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Abstract

Software performance testing is a very important task in the development cycle of applications
and services. Regression between versions such as increased response time and lowered through-
put can lead to an inappropriate usage of resources, unsatisfied users, and eventually also a loss of
money. To make matters worse, performance testing is a tedious process; the test suites take long
to execute, but must be repeated several times to obtain expressive results. Additionally, software
is changing at a pace which makes it almost impossible to thoroughly test the performance of the
whole application before every release.
This thesis investigates the impacts of parallel execution of performance tests in cloud environ-
ments. Initially, it examines how performance tests suites can be split, distributed and executed
on several remote instances. For this purpose, the thesis introduces a tool called clopper which
stands for cloud-extended hopper and is based on a framework for performance history mining of
software projects. Clopper implements four different distribution algorithms which either split
the test suite on version- or test-level. In a further step, clopper is used to extract performance
metrics from three different projects. By means of these measurements, the distribution methods
are compared in terms of time, cost and quality.
The results reveal that parallel is always faster than non-parallel execution but at the same time,
that this does not imply savings of money. Depending on the use-case, one method is more
suitable than another. If the aim is to quickly obtain measurements which possibly contain inac-
curacies, one should distribute groups of consecutive versions. On the other hand, if the results
should be as stable as possible and time is not an urgent matter, the method which randomly
distributes version-test-tuples should be chosen. Distribution by versions obtains in parallel exe-
cution with six cloud instances a gain in time of factor 4.78. The completely randomized approach
is 5.30 times faster when using six instances instead of one.





Zusammenfassung

Das Testen von Performanz ist eine wichtige Aufgabe in der Software-Entwicklung von Ap-
plikationen und Diensten. Leistungseinbussen zwischen Versionen, wie zum Beispiel erhöhte
Antwortzeit oder verminderter Datendurchsatz können die Nutzerzufriedenheit beeinträchtigen
und zu unnötigem Ressourcenverbrauch sowie Kapitalverlust führen. Zu allem Überfluss sind
solche Tests mühselig durchzuführen und mit viel zeitlichem Aufwand verbunden. Nebst der
langen Ausführungszeit, sind viele Wiederholungen der Tests notwendig um aussagekräftige Re-
sultate zu erhalten. Ausserdem verändert sich Software so schnell, dass es nahezu unmöglich ist
vor jedem Release die Performanz einer ganzen Applikation zu testen.
Aus diesen Gründen untersucht die vorliegende Bachelorarbeit, wie sich Software-Leistungstests
parallelisieren und in Cloud-Umgebungen ausführen lassen und welche Auswirkungen dies hat.
In einem ersten Schritt wird erforscht, wie Test-Sammlungen aufgeteilt und zur Ausführung
einer Gruppe von virtuellen Cloud Instanzen zugeschrieben werden können. Für diese Auf-
gabe, präsentiert diese Arbeit ein Skript namens clopper, das auf einem Programm zur Erstellung
eines Performanz-Verlaufs von Software Projekten basiert. Clopper steht für cloud-extended hopper,
ist also eine Erweiterung des hopper-Programms für Cloud Computing. Clopper stellt vier ver-
schiedene Distributions-Algorithmen zur Verfügung. Die Testsammlung wird dabei entweder
nach Versionen oder Tests aufgeteilt. In einem weiteren Schritt wird clopper dann zur Perfor-
manzmessung dreier Software-Projekte eingesetzt. Mithilfe der gesammelten Messdaten werden
die Distributions-Algorithmen auf Zeit-, Kosten- und Qualitätsunterschiede untersucht.
Schlussendlich zeigt sich, dass parallele Ausführungen immer schneller als sequentielle Aus-
führungen sind. Aus den Ergebnissen lässt sich aber auch schliessen, dass eine schnellere Aus-
führung nicht unbedingt mit geringeren Kosten verbunden ist. Je nach Anwendungsfall ist de-
shalb eine andere Methode zu empfehlen. Falls möglichst schnell Messwerte vorliegen sollten,
die aber auch Inkonsistenzen enthalten dürfen, sollte jene Methode gewählt werden, die Grüp-
pchen aufeinanderfolgender Versionen verteilt. Wenn die Werte jedoch so stabil wie möglich sein
sollten und dabei die Ausführungsdauer nur eine geringe Rolle spielt, sollte man zu jener Meth-
ode tendieren, die Tupel von Versionen und Tests generiert und diese zufällig an die Instanzen
verteilt. Die erste Methode erzielt in einer parallelen Durchführung auf sechs virtuellen Instanzen
einen Zeitgewinn von Faktor 4.78. Mit dem komplett zufälligen Ansatz sind sechs Instanzen rund
5.30-mal schneller als eine einzelne.
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Chapter 1

Introduction

Performance is an important quality attribute of software applications and services. We experi-
ence performance for example in terms of response time when launching a web page: 0.1 seconds
are stated as immediate responding, 1 second is considered as seamless, but everything above is
sensed as a delay and the likelihood of aborting the task is increased [Nie10]. If a task has been
executed in the past and its response-time is thus known, we expect the process to behave accord-
ingly in all future repetitions. In case, a future execution shows worse behaviour this is considered
as Performance Regression.
As demonstrated by Google, performance regression can lead to significant losses. Researchers
simulated a regression by increasing latency in display of search result from 0.4 to 0.9 seconds.
As a consequence, they encountered a traffic loss of over 20% [May09]. Performance regression
therefore results in dissatisfaction among users and can lead to financial deficiencies [CS17].
For these reasons, it is important for software engineers to focus on measuring performance when
developing applications. Unfortunately, performance testing is not yet a well-established practice
since functional correctness is considered more important by developers [LB17]. Chen and Shang
even state that regression is often a consequence of functional bug fixing [CS17]. As a result, many
regression provoking root causes might not be detected [FJA+10].
To circumvent such problems, developers could use different approaches for automating perfor-
mance testing and regression detection. For example, there exist methods which continuously
monitor applications at runtime and obtain measurements for analysis [KWZK16]. Other ap-
proaches isolate different versions of applications and compare their outcomes [ABV16], [CS17],
[HMSZ14]. However, in-depth performance-testing of an application is time-consuming. Ex-
ecution of performance tests can take several hours, for large test suites even days [FJA+10].
Moreover, performance tests need to be repeated until the results become stable, and sources
of non-determinism such as garbage collectors or just-in-time-compilers can additionally affect ex-
ecution [HMSZ14], [ABV16]. To make matters worse, software is changing at a pace which
makes it impossible to thoroughly test all changes and the system as a whole until the next re-
lease [HMSZ14]. As a consequence, despite the plethora of tools and concepts, there exists no
state-of-the-art in performance testing [LB17].

It is a vicious circle: performance testing seems to be expensive and time-consuming, but if
on the other hand, regression occurs, the costs for finding and fixing its cause quickly explode
[HHF13]. This bachelor thesis aims to satisfy the need for efficient gathering of performance
metrics and evaluates how a distributed approach with parallel measurement gathering suits the
task.
In detail, the following research questions are investigated:

RQ 1: In what ways is it possible to distribute a performance test suite for parallel execution?
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RQ 2: How much time and costs can be saved by executing performance test suites in parallel?

RQ 3: Are the results obtained by different distribution techniques similar in terms of quality?

To answer the stated questions, this thesis first establishes a literature review. It differentiates
between existing optimization techniques for performance measuring and parallelized testing ap-
proaches. The findings are used to design a tool which is based upon a distributed architecture.
The tool is called clopper. Clopper stands for cloud-extended hopper and encapsulates a framework
for performance mining of software projects. It is able to fully automate the process of parallel
performance measurement gathering. By means of the obtained knowledge from the literature
review, clopper implements different algorithms to distribute a performance test suite among
several workers. In this context, the first research question is examined.
Besides test suite distribution, clopper provides functionality to monitor execution and assem-
bly of the final output. The tool is used in a next step to conduct an experimental evaluation of
the implemented methods. In order to provide answers to research question 2, this thesis sets
the focus on quantifiable measurements and compares the implemented methods in parallel and
non-parallel mode. For research question 3, the results are additionally examined in terms of
quality. It is measured how stable results are within a method, and whether there exist significant
differences between the alternatives.

The remainder of this thesis is structured as follows:
Chapter 2 sets the thesis into context and starts with a literature review in which it briefly defines
the concept of performance testing. It further refers to related work, existing tools and compares
them with the proposed solution. The design and implementation of the solution is discussed in
chapter 3 alongside supporting diagrams and graphics. There follows the setup and results of
the experimental evaluation in chapter 4. The research questions are also revisited in this chapter.
Chapter 5 finally summarizes and concludes this thesis.



Chapter 2

Background

This chapter gives an overview of the different notions of performance testing and characterises
the concept used in this thesis. Further presented are related concepts and tools in general, as
well as optimization approaches and performance testing research in distributed environments.
The chapter concludes with a description of the thesis’ parent tool hopper.

2.1 Definition
Performance testing can be ranked as a subset of software testing and performance engineering
[ZLZY13]. Whereas performance engineering approaches solely aim to improve performance,
performance testing also includes analytic activities (Woodside et al. in [MTHG14]). In general,
workload is put on a system and its behaviour examined. In this context, the term load testing
often occurs which in the traditional sense, focuses on the performance of applications as a whole
[MFB+07]. Besides conducting performance tests on application level, it is also possible to ap-
ply the principle of microbenchmarking on a lower level. In microbenchmarking, small but critical
pieces of code (e.g. functions) are isolated and performance measures taken [RCCB16], [GLS11].
Typically, measurements describing software quality attributes are obtained. These are for exam-
ple stability, speed, response time, memory or CPU utilization [KWZK16], [CH14].
The obtained measurements can subsequently be used for determination of performance regres-
sion. To do so, the results from different versions must be gathered and compared. If regression
occurs, the newer version shows in comparison with the prior one worse behaviour, e.g. uses
more resources or has less throughput [CH14], [Luo16b], [MFB+07], [FJA+10], [NAJ+12]. In liter-
ature, regression is also observed in the scope of functional testing where it defines a change which
leads to a defect [BMZP14], [CH14].
As it is a fact, performance tests have a long execution time. According to Foo et al.,a perfor-
mance test suite can run several days [FJA+10]. As a result, no commonly established standard
exists [LB17]. This thesis therefore aims to optimize the gathering of performance metrics and
presents in chapter 3 a parallelized approach.

2.2 Related Work
The performance test suite used in this thesis consists of a collection of microbenchmarks. Besides
displaying topics related to the approach in this thesis, the current section briefly evaluates on a
framework for creation and execution of such benchmarks on code-level. This section further
states optimization approaches for determination of regression. It must be noted that functional
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and performance regression do not examine the same kind of regression. The used approaches
are nonetheless similar and comparable with the approach used by this thesis.

