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Abstract

In the last years, the massive distribution of mobile devices like smartphones, tablets and more re-
cently wearables, has radically changed our social life. Since the introduction of the first modern
smartphone, the iPhone in 2007, we have witnessed a gradual shift from the traditional paradigm
in the use of technology, entering the so called post-pc era. Nowadays, the mobile market attracts
always more developers and software firms. To sustain this fierce competition, they need to build
high quality apps and at the same time, reach the market as soon as possible. It comes natu-
rally to note that testing plays an important role in this process. Research focused for decades
on traditional testing, aiming at reaching its maximum automation. However, automated testing
for mobile applications presents different challenges and limitations that still need to be properly
investigated. This thesis work tries to shed some initial light into possible solutions for such prob-
lems. In particular, we focused our attention on the knowledge that can be gained from mobile
stores. Indeed, such stores represent an enormous amount of data easily available, like user re-
views, and are an unmatched opportunity for software engineering research. Our final aim is to
demonstrate how such user feedback can be in some way exploited to integrate and complement
the state of art Android automated testing tools. Our results show that a noticeable set of prob-
lems can be actually detected only through user feedback. Such observation put the first stone
down for a new paradigm of user oriented testing. We rely on the linking approach developed in
this work in order to be able to enrich the generated crash logs with human-readable descriptions
elicited from the connected user reviews. Therefore, we envision new generation of tools that are
able to learn from such user reviews which are the components of a given mobile application to
exercise more in depth, acting a sort of user-driven prioritization of the testing effort.





Zusammenfassung

Durch die massive Zunahme der Verbreitung von Mobilfunkgeräten wie Smartphones, Tables
und zuletzt Wearables, hast sich in den letzten Jahren unser Sozialverhalten drastisch geändert.
Seit der Einführung des ersten "richtigen" Smartphones, des iPhones im Jahre 2007, wurden
wir Zeuge eines allmählichen Wechsels von der traditionellen Technologienutzung hin zu dem,
was man als "Post-PC-Ära" bezeichnet. Heutzutage wird der Mobilgerätemarkt für Entwickler
und Softwarehäuser immer attraktiver. Um in diesem harten Wettbewerb mithalten zu können,
müssen diese immer qualitativer hochwertigere Anwendungen (Apps) entwickeln und so schnell
wie irgend möglich auf dem Markt anbieten. Von größter Wichtigkeit ist in diesem Prozess das
Testing. Die Forschung fokussierte sich seit Jahrzehnten auf Standardtestverfahren mit dem Ziel,
eine weitestgehende Automatisierung zu erreichen. Im Hinblick auf das Testing von Mobile Apps
kommt dieses althergebrachte Testing aber an seine Grenzen und stellt neue Herausforderungen,
die noch eingehend untersucht werden müssen. Diese Arbeit beschäftigt sich mit der Fragestel-
lung, wie derartige Probleme einer Lösung zugeführt werden können. Im besonderen beschäfti-
gen wir uns mit dem Know-how, welches recht einfach über Mobile-Stores verfügbar ist. Die
enorme Menge an Daten und Informationen, die über Mobile-Stores frei verfügbar ist, erscheint
uns bemerkenswert. Wir sprechen hier z. B. von User-Reviews, die eine bislang unübertroffene
Quelle für Software Engineering Research darstellen. Unser Ziel ist es, darzustellen, wie das Feed-
back der User so ausgewertet werden kann, dass es ein wesentlicher und integraler Bestandteil
der automatisierten Android-Testing-Tools wird. Unsere Ergebnisse zeigen beeindruckend auf,
dass eine beachtliche Menge von Problemen und Fehlern, nur allein durch das User-Feedabck
gelöst werden konnte.Insofern legen diese Beobachtungen den Grundstein für eine neue An-
schauung (Paradigma) des sogenannten User Oriented Testing. Wir sehen den in dieser Arbeit
entwickelten Ansatz als hinreichend valide an, um die erzeugten Crash-Logs durch benutzer-
basierte Beschreibungen bereichern zu können, die aus den angeführten User-Reviews generiert
wurden. Aus diesem Grunde, stellen wir eine neue Generation von Tools vor, die in der Lage
ist, aus solchen zu "lernen", welche die Komponenten einer definierten mobilen App sind. Dies
deshalb, weil sie eine Form der benutzergesteuerten Priorisierung des Testverfahrens darstellen.
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Chapter 1

Introduction

This thesis is placed in the context of mobile automated testing. In particular, we aim to shed some
initial lights into the possibility to integrate user feedback into such process, in order to increase
its efficiency and efficacy. The first Chapter of this work gives an overview about the context
in which the thesis is placed, as well as the motivations that led to such thesis. There follows a
brief introduction about mobile testing, its limitations and challenges. At the end, we disclose
the research questions leading our investigations. The remainder of this thesis is organized as
follows:

Chapter 2 presents the recent literature in two areas of interest for this work, i.e., automated
mobile testing and the exploiting of mobile stores mining in order to facilitate the software main-
tenance activities.

Chapter 3 describes the approach we developed in order to investigate our main goal.
Chapter 4 presents our experimental tool, which firstly uses some automated testing tools in

order to test a set of mobile applications. Secondly, it clusters possible generated logs which refer
to the same bugs. Finally, it integrates user feedback into the testing process, linking them to
clustered crash reports.

Chapter 5 describes the empirical study we conducted in order to evaluate the aforemen-
tioned approach on a set of 3 mobile apps (available on FDroid 1) with their correspondent reviews
crawled from the Google Play Store2.

Finally, Chapter 6 closes the main body of the thesis drawing the necessary conclusions and
spreading the main ideas for future contributions.

1.1 Context
Testing is the action of inspecting the behavior of a program, with the intention of finding anoma-
lies or errors [37]. The goal behind software testing is to exercise the system under test (SUT) in
order to hopefully reveal as many bugs as possible. In order to do that, it aims to reach the highest
test coverage with the smallest number of test cases. A test case can be viewed as a set of program
inputs, each of them gets associated with an expected result (i.e., oracle) when they are executed.

Nowadays, software testing is widely recognized as an essential part of any software devel-
opment process, presenting however an extremely expensive activity. Indeed, testing all com-
binations of all possible input values classes for an application [19] requires a lot of workforce
and it is almost always unthinkable to reach a testing-coverage of 100%. Furthermore, testing is
often performed under time and budget constraints [21] and complex applications might have

1https://f-droid.org
2https://play.google.com/
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a very large number of potential test scenarios, many of which could be really difficult to pre-
dict. Indeed, Dijkstra [12] observed that testing a software does not imply a demonstration of
the right behaviour of the program, but it only aims to demonstrate the presence of faults, not
their absence. So, deeply testing a SUT increases the probability that this software will behave as
expected also in the untested cases [19].

In general, there are four testing levels a tester should perform in order to investigate the
behaviour of a traditional software:

1. Unit testing;

2. Integration testing;

3. System testing;

4. Acceptance testing.

With unit testing, the application components are viewed and split into individual units of
source code, which are normally functions or small methods. Intuitively, one can view a unit
as the smallest testable part of an application. This kind of testing is usually associated with a
white-box approach. Integration testing is the activity of finding faults after testing the previous in-
dividually tested units combined and tested as a group together. System testing is conducted on a
complete, integrated system to evaluate the compliance with its requirements. It can be imagined
as the last checkpoint before the end customer. Instead, acceptance testing (or customer testing) is
the last level of the testing process, which states whether the application meets the user needs
and whether the implemented system works for the user. This kind of testing is usually associ-
ated with a black-box approach.
These mentioned testing levels shall be sequentially executed and are driven by two testing
methodologies [45, 48]:

• black-box testing;

• white-box testing.

With black-box testing (also called functional testing) the tester does not have any prior knowledge
of the internal structure of the SUT. He tests only the functionalities provided by the software
without any access to the source code. Typically, when performing a black box test, a tester
interacts with the system’s user interface by providing inputs, examining the compliance of the
output with the oracles. On the other hand, with white-box testing (also glass testing or open box
testing), the test cases are extrapolated from the internal software’s structure [21]. Indeed, the
tester writes the test cases that reflect paths through the code, with the aim usually to maximize a
coverage criterion. At the end, those techniques aim to generate a test suite composed by a set of
test cases, i.e., a set of conditions under which a tester will determine whether a software system
is working as it was described by its original specification.

As previously explained, testing can be done through different approaches, methodologies
and level of details. However, the common goal behind the testing remains the same, i.e. gen-
erating the smaller test suiteable to reveal the largest number of failures, in order to increase
the reliability of the system [21]. Nevertheless, the process of finding the correct test scenarios,
generating the consequential data inputs, executing and finally reporting the results, comparing
them to the previously written specifications, might be time-consuming and cost-intensive. In
fact, testing costs have been estimated at being at least half of the entire development cost [6].
For this reason, it is necessary to reduce such costs automatizing the various processes occurring
in testing, trying to improve the effectiveness of the whole process. In such described scenario,
for instance, a remarkable example is the application of Search-Based approaches that have been
successfully exploited in the last years in order to automate the test data generation [23].§
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1.2 Motivation
In the last years, we have witnessed a huge growth in the usage of mobile software, due to the ad-
vent of the mobile age. Indeed, nowadays, application running on mobile devices are becoming so
widely adopted, so that they have represented a remarkable revolution in the IT sector. In fact, in
three years, over 300,000 mobile applications have been developed [35], 149 billions downloaded
only in 2016 [42] and 12 million mobile app developers (expected to reach up 14 million in 2020)
maintaining them [11].

Because of the importance of the mobile development field nowadays, developers aim to sus-
tain the competition in acquiring and retaining users increasing the quality of their application.
Since testing plays a crucial role in achieving such quality, several approaches for automated
mobile testing have been recently developed. This because, mobile applications differ from tradi-
tional software and so there is also a need for developing new ad-hoc testing techniques. In fact,
mobile applications are structured around Graphical User Interface (GUI) events and activities,
thus exposing them to new kinds of bugs and leading to a higher defect density compared to
traditional desktop and server applications [25]. Furthermore, they are context-aware [35]. This
means that each mobile application is aware of the environment in which it is running and ex-
poses a different behavior according to its current context. This has some implications for the
testing, because a test case running on a specific context may lead to different results. In fact,
bugs related to contextual inputs are quite frequent [35].

For this reason, mobile applications require new specialized and different testing techniques in
order to ensure their reliability [35]. Being mobile applications event-based systems used through
UI interaction, the GUI testing needs to have a prominent role in app testing. In particular, in this
kind of testing, each test case is designed and run in the form of sequences of GUI interaction
events, with the aim to state whether an application meets its written requirements.

As traditional testing, GUI testing can be performed either manual or automatic. However,
a manual approach would require a lot of programming and may be time-consuming. For this
purpose, with the aim to support developers in building high-quality applications, the research
community has recently developed novel techniques and tools to automate their testing pro-
cess [25, 29, 31, 35]. These techniques consist of automatically creating test cases through the gen-
eration of UI and system events, which are transmitted to the application under test, with the aim
to cause some crashes. Afterwards, if an exception occurred, these tools usually save in log files
the correspondent stack traces, along with the sequence of events that led to the exceptions [35].
However, despite a strong evidence for automated testing approaches in verifying GUI applica-
tion and revealing bugs, these state-of-art tools cannot always achieve a high code coverage [36].
One reason is that current approaches are not suited for generating inputs that require human
intelligence (e.g. "inputs to text boxes that expect valid passwords, or playing and winning a game with
a strategy") [29]. This inability to replicate the human behaviour, often leaving feature and crash
bugs undetected until they are encountered by the users. Furthermore, current solutions gener-
ate redundant/random inputs causing incredibly long sequences of events needed to replicate a
crash, while most of such inputs could be avoided. In addition, the crash reports that they gen-
erate usually lack of contextual information and are difficult to understand and analyze [8, 26].
For such reasons, sometimes a time-consuming manual intervention may be needed for testing
appropriately an application [36].
It is worth noting that, some approaches [29, 31] have proposed new solutions to improve the
current automated testing tools, with the aim of making GUI-testing less random. In this respect,
MacHiry et al. [29] elaborated a novel tool called DYNODROID (see Section 2.1), which sensibly
selects the most relevant events to the AUT at a precise state and consequently executes them.
On the other hand, Mao et al. [31] proposed a multi-objective tool which exploits the cycles of an
evolutionary algorithm to improve the testing process. However, none of the above mentioned
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approaches have integrated user feedback in the testing process of mobile apps, not exploiting
the huge advantage, compared to traditional testing, of having a huge amount of information
available from mobile stores, which have been introduced as a new selling paradigm for mobile
applications.

Indeed, the exponential growth of the mobile stores offers an enormous amount of information
and feedbacks from users that researchers and partitioner can use to develop better applications.
In fact, these users feedback are playing more and more a paramount role in the development and
maintenance of mobile applications. Indeed, recent research focused on how such knowledge
might be successfully exploited (Section 2.2). We argue that also the GUI testing could take profit
in some way of this information. That is why, in this thesis work we shed some initial lights
into the integration of feedbacks extracted from user reviews in the automated testing for mobile
applications. In detail, we hypothesize that such integration can be exploited to overcome the
aforementioned limitations of state-of-the-art tools for automated testing of mobile apps in the
following ways [39]:

1. it can complement the capabilities of automated testing tools, by identifying bugs that they
cannot reveal;

2. it can facilitate the diagnosis and reproducibility of bugs (or crashes), since user reviews
often describe the actions that led to a failure;

3. it can be used to prioritize bug resolution activities based on the users’ requests, possibly
helping developers in increasing the ratings of their apps.

In particular, in this work we investigated this first point by developing an approach able to link
the user reviews with the stack traces that refer to the same bug. Furthermore, we conducted a
preliminary study to understand how complementary are the two sources of information and in
particular whether we can use the reviews to identify some problems that the tools miss.

1.3 Motivation Example
Following, we provide a concrete example of how we plan to compare and analyse the two
sources of information: user reviews and reports generated by automated mobile applications
testing tools. Given app reviews, we first plan to automatically select the ones describing crashes
and bugs in features or in UI elements. A good example of useful review is the following:

“Barely works I only installed this for the android sharing function but it usually loads a white screen when I try
to use this feature. It’s no better than using a browser to view Facebook otherwise.”.

The user here complains about the app sharing function that shows a white screen when acti-
vated. A report generated by one of available automated testing tools, SAPIENZ [31], includes the
stack trace below, where SAPIENZ is able to find a NullPointerException while exercising
the sharing functionality.

1 java.lang.NullPointerException

2 at com.danvelazco.fbwrapper.activity.BaseFacebookWebViewActivity.shareCurrentPage(BaseFacebookWebViewActivity.java:418)

3 at com.danvelazco.fbwrapper.FbWrapper.access$700(FbWrapper.java:26)

4 at com.danvelazco.fbwrapper.FbWrapper$MenuDrawerButtonListener.onClick(FbWrapper.java:376)

5 at android.view.View.performClick(View.java:4438)

6 at android.view.View.onKeyUp(View.java:8241)

7 ....

8 ....

9 at com.android.internal.os.ZygoteInit.main(ZygoteInit.java:611)

10 at dalvik.system.NativeStart.main(Native Method)
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So, the aim behind this thesis is to investigate the complementarity between the user reviews
and the crash reports generated by the automated state-of-art tools described in Section 2.1. The
preliminary step into this analysis it to implement a linking procedure of the two sources of infor-
mation. We argue that this approach can be fruitfully used to support developers in determining
which bugs should be addressed first, prioritizing the arising failures. It is worth noticing that
such prioritization is directly guided by the users feedback with the aim to maximize their satis-
faction and consequentially, the app rating. We argue that this investigation might improve the
automated testing process and might help other developers in validating their mobile applica-
tions, using BECLOMA, the implemented tool described in the Chapter 4.

1.4 Research questions
In this thesis, we conduct a preliminary study to investigate the first and most important point
from the previous list, i.e., the complementarity between user feedback and the outcomes of automated
testing tools. This research represents a first fundamental step toward the integration of user feed-
back into the testing process of mobile apps. Thus, we conducted my thesis aiming to answer the
following research questions:

• RQ1: Which are the most important tools for automatic testing of Android applications?

• RQ2: To what extent can we link the defects arose from automated testing tools with user reviews?

• RQ3: How complementary are the two source of information? Can we leverage on both of them to
increase the effectiveness of the testing process?

The first research question is merely represented by a literature overview to identify which are
the state-of-art tools in automated Android testing. To answer such question we presented the
main research in this field in Chapter 2, giving an accurate overview of testing tools in general,
their pros and cons and their different exploration strategies.

To answer the RQ2, we implement a linking procedure which relies on Information Retrieval
(IR) techniques and uses an experimental-based threshold in order to state whether a review
refers to a specific stack trace. We described the implemented approach in Chapter 3, discussing
its precision in Chapter 5. Finally, for our last research question we relied on the aforementioned
implemented linking technique to understand and identify whether particular kind of bugs can-
not be revealed by current testing tools but can be observed in user reviews (and vice versa).
Again, we describe the achieved results in Chapter 5.





Chapter 2

Related Work

In the following two Sections, I will summarize the main related works on automated testing tools
for Android apps and on the broadly usage of user reviews from app store in Software maintenance ac-
tivities. An overview of the recent research in the field can be found in the survey by Martin et
al. [32].

2.1 Automated tools for Android Testing
Depending on their exploration strategy, there are in general three approaches for creating a gen-
eration of user inputs on a mobile device [10]: random testing [20, 29], systematic testing [30] and
model-based testing [2, 9, 28].

Fuzz testing

When test automation does occur, it typically relies on Google’s Android MONKEY command-
line [20]. Since it comes directly integrated in Android Studio, the standard IDE for Android
Development, it is regarded as the current state-of-practice [30]. This tool simply generates, for
the specified Android applications, pseudo-random streams of user events into the system, with
the goal of stressing the AUT1 [20]. The effort required for using MONKEY is very low [10]. Users
have to specify in the command-line the type and the number of the UI events they want to gen-
erate and in addition they can establish the verbosity level of the MONKEY log. The set of possible
MONKEY parameters can be found in the official User Guide for MONKEY on [20].
The kind of testing implemented by MONKEY follows a black-box approach. Despite the ro-
bustness, the user friendliness [10, 29] and the capacity to find out new bugs outside the stated
scenarios [1], this tool may be inefficient if the AUT requires some human intelligence (e.g. a login
field) for providing sensible inputs [29].
For this reason, MONKEY may cause highly redundant and senseless user events. Even though it
would find out a new bug for a given app, the steps for reproducing it may be very difficult to
follow, also due to the randomness in the testing strategy implemented by it [1].

DYNODROID [29] is also a random-based testing approach. However, this tool has been dis-
covered being more efficient than MONKEY in the exploration process [10].
One of the reasons behind a better efficacy has been that DYNODROID is able to generate both UI
events and system events (unlike MONKEY , which can only generate UI events) [10].
Indeed, DYNODROID can simulate an incoming SMS message on a mobile device, a notification
of another app or an request of use for available wifi networks in the neighborhood [29]. All these

1Application Under Test
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Table 2.1: Statistics on found crashes from the SAPIENZ experiment
App crashes Monkey Dynodroid Sapienz

Nr. App crashes 24 13 41
Nr. Unique crashes 41 13 104

Nr. Total crashes 1’196 125 6’866

events represent non-UI events and they are often unpredictable and therefore difficult to simu-
late in a suitable context. DYNODROID views the AUT as an event-driven program and follows
a cyclical mechanism, also known as the observe-select-execute cycle [29]. First of all, it observes
which events are relevant to the AUT in the current state, grouping they together (an event must
be considered relevant if it triggers a part of code which is part of the AUT). After that, it selects
one of the previously observed events with a randomized algorithm [10, 29] and finally executes
it. After the execution of that event the AUT reaches a new state and the cycle stars again.
Another advantage of DYNODROID compared to MONKEY is that it allows users to interact in the
testing process providing UI inputs. In doing so, DYNODROID is able to exploit the benefits of
combining automated with manual testing [29].

Systematic testing

The tools using a systematic explorations strategy rely on more sophisticated techniques, such as
symbolic execution and evolutionary algorithms [10].

SAPIENZ [31] introduced a new Pareto multi-objective search-based technique (the first one
in Android testing) to simultaneously maximize coverage and fault revelation, while minimiz-
ing the sequence lengths. Its approach combines the above mentioned random-based techniques
with a new systematic exploration. SAPIENZ starts its work-flow by instrumenting the AUT,
which can be achieved using a white-box approach, if the source code is available. Otherwise the
"instrumenting-process" follows a black-box approach in case only the APK2 is given. Afterwards,
SAPIENZ extracts string constants after an accurate analysis of the APK. These strings are used
as inputs for inserting realistic strings into the AUT, which has been demonstrated to improve
the testing efficiency [31]. After that, UI events are generated and executed by an internal com-
ponent called MotifCore. This component, as highlighted before, combines random-based testing
approaches with systematic exploration strategies. When it gets invoked, it initialises an initial
population via MotifCore’s Test Generator and starts the genetic evolution process. During this pro-
cess, another component called Test Replayer manages genetic individuals during the evaluation
process of the individual fitness. After that, the individual test cases are translated into Android
events by the Gene Interpreter, which is in charge of communicating with the mobile device. An-
other component called States Logger checks whether the tests cases find some faults and produces
statistics for another component, called Fitness Extractor, which computes the fitness.
Finally, reports containing data about testing results, such as code coverage, stack traces and
"steps for reproducing the faults" are generated and stored at the end of the process.

The experiment results published on [31] show that SAPIENZ is an out-performer in the au-
tomated mobile testing area. Table 2.1 compares the above mentioned tools MONKEY and DYN-
ODROID with SAPIENZ , illustrating the strength of the SAPIENZ approach.

As illustrated in Table 2.1, SAPIENZ found from a set of 68 benchmark apps, 104 unique crashes
(while MONKEY 41 and DYNODROID 13).

2Android Package Kit, extension used by Android OS for installing a mobile app on an android device
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Model-based testing

Model-based tools for testing Android applications are quite popular [31]. Most of these tools
[2, 9, 28, 33] generate UI events from models which are either manually designed or created from
XML configuration files [31].
For example, SwiftHand [9] uses a machine learning algorithm to learn a model of the current AUT.
This final state machine model [10] generates UI events and due their execution the app reaches
new unexplored states. After that, it exploits the execution of these events to adapt and refine
the model [9]. SwiftHand, in a similar way to MONKEY generates only touching and scrolling UI
events and is not able to generate system events [10].

2.2 Usage of users reviews in Software maintenance
activities

The concept of app store mining was first introduced by Harman et al. [22]. In this respect, they
presented an empirical analysis of relationships between three main areas of interest in the con-
text of user reviews: technical, customer-focussed and business. Their approach consists in (i)
extracting raw data from the app store (ii) parsing that data with the aim to retrieve all attributes
concerning the price, the ratings and descriptions of the app itself (iii) using data mining to ex-
tract feature information from the above parsed descriptions and finally (iv) providing statistics
about the above mentioned areas of interest.

In the context of app store mining, many researchers focused on the analysis of user reviews to
support the maintenance and evolution of mobile applications [32]. Indeed, the survey by Martin
et al. [32] proposes a study which aims at defining and grouping together different literature
sources, demonstrating that an area of research in the field of "App Store Analysis" actually exists.

In this field, Pagano et al. [38] empirically analyzed the feedback content and their impact
on the user community. Indeed, they proposed a study proposition where (i) they hypothesized
that developers find user feedback a useful source of information for validating their software.
Then, (ii) they assumed that the current practice of user involvement in the validation process
brings with it several challenges, since it is unsystematic and there are some practical limitations
concerning the quality, content and structure of such user feedback. Finally, (iii) they believe that
developers embrace tool support for dealing with a very large amount of user reviews, which
allow them to validate their software according to its users.

In this respect, Khalid et al. [27] conducted a study on iOS apps discovering 12 types of user
complaints posted in reviews. In their findings, they found that the most frequent regard func-
tional errors, requests about a new feature and complaints about app crashes. With this study,
they argue that the analysis of these complaints can further help developers to identify app bugs
and develop new features according to their users requests. Furthermore, they argue that based
on their findings developers can better anticipate possible complaints and so prioritize them a
priori.

Several approaches have been proposed with the aim of classifying useful reviews. AR-
MINER [8] represents the first approach proposed in the literature able to discern informative
reviews. In this approach, they aim to retrieve the most "informative" information which can be
extracted from raw user reviews. They argue, that this kind of information can help developers in
app markets to improve their applications. In this sense, AR-Miner can be viewed as a "novel ana-
lytic framework" [8], which consists of a new ranking scheme that prioritizes these "informative"
reviews.

In the context of the usage of users reviews in the validation process of a software, in a recent
work Panichella et al. introduced a tool called SURF (Summarizer of User Reviews Feedback), that



10 Chapter 2. Related Work

is able to analyse the useful information contained in app reviews and to perform a systematic
summarisation of thousands of user reviews through the generation of an interactive agenda of
recommended software changes [41].

Finally, Palomba et al. [40] proposed CHANGEADVISOR, a tool able to suggest the source code
artefacts to maintain according to user feedback. Indeed, this tool is able to analyse a very large
amount of user reviews, by automatically (i) extracting these user reviews (ii) grouping them
together using some bucketing techniques (iii) linking these source code components relevant to
the currently investigated user review.

2.3 Choice and motivation for the used automated
testing tools

For the implementation of BECLOMA, we have chosen to use the following two automated test-
ing tools:

• MONKEY

• SAPIENZ

The selection of MONKEY is justified by the fact that (i) MONