor coupling strategy produces a resulting graph that consists of only one connected component
and hence recommends only that component as a microservice candidate. Since the computation
of the ecr metric involves computing the overlapping set of developers among different services,
for the special case of one service the value will default to 1.0.
The top 3 performing strategy combinations with respect to the external communication ratio all
involve the semantic coupling strategy. This is a pattern that was already observed in the other
team-oriented metric in Section 8.4.2. A partial explanation for this lies in the difference between
the semantic coupling on one hand, and the other two strategies on the other hand. Both the
logical and contributor coupling rely on the revision history of the monolith to generate the cou-
pling weights for the graph. This means, class files related to higher development activities –
i.e., larger number of developers contributing to them or a larger number of commits modifying
those files – have a higher tendency of ending up in the minimum spanning tree and hence in
the microservice recommendations. Therefore, classes coupled by these strategies might have
a general tendency to have a higher amount of contributors and hence microservices including
these classes will necessarily exhibit larger teams and hence also a tendency of larger communi-
cation overhead. Meanwhile the semantic coupling strategy does not favor classes with larger or
lower number of contributors or changes in the revision history. It is based solely on the semantic
content of the class code. The semantic similarity proves to be a very well-performing heuristic
for microservice recommendation with respect to team-aspects, as illustrated by the evaluation
results for the tsr and ecr metrics. These observations are statistically confirmed by the t-test re-
sults for the ecr distributions in table A.4. Whenever the results for a combination involving the
SC strategy are compared to series without the SC strategy, the p-values are very low, implying
significant differences.

74 Chapter 8. Evaluation

8.4.4 Average Domain Redundancy
Section 8.3.3 introduced and motivated the average domain redundancy metric as a proxy for the
amount of repetition and duplication with respect to domain concepts in the source code of dif-
ferent microservices. Recalling the often-used catchphrase to define microservices as separately
deployable units of componentization that focus on doing one thing well [Fow14], it is clear that it
is desirable for the average domain redundancy to be as low as possible.
Figure 8.9 shows a boxplot of the adr metric for the evaluation sample computed for all different
combinations of the three basic extraction strategies.

Figure 8.9: Boxplot of the average domain redundancy (adr) results for the sample projects

The boxplot in Figure 8.9 exhibits a few very interesting patterns. The first observation is
the fact that 6 out of the 7 strategy combinations deliver very satisfactory domain redundancy
distributions. The median of 4 out of those 6 experiment series is significantly lower than 0.25,
meaning that considerably less than a quarter of the domain content in the microservice source
code is redundant between the services in the recommended extraction. Furthermore, one might
intuitively assume that the semantic coupling strategy will perform very well on this metric – and
rightfully so – because it optimizes the coupling graph for domain-specific clustering. A look at
the results in Figure 8.9 supports this intuition: The adr values produced by the SC strategy in iso-
lation have the lowest median. The t-test results partially confirm this observation with p-values
below 0.05 for 3 out of 5 comparisons involving the isolated SC experiments. The two cases where
the p-value is above 0.05 involve the SC strategy in both comparison data sets, once isolated and

8.4 Results 75

once in combination with other strategies. This explains the less significant difference in these
t-tests.
The only strategy that falls out of the consistently satisfying results is the contributor coupling
strategy (CC). Despite the median of adr for the CC experiments being well below the hard thresh-
old of 0.5, the upper quartile is extremely high and the results show generally a stronger skew to
higher values than for the other strategies. This phenomenon can be attributed to the fact that
the skill distribution among developers in open-source projects is not domain-oriented but rather
technology-dependent. This means, front-end developers tend to contribute to the same files
independent of the domain content of those files. The same holds analogously for back-end or
database developers. Due to the way the contributor coupling is computed, this situation leads
to class files being coupled into the same microservice despite having low semantic and domain-
specific cohesiveness. Consequently, this leads to higher domain redundancy among different
service candidates.
Generally, the observed adr results are very promising and show that both the change information
of a repository and the contents of its source code are yielding sources of information to generate
microservice recommendations that are well-separated in a domain-oriented sense.

Chapter 9

Conclusion

This thesis focused on finding a formal way to extract microservice recommendations from the
source code and revision history of monolith code bases. Chapter 2 introduces the basic concepts
for monoliths and microservice architectures and outlines the major trade-offs. The related work
is presented in Chapter 3. Promising techniques, similar approaches and previous attempts at
related problems from disciplines such as software maintenance, reverse engineering and service
decomposition are outlined and discussed. The prototype and the underlying formal extraction
model presented in this thesis is the first of its kind in the area of microservice extraction from
monoliths. As discussed in more detail in Section 3, there have been recent attempts at the same
problem such as ServiceCutter [GKGZ16], but none of these rely on an algorithmic analysis of
static repository information such as source code and revision history. The related approaches
discussed in Chapter 3 leave the generation of the necessary coupling information and repre-
sentation of the monolith to the user, while the extraction model and the strategies presented in
this thesis provide an automatic and implementable way of mining repositories for microservice
extraction, thus greatly reducing the complexity and overhead for the architect in a refactoring
scenario.
Chapter 4 introduces the two-stage extraction model, which provides the formal answer to re-
search question RQ1. The first sub-question RQ1.1 concerning the extraction strategies that ag-
gregate structured information from static sources about a monolithic code base is answered in
detail in Chapter 5, where three strategies are presented: the logical coupling strategy, the con-
tributor coupling strategy and the semantic coupling strategy. The graph-based model allows
for future work on the extraction strategies to be applied and integrated to the extraction model
very easily. Chapter 6 explains the algorithm used to extract microservice candidate from the
constructed graph model and thus constitutes the contribution for RQ1.2.
The next chapters 7 and 8 contribute answers for the second research question and its sub goals.
Information with respect to RQ2 about the implementation such as its architectural design and
complexity are given in Chapter 7. Chapter 8 is concerned with the evaluation of the prototype in
order to answer the research questions RQ2.1 concerning the performance evaluation, and RQ2.2
for the evaluation of the quality of the recommended microservice candidates.

78 Chapter 9. Conclusion

9.1 Outcomes
In this section, the outcomes and answers to the research questions are discussed.

RQ1: What is the design of a formal extraction model that uses static information
to extract microservices from monolithic code bases?

Outcome: The constructed formal extraction model represents a monolith as a undi-
rected, weighted graph of class nodes, where the edge weights are determined by
coupling strategies that mine the monolith for static information.

RQ1.1: What formal strategies can be constructed to mine monolithic code bases for
information that helps in the extraction of microservices?

Outcome: Three extraction strategies were found: The logical coupling, based on co-
change of source files, the contributor coupling based on the sets of shared authors
among source files, and the semantic coupling strategy which is based on the domain-
specific identifier contents of the source files.

RQ1.2: What algorithm can use the information aggregated by the extraction strate-
gies to extract microservice candidates?

Outcome: The extraction is performed by a minimum-spanning-tree based edge-deletion
algorithm that removes the edges with the lowest couplings until the desired structure
is achieved. The resulting connected components correspond to microservice recom-
mendations.

RQ2: How can we build a research prototype that implements the formal extraction
model and automatically detects candidates for microservice extraction?

Outcome: The prototype is implemented as a three-tiered web application based on
RESTful principles. It uses the Spring framework as a basis for the back-end and
AngularJS with HTML5 as a front-end technology.

RQ2.1: What is the performance of the implemented prototype with respect to exe-
cution time?

Outcome: The performance of the strategies depends on different factors such as the
history size of the monolith, the number of classes in the monolith and the total num-
ber of LOC. The overall performance is satisfying and there are no instances of unac-
ceptable performance behaviour in the sample.

9.1 Outcomes 79

RQ2.2: What is the quality of the microservice recommendations generated by the
prototype?

Outcome: Four quality metrics were introduced to evaluate the microservice recom-
mendation quality. With respect average microservice size, the results indicate that the
recommended microservices conform with microservice sizing reported by empirical
studies of industry practices. The team size reduction ratio shows that the each of the
strategy combinations produces microservices that allow the team size to be lower
than half the original monolith’s team size. The average domain redundancy results in-
dicate that a majority of the strategy combinations yield microservices that have very
low domain redundancy and repetition.

Discussion
For the logical coupling and contributor coupling, the performance evaluation indicates that there
is a growth of the execution time with the size of the revision history that is being analyzed. Any-
how, this is not the entire picture. The graphs in Section 8.2.1 and 8.2.2 show variations and spikes
that are caused by other factors such as the number of classes in the monolith or the size of the
average change set. Nevertheless, all the performance experiments indicate that the protoype has
a satisfying performance for interactive usage in a refactoring scenario.
There are several outcomes and observations from the evaluation of the resulting microservice
properties. The average microservice size experiment results indicate that the size of the recom-
mended microservices does not vary significantly with different extraction strategies. Rather,
the clustering algorithm and its parameter configuration is the defining factor. The achieved
microservice sizes comply with previously empirically surveyed microservice sizing data, thus
delivering satisfying microservice sizing. The team size reduction measurements show that the ex-
traction tool manages to drive down the microservice team size to a quarter of the monolith’s
team size or even lower. This holds for all extraction strategies except the contributor coupling
strategy. It was discovered that the contributor coupling strategy creates degenerate graphs when
there are special class files that have had at least one contribution by every author in the mono-
lith’s team. It leads to a star-shaped coupling graph that is always reduced to one microservice
recommendation with poor team-aspect metrics. Nevertheless, the general team size reduction
factor across all experiments is very promising and satisfying. Another team-oriented property
of the recommended microservices is investigated with the external communication ratio. While
the results in this category are not as convincing as for the other metrics, a majority of the strat-
egy combinations still exhibit satisfactory median values where the external communication ratio
is kept at 0.5 or lower. This indicates that the communication overhead for the generated mi-
croservice teams is kept at an acceptable rate. Again, the mentioned weakness of the contributor
coupling strategy manifests itself in skewed results for the combinations involving that strategy.
Redundancy of domain-aspects between the resulting services was the fourth metric used to eval-
uate the recommendations for the sample projects. Six of the seven strategy combinations perform
very well in this metric; the reported median values for domain redundancy are consistently at
0.3 or even lower for most cases. Only recommendations generated with the contributor coupling
alone without any other strategy show more widely distributed results that are skewed towards

80 Chapter 9. Conclusion

higher redundancy. Surprisingly, a combination of the logical, contributor and semantic coupling
performs slightly better than the semantic coupling alone, even though the semantic coupling
metric is intuitively expected to outperform all other variants in this metric.
In general, the outcomes can be summarized as follows. The observations during the derivation
of the algorithms and the evaluation show that the choice and design of the coupling strategies
is only one side of the coin. The clustering algorithm used on the coupling graph in the sec-
ond stage proved to be equally determining when it comes to the recommendation results. Over
all four qualitative metrics, the microservice recommendations for the sample showed satisfying
performance, thus successfully validating the approach presented here. There were relative dis-
crepancies between the strategies and combinations thereof. Across all the experiments, the con-
tributor coupling strategy was consistently underperforming the other strategies. On the other
end, the SC, LC & SC and LC & CC & SC combinations consistently outperformed the other
strategies, while not showing any significant differences between each other.

9.2 Limitations and Future Work

Despite the generally satisfying observations in the evaluation, the approach presented here has
its limitations. One limitation is the fact that the extraction model is based on classes as the
atomic unit of computation in the strategies and the coupling graph. While this premise lends it-
self nicely to a graph-based extraction, it limits the available leeway when refactoring monoliths.
Using methods, procedures or functions as atomic units of extraction would potentially greatly
improve the granularity and precision of the code rearrangement and reorganization. The pre-
sented strategies and algorithms would not change much conceptually, but the implementation
of the approach on a method level would be much more involved and the execution time perfor-
mance would very likely suffer.
The microservice candidates generated by the tool presented in this thesis are only to be inter-
preted as recommendations and not are not to be viewed as finished and fixed microservices that
can be applied. Rather, it acts as a refactoring support tool that points the architect in the right
direction when trying to discover which classes belong to the same microservices. While the
graph-based representation of the monoliths and microservices is a very flexible and promising
for formal analysis and algorithms such as the ones performed here, it abstracts away a lot of the
aspects that play a role in a microservices environment. In reality, microservices are more than
just collections of classes. Usually, a properly designed microservice has a clearly defined external
interface and a data storage that it owns.
The extraction model presented here circumvents the data and storage decomposition challenge
by assuming the presence of an object-relational-mapping system that represents data model en-
tities as classes that are treated just like any ordinary class by the clustering algorithm. Of course,
microservices in practice will often lack such an ORM infrastructure, and hence the unsolved
problem of how to share or assign pre-existing databases to different services remains a limita-
tion of this thesis and a challenge for future work in the area.
Furthermore, the resulting microservice candidates lack any information about which parts of the

9.2 Limitations and Future Work 81

classes contained in the microservices are exposed to external consumers via an API and which
are kept encapsulated inside the service. While one could argue that the collection of all public
interfaces of all the classes in a microservice could be viewed as that services’ public API, this
would lead to service API’s that are too fine granular and expose too much functionality. This
is clearly a limitation of the approach presented here, and leaves room for further work on the
problem of automatically generating service API’s from monolithic source code. A limitation that
is somewhat related to the previously mentioned limitation of lacking public service APIs has to
do with the inter-service dependencies in the recommendation. The resulting microservice candi-
dates carry no information whatsoever as to which connections between the services themselves
exist. This is due to the fact that the extraction model builds a graph representation of the mono-
lith based solely on static repository and source code information. In a microservices world, links
between microservices – e.g., services calling another to compose use cases or functionality – are
a inherently dynamic aspect, and therefore cannot be recovered using static techniques as in this
thesis. A possible way to tackle this limitation is to let the user of the refactoring tool provide the
necessary calling and link information.
The clustering algorithm that divides the coupling graph into microservice candidates operates
on the minimum spanning tree of the coupling graph, and not on the entire graph. This was
introduced to guarantee that every edge deletion will lead to an increase in the number of con-
nected components. There is a drawback with this technique. By only considering the minimum
spanning tree, a great part of the couplings computed before are simply left out of the further
extraction. In other words, some coupling information is lost. Of course, the edges and weights
that are ignored are the lowest by definition of the minimum spanning tree and hence the effect
of those edges might have been limited anyway if they were further considered in the extraction.
Nevertheless, it is an option for future work to look for clustering algorithms that make better use
of the aggregated coupling information.
The evaluation presented for the prototype evaluates the implemented tool with respect to per-
formance and recommendation quality. But evaluation is strongly geared towards the extraction
strategies. A more detailed study of the impact of the clustering algorithm parameters, such as the
number of partitions or the maximum connected component size would likely lead to a better un-
derstanding of the extraction behaviour. Similarly, the configuration of the combination weights
for the different strategies is also not yet studied in depth. A quantitative analysis of experiments
run with different weights for the different strategies when using all the strategies in combination
is necessary to utilize the presented approach to its optimal potential. To make the clustering
approach less sensitive to initial conditions and remove the need for initial parametrization of the
clustering steps, a score-guided system is a promising approach. In such a system, the clustering
algorithm continuously computes quality metrics such as the ones presented in the evaluation
chapter. The extraction ends when satisfying metric values are achieved. Implementation-wise,
the graph based procedures used throughout this work would profit from the use of a proper
graph-processing framework. Graph processing frameworks such as Signal/Collect [SBC10] en-
able graph processing at a much larger scale and provide efficient abstractions for graph-related
problems and helpful infrastructure such as score-guided execution and convergence detection.

Appendix A

84 Chapter A. Appendix

Appendix

A.1 Repository Source List for Sample Projects

Table A.1: Repository locations for the sample projects
Project Name Source
BroadLeaf DemoSite https://github.com/BroadleafCommerce/DemoSite
Mayocat Shop https://github.com/mayocat/mayocat-shop
OpenCMS https://github.com/alkacon/opencms-core
TNTConcept https://github.com/autentia/TNTConcept
PetClinic https://github.com/spring-projects/spring-petclinic
Sunrise Shop https://github.com/commercetools/commercetools-sunrise-java
Helpy https://github.com/scott/helpy
Spina https://github.com/denkGroot/Spina
Sharetribe https://github.com/sharetribe/sharetribe
Hours https://github.com/DefactoSoftware/Hours
Rstat.Us https://github.com/hotsh/rstat.us
Kandan https://github.com/kandanapp/kandan
Fulcrum https://github.com/fulcrum-agile/fulcrum
Redmine https://github.com/edavis10/redmine
Chiliproject https://github.com/chiliproject/chiliproject
DjangoCMS https://github.com/divio/django-cms/
Django Fiber https://github.com/ridethepony/django-fiber
Mezzanine https://github.com/stephenmcd/mezzanine/
Wagtail https://github.com/wagtail/wagtail
Mayan https://gitlab.com/mayan-edms/mayan-edms
Django-Shop https://github.com/awesto/django-shop
Django Oscar https://github.com/django-oscar/django-oscar
Taiga Black https://github.com/taigaio/taiga-back
Django-Wiki https://github.com/django-wiki/django-wiki

A.2 Welch T-test results for the average microservice size (ams) 85

A.2 Welch T-test results for the average microser-
vice size (ams)

Table A.2: T-test results for all pairs of strategy combinations with respect to average microservice size
data set x data set y mean x mean y t-value p-value df 95 % conf. interval
LC CC 372.823 641.915 -1.519 0.141 25.719 [-633.394, 95.208]
LC SC 372.823 315.950 0.732 0.469 36.180 [-100.647, 214.392]
CC SC 641.915 315.950 1.901 0.070 22.959 [-28.867, 680.798]
LC,CC LC 720.307 372.823 1.529 0.141 22.172 [-123.707, 818.677]
LC,CC CC 720.307 641.915 0.286 0.776 35.856 [-477.286, 634.070]
LC,CC SC 720.307 315.950 1.814 0.084 20.623 [-59.812, 868.527]
LC,CC LC,SC 720.307 281.256 2.000 0.060 19.420 [-19.776, 897.878]
LC,CC CC,SC 720.307 344.224 1.576 0.127 26.069 [-114.357, 866.523]
LC,CC LC,CC,SC 720.307 446.580 0.925 0.361 37.705 [-325.583, 873.037]
LC,SC LC 281.256 372.823 -1.361 0.186 25.156 [-230.053, 46.921]
LC,SC CC 281.256 641.915 -2.159 0.043 20.769 [281.256, 641.915]
LC,SC SC 281.256 315.950 -0.685 0.499 29.596 [-138.153, 68.766]
LC,SC CC,SC 281.256 344.224 -0.636 0.532 20.041 [-269.425, 143.490]
LC,SC LC,CC,SC 281.256 446.580 -0.822 0.421 19.501 [-585.563, 254.915]
CC,SC LC 344.224 372.823 -0.248 0.806 31.584 [-263.363, 206.166]
CC,SC CC 344.224 641.915 -1.555 0.130 31.789 [-687.754, 92.371]
CC,SC SC 344.224 315.950 0.266 0.793 25.662 [-190.457, 247.005]
CC,SC LC,CC,SC 344.224 446.580 -0.461 0.648 27.295 [-557.237, 352.525]
LC,CC,SC LC 446.580 372.823 0.352 0.728 22.778 [-360.028, 507.543]
LC,CC,SC CC 446.580 641.915 -0.753 0.456 37.321 [-720.846, 330.175]

86 Chapter A. Appendix

A.3 Welch T-test results for the team size reduction
ratio (tsr)

Table A.3: T-test results for all pairs of strategy combinations with respect to team size reduction
data set x data set y mean x mean y t-value p-value df 95 % conf. interval
LC CC 0.276 0.390 -1.591 0.120 36.364 [-0.259, 0.031]
LC SC 0.276 0.156 2.344 0.025 36.027 [0.016, 0.225]
CC SC 0.390 0.156 3.590 0.001 29.758 [0.101, 0.368]
LC,CC LC 0.399 0.276 1.711 0.096 34.890 [-0.023, 0.268]
LC,CC CC 0.399 0.390 0.106 0.916 38.972 [-0.158, 0.175]
LC,CC SC 0.399 0.156 3.719 28.337 0.001 [0.109, 0.377]
LC,CC LC,SC 0.399 0.147 3.776 0.001 29.918 [0.116, 0.389]
LC,CC CC,SC 0.399 0.164 3.047 0.004 36.516 [0.079, 0.391]
LC,CC LC,CC,SC 0.399 0.165 3.092 0.004 36.836 [0.081, 0.388]
LC,SC LC 0.147 0.276 -2.435 0.020 37.251 [-0.237, -0.022]
LC,SC CC 0.147 0.390 -3.649 0.001 31.368 [-0.380, -0.107]
LC,SC SC 0.147 0.156 -0.207 0.837 38.416 [-0.099, 0.080]
LC,SC CC,SC 0.147 0.164 -0.290 0.774 31.114 [-0.140, 0.105]
LC,SC LC,CC,SC 0.147 0.165 -0.301 0.766 33.276 [-0.137, 0.102]
CC,SC LC 0.164 0.276 -1.708 0.096 35.986 [-0.245, 0.021]
CC,SC CC 0.164 0.390 -2.936 0.006 37.706 [-0.382, -0.070]
CC,SC SC 0.164 0.156 0.142 0.888 29.435 [-0.111, 0.128]
CC,SC LC,CC,SC 0.164 0.165 -0.002 0.998 36.851 [-0.142, 0.142]
LC,CC,SC LC 0.165 0.276 -1.742 0.090 37.857 [-0.242, 0.018]
LC,CC,SC CC 0.165 0.390 -2.979 0.005 38.132 [-0.379, -0.072]

A.4 Welch T-test results for the external communication ratio (ecr) 87

A.4 Welch T-test results for the external communi-
cation ratio (ecr)

Table A.4: T-test results for all pairs of strategy combinations with respect to external communication ratio
data set x data set y mean x mean y t-value p-value df 95 % conf. interval
LC CC 0.494 0.823 -5.448 2.68E-06 40.716 [-0.452, -0.207]
LC SC 0.494 0.397 1.791 0.080 48.026 [-0.012, 0.205]
CC SC 0.823 0.397 6.688 6.02E-08 38.660 [0.297, 0.555]
LC,CC LC 0.808 0.494 4.878 2.20E-05 35.815 [0.184, 0.445]
LC,CC CC 0.808 0.823 -0.212 0.834 38.468 [-0.163, 0.132]
LC,CC SC 0.808 0.397 6.090 5.38E-07 35.797 [0.274, 0.548]
LC,CC LC,SC 0.808 0.345 6.690 7.95E-08 36.417 [0.323, 0.603]
LC,CC CC,SC 0.808 0.405 4.872 2.25E-05 35.802 [0.236, 0.572]
LC,CC LC,CC,SC 0.808 0.378 5.878 8.57E-07 37.752 [0.282, 0.578]
LC,SC LC 0.345 0.494 -2.654 0.011 43.400 [-0.262, -0.036]
LC,SC CC 0.345 0.823 -7.294 8.93E-09 38.664 [-0.611, -0.346]
LC,SC SC 0.345 0.397 -0.880 0.384 38.655 [-0.173, 0.068]
LC,SC CC,SC 0.345 0.405 -0.779 0.442 32.331 [-0.215, 0.096]
LC,SC LC,CC,SC 0.345 0.378 -0.498 0.621 37.371 [-0.167, 0.101]
CC,SC LC 0.405 0.494 -1.237 0.226 0.226 [-0.237, 0.058]
CC,SC CC 0.405 0.823 -5.248 7.62E-06 34.914 [-0.581, -0.257]
CC,SC SC 0.405 0.397 0.096 0.924 31.245 [-0.146, 0.160]
CC,SC LC,CC,SC 0.405 0.378 0.333 0.741 34.641 [-0.136, 0.189]
LC,CC,SC LC 0.378 0.494 -1.904 0.064 38.522 [-0.239, 0.007]
LC,CC,SC CC 0.378 0.823 -6.386 1.52E-07 38.948 [-0.587, -0.304]

88 Chapter A. Appendix

A.5 Welch T-test results for the average domain re-
dundancy (adr)

Table A.5: T-test results for all pairs of strategy combinations with respect to average domain redundancy
data set x data set y mean x mean y t-value p-value df 95 % conf. interval
LC CC 0.304 0.494 -2.668 0.018 14.255 [-0.343, -0.038]
LC SC 0.304 0.160 4.671 0.000 23.314 [0.080, 0.207]
CC SC 0.494 0.160 5.097 0.000 10.346 [0.189, 0.479]
LC,CC LC 0.296 0.304 -0.154 0.880 19.672 [-0.109, 0.094]
LC,CC CC 0.296 0.494 -2.621 0.019 16.044 [-0.358, -0.038]
LC,CC SC 0.296 0.160 3.457 0.006 9.897 [0.048, 0.224]
LC,CC LC,SC 0.296 0.195 2.379 0.033 13.010 [0.009, 0.192]
LC,CC CC,SC 0.296 0.164 3.314 0.007 10.436 [0.044, 0.221]
LC,CC LC,CC,SC 0.296 0.188 2.419 0.028 15.723 [0.013, 0.204]
LC,SC LC 0.195 0.304 -3.138 0.004 32.687 [-0.178, -0.038]
LC,SC CC 0.195 0.494 -4.433 0.001 11.532 [-0.446, -0.151]
LC,SC SC 0.195 0.160 1.785 0.085 27.318 [-0.005, 0.076]
LC,SC CC,SC 0.195 0.164 1.511 0.141 30.568 [-0.011, 0.074]
LC,SC LC,CC,SC 0.195 0.188 0.264 0.793 35.698 [-0.052, 0.067]
CC,SC LC 0.164 0.304 -4.446 0.000 25.131 [-0.204, -0.075]
CC,SC CC 0.164 0.494 -5.013 0.000 10.554 [-0.476, -0.184]
CC,SC SC 0.164 0.160 0.277 0.784 32.200 [-0.024, 0.032]
CC,SC LC,CC,SC 0.164 0.188 -0.931 0.360 26.657 [-0.076, 0.029]
LC,CC,SC LC 0.188 0.304 -3.092 0.004 37.297 [-0.192, -0.040]
LC,CC,SC CC 0.188 0.494 -4.443 0.001 12.591 [-0.456, -0.157]

A.6 Installation and Setup of the Prototype 89

A.6 Installation and Setup of the Prototype
The accompanying prototype comes in two different repositories: microserviceExtraction-
backend which contains the Spring back-end application and microserviceExtraction-

frontend containing the front-end written in AngularJS. In the following, the set up and ex-
ecution of the two components is outlined. Note that the back-end project has to be built and
executed before the front-end application.

A.6.1 Back-End
The back-end requires at least Maven 1 version 3.3.9 and Java version 1.8 to be successfully built
and executed.
Navigate to the root of the microserviceExtraction-backend directory. Then, build the
project by executing:

mvn install

After the Maven install task reports a successful build, the back-end server can be run with the
integrated Tomcat container using Maven’s Spring-Boot plugin:

mvn spring-boot:run

If the startup command is successful, the Maven output will report:

Tomcat started on port(s): 8080 (http)

A.6.2 Front-End
The front-end requires a distribution of the nodeJS 2 environment version 6.2.1 or higher and the
npm 3 build tool on version 2.14.7 or higher.
First, install all the necessary JavaScript dependencies using npm:

npm install

The installation of the dependencies might take a few minutes. Upon successful installation of
the npm dependencies, the output will display a list of all the installed dependencies.
Finally, the front-end application can be started using:

npm start

A successful startup lists the Access URLs on the standard output. The default location of the
front-end is http://localhost:5555 and can be accessed with any modern web browser.

1https://maven.apache.org/
2https://nodejs.org/en/
3https://www.npmjs.com/

https://maven.apache.org/
https://nodejs.org/en/
https://www.npmjs.com/

90 Chapter A. Appendix

Bibliography

[Ła15] Weronika Łabaj. Goodbye microservices, hello right-
sized services. http://particular.net/blog/

goodbye-microservices-hello-right-sized-services, 2015. Accessed:
2016-08-16.

[Bal99] Thomas Ball. The concept of dynamic analysis. In Software Engineer-
ing—ESEC/FSE’99, pages 216–234. Springer, 1999.

[BDLMO10] Gabriele Bavota, Andrea De Lucia, Andrian Marcus, and Rocco Oliveto. Software
re-modularization based on structural and semantic metrics. In 2010 17th Working
Conference on Reverse Engineering, pages 195–204. IEEE, 2010.

[BDLMO13] Gabriele Bavota, Andrea De Lucia, Andrian Marcus, and Rocco Oliveto. Using
structural and semantic measures to improve software modularization. Empirical
Software Engineering, 18(5):901–932, 2013.

[Bel16] Donald Belcham. Microservice sizing. http://www.westerndevs.com/

microservices-sizing/, 2016. Accessed: 2017-01-25.

[BH98] Ivan T Bowman and Richard C Holt. Software architecture recovery using conway’s
law. In Proceedings of the 1998 conference of the Centre for Advanced Studies on Collabo-
rative research, page 6. IBM Press, 1998.

[BHJ15] Armin Balalaie, Abbas Heydarnoori, and Pooyan Jamshidi. Microservices migration
patterns. Technical report, Tech. Rep. TR-SUTCE-ASE-2015-01, Automated Software
Engineering Group, Sharif University of Technology, Tehran, Iran, 2015.

[BHJ16] Armin Balalaie, Abbas Heydarnoori, and Pooyan Jamshidi. Microservices archi-
tecture enables devops: Migration to a cloud-native architecture. IEEE Software,
33(3):42–52, 2016.

[BWZ15] Len Bass, Ingo Weber, and Liming Zhu. DevOps: A Software Architect’s Perspective.
Addison-Wesley Professional, 2015.

[BYV+09] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg, and Ivona
Brandic. Cloud computing and emerging it platforms: Vision, hype, and reality for

http://particular.net/blog/goodbye-microservices-hello-right-sized-services
http://particular.net/blog/goodbye-microservices-hello-right-sized-services
http://www.westerndevs.com/microservices-sizing/
http://www.westerndevs.com/microservices-sizing/

92 BIBLIOGRAPHY

delivering computing as the 5th utility. Future Generation computer systems, 25(6):599–
616, 2009.

[CC90] Elliot J. Chikofsky and James H Cross. Reverse engineering and design recovery: A
taxonomy. IEEE software, 7(1):13–17, 1990.

[CK94] Shyam R Chidamber and Chris F Kemerer. A metrics suite for object oriented design.
IEEE Transactions on software engineering, 20(6):476–493, 1994.

[Con68] Melvin E Conway. How do committees invent. Datamation, 14(4):28–31, 1968.

[Cor09] Thomas H Cormen. Introduction to algorithms. MIT press, 2009.

[Cre14] Stephen Cresswell. The granularity of a microservice. https://www.

guidesmiths.com/blog/post/the-granularity-of-a-microservice,
2014. Accessed: 2017-01-25.

[Dum04] Susan T Dumais. Latent semantic analysis. Annual review of information science and
technology, 38(1):188–230, 2004.

[Eva04] Eric Evans. Domain-driven design: tackling complexity in the heart of software. Addison-
Wesley Professional, 2004.

[Fie00] Roy Thomas Fielding. Architectural styles and the design of network-based software ar-
chitectures. PhD thesis, University of California, Irvine, 2000.

[Fow14] Martin Fowler. Microservices: a definition of this new architectural term. http://
martinfowler.com/articles/microservices.html, 2014. Accessed: 2016-
08-16.

[Gam95] Erich Gamma. Design patterns: elements of reusable object-oriented software. Pearson
Education India, 1995.

[GHJ98] Harald Gall, Karin Hajek, and Mehdi Jazayeri. Detection of logical coupling based
on product release history. In Software Maintenance, 1998. Proceedings., International
Conference on, pages 190–198. IEEE, 1998.

[GJK03] Harald Gall, Mehdi Jazayeri, and Jacek Krajewski. Cvs release history data for de-
tecting logical couplings. In Software Evolution, 2003. Proceedings. Sixth International
Workshop on Principles of, pages 13–23. IEEE, 2003.

[GKGZ16] Michael Gysel, Lukas Kölbener, Wolfgang Giersche, and Olaf Zimmermann. Service
cutter: A systematic approach to service decomposition. In European Conference on
Service-Oriented and Cloud Computing, pages 185–200. Springer, 2016.

[GL02] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility of consistent,
available, partition-tolerant web services. ACM SIGACT News, 33(2):51–59, 2002.

[GN02] Michelle Girvan and Mark EJ Newman. Community structure in social and biolog-
ical networks. Proceedings of the national academy of sciences, 99(12):7821–7826, 2002.

https://www.guidesmiths.com/blog/post/the-granularity-of-a-microservice
https://www.guidesmiths.com/blog/post/the-granularity-of-a-microservice
http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html

BIBLIOGRAPHY 93

[GT08] Michael T Goodrich and Roberto Tamassia. Data structures and algorithms in Java.
John Wiley & Sons, 2008.

[Hof15] Todd Hoff. Deep lessons from google and ebay on building ecosystems
of microservices. http://highscalability.com/blog/2015/12/1/

deep-lessons-from-google-and-ebay-on-building-ecosystems-of.

html, 2015. Accessed: 2016-08-16.

[KAR+11] Ali Kazemi, Ali Nasirzadeh Azizkandi, Ali Rostampour, Hassan Haghighi, Pooyan
Jamshidi, and Fereidoon Shams. Measuring the conceptual coupling of services
using latent semantic indexing. In Services Computing (SCC), 2011 IEEE International
Conference on, pages 504–511. IEEE, 2011.

[KDG07] Adrian Kuhn, Stéphane Ducasse, and Tudor Gírba. Semantic clustering: Identifying
topics in source code. Information and Software Technology, 49(3):230–243, 2007.

[KNS+] Raghavan Komondoor, V Krishna Nandivada, Saurabh S Sinha, John Field, and
Watson Bangalore-Delhi-TJ. Using slicing to extract online services from batch pro-
grams.

[KR87] Dennis Kafura and Geereddy R. Reddy. The use of software complexity metrics in
software maintenance. IEEE Transactions on Software Engineering, 13(3):335, 1987.

[Lap08] Jean-Claude Laprie. From dependability to resilience. In 38th IEEE/IFIP Int. Conf.
On Dependable Systems and Networks, pages G8–G9. Citeseer, 2008.

[LJK+01] Jong Kook Lee, Seung Jae Jung, Soo Dong Kim, Woo Hyun Jang, and Dong Han
Ham. Component identification method with coupling and cohesion. In Software En-
gineering Conference, 2001. APSEC 2001. Eighth Asia-Pacific, pages 79–86. IEEE, 2001.

[LRM14] Antonio Lima, Luca Rossi, and Mirco Musolesi. Coding together at scale: Github as
a collaborative social network. arXiv preprint arXiv:1407.2535, 2014.

[LTSL09] Man Lan, Chew Lim Tan, Jian Su, and Yue Lu. Supervised and traditional term
weighting methods for automatic text categorization. IEEE transactions on pattern
analysis and machine intelligence, 31(4):721–735, 2009.

[LTV16] Alessandra Levcovitz, Ricardo Terra, and Marco Tulio Valente. Towards a tech-
nique for extracting microservices from monolithic enterprise systems. arXiv preprint
arXiv:1605.03175, 2016.

[Mar02] Robert C Martin. The single responsibility principle. The Principles, Patterns, and
Practices of Agile Software Development, pages 149–154, 2002.

[Mau15] Tony Mauro. Adopting microservices at netflix: Lessons
for architectural design. https://www.nginx.com/blog/

microservices-at-netflix-architectural-best-practices/, 2015.
Accessed: 2016-08-16.

http://highscalability.com/blog/2015/12/1/deep-lessons-from-google-and-ebay-on-building-ecosystems-of.html
http://highscalability.com/blog/2015/12/1/deep-lessons-from-google-and-ebay-on-building-ecosystems-of.html
http://highscalability.com/blog/2015/12/1/deep-lessons-from-google-and-ebay-on-building-ecosystems-of.html
https://www.nginx.com/blog/microservices-at-netflix-architectural-best-practices/
https://www.nginx.com/blog/microservices-at-netflix-architectural-best-practices/

94 BIBLIOGRAPHY

[MM01] Andrian Marcus and Jonathan I Maletic. Identification of high-level concept clones
in source code. In Automated Software Engineering, 2001.(ASE 2001). Proceedings. 16th
Annual International Conference on, pages 107–114. IEEE, 2001.

[Mor15] Ben Morris. How big is a microservice? http://www.ben-morris.com/

how-big-is-a-microservice/, 2015. Accessed: 2017-01-25.

[MV99] Jonathan I Maletic and Naveen Valluri. Automatic software clustering via latent
semantic analysis. In Automated Software Engineering, 1999. 14th IEEE International
Conference on., pages 251–254. IEEE, 1999.

[NBZ06] Nachiappan Nagappan, Thomas Ball, and Andreas Zeller. Mining metrics to pre-
dict component failures. In Proceedings of the 28th international conference on Software
engineering, pages 452–461. ACM, 2006.

[New15] Sam Newman. Building Microservices. " O’Reilly Media, Inc.", 2015.

[Nyg07] Michael Nygard. Release it!: design and deploy production-ready software. Pragmatic
Bookshelf, 2007.

[Par72] D. L. Parnas. On the criteria to be used in decomposing systems into modules.
Commun. ACM, 15(12):1053–1058, December 1972.

[PJ16] Claus Pahl and Pooyan Jamshidi. Microservices: A systematic mapping study. In
Proceedings of the 6th International Conference on Cloud Computing and Services Science,
pages 137–146, 2016.

[PM06] Denys Poshyvanyk and Andrian Marcus. The conceptual coupling metrics for
object-oriented systems. In ICSM, volume 6, pages 469–478, 2006.

[Pre08] Bruno R Preiss. Data structures and algorithms with object-oriented design patterns in
C++. John Wiley & Sons, 2008.

[PRFT07] Mikhail Perepletchikov, Caspar Ryan, Keith Frampton, and Zahir Tari. Coupling
metrics for predicting maintainability in service-oriented designs. In Software Engi-
neering Conference, 2007. ASWEC 2007. 18th Australian, pages 329–340. IEEE, 2007.

[Ram03] Juan Ramos. Using tf-idf to determine word relevance in document queries. In
Proceedings of the first instructional conference on machine learning, 2003.

[Ric14] Chris Richardson. Microservices: Decomposing applications for deployability and
scalability. https://www.infoq.com/articles/microservices-intro,
2014. Accessed: 2016-08-16.

[RKS+11] A Rostampour, A Kazemi, F Shams, P Jamshidi, and A Nasirzadeh Azizkandi. Mea-
sures of structural complexity and service autonomy. In Advanced Communication
Technology (ICACT), 2011 13th International Conference on, pages 1462–1467. IEEE,
2011.

http://www.ben-morris.com/how-big-is-a-microservice/
http://www.ben-morris.com/how-big-is-a-microservice/
https://www.infoq.com/articles/microservices-intro

BIBLIOGRAPHY 95

[RPL08] Romain Robbes, Damien Pollet, and Michele Lanza. Logical coupling based on fine-
grained change information. In 2008 15th Working Conference on Reverse Engineering,
pages 42–46. IEEE, 2008.

[RV04] Hajo A Reijers and Irene TP Vanderfeesten. Cohesion and coupling metrics for
workflow process design. In International Conference on Business Process Management,
pages 290–305. Springer, 2004.

[SBC10] Philip Stutz, Abraham Bernstein, and William Cohen. Signal/collect: graph algo-
rithms for the (semantic) web. In International Semantic Web Conference, pages 764–
780. Springer, 2010.

[SCL15] Gerald Schermann, Jürgen Cito, and Philipp Leitner. All the services large and mi-
cro: Revisiting industrial practice in services computing. In International Conference
on Service-Oriented Computing, pages 36–47. Springer, 2015.

[SRK+09] Santonu Sarkar, Shubha Ramachandran, G Sathish Kumar, Madhu K Iyengar,
K Rangarajan, and Saravanan Sivagnanam. Modularization of a large-scale busi-
ness application: A case study. IEEE software, 26(2):28–35, 2009.

[SS02] Eleni Stroulia and Tarja Systä. Dynamic analysis for reverse engineering and pro-
gram understanding. ACM SIGAPP Applied Computing Review, 10(1):8–17, 2002.

[SSB12] Robert F Stärk, Joachim Schmid, and Egon Börger. Java and the Java virtual machine:
definition, verification, validation. Springer Science & Business Media, 2012.

[Thö15] Johannes Thönes. Microservices. IEEE Software, 32(1):116–116, 2015.

[Til14] Stefan Tilkov. How small should your microservice be? https://www.innoq.

com/blog/st/2014/11/how-small-should-your-microservice-be/,
2014. Accessed: 2017-01-25.

[TVB12] Ricardo Terra, Marco Túlio Valente, and Roberto S Bigonha. An approach for extract-
ing modules from monolithic software architectures. In IX Workshop de Manutenção
de Software Moderna (WMSWM), pages 1–8, 2012.

[VRMB11] Luis M Vaquero, Luis Rodero-Merino, and Rajkumar Buyya. Dynamically scal-
ing applications in the cloud. ACM SIGCOMM Computer Communication Review,
41(1):45–52, 2011.

[Whe01] David A Wheeler. More than a gigabuck: Estimating gnu/linux’s size, 2001.

[ZW04] Thomas Zimmermann and Peter Weißgerber. Preprocessing cvs data for fine-
grained analysis. In Proceedings of the First International Workshop on Mining Software
Repositories, pages 2–6. sn, 2004.

https://www.innoq.com/blog/st/2014/11/how-small-should-your-microservice-be/
https://www.innoq.com/blog/st/2014/11/how-small-should-your-microservice-be/

	Introduction
	Motivation
	Contribution and Research Questions
	Thesis Outline

	Background
	Monoliths
	Microservices
	Definition
	Benefits
	Challenges

	Related Work
	System Decomposition
	Software Maintenance and Evolution
	Reverse Engineering
	Microservices
	Research Gap

	Extraction Model
	Basic Extraction Process
	Construction
	Clustering

	Extraction Strategies
	Logical Coupling
	Definition
	Example

	Semantic Coupling
	Definition
	Example

	Contributor Coupling
	Definition
	Example

	Combination of Strategies

	Clustering Algorithm
	MST-Based Graph Clustering
	Analysis

	Implementation
	Use Cases
	Architecture
	Back-End
	History Computation
	Logical Coupling Engine
	Semantic Coupling Engine
	Contributor Coupling Engine

	Front-End

	Evaluation
	Sample Selection
	Criteria
	Sample Projects

	Performance
	Logical Coupling Strategy
	Contributor Coupling Strategy
	Semantic Coupling Strategy

	Quality Metrics
	Size Aspect
	Team Aspect
	Domain Aspect

	Results
	Average Microservice Size
	Team Size Reduction
	External Communication Ratio
	Average Domain Redundancy

	Conclusion
	Outcomes
	Limitations and Future Work

	Appendix
	Repository Source List for Sample Projects
	Welch T-test results for the average microservice size (ams)
	Welch T-test results for the team size reduction ratio (tsr)
	Welch T-test results for the external communication ratio (ecr)
	Welch T-test results for the average domain redundancy (adr)
	Installation and Setup of the Prototype
	Back-End
	Front-End