2.2.1 Concepts and Tools
One of the basic concepts of measuring performance is monitoring. On the market, there are a
large number of tools available which gather measurements such as response time, memory, or
CPU utilization during execution of a program [KWZK16]. Popular are for example New Relic,
Dynatrace, and AppDynamics [HDS16].
Unfortunately, monitoring often results in the creation of big log files which are not just hard to
analyse but can also be a storage issue. Additionally, the complexity and the development-pace
of applications increases and makes thorough testing impossible [KWZK16].
A possible solution has been proposed by Kross et al. In their 2016 published paper, they present
a tool named PET which monitors an application and continuously evaluates the produced mea-
surements. The tool is suitable for big data since it implements a distributed database manage-
ment system [KWZK16]. This idea of continuously writing measurements to a central repository
is similar to the approach used by this thesis. The tool in this thesis however, uses a cloud storage
bucket for this purpose .
Another common approach in performance testing is described by the unit-test assumption. It
assumes that "the performance of relevant use cases of a program correlates with the perfor-
mance of at least a part of its unit tests" [RK16]. Or in other words, it is possible to focus on
system components rather than on the whole system when testing. This is exactly what profil-
ing methods are based on. While in monitoring, the whole application is examined, profiling
methods focus only on parts of codes. Profiling consists of instrumentation and sampling. Sam-
pling tools such as the HPCToolkit statistically determine samples of code and measure its perfor-
mance [DNM15], [ABV16]. In instrumentation on the other hand, marks are placed in the source
code which trigger a measurement during program execution and produce a trace [Luo16b]. In
assumption that some important piece of code might need longer to execute, Maplesden et al.
also take into account the cost and benefits of certain functions [MTHG16].
The concept of microbenchmarking goes into the same; components of code are isolated and only
these are measured. Since the design of such a test suite needs to take into consideration issues as
just-in-time-compiler (JIT-compiler), or multi-threading, it is not a trivial task [GLS11], [RCCB16].
The frameworks Java Microbenchmark Harness (JMH)1 and Google Caliper2 are commonly used
therefor [LB17], [RCCB16]. Since version 1.7, JMH is part of the Java Development Toolkit (JDK),
so it might be an emerging standard [LB17].

Java Microbenchmark Harness

This thesis mines microbenchmarks established by the JMH-framework. The following gives an
insight into the structure of such tests.
JMH-benchmarks are simple methods equipped with annotations [LB17]. It is mandatory to set
an @Benchmark-flag on top to clearly mark all methods which will be executed by JMH. In addi-
tion, there are several optional annotations available. With the @Param-flag for example, different
configurations can be assigned to a benchmark.
For some annotations, it is possible to set them in code or also by means of command-line param-
eters when starting the program. The difference is though that method-annotations are only valid
for a particular method whereas command-line parameters are globally applied and overwrite

1http://openjdk.java.net/projects/code-tools/jmh/
2https://github.com/google/caliper

http://openjdk.java.net/projects/code-tools/jmh/
https://github.com/google/caliper
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all individual annotations. A sample benchmark obtained from the project RDF4J3 is shown in
listing 2.1. The chosen benchmark-mode is AverageTime in which methods annotated with the
@Benchmark-flag are called and the average calling time over all worker threads is counted.4 The
output is given in milliseconds as specified by the flag @OutputTimeUnit.

@Benchmark

@BenchmarkMode(Mode.AverageTime)

@OutputTimeUnit(TimeUnit.MILLISECONDS)

public void noReasoning()

throws IOException

{

SailRepository sail = new SailRepository(new MemoryStore());

sail.initialize();

try (SailRepositoryConnection connection = sail.getConnection()) {

connection.begin();

connection.add(resourceAsStream("schema.ttl"), "", RDFFormat.TURTLE);

addAllDataSingleTransaction(connection);

connection.commit();

}

}

Listing 2.1: JMH-benchmark sample from project RDF4J

Listing 3.3.4 displays the console output obtained by the execution of the benchmark in listing
2.1. Literature recommends to first run the entire test suite in several warmup-iterations to ensure
all tests are fully initialized and optimized by the JIT-compiler [GLS11], [RCCB16]. Since the
execution of benchmarks is non-deterministic by nature, it is also common practice to collect the
output from multiple measurement runs. Such an approach should equilibrate influences of the
garbage collection [GLS11]. In order to assess independence during execution, JMH forks one
or several new Java processes for each group of iterations.5 In the example, the benchmark is
run in 10 warm-up - and 10 measurement iterations using 3 forks. From the metrics obtained by
the measurement iterations, the harness eventually calculates statistics. These are the minimum,
average and maximum alongside the standard deviation of the results, and the 99.9% confidence
interval.

2.2.2 Optimization Approaches
Approaches to optimize the execution of test suites are often applied in the different fields of test-
ing for regression. Code analysis techniques to find bottlenecks are very common. In the context
of load testing, Luo for example use genetic algorithms as well as machine learning techniques

3https://github.com/eclipse/rdf4j
4http://javadox.com/org.openjdk.jmh/jmh-core/0.9/org/openjdk/jmh/annotations/Mode.html
5http://java-performance.info/jmh/

https://github.com/eclipse/rdf4j
http://javadox.com/org.openjdk.jmh/jmh-core/0.9/org/openjdk/jmh/annotations/Mode.html
http://java-performance.info/jmh/
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# Run progress: 91.67% complete, ETA 00:00:28

# Fork: 3 of 3

# Warmup Iteration 1: 1.120 ms/op

# Warmup Iteration 2: 0.411 ms/op

# Warmup Iteration 3: 0.363 ms/op

(...)

Iteration 8: 0.113 ms/op

Iteration 9: 0.115 ms/op

Iteration 10: 0.107 ms/op

Result: 0.114 ±(99.9%) 0.007 ms/op [Average]

Statistics: (min, avg, max) = (0.106, 0.114, 0.162), stdev = 0.011

Confidence interval (99.9%): [0.107, 0.122]

# Run complete. Total time: 00:05:47

Benchmark (param) Mode Samples Score Score error Units

o.e.r.b.ReasoningBenchmark.noReasoning moreRdfs::12180 avgt 30 7.841 0.149 ms/op

o.e.r.b.ReasoningBenchmark.noReasoning longChain::5803 avgt 30 1.563 0.038 ms/op

o.e.r.b.ReasoningBenchmark.noReasoning medium::544 avgt 30 0.454 0.006 ms/op

o.e.r.b.ReasoningBenchmark.noReasoning simple::152 avgt 30 0.114 0.007 ms/op

Listing 2.2: Sample JMH output

to determine and thus eliminate regression patterns [Luo16b], [Luo16a]. Other researchers take
a selection upon the testing amount and likewise reduce the execution time [ABV16], [SYGM15],
[HMSZ14].
Shi et al. who examine functional regression, apply a principle called selection of reduction. They
first create a baseline performing an analysis on a single version of software. Based on this analy-
sis, superfluous tests are removed from the test suite. They then perform regression testing, once
again remove inconspicuous tests and end up with a small collection of regression provoking
tests [SYGM15]. Concerning performance regression, Huang et al. apply performance risk anal-
ysis to determine potentially regressive commits which are added to the test list whereas stable
commits are delayed or not tested at all [HMSZ14]. These approaches do not correspond to the
methods used in this thesis since it does not aim to determine regressive code and Shi et al. more-
over do this in the context of functional regression testing. Additionally, execution time should
not be reduced at the expense of the overall testing amount.
Closer is therefore the approach of Alcocer et al. With the sampling technique horizontal profiling,
they only consider every k-th version to collect run-time performance metrics and reduce execu-
tion time by this particular factor k [ABV16]. Alcocer’s et al. method is probably most similar
to the idea of distributing versions among different hosts used in this thesis; The total number
of versions to test is not reduced, but every k-th version is assigned to an instance and executed
there.
Besides Huang et al, all of the above stated researcher refer to releases when the term version is
used. In the context of this thesis, a version though denotes its sub-unit, i.e. a commit. The ap-
proach which will be presented at the upcoming International Conference on Software Maintenance
and Evolution 2017 (ICSME ’17) goes into the same direction. In order to determine performance
regression provoking patterns, Chen and Shang examined commits of several software projects.
With this approach on commit-level, they identified six code-patterns causing regression [CS17].
A technique proposed by Nguyen et al. goes a step beyond the scope of pure performance test-
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ing and focuses on optimizing the evaluation of the test output produced by load tests. The
researchers use statistics to determine regression and visualize the outcomes in so-called control
charts [NAJ+12]. Likewise, Heger et al. rather try to improve the schedule than overall testing
time. They execute performance tests in parallel to development. As a result, measurements are
always available and for example regression becomes immediately evident [HHF13].
Testing applied at an early stage of development has also been proposed by Mayer et al. But
while Heger et al. test the whole application, the latter split the test suite and separately concen-
trate on testing algorithms, methods and libraries [MSWM12]. The idea of splitting the test suite
reappears in this thesis. Kumar et al. would even claim that originally, test suites were generated
for a tester who had to execute them, gather the results and deliver the final output. Nowadays,
the test suite is split among multiple testers. The testers work in parallel and in the end, multi-
ple small groups of results must be combined [KKSLM14]. Even though the cited authors have
worked in the field of functional regression testing their words exactly summarize the concept
applied in this thesis.

2.2.3 Distributed and parallelized testing
A distributed system is often structured as a client-server architecture where a central server con-
trols and coordinates a group of (remote) machines [Gho14]. With such an approach, execution
time can be drastically lowered. This has been demonstrated by Garg et al. in the context of
regression testing of methods. The authors establish a functional dependency graph of an appli-
cation, re-order its test cases and execute them distributively. Eventually, they are able to reduce
the execution time by 66% in comparison to a non-parallel run [GD13].
Kumar et al. achieve in similar experiments a reduction of execution time of even more than 80%.
To do so, they first analyse and establish a graphical representation of the source code. From these
graphics then potentially regressive sequences are extracted and distributed among a group of in-
stances. Hence, the named authors also apply a sort of test reduction [KKSLM14].
Another tool based on a distributed architecture is DiPerF. However, DiPerF is a framework for
testing of service’ performance, i.e. load testing. It therefore does not split a test suite. The work-
flow of DiPerF is nevertheless related to the one of the tool presented in this thesis: DiPerF first
connects to a group of machines to which it then deploys the testing code. It further coordinates
execution of the code, and collects the measurements. At the end of the run, the tool cleans up
the remote hosts and aggregates the results. DiPerF additionally creates visualizations of the re-
sults [RDRF06].
While all the cited researchers use a group of dedicated servers in a lab, the tool of this thesis
can also run in a virtual environment. The computational tasks are executed on remote instances
hosted by a public cloud provider. Using a cloud for testing tasks is not a novel approach. The
principle is known as Testing as a service (TaaS) and it mainly refers to use cloud infrastructure
for functional testing [GBT11], [RKTSR16]. Similar to DiPerF, there exist frameworks to carry out
load tests of applications with cloud instances [ZCTA11], [ZLZY13]. However, none of these re-
searchers have explicitly used cloud solutions to optimize performance test execution by dividing
a test suite.
That the performance of the cloud itself could be an issue has been examined by a handful of
researchers. Especially the leading cloud provider Amazon EC2 experiences relevant variation in
execution when resources are accessed from many tenants [FJV+12], [MDH+12], [LC16], [AB17].
A recently published paper tries to circumvent such inconsistencies with the concept of Random-
ized Multiple Interleaved Trials (RMIT) which should ensure to create repeatable results in a dis-
tributed environment. A trial in RMIT is defined as a measurement of one benchmark iteration.
The idea is to execute several trial alternatives in different orders. Alternatives are for example
versions [AB17]. For simplification, this thesis projects the concept to a different level: A trial
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is defined as consisting of a benchmark which is iteratively run in a certain version. Chapter 3
describes the method in more detail.

2.3 Hopper
The tool which is used in this thesis for gathering performance metrics is a command-line tool
named hopper. It has been developed by Laaber and Leitner in 2016 for the purpose of mining
software project with extraction of performance metrics. Its source code is available on the devel-
opment platform GitHub.6

The projects which can be examined by hopper must be written in a language which runs on the
Java Virtual Machine and is built with Maven or Gradle, respectively. A collection of either JMH-
benchmarks or JUnit tests needs to be included. The hopper-script further requires the project to
be built on top of the version control system git.
In order to execute the script, the git-repository needs to be cloned to the local computer, the
JMH-benchmarks extracted and a configuration file prepared. The configuration file includes
specifications of the path to the benchmarks, the version IDs to execute, the number of test itera-
tions, and some of the JMH-specific arguments as specified in section 2.2.1. In addition, the script
requires several execution parameters telling it which test types to execute and where to place the
results. These parameters can directly be defined by means of flags at program call. For hopper,
several run configurations are available. It can for example be chosen whether to mine only com-
mits containing code changes, or to skip every n-th version. As build system, either Maven or
Gradle can be used [LL17].

hopper

gopper

config.xml CL Params

Performance 
Results

Project

Filter Analyse

Plots

Transformed 
Results

Change 
Points

config.json CL Params
for all Versions from 

Project

Execute 
Benchmarks

Execute 
Unit Tests

Figure 2.1: Sample Workflow of hopper [LL17]

During execution, hopper displays the JMH-log information in the console. Afterwards, the
gathered measurements are written to an output file in CSV-format. The file concretely contains
the specified command line parameters and lists the results for each benchmark in the columns
Project, Version, SHA, Configuration, Test and RawVal. While the field Project describes the name of
the project, Version refers to the mined Maven-version or git-commit. SHA stands for Secure Hash

6https://github.com/sealuzh/hopper

https://github.com/sealuzh/hopper


2.3 Hopper 9

Algorithm, thus in case, Maven-versions are mined, this field contains the commit hash of the
performance metric. Otherwise, it defaults to the value in field Version. The executed benchmark
is stated in field Test. If it was run with different configuration-parameters, the corresponding
value is set in field Configuration. RawVal finally indicates the obtained measurement for a single
iteration. For more than one measurements iterations, the values are listed in successive lines.
The left part of figure 2.1 shows the sample workflow of hopper as defined by Laaber and Leitner.
Additionally attached to the pipeline is the tool gopper which is designed to examine performance
measurements. The tool presented in the next chapter preserves the existing workflow as well as
all possible configuration parameters. The difference lies in the deployment- and storage-concept:
the new tool deploys hopper on a remote machine and let it write its result to a central repository.
The format of the final output file is thereby the same as described above. The evaluation in
chapter 4 is hence done by means of these values and compares benchmarks and versions.





Chapter 3

Description

This chapter states the requirements of the presented solution. It provides specifications of the
system architecture with all its components and processes, describes the used state concept and
the theoretical workflow. A section with technical details about the implementation rounds off
this chapter. It includes a note about the used approaches to split the test suite as well as the
applied storage concept.

3.1 Architecture
In order to face the stated problems and challenges of the previous chapter, this thesis proposes
a parallel approach in form of the script clopper with which it aims to reduce the overall execu-
tion time compared to a non-parallel version. An overview of the overall system architecture of
clopper is depicted in figure 3.1. The script can be deployed from a local host which is situated
on the left in the figure and acts as the managing instance. For execution, it requires a project,
an XML-configuration file used for the hopper-script, and a general configuration-file in JSON-
format. The local host handles automatic connection, and set up of the remote instances.
It is a crucial requirement of the local host to equally divide a test suite. Besides this task, the
host composes a work order in form of a simple listing with command-line parameters. The test
suite splits are then distributed among the available instances. The depicted data-flow from the
clopper-script to the remote instance thereby consists of a test suite split, the prepared parame-
ters, the XML-configuration file and a project.
The local host is further responsible for supervision of execution on the remote instances. It there-
fore runs a communication proxy stub. This stub opens a port for each instance, and creates
channels to the instances. Via these channels, the stub can send a request to trigger execution of
the hopper-script, and receives status updates from the working instances.
The remote instances consist of a group of virtual cloud instances which can origin from any
cloud provider. It is also possible to use a group of dedicated computing stations. However, the
instances are all equally set up and most importantly, they run a copy of the recycled hopper-
script. For installation of software required for hopper, the communication- and result-saving-
components, there is an installation configuration script provided which can be run at first start
up of the instances. As a counter-part to the proxy stub on the local host, a proxy skeleton is
implemented on the remote instances. This skeleton – or gRPC-server – handles requests from
the local computer; it prepares the input for hopper, starts its execution by calling the received
work order, and reports the current status of the instance. The instances are connected to a central
repository in which the hopper-script stores intermediate results. Upon request, the local host can
finally access the repository and download the stored metrics.



12 Chapter 3. Description

In summary, the implementation is based on the following principles:

• Reduction of the overall execution-time in comparison to the non-parallel version

• Automatic set up, deployment and management of remote hosts

• Decomposition and distribution of the test suite to the remote instances

• Extendability to other cloud providers

• Interoperability with and re-usability of the existing hopper-script

• Continuous result-saving to a central repository

Figure 3.1: Architecture of the clopper-tool

3.2 Workflow and State Concept
In order to provide a constructive feedback to the experimenter, the remote instances implement
a state concept. Every five minutes or whenever entering a new state, the instance pushes a status
update to the server signaling it is still working. The following paragraph describes the workflow
of the script alongside with the purpose of the used states. The states are also displayed in figure
3.2, the simplified workflow is shown in figure 3.3.
At the beginning (Start Execution in figure 3.2), the instances are running but in state SLEEP-
ING. If necessary, the local host executes an installation script on the instances. Subsequently,
the depicted workflow in figure 3.3 starts. In order to parallelize the execution, the provided
test suite is splitted. The local host connects to the available instances and distributes the gen-
erated splits as well as the project to mine using Secure Shell (SSH) alongside with Secure Copy
(SCP). Afterwards, the local host establishes a dedicated communication channel. This triggers
the instances to wake up. They start listening to port 8080 for incoming data requests. If a con-
nection attempt fails the local host will report a critical log message and terminate execution with
a note to the experimenter to check connection. Otherwise, it sends a first request which pro-
vokes the connected instances to send a Hello-message (state HELLO). The remote instances are
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Figure 3.2: State concept implemented by the remote instances which are controlled by clopper

now ready for computation. If the local host has received positive feedback from all instances, it
broadcasts a preparing-request. Upon this request, the instances look for three compressed direc-
tories containing a project with benchmarks to mine, command-line parameters and one or more
configuration-files needed for execution of the hopper-script. They signal state PREPARING and
unzip these directories.
After successful preparation, the local host sends a request to start computation. The remote
instances call the command they have found in the unzipped command-line-parameter file and
trigger execution of hopper. The original hopper-script was extended in such a way that it writes
intermediate results to a remote repository after execution of each version.
In order to ensure the instance has terminated work, the status FINISHED was introduced. If
an instance has processed all configuration files and all results have been stored, it signals status
FINISHED and releases the communication-port. Status FINISHED is also suitable to catch the
moment an instance might be ready to be used for different tasks.
The local host, however, waits for all instances to terminate work. From the remote repository, it



14 Chapter 3. Description

Figure 3.3: Workflow of clopper
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eventually downloads all the results and compiles a single output file.
In case, a cloud instance encounters an erroneous situation, it transmits status ERROR. How-

ever, in such a case the clopper-script provides a feedback to the experimenter displaying the
instance’s workload and status log. Alongside with the intermediate results stored on the central
repository, he is able to determine the moment of crash on the instance. With this information
available, it is left to the experimenter to decide whether to try a task repetition or not. By all
means, the recovery-script in the clopper-directory should be executed to reset the instances to a
prior execution state, release occupied ports and terminate any other running scripts.
The described states are transmitted using gRPC. Section 3.3.1 provides more detail for its imple-
mentation.

3.3 Implementation

3.3.1 Communication
For enabling the remote communication from the local managing machine to the remote instances,
the publicly available framework gRPC1 is used. It is based on a client-server-principle where a
client requests data from a remote server and gets a response – either a single message or a stream
of messages. In the used architecture, the client code is deployed on the local host requesting
states from multiple servers. The servers are represented by the remote instances.
For communication setup, gRPC uses so-called protocol buffers.2 Protocol buffers provide a simple
way to define a service interface and structure the content of the messages with different fields.
The gRPC-tools then automatically generate the appropriate code for client and server. One part is
implemented by the local host who sets up a communication channel and handles all the requests.
The remote instances on the other hand, implement a skeleton which offers the counterpart of the
methods defined in the service interface (see also figure 3.1).
In order to transfer messages, gRPC applies the revision of the Hypertext Transport Protocol, namely
HTTP/2. The application is not bound to a dedicated port but the instances listen to one of the
standard HTTP ports – namely port 8080 – for incoming requests. The local host however, uses
different port numbers for the individual instances. The port numbers are generated from the
instances’ name. Since a secure shell is used the local host must additionally forward its local
port to the remote on the instances at connection setup.
Besides the light and easy implementation, the advantage of gRPC lies in is its extensibility to
other environments. Hence, if it is required to deploy clopper from a different platform or use
another programming languages, the communication part is recyclable.

3.3.2 Preparation and Execution
The clopper-script requires for execution a number of packages. Since the script was developed
and tested on a machine running Ubuntu Gnome 17.04 (Zesty Zapus), the packages and versions
refer to this operation system. First of all, Python 2.7 must be installed on the machine. Also, the
packages paramiko version 2.1.2 for enabling of SSH networking, the scp-module version 0.10.2
to securely copy files to the instances, as well as grpcio and grpcio-tools version 1.2.1 for the
communication-part must be installed. Further packages needed for the version-extraction are
git version 2.11.0, pygit2 v 0.25.0 with all its requirements3, and untangle version 1.1.0 for XML-

1http://www.grpc.io/
2https://developers.google.com/protocol-buffers/
3according to the instructions on: http://www.pygit2.org/install.html

http://www.grpc.io/
https://developers.google.com/protocol-buffers/
http://www.pygit2.org/install.html
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{

"total":3,

"ip-list": {

"instance-1": "12.345.567",

"instance-2": "12.345.678",

"instance-3": "12.345.789"},

"project": "/home/selin/project",

"username":"cloudmanager",

"distribution": "VersionDistributor",

"ssh-key":"/home/selin/.ssh/ssh-key-file",

"setup":"True",

"CL-params": {

"-f": "/home/selin/config.xml",

"-o": "/home/selin/final-output.csv",

"-t": "benchmark",

"-b": "commits",

"--tests": "’BenchA$|BenchB$BenchC$’",

"--cloud": "/home/selin/storage-credentials.json storage-bucket"}

}

Listing 3.1: Sample JSON-configuration file for execution of the clopper-script

file extraction. Lastly, the package google-cloud storage4 version 1.0.0 is needed for bucket-storage
writing.
For this purpose, it is also necessary to establish a project on the Google Cloud Platform and to cre-
ate a storage bucket alongside a storage credentials key. On this, more details are given in section
3.3.4.
Clopper can either be executed on a group of remote computers or on a number of virtual in-
stances on a cloud-platform. In any case, they must run Ubuntu 16.04 LTS and allow SSH-access,
i.e. a SSH-key must be available.
The clopper-script is invoked with a configuration file in the JSON-format where all required and
optional parameters for the clopper- as well as the hopper-script are specified. After parsing the
JSON-file, the fields are checked for completeness and validity. A sample file is shown in listing
3.1. The mandatory fields are:

• total: This field specifies the total number of remote instances.

• ip-list: Below the term ip-list a dictionary of the form { instance-name : ip } is specified. The
instance-name must end with a hyphen and a unique number of maximal five digits length
(e.g. instance-22221). The digits specify the port for communication hence it is important
not to use the system-port numbers between 0 and 1023 since these require super-user priv-
ileges.

• project: A prerequisite to run the hopper-script, is a git-repository with a collection of either
JMH-Benchmarks or JUnit Tests available. The field project specifies the path of the project-
directory containing the sub-folders with the JMH-root directory and the git-repository.

• distribution: The field distribution describes the splitting method which is used to gener-
ate equally splitted test suite parts. Available options are RandomVersionDistributor, Ver-

4following the instructions on: https://cloud.google.com/storage/docs/xml-api/gspythonlibrary

https://cloud.google.com/storage/docs/xml-api/gspythonlibrary


3.3 Implementation 17

sionDistributor, TestDistributor or RMIT. Section 3.3.3 provides more details about the split-
ting methods.

• ssh-key: When connecting to remote hosts using SSH, an identification file is needed. This
field specifies the absolute path to the public SSH-key.

• setup: If an instance is started up for the first time and needs configuration, the field setup
must be set to True.

• username: This field is optional as by default, clopper uses the hostname on the system to
access the remote instances. If the username on the instances is different though, it must be
specified accordingly.

• CL-params: CL-params are another dictionary containing the following command line pa-
rameters that should eventually be passed to hopper:

-f: the path to hopper’s XML-configuration file

-o: the path to the final output-file in CSV-format

-t: the test type to execute, either benchmark or unit

-b: the version type, either commits for git-commits, or versions for Maven versions.

-- cloud: This field is a tuple containing the name of the central storage repository and
the path to its credentials file. The two parameters can occur in any order but must be
separated by a whitespace character.

Optional CL-params are:

-- tests: This is a list of selected tests to mine. For benchmarks, it should be of the form
’BenchA$|BenchB$|BenchC$’ which refers to a regular expression, and for unit tests
’TestA, TestB, TestC’.

-- step n: If this field is specified, only every n-th version is executed. The step defaults
to 1.

-- build-type: This field defines if builds between versions are clean or incremental.
Available options are clean and inc, the default is clean.

-- skip-noncode: In case skip-noncode is set to True, the hopper-script skips versions with-
out code change (e.g. change only in comments).

After preparation of the configuration file, the actual script can be executed by running the fol-
lowing command:

$ python ./clopper.py config.json

The script must be executed from the folder in which the clopper-script is stored. The command-
line argument config.json refers to the prepared JSON-file.

3.3.3 Test Suite Distribution
The hopper-script takes ranges of git-commits or a list of Maven-versions as input as well as a
collection of JMH-benchmarks or JUnit-tests. The test suite thus consists of a number of bench-
marks which are iteratively executed over a sequence of versions. For division of the test suite,
four different methods are implemented:



18 Chapter 3. Description

Random Version Distribution: For execution of the first method, the field distribution in the
JSON-configuration file must be set to RandomVersionDistributor. The method generates a list
of versions based on the specification in the hopper-configuration file. The version-list is then
shuffled, cut, and distributed among the instances (see also figure 3.4). The list of tests is not
manipulated, thus, each instance executes all tests. This method aims to distribute the work load
in a random manner which should ensure that each instance is always equipped with different
subsets of the test suite – especially when conducting multiple experiments. Such an approach
increases the statistical expressiveness.

Figure 3.4: Random Version Distribution where A to H denote single versions of a project

Version Range Distribution: The second method is triggered by setting the distribution-field in
the JSON-file to VersionDistributor. It is similar to the prior one but assigns packages of consecu-
tive units, i.e. version ranges, instead of randomly selected versions (see figure 3.5). Each instance
executes all tests. Intuitively, the workload of the instances as well as the execution time should be
equal to distribution by Random Version. Version Range Distribution aims to determine whether
the obtained measurements show equal variability between versions as the ones gathered by Ran-
dom Version Distribution.

Figure 3.5: Version Range Distribution where A to H denote single versions of a project

Test Distribution: When applying Test Distribution, the corresponding field in the JSON-file
must be set to TestDistributor. In this method, the range of versions is not changed. Instead, a
list of available unit-tests or benchmarks is generated, shuffled and evenly distributed among the
instances. The principle is shown in figure 3.6. Similar to Random Version Distribution, the shuf-
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fling ensures to establish unique test suite subsets for more robust results. Test Distribution aims
to preserve the testing environment during execution. Such an approach avoids false-positive
performance regression between versions since benchmark results for different versions origin
from a single instance.

Figure 3.6: Test Distribution where I to VIII denote benchmarks of a project

Randomized Multiple Interleaved Trials (RMIT): Reliability and repeatability are key require-
ments in performance benchmarking ensuring the trustworthiness of the obtained performance
results [FP16]. The concept of RMIT seems therefore suitable for this task. In this thesis, a trial is
defined as consisting of a benchmark which is iteratively run in a certain version. For this pur-
pose, all possible version-test-combinations of the project are generated. In reference to figure
3.7, where versions are marked with letters A to C, and tests labeled with the Roman numbers I
and II, all possible version-test-tuples are: A-I, A-II, B-I, B-II, C-I, and C-II. When applying RMIT
distribution, these tuples are shuffled and evenly distributed among the instances. So a possible
distribution among three instances would be: instance 1: B-I, A-II, instance 2: C-I, A-I, and in-
stance 3: B-II, C-II. The intuition of RMIT differs from the other distribution methods as it splits
the test suite in two dimensions whereas all others preserve at least version or test dimension. In
the JSON-configuration, clopper requires the keyword RMIT to trigger this distribution-method.

Figure 3.7: Randomized Multiple Interleaved Trials where letters denote versions, and Roman num-
bers benchmarks of a project
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The generated test-suite is cut into as many pieces as specified by the field total in the JSON-
configuration file. In order to use the instances to their full capacity, the pieces are desired to be
of equal size. If no perfect distribution is possible, some instances receive a test suite being bigger
by one version, test or tuple. The smallest possible test suite split contains one unit. In case the
test suite is too small, a number of instances receives no work and is released by the script.
Currently, four distribution methods are implemented but in order to be open for future exten-
sion, the Strategy-pattern [VHJG95] has been applied. Advantageously, the strategy-pattern pro-
vides a unified access point to the distribution-method. The user only needs to define the field
distribution in the configuration-file and the script will take care of evoking the appropriate algo-
rithm. For future extension, thanks to this pattern, additional distribution methods can simply
be plugged into the mechanism by appending to the code without having to touch the existing
algorithms.

3.3.4 Output and Storage
In the original version, the hopper-script writes the calculated metrics to a single output file in
CSV-format. As continuous result-saving to a central repository is a key requirement of the tool,
the original script was extended accordingly. Whenever the hopper-script is called with -- cloud,
it continuously writes the gathered metrics version by version to a central repository, which is in
this case the Google Cloud Storage.5 To read from or write data to the bucket, the instances as well
as the local host need to have access to the bucket’s name and a Google service account key in
JSON-format. The -- cloud-flag is followed by a tuple containing the absolute path of the key file
and the bucket name.
In addition to the output file, clopper generates a log-file. The log-file gives feedback during the
installation progress, displays the workload assigned to the instances and provides the opportu-
nity to monitor execution. A sample is depicted in listing 3.2.
As the log file does not give any information about the current running task, it is also possible
to monitor working progress in the storage bucket. After execution of each version, the instance
uploads an output-file named with its name, the processed version and a time-stamp.

5https://cloud.google.com/storage/

https://cloud.google.com/storage/
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2017-05-24 16:36:27 [INFO] Starting execution

2017-05-24 16:36:27 [INFO] Json-file is valid.

2017-05-24 16:36:27 [INFO] Start setting up hosts.

2017-05-24 16:36:27 [INFO] Connected (version 2.0, client OpenSSH_7.2p2)

2017-05-24 16:36:28 [INFO] Authentication (publickey) successful!

2017-05-24 16:36:28 [INFO] Start installation on instance-2

2017-05-24 16:38:29 [INFO] Installation in progress on instance-2

2017-05-24 16:39:58 [INFO] Installation on instance-2 completed.

2017-05-24 16:39:58 [INFO] Instances successfully configured.

2017-05-24 16:39:58 [INFO] Test suite generated and splitted.

2017-05-24 16:39:58 [INFO] VersionDistributor

2017-05-24 16:39:58 [INFO] [[[’90c1a63’, ’4babc4b’, ’a03ca23’, ’ff99a8a’,

’df3823f’, ’da408f7’, ’d0e9d70’], [None]]]

2017-05-24 16:40:16 [INFO] Config-files generated.

2017-05-24 16:40:16 [INFO] Commandline parameters prepared.

2017-05-24 16:40:16 [INFO] Connected (version 2.0, client OpenSSH_7.2p2)

2017-05-24 16:40:16 [INFO] Authentication (publickey) successful!

2017-05-24 16:40:40 [INFO] Splits distributed among instances.

2017-05-24 16:40:40 [INFO] Waiting for instances to start grpc server...

2017-05-24 16:40:45 [INFO] Starting cloud-manager-client...

2017-05-24 16:40:45 [INFO] Channel created.

2017-05-24 16:40:45 [INFO] Hello from instance-2

2017-05-24 16:40:45 [INFO] Trigger hopper execution...

2017-05-24 16:40:50 [INFO] instance-2 --- PREPARING

2017-05-24 16:40:51 [INFO] instance-2 --- HOPPING...

2017-05-24 17:51:04 [INFO] instance-2 --- HOPPING

2017-05-24 17:55:13 [INFO] instance-2 --- FINISHED

2017-05-24 17:55:13 [INFO] Shutting down cloud-manager-client...

2017-05-24 17:55:13 [INFO] Grabbing results...

2017-05-24 17:55:17 [INFO] Execution finished.

Listing 3.2: Sample log file produced by the clopper-script





Chapter 4

Evaluation

This chapter describes and evaluates distributed performance tests on cloud instances conducted
by clopper. The goal is to state the differences between the execution modes as well as the dis-
tribution methods and assess the produced output. Eventually, this chapter provides answers to
the following research questions:

RQ 1: In what ways is it possible to distribute a performance test suite for parallel execution?

RQ 2: How much time and costs can be saved by executing performance test suites in parallel?

RQ 3: Are the results obtained by different distribution techniques similar in terms of quality?

4.1 Experimental setup

4.1.1 Cloud Provider
As mentioned in chapter 2, some of the public cloud provider suffer from unstable resource pro-
vision. Besides others, the Google Compute Engine (GCE)1 is considered to be more robust against
multi-tenancy [LC16]. As it is further stated by [LC16], neither the time of the day nor the day of
the week seem to have measurable impact on performance of GCE instances. For these reason,
GCE was chosen for the experiments also because manual parallelization-experiments of hopper
have already been executed on this cloud platform. Furthermore, there is a 12 month’s free trial
with a credit of 300$ available. In this free trial, per account a total of 8 virtual cores is allowed
which enables testing with up to four double- or eight single-cored instances.

4.1.2 Approach
The experiments were conducted on three different Google accounts between the 23rd and the
31st of May 2017 from the writer’s personal computer running Ubuntu Gnome 17.04. All experi-
ments were repeated three times, i.e. in total, measurements from three runs were obtained. The
potential influence of the time of the day was not explicitly addressed. However, the experiments
happened to run at different times, on a variety of instances, and in no distinct order.
Non-parallel tasks used a single cloud-instance of type n1-standard-1 in the zone europe-west1-b2.
n1-standard-1 instances have a virtual CPU of 3.75 GB memory on a 2.6 GHz Intel Xeon E5 (Sandy

1https://cloud.google.com/compute/
2https://cloud.google.com/compute/docs/machine-types

https://cloud.google.com/compute/
https://cloud.google.com/compute/docs/machine-types
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Bridge) processor implemented. The boot disk type was a SSD persistent disk. As operating sys-
tem, Ubuntu 16.04 LTS was chosen. For parallel tasks, the same machine type and configurations
were used. On each of the three Google accounts, six of such instances were created.

The requirements for the projects to mine were to be open-source, i.e. on GitHub, and having
a testsuite of JMH benchmarks available. One project was the one used by [LL17] in the presenta-
tion of the hopper-tool. The others were selected by manually filtering GitHub for pom.xml-files
in Java projects which contain the tag group-id with text org.openjdk.jmh. Some were not suitable
since they contained only a few commits or benchmarks. Others, on the other hand were not
executable with hopper. The final selection consisted of:

• JCTOOLSproject: JCTOOLS stands for Java Concurrency Tools and is a project which adds
a range of concurrent data structures to the Java Developer Kit (JDK). JCTOOLS originally
consists of 61 benchmarks. A random selection of 23 of JCTOOLs implemented benchmarks
serves as the largest test suite. This project was chosen since its code is clearly laid out which
made it easy to remove a certain number of benchmarks.3

• protostuff: protostuff is a serialization library which supports tasks such as validation, and
is forward and backwards compatible. protostuff’s 16 benchmarks represent the medium
test suite of this thesis.4

• RDF4J: RDF4J is an Eclipse project. The framework was well known as Sesame and includes
methods to process and query RDF data. RDF4J was selected since it originally consisted of
11 benchmarks which is one of the smallest benchmark test suites on GitHub but still has
an adequate number of commits.5

The small and large test suite sizes were aligned with the medium one: First, project protostuff
was selected to represent the medium test suite, and from this project, all 16 benchmarks were
used. The other test suites should not be too small to provide adequate statistical expressiveness
but also not too big since execution should not last for days. Furthermore, the test suites should
be different enough in size from protostuff to observe variations in execution. Finally, the com-
promise were 9 benchmarks as small, and 23 tests as large test suite; 16 lies exactly between the
two numbers, and the results are visualizable in tables and violin plots.
In JCTOOLS and protostuff, three benchmarks additionally have multiple configurations but
since the clopper-script cannot distinguish them, they are counted as one benchmark. For evalu-
ation, the command "git rev-list --all" was used to list all version, i.e. git-commits. From this list,
10 consecutive commits were extracted in randomly choosing a beginning and an end from the
list. The test suite for each project is displayed in table 4.1.
After determination of the version range to mine, the XML-input file was prepared. In order to
get comparable results, each benchmark was run with 10 warm up- and 20 test iterations. The
applied JMH-benchmark mode was average execution time.
For examination of the methods in parallel mode, the test suite was distributed among six in-
stances. The non-parallel measurements were obtained by one instance which was equipped
with the same workload.

3https://github.com/Buzzerio/JCTOOLSproject
4https://github.com/protostuff/protostuff
5https://github.com/eclipse/rdf4j and http://rdf4j.org/about/

https://github.com/Buzzerio/JCTOOLSproject
https://github.com/protostuff/protostuff
https://github.com/eclipse/rdf4j
http://rdf4j.org/about/
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Project Versions Benchmarks

JCTOOLS

QueueOfferPoll.offerAndPollLoops
BaselinePingPong.pingpong
SingleThreadedPoll.poll
ConcQOfferPoll.offerAndPoll
SingleThreadedOffer.offerLoop
SetOps.contains
SetOps.remove

f03ae9a SetOps.sum
e8d6bd9 SetOps.add
179309f CountersBenchmark.rw
e58610b ConcurrentMaprandomGetPutRemove
8646698 QueueBurstCost.burstCost
9e3c2c9 RingCqBurstRoundTripWithGroups.ring
3813555 QueueThroughputBackoffNano.tpt
9a0ee76 QueueThroughputBackoffYield.tpt
8d447a5 IntrusiveQueueThroughputBackoffNone.tpt
a158e5b MpqThroughputBackoffNone.pr

MpqThroughputBackoffNone.nor
QueueThroughputBackoffConsume.tpt
MpqThroughputBackoffNone.cr
QueueThroughputBackoffNone.tpt
MpqDrainFillThroughputBackoffNone.normal
MpqThroughputBackoffNone.bothr

protostuff

RuntimeSchemaBenchmark.generated_deserialize_1_int_field
RuntimeSchemaBenchmark.runtime_serialize_10_int_fields
RuntimeSchemaBenchmark.runtime_deserialize_1_int_field

da27225 RuntimeSchemaBenchmark.baseline
2c252e4 RuntimeSchemaBenchmark.runtime_sparse_serialize_1_int_field
e48ab1d RuntimeSchemaBenchmark.runtime_sparse_deserialize_10_int_field
ace2a01 RuntimeSchemaBenchmark.generated_serialize_10_int_field
30d6024 RuntimeSchemaBenchmark.runtime_sparse_deserialize_1_int_field
c972d94 RuntimeSchemaBenchmark.generated_serialize_1_int_field
8e31181 RuntimeSchemaBenchmark.runtime_deserialize_10_int_field
323ae10 RuntimeSchemaBenchmark.runtime_serialize_1_int_field
a5d36a9 RuntimeSchemaBenchmark.runtime_sparse_serialize_10_int_fields
db1ef89 RuntimeSchemaBenchmark.generated_deserialize_10_int_field

StringSerializerBenchmark.bufferedSerializer
StringSerializerBenchmark.builtInSerializer
StringSerializerBenchmark.bufferedRecycledSerializer

RDF4J

90c1a63 ForwardChainingRDFSInferencerBenchmark.initialize
4babc4b ForwardChainingSchemaCachingRDFSInferencerBenchmark.initialize
a03ca23 NoReasoningBenchmark.initialize
ff99a8a ReasoningBenchmark.noReasoning
2cfb106 ReasoningBenchmark.forwardChainingRDFSInferencer
5391dfd ReasoningBenchmark.forwardChainingSchemaCachingRDFSInferencer
df3823f ReasoningBenchmark.forwardChainingSchemaCachingRDFSInferencerMultipleTransactions
da408f7 ReasoningBenchmark.forwardChainingSchemaCachingRDFSInferencerSchema
d0e9d70 ReasoningBenchmark.forwardChainingSchemaCachingRDFSInferencerMultipleTransactionsSchema
b8fd143

Table 4.1: Performance test suites used for the experiments
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4.2 Overall execution time

Research question 2 aims to determine the gain between non-parallel and parallel execution in
terms of execution time and costs. To evaluate overall execution time, the log-files generated by
the clopper-script were used. For each experiment, the duration from the first instance trans-
mitting HOPPING until the last instance sending FINISHED were calculated. Due to potential
network latencies, this duration might not exactly correspond to the actual execution time but is
accurate enough for comparison of the results. For each method and execution mode (parallel or
non-parallel), the average value as well as the standard deviation from the runs were built and
subsequently compared using the gain factor. The gain factor is the result of dividing singular -,
i.e. non-parallel, by parallel execution time. Values bigger than 1.00 correspond to a gain of time;
the higher the value, the bigger the gain. The results are displayed in table 4.2. In addition to the
overall execution time, the difference between the fastest and the slowest instance was calculated.
Table 4.3 shows the corresponding outcomes. Except for the gain factor describing the propor-
tions, all displayed values are represented in minutes.
When looking at table 4.2, it is not surprising, that all the examined methods perform better in

Project Method Benchs Execution Time (Mean) Factor Execution Time (StDev)
Parallel (6) Singular (1) Parallel (6) Singular (1)

JCTOOLS Random Version Distributon 23 37.75 186.92 4.95 0.48 0.90
Version Range Distributon 23 37.72 186.45 4.94 0.32 0.62

Test Distributon 23 54.37 186.10 3.42 2.00 0.90
RMIT 23 90.45 491.73 5.44 5.23 2.03

protostuff Random Version Distributon 16 24.93 123.48 4.95 0.47 3.82
Version Range Distributon 16 26.42 120.43 4.56 3.58 1.37

Test Distributon 16 63.15 121.53 1.92 1.25 1.70
RMIT 16 93.95 490.85 5.22 2.45 49.90

RDF4J Random Version Distributon 9 16.55 80.23 4.85 0.35 5.08
Version Range Distributon 9 16.83 79.88 4.75 0.15 4.82

Test Distributon 9 36.92 77.42 2.10 3.10 3.68
RMIT 9 19.92 99.70 5.01 1.95 4.18

Overall Random Version Distributon 6 ◦ 26.41 130.21 4.93 8.72 43.82
Version Range Distributon 6 ◦ 26.99 128.92 4.78 8.54 43.92

Test Distributon 6 ◦ 51.48 128.35 2.49 10.90 44.63
RMIT 6 ◦ 68.11 360.76 5.30 34.10 184.60

Table 4.2: Comparison of the overall execution time between parallel execution (6 instances) and
singular (1 instance). Displayed are the mean and standard deviation of execution time. All values
are shown in minutes except for the column Factor which describes how many times parallel - is
faster than non-parallel execution.

parallel than in singular execution mode. The four distribution methods are not equal, though.
On average, Random Version Distribution takes 26.41 minutes in parallel and 130.21 on a single
instance. Version Range Distribution needs with six instances 26.99 minutes for a task, one in-
stance used 128.92 minutes. Distribution by Tests takes on average 51.48 minutes in parallel and
128.35 on a single instance. And finally, the longest execution time on average has RMIT Distri-
bution with 68.11 minutes in parallel and 360.76 minutes in non-parallel mode. However, even if
RMIT Distribution needs the most time, it achieves the biggest gain. When computing in paral-
lel, the six instances are 5.30 times faster than a single one. Distribution of Random Version and
Version Ranges are close behind with a gain of 4.93 and 4.78, respectively. The weakest in perfor-
mance is Test Distribution with an average gain of 2.49. These observations are independent of
the test suite size.
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In general, the two methods which distribute the versions among the instances are very close to
each other in terms of execution time. Their results only differ in a few seconds which is due to
the fact that most of the execution time is spent for compilation of versions. In both methods, two
instances are assigned one version and four hosts process two versions. This is also the reason
why these two methods are faster than the other ones. In Test Distribution for example, each
instance processes 10 versions and hence, compiles 10 times. In RMIT, even more time is needed
since each assigned version-test-tuple must be compiled individually. When for example mining
JCTOOLS in non-parallel mode, the instance has to process 23*10 version-test-tuples. This ex-
plains why RMIT has such a long computation time.
Distribution by Random Versions eventually seems to behave most stable. RDF4J with the small-
est test suite shows a factor of 4.85 with a standard deviation of only 0.35 minutes, medium and
large test suite both have factor 4.95 and a standard deviation of 0.47 and 0.48 minutes, respec-
tively. On the other hand, the method with the biggest spread is Test Distribution. JCTOOLS with
the biggest test suite states a standard deviation of 2.00 minutes and a gain of factor 3.42 whereas
the medium test suite only shows a gain of 1.92.
A question which might arises when looking at the table is why RMIT distribution shows in pro-
tostuff and over all projects such a high standard deviation? This must be the result of multi
tenancy or network latency which was encountered in one of the three runs and has caused the
mean and standard deviation to show such a high deviation.

The highest gain, was achieved by RMIT distribution in project JCTOOLS where six instances
completed the workload 5.44 times faster than a single one. This stands in contrast to Test Dis-
tribution in project protostuff where six instances only encounter a gain of factor 1.92 in terms of
execution time.

An interesting fact is, that overall execution time for the two methods Random Version and

Project Method Benchs Exec. Time (Mean) Difference Exec. Time
Fastest Slowest Mean StDev

JCTOOLS Random Version Distributon 23 18.60 37.75 19.22 0.43
Version Range Distributon 23 18.75 37.77 18.95 0.27

Test Distributon 23 33.88 54.37 20.48 3.30
RMIT 23 79.67 90.45 13.30 4.48

protostuff Random Version Distributon 16 12.28 24.93 12.67 0.33
Version Range Distributon 16 11.93 26.42 14.47 3.53

Test Distributon 16 35.38 63.15 27.77 2.13
RMIT 16 74.93 93.95 17.77 2.50

RDF4J Random Version Distributon 9 8.18 16.55 8.23 0.33
Version Range Distributon 9 7.92 16.83 8.92 0.15

Test Distributon 9 7.07 36.92 29.83 3.16
RMIT 9 12.62 19.92 7.30 1.23

Table 4.3: Difference between fastest and slowest instance in parallel execution mode. Displayed
are the mean and standard deviation of execution time. All values are shown in minutes.

Version Range Distribution can be estimated, if the duration of one version is known. This pre-
diction can be made when comparing the information of table 4.3 with the factor of table 4.2: The
test suite was executed over 10 versions. Using six instances, the smallest split of the test suite
contains 1 version, the biggest one fifth, namely 2 versions. When looking at table 4.3 project
protostuff and method Version Range Distribution, the instances show consistent differences in
execution time with a standard deviation of 0.47. The fastest instance who processes a small split
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needs for execution 12.28, and the slowest instance for a big split 24.93 minutes on average. The
logical conclusion is thus, that the size of the biggest test suite split correlates with the overall ex-
ecution time. The biggest split consists of one fifth, and parallel execution takes roughly one fifth
of the singular execution time, i.e. table 4.2 states that it is exactly 4.95 times faster than singular
execution.
For distribution of the tests, no such prediction can be made since the setup time is hard to de-
termine. If in addition, multiple configurations are applied to a benchmark overall execution
time further increases. The distribution-methods of the clopper-script cannot distinguish between
benchmarks with and such without configuration and neither determine the number of different
parameters applied.
In the experiments, for RDF4J, between the first and the last instance sending FINISHED up to
half an hour passed by whereas each instance had to mine 3 or 4 benchmarks. For RMIT distri-
bution, this difference also occurs but only consists of 7.30 minutes on average with a standard
deviation of 1.23. In JCTOOLS though, the results are closer to each other. Test Distribution shows
an average difference of 20.48 minutes with a standard deviation of 3.30. In RMIT, the fastest in-
stance is roughly 13.30 minutes faster which can vary up to 4.48 minutes.
In conclusion, it can be stated that RMIT Distribution spreads the computing-intensive tests more
evenly which is the reason why it achieves the biggest gain-factor and encounters less difference
between the slowest and the fastest instance than Test Distribution. Distribution by Random Ver-
sions shows the most stability in execution time. It is the fastest method very closely followed by
Distribution of Version Ranges.

4.2.1 Cost Differences
The values for comparing the total costs of execution time are calculated by multiplying Google’s
standard per hour-price6 by total execution. For a n1-standard-1 instance in zone europe-west1-b
the per-hour rate is 0.0523$. The price for the SSD persistent disk is only given per gigabytes (GB)
per month. For a 10 GB SSD disk and 30*24 hours per month, the hourly rate thus comprises
0.0024$. The total price per hour eventually adds up to 0.0547$.
Table 4.4 displays the costs for singular execution and the sum of the costs for all six instances.
JCTOOLS executed on six instances with method Test Distribution took for example 54.37 min-
utes on average. Google only charges full minutes, 54.37 is therefore rounded up to 55 minutes or
rather 55/60 hours. The total costs are therefore:

6 instances * 55/60 hours * 0.0547$ per hour = 0.3009$.
The last column in the table corresponds to the price difference between parallel and singular ex-
ecution costs. A positive percentage thus implies that parallel execution is more expensive than
singular execution, a negative value indicates smaller costs, i.e. a price gain.
Since in the previous section, the gain-factor of parallelization was always smaller than the num-
ber of used instances, there is no cost reduction observable. Random Version Distribution for
example costs on average 23.66 % more when using six instead of one cloud instance. In project
JCTOOLS, the two methods are equally expensive. When inspecting the raw costs, RMIT is the
most expensive method since it also has the longest execution time. With on average 0.3291$
for non-parallel execution, its costs are about three times higher than the ones from the other
methods. In project protostuff, the difference is even bigger. Nonetheless, when looking at the
difference between non-parallel and parallel execution, RMIT distribution achieves on average
a plus in costs of 14.68 % which is the smallest difference. In JCTOOLS, the difference is only
+10.98%. Version Range and Random Version Distributions are between 20 % and 33 % costlier
when executed in parallel than on a single instance. Test Distribution is with differences of +76.47

6https://cloud.google.com/compute/pricing

https://cloud.google.com/compute/pricing
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% in JCTOOLS, +214.75 % in protostuff, and +184.62 % in RDF4J much more expensive. Table 4.4
summarizes the findings.

Project Method Measured Total Execution Costs $ Price Difference %Benchs Sum of (6) 1 Instance

JCTOOLS

Random Version Distributon 23 $ 0.2079 $ 0.1705 +21.93%
Version Range Distributon 23 $ 0.2079 $ 0.1705 +21.93%

Test Distributon 23 $ 0.3009 $ 0.1705 +76.47%
RMIT 23 $ 0.4978 $ 0.4485 +10.98%

protostuff

Random Version Distributon 16 $ 0.1368 $ 0.1130 20.97%
Version Range Distributon 16 $ 0.1477 $ 0.1103 +33.88%

Test Distributon 16 $ 0.3501 $ 0.1112 +214.75%
RMIT 16 $ 0.5142 $ 0.4476 +14.87%

RDF4J

Random Version Distributon 9 $ 0.0930 $ 0.0738 +25.93%
Version Range Distributon 9 $ 0.0930 $ 0.0729 +27.50%

Test Distributon 9 $ 0.2024 $ 0.0711 +184.62%
RMIT 9 $ 0.1094 $ 0.0912 +20.00%

Overall

Random Version Distributon 6 ◦ $ 0.1477 $ 0.1194 +23.66%
Version Range Distributon 6 ◦ $ 0.1477 $ 0.1176 +25.58%

Test Distributon 6 ◦ $ 0.2844 $ 0.1176 +141.86%
RMIT 6 ◦ $ 0.3774 $ 0.3291 +14.68%

Table 4.4: Differences in total costs between 1 instance, and 6 instances executing the same work-
load in a parallel manner. The price difference is given in percentage. Positive percentages imply
higher costs for the parallel approach.

4.3 Quality
Research question 3 is concerned about the quality of the measurements the distribution methods
produce. In order to assess the quality, the results from the different runs for each benchmark
were set off against each other. For comparison of the collected values, the measurement-function
maximum spread (maxSpread) was used. This function is based on yet unpublished work of the
supervisor of this thesis (Laaber, together with Leitner). The intention of maxSpread is to capture
the variability of a benchmark over different runs, and thus defines the stability of a method.
The lower the value, the more stable is the execution of this benchmark and consequently, the
better the quality of the method. maxSpread is given in percentage. As an example: Benchmark
runtime_serialize_1_int_field of project protostuff encountered in version ace2a01, method RMIT
Distribution a maxSpread of 0.6212. The results of the different runs for this benchmark varied
therefore by 62.12 %.
This section further contains the results of three statistical analyses. The applied tests are briefly
described in the corresponding subsection, its outcomes discussed and illustrated by means of
violin plots. Violin plots show the relative distribution of a value – maxSpread in the context of
this thesis. If a plot is small but bulgy, the examined measurement is consistent. If the plot is tall
and narrow, the measurement is widely distributed. The plots are established by means of the
Python seaborn-library7. Since seaborn uses the Gaussian normal distribution for calculation of the
shape, values can lie below the x-axis. maxSpread is by nature always positive. Therefore, the
y-axis has been cut at 0.0 and a comparison-threshold which is defined accordingly.

7https://seaborn.pydata.org/

https://seaborn.pydata.org/
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4.3.1 Range of Benchmarks
The range of benchmarks refers to percentiles defining thresholds below which a certain percent-
age of all measurements lies. The percentiles P50, P90, P95, P99 and P99.5 of the maxSpread-
values are listed in table 4.5. The measured values used for calculation are the max-Spreads of the
benchmarks for each version, e.g. JCTOOLS has with 23 benchmarks executed over 10 versions
230 measurements available. The percentiles indicate what results can be expected when using a
certain method.
When looking at the results in table 4.5, for each project a best and a worst performing method
can be distinguished. In RDF4J, the method which obtains the smallest maxSpread is for example
Version Distribution. 99 % of the obtained values lie below 0.226. Figure 4.1 visualizes this obser-
vation. Benchmark 3 encounters outliers, but besides that the vast amount of measurements lies
below the red dotted threshold of 0.226. The maxSpread-display is limited to 0.7.
The worst performing method in RDF4J is though not as distinct as the best one. The values in the
percentiles are close to each other and state different methods. In most cases, it is RMIT having
for example a P99 value of 0.490.
In protostuff, Random Version Distribution obtains in all but one examined percentiles the low-

Project Method Measured Percentiles
Values P50 P90 P95 P99 P99.5

RDF4J

Random Version Distribution 90 0.127 0.294 0.357 0.368 0.369
Version Range Distribution 90 0.067 0.167 0.180 0.226 0.312

Test Distribution 90 0.136 0.317 0.351 0.368 0.374
RMIT 90 0.183 0.312 0.345 0.490 0.507

protostuff

Random Version Distribution 160 0.170 0.537 0.613 0.726 0.782
Version Range Distribution 160 0.215 0.552 0.648 0.887 1.030

Test Distribution 160 0.221 0.740 0.836 1.027 1.067
RMIT 160 0.214 0.530 0.649 0.785 0.850

JCTOOLS

Random Version Distribution 230 0.141 0.584 0.690 0.975 1.238
Version Range Distribution 230 0.145 0.491 0.662 0.827 0.922

Test Distribution 230 0.220 0.522 0.944 1.042 1.052
RMIT 230 0.124 0.490 0.635 0.679 0.680

ALL

Random Version Distribution 480 0.146 0.472 0.553 0.690 0.796
Version Range Distribution 480 0.142 0.403 0.496 0.647 0.755

Test Distribution 480 0.192 0.526 0.710 0.812 0.831
RMIT 480 0.174 0.444 0.543 0.651 0.679

Table 4.5: Display of different percentiles of maxSpread. A lower maxSpread indicates less vari-
ability of benchmark measurements.

est maxSpread. 99 % have a maxSpread of less than 0.726. Test Distribution is on the other hand,
the method with the highest maxSpread. Here, the 99th percentile states a maxSpread of 1.027.
Version Range Distribution and RMIT obtain in protostuff more or less the same percentiles.
In JCTOOLS, the worst method for P50, P95 and P99 is also Test Distribution. Similar to pro-
tostuff, 99 % of the benchmark spread distributed by Tests lie below 1.042. This method shows
around 10 % of outliers, since maxSpread shows a gap of 0.5 between P90 and P99. The leading
method in JCTOOLS is RMIT. Furthermore, it seems to encounter only a few outliers. The differ-
ence between P90 and P99 only comprises 0.189.
When comparing the projects with each other, there are contradictions: The mostly worst per-
forming method in RDF4J is for example RMIT whereas in JCTOOLS, this is the technique which
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obtains the lowest maxSpread. On the other hand, RDF4J’s best performing method is Version
Range Distribution and this is also the method which obtains the lowest maxSpread in the first
four percentiles over all projects. Nonetheless, the last percentile ranks RMIT as the best per-
forming method which leads to the first conclusion that Version Distribution performs good on
average but experiences a bigger amount of outliers than RMIT does.

The worst performing results are on average obtained by Test Distribution. This is in fact a

Figure 4.1: Version Range Distribution in project RDF4J with P99 threshold over all benchmark
measurements. The y-axis for maxSpread-display is cut at 0.7.

surprising result. Test Distribution was expected to behave more stable than Version Range - and
Random Version Distribution since results from a benchmark are always obtained from one single
instance and not from different ones. This is a matter which needs more investigation (see future
work in section 4.4.3). What further stands out, is the fact that the measurements of maxSpread in
RDF4J are much smaller than in the other projects (see also figure 4.2). However, this has nothing
to do with the test suite size but might origin in the structure of the mined project itself (e.g. many
input-output-operations).

Figure 4.2: Comparison of projects in method Test Distribution. y-axis is cut at 1.65.
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4.3.2 Similarity of Distribution Methods
How similar to each other are the results produced by the different methods? In order to answer
this question, the maxSpread of a benchmark in one method was compared with the maxSpread
in another method. For comparison, the Wilcoxon signed-rank test provided by SciPy8 was used.
The Wilcoxon signed-rank test is a statistical hypothesis test which pair-wisely compares two in-
dependent samples and determines whether the two sample origins from the same population.
In this bachelor thesis, the test should give an indication of how similar to each other the methods
perform. The null-hypothesis H0 used in this context assumes that the compared samples belong
to the same population, and the examined methods are similar.
The alternate hypothesis H1 states that the samples are not obtained from the same population,
and thus, the methods are not similar to each other. The significance threshold of the obtained
probability – the p-value was set at .05. Any measurement below .05 signifies a rejection of the null-
hypothesis. If the obtained p-value is bigger than .05, the null-hypothesis holds and the methods
are considered as similar. To avoid false-positive results, continuity correction was applied to the
p-values. The calculated p-values are displayed in table 4.6.
In order to obtain the values displayed in subtable All projects, the Wilcoxon-test was executed
with a file containing the maxSpreads of all benchmarks from the projects JCTOOLS, RDF4J and
protostuff in a particular method. According to the test results, distribution by Random Version
vs. RMIT lies for the concatenation of the projects with a p-value of .044 below the significance
level. The null-hypothesis is rejected and the two methods can be considered as delivering differ-
ent results.

JCTOOLS p-value
RV Version Test RMIT

RV X .117 .494 .080
Version X X .843 .915

Test X X X .843
RMIT X X X X

RDF4J p-value
RV Version RMIT RMIT

RV X .013 .097 .636
Version X X .343 .033

Test X X X .058
RMIT X X X X

protostuff p-value
RV Version Test RMIT

RV X .552 .979 .245
Version X X .394 .041

Test X X X .737
RMIT X X X X

All projects p-value
RV Version Test RMIT

RV X .051 .303 .044
Version X X .890 .914

Test X X X .810
RMIT X X X X

Table 4.6: p-value obtained by the Wilcoxon signed-rank test in which the maxSpreads of a bench-
mark in one method was compared with the maxSpread in another method. RV stands for Ran-
dom Version Distribution, Version refers to Version Ranges. A p-value <.005 implies a rejection of
the null-hypothesis and indicates that the two examined methods output different measurements.

However, when comparing the projects, there is no strong trend distinguishable. VersionDis-
tribution vs. RMIT for example scores high in project JCTOOLS (.915) whereas the other two
projects obtain a p-value below the significance level, namely .014 in protostuff and .033 in RDF4J.
Therefore, the methods show in these two projects statistically significant differences. Random
Version vs. RMIT lies for project RDF4J with .013 also below the significance threshold, and H0 is

8https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.stats.wilcoxon.html

https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.stats.wilcoxon.html
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rejected. For RDF4J, figure 4.3 and 4.4 where maxSpread-display is limited to 0.7, show the violin
plots for the benchmarks of RMIT and Version Distribution next to each other. The shapes of the
violin plots differ from each other and there are some abnormalities observable: For example in
RMIT distribution (figure 4.3), the results show a wider spread with an evident amount of outliers
whereas in Version Distribution (figure 4.4), the results are of small variability. Only benchmark
number 3 shows outliers.

Figure 4.3: RDF4J RMIT Distribution Figure 4.4: RDF4J Version Distribution

In conclusion, none of the methods produces output which is – in all cases – significantly dif-
ferent from the others. Figure 4.5 with maxSpread-display limited to 1.6, shows the four methods
next to each other. No striking difference is recognized between them.

Figure 4.5: Comparison of Distribution-methods over all projects. The maxSpread-display is lim-
ited to 1.6.
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4.3.3 Quality of Methods
For determination of the quality of the methods, this thesis used one-way Analysis of Variance
(ANOVA) also provided by the Python SciPy-library.9 ANOVA is another statistical test which
compares two or more samples with each other and determines whether the input belongs to the
same population. A sample compared by ANOVA consists of the highest maxSpreads for each
benchmark within a version. This means that for a project with 16 benchmarks (b1 to b16), and
10 versions, ANOVA compares the following groups:

• Sample 1: {maxSpread(b1), maxSpread(b2), ... , maxSpread(b16)} of version 1

• Sample 2: {maxSpread(b1), maxSpread(b2), ... , maxSpread(b16)} of version 2

• ...

• Sample 10: {maxSpread(b1), maxSpread(b2), ... , maxSpread(b16)} of version 10

Listing 4.1 displays the sample of version 2cfb106 in method Version Range Distribution from
project RDF4J. For each benchmark, the listing shows its maxSpread within this version.

maxSpread Benchmark

0.0864411293178 ForwardChainingRDFSInferencerBenchmark.initialize

0.0136667750808 ReasoningBenchmark.forwardChainingSchemaCachingRDFSInferencerSchema

0.0329517240707 ForwardChainingSchemaCachingRDFSInferencerBenchmark.initialize

0.0538099929899 ReasoningBenchmark.forwardChainingSchemaCachingRDFSInferencer

0.204784500179 ReasoningBenchmark.forwardChaining[...]MultipleTransactions

0.114144721003 ReasoningBenchmark.forwardChaining[...]MultipleTransactionsSchema

0.0947683898783 ReasoningBenchmark.forwardChainingRDFSInferencer

0.17166090871 NoReasoningBenchmark.initialize

0.169245298825 ReasoningBenchmark.noReasoning

Listing 4.1: ANOVA sample for version 2cfb106 in project RDF4J

In total, there were 10 versions mined per method, so each ANOVA-test was executed with 10
of such samples. Again, the obtained measurement is the p-value and the significance threshold
was set at .05. The null hypothesis H0 assumes that the compared samples belong to the same
population, and the examined method produces consistent output over versions. The alternate
hypothesis H1 on the other hand states that the samples are not similar and thus, the method
shows inconsistency between versions. The results of the ANOVA-tests are displayed in table 4.7.
The p-value gives an indication of the stability of the obtained results: If the p-value lies below .05,
the null-hypothesis is rejected in favor of H1, i.e. the samples differ from each other. Therefore,
the results over versions are not stable. Is the p-value bigger, the null-hypothesis is supported
and the samples do not statistically differ from each other. The examined method is confirmed to
produce measurements which are stable over versions. However, the p-the value itself gives no
indication about the degree of stability. It can only be said whether the samples are similar or not,
and thus, the results consistent over versions or not.

9https://docs.scipy.org/doc/scipy-0.19.0/reference/generated/scipy.stats.f_oneway.html

https://docs.scipy.org/doc/scipy-0.19.0/reference/generated/scipy.stats.f_oneway.html
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Method p-value
JCTOOLS protostuff RDF4J

Random Version Distributon .036 <.001 <.001
Version Range Distributon .053 <.001 .308

Test Distributon .997 .591 .885
RMIT .936 .812 .901

Table 4.7: The p-values obtained by the ANOVA-tests. Values below .05 imply a rejection of the
null-hypothesis and indicate instability over versions.

Figure 4.6: JCTOOLS Random Version Distribution with p-value of .036. Values are displayed
until maxSpread of 1.2.

According to the measurements, it is strongly indicated that Random Version Distribution shows
unstable results. For all projects, the p-value lies statistically significant below the threshold and
H0 is rejected. JCTOOLS encounters a p-value of .036, protostuff and RDF4J show a probability
of less than .001. Instability is also indicated by Version Distribution in project protostuff. Here,
the p-value lies also below .001. In all other ANOVA-tests, H0 holds. In detail, Test - and RMIT
Distribution produce for all projects consistent results over versions. Version Range Distribution
obtains for two of the three projects accurate measurements without variation between versions.
Figure 4.6 serves as an illustrating example. Method Random Version Distribution of project
JCTOOLS with a p-value of .036 rejects the null hypothesis and therefore encounters instability
between versions. This is visible, when comparing the two greenish plots in the middle – version
8d447a5 and 3813555: Plot 8d447a5 contains benchmarks with a maxSpread of around 0.8 whereas
plot 3813555 has notable outliers above the visible threshold.
A more distinct example is given in figure 4.7 where the y-axis is limited from 0.0 to 0.7. Here,
there are no distinct outliers but the version-samples were with a p-value smaller than .001 stated
as significantly different. Version da408f7 has for example a maxSpread-range from 0.15 to 0.45
whereas version 2cfb106 covers the range between 0.0 and 0.15.
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Figure 4.7: RDF4J Random Version Distribution with p-value <.001 which indicates instability
over versions. maxSpread-values are displayed between 0.0 and 0.7.

Finally, figure 4.8 shows RMIT Distribution in JCTOOLS which lies with a p-value of .936 above
the threshold. The null-hypothesis holds and the ANOVA-tests states the method to produce
consistent output over versions. The violin plots in the figure confirm this assumption. They are
all of equal size and shape. There are no outliers.

Figure 4.8: JCTOOLS RMIT Distribution with p-value .936. With a p-value above .05, this method
produces output which is robust over versions. The y-axis is cut at 1.2.
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4.4 Findings
The following section gives a brief recap of the questions examined in this thesis. It concludes with
a recommendation for method selection, states potential limitations of the results and suggests
future work. Research Question 1 was examined in the previous chapter. It was concerned with
the possibilities of dividing a test suite:

RQ 1: In what ways is it possible to distribute a performance test suite for parallel execution?

This thesis introduces four methods for division of a performance test suite: Random Version -,
Version Range -, Test -, and Randomized Multiple Interleaved Trials (RMIT) Distribution. The
first method aims to distribute the work load in a random manner which – if executed in several
runs – increases the robustness of the results. For this purpose, from the project to mine, a list of
versions is extracted, shuffled and evenly distributed among the computing instances.
The second method – Version Range Distribution – also splits the test suite along the dimension
of versions. In contrast to the first approach, the order of versions is kept, and groups of consec-
utive units are distributed. The aim was to examine, whether preserving the order of versions
influences the quality of the measurement.
Distribution by Test is also similar to Random Version Distribution but instead of versions, it ran-
domly distributes the benchmarks of the project. Test Distribution aims to preserve the testing
environment during execution since measurements for a benchmark are obtained from only one
instance. In Random Version and Version Range Distribution, the benchmark measurements ori-
gin from multiple instances.
RMIT Distribution as the fourth method refers to an approach presented by the researchers Abedi
and Brecht [AB17]. The aim of this method is to split the test suite along two dimensions (ver-
sion and test), and randomly generate new pairs which are then distributed among the instances.
Likewise, the output should be reliable, robust and repeatable in distributed environments.

RQ 2: How much time and costs can be saved by executing performance test suites in parallel?

Parallel execution is always faster than non-parallel execution. Depending on the project size and
method, the instances spend different amounts of time in computation. The fastest methods are
the ones which distribute versions among instances, i.e. Random Version - and Version Range
Distribution. Random Version Distribution is a bit more stable but on average, the two methods
are equally fast. In most experiments, the measured durations differ only in a few seconds.
In case, the test suite is splitted by Test Distribution, the experiments run longer since more compi-
lation time is needed for this method. However, the slowest method is RMIT distribution which
takes 2 to 3 times longer than Random Version Distribution. Nevertheless, RMIT Distribution
experiences the biggest gain factor in comparison of non-parallel with parallel execution: Six in-
stances are over 5 times faster than a single instance. The Version Distribution-methods are 4.78
(Version Range) and 4.93 (Random Version) times faster than a single instance. These methods are
roughly 25 % more expensive than non-parallel execution, parallel executed RMIT costs around
15 % more. Test Distribution achieves an average gain of factor 2.49. This method can therefore
only halve the time but costs over 140 % more than a single instance.

RQ 3: Are the results obtained by different distribution techniques similar in terms of quality?

In comparison of the results between the different versions, RMIT and Test Distribution show for
all project p-values above the threshold which is considered as stable. Random Version Distri-
bution lies with p-values .036, <.001, and <.001 for all projects below the significance level of .05.
The results between versions for this method strongly vary and are not consistent at all. Version
Distribution encounters for project protostuff a value below the threshold, in the other projects,
the method performs stable.
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After dividing the results into different percentiles, it can be said that 50 % of all obtained mea-
surements for RMIT Distribution show a maxSpread of 0.174, and 99 % one of 0.651. Version Dis-
tribution encounters maxSpread measurements of 0.142 for 50 % of the benchmarks and 0.755 for
99 %. There is a relatively big amount of outliers. For Random Version Distribution, maxSpread
lies at 0.146 for P50 and 0.690 for P99, respectively. Random Version Distribution also shows an
amount of outliers which can be stated as above average. Test Distribution has values of 0.192 for
50 % of the benchmarks and for 99 % 0.831.
None of the examined methods produces output which significantly differs from the other ap-
proaches. On average, the results obtained with Version Range Distribution encounter for 99 %
of the benchmarks the lowest variability. RMIT distribution however seems to produce measure-
ments closer to each other with less outliers with no statistically confirmed inconsistencies over
all versions. In protostuff, Version Range Distribution encounters statistically significant differ-
ences between individual versions. Similarly, Random Version Distribution shows a notable but
not the highest range of benchmark spread but significant differences between versions for all
projects. Finally, Test Distribution is stated to achieve the most deviations in multiple benchmark
iterations, but performs stable between the examined versions.

4.4.1 Recommendation
In conclusion, the results suggests to use Version Range Distribution if the aim is to quickly and
cheaply achieve benchmark measurements. This method provides output which can vary be-
tween versions in some projects but provides on average for 99 % of the benchmarks the lowest
maxSpread. Parallel execution is nearly five times faster than experiments on a single instance.
If the aim is on the other hand, to obtain the most robust results, RMIT distribution should be
selected. RMIT produces results which are consistent over versions and show the fewest outliers.
Nonetheless, it must be noted that RMIT takes twice or even three times the time for execution
than e.g. Version Range Distribution. It is therefore the most expensive one.
It is not recommended to use Test Distribution since it produces output which might be stable
over versions but has many outliers. Furthermore, Test Distribution can only halve execution
time and is the second slowest method. It is also not advisable to choose Random Version Dis-
tribution. This method is fast but can show high spreads and provides results of low quality as
between different versions a high amount of false-positive regression occurs.

4.4.2 Threats to Validity
Due to the small amount of test data, the statistical expressiveness of the results might be limited.
In order to give a more refined statement, more than three projects should be executed over a
wider range of benchmarks and versions. The results therefore represent tendencies and should
be interpreted as a snapshot.
Furthermore, all experiments have been executed on Google Cloud Engine. It might be possible
to obtain different results with another cloud provider.
It is a fact that the choice and design of the distribution methods have relevant influence on the
results. There are currently four methods implemented, but other approaches are possible and
might be even more appropriate for distributed performance testing. Moreover, the original idea
of RMIT was slightly adapted to fit into the context of the distribution algorithm. The method
could probably be optimized with further refinement of test suite distribution (e.g. splitting the
test iterations) and thus making the trials completely independent from each other. Additionally,
it is yet not feasible to identify benchmarks with configurations and count the number of param-
eters. This information should be taken into account to establish more balanced splits. Test - and
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RMIT Distribution potentially suffer from an unbalanced split and worse execution time.
What goes into the same is the composition of the test suites in general: Other projects, bench-
marks or versions might result in different output.
Furthermore, the calculation of the overall execution time is limited to a certain extend. For this
metric, the time between two status-transmissions was used. Due to potential network latencies,
this duration might not exactly correspond to the actual execution time.
Finally, the evaluation of the metrics itself: this bachelor thesis aims to show with the chosen
statistical tests a variety of quality attributes. Other tests are possible and might lead to different
results.

4.4.3 Future Work
The stated threats to validity motivate some tasks which could be treated in future work. First
of all, it would be interesting to analyse the outcomes of other test suites, and such with more
than 23 tests and 10 commits to establish more generalizable results. In an extensive evaluation,
it might be possible to determine a more precise gain-factor for the implemented methods.
During development, clopper was briefly tested on Amazon EC2 instances. It could therefore be
of further interest whether other cloud platforms deliver qualitatively similar results.
Another enhanceable topic of this thesis is the principle of executing performance tests in paral-
lel. As far as my knowledge is correct, there exists no comparable approach which explicitly uses
cloud instances to execute performance tests.
Furthermore, the implementation itself has potential for future extensions and improvements.
The log-file for example, could be extended to provide more transparency about the currently
processed unit. Moreover, the state concept could be improved by attaching a time-stamp which
enables more precise determination of execution time and thus lowers the influence of network
latency. It should also be possible to make the states optional.
As mentioned in chapter 3, there is a troubleshooting-script available but not automatically ex-
ecuted in case of error. This process could therefore be integrated into the existing work flow.
More potential for future work is represented by the distribution algorithms: More efficient ones
are likely to exist and other focuses than distribution by versions or tests could be set. In this
field, also the recently introduced technique of Randomized Multiple Interleaved Trials should
be further examined. It achieved promising results in the experiments and should be tested in
different application scenarios.





Chapter 5

Conclusion

Software performance testing is a very important task in the development cycle of applications
and services. Regression between versions such as increased response time and lowered through-
put can lead to an inappropriate usage of resources, unsatisfied users and eventually, results
in a loss of money [CS17]. To make matters worse, performance testing is a tedious process;
the test suites take long to execute, but must be repeated several times to obtain expressive re-
sults [FJA+10], [HMSZ14], [ABV16]. Additionally, software is changing at a pace which makes it
almost impossible to thoroughly test the performance of the whole application before every re-
lease [HMSZ14].
This thesis therefore presented a distributed approach which executes a splitted performance test
suite in parallel using remote instances. For this purpose, a tool called clopper was introduced.
clopper is an extension of the framework hopper which is designed to mine performance history
of software projects [LL17].
In the following, the research questions examined by this thesis are revisited.

RQ 1: In what ways is it possible to distribute a performance test suite for parallel execution?

This thesis implemented four different distribution algorithms. As a prerequisite, a collection of
JMH-benchmarks over different versions must be available.
The first method Version Range Distribution splits the test suite among versions. In detail, it di-
vides the specified series of versions into smaller ranges. The second method Random Version
Distribution generates random splits of versions. Other than the first method, it does not preserve
the order of execution.
Test Distribution is a method which is based on the same procedure, but distributes the differ-
ent tests of the suite. The last method uses the concept of Randomized Multiple Interleaved Tri-
als (RMIT) [AB17]. All possible version-test tuples are created, shuffled and evenly distributed
among the instances.
If the available test suite is big enough, it is divided into as many pieces as instances are defined.
In case, there is no perfect split possible, some instances will receive a test suite bigger by one
version, test or tuple. In case the test suite is not big enough, some instances are released.

RQ 2: How much time and costs can be saved by executing performance test suites in parallel?

The logical and confirmed conclusion is that parallel - is always faster than non-parallel execution.
However, it is not possible to say that n instances are also n-times faster than a single instance if
they process the same workload. For determination of the time saving, the gain factor was intro-
duced. The gain factor is the result of dividing non-parallel by parallel execution time. Values
bigger than 1.00 correspond to a gain of time, thus, the higher the value, the bigger the gain.
In the conducted experiments, the methods show different factors. Six cloud instances were be-
tween 2.49 (Test Distribution) and 5.30 (RMIT) times faster than a single instance with the same



42 Chapter 5. Conclusion

workload. Since the gain factor is smaller than the number of used instances (n), the overall exe-
cution costs cannot be reduced: RMIT is with six instances roughly 14.68% more expensive than
a single instance, Test Distribution over 140%.

RQ 3: Are the results obtained by different distribution techniques similar in terms of quality?

The quality attributes of the methods observed by this thesis are similarity, execution time, overall
variability of benchmarks and result consistency over versions.
None of the examined methods produces output which significantly differs from the other ap-
proaches. Hence, according to the similarity measurement, no method should be rejected.
RMIT is the slowest but at the same time, the method with the biggest gain factor of 5.30 in com-
parison from non-parallel to parallel execution. Test Distribution is second slowest and can only
halve execution time with a parallel approach. Random Version - and Version Range Distribution
are the fastest methods with gain factors of 4.93 and 4.78, respectively.
On average, the results obtained by Version Range Distribution encounter the lowest variability
but show for one project statistically significant differences between individual versions. When
using Random Version Distribution though, all projects have significant different measurements
between versions. Benchmark results also notably vary. The third method, RMIT distribution
seems to produce measurements closer to each other with less outliers which are statistically con-
sistent over all versions. Finally, Test Distribution is stated to achieve the most deviations in
multiple benchmark iterations but is consistent over the examined versions.

Impact of Findings

Clopper notably lowers the time and eases execution of performance tests. Therefore, it could
support developers concluding this cumbersome task in less time. For them, it is recommended to
use method Version Range Distribution since this method is very fast. Depending on the project,
it produces output which might vary between the mined versions but provides on average bench-
marks with a low spread.
The clopper-script is designed for cloud environments but could also be run on a cluster of ma-
chines. However, if computation is done by virtual instances, no dedicated machines must be
explicitly reserved and resources can be used for other tasks.
Besides reducing execution time, clopper could also help researchers to obtain more robust perfor-
mance measurements with the application of RMIT distribution. RMIT takes twice or even three
times longer than Version Range Distribution but outputs very stable results. For all projects, they
are low in variability and consistent over versions.
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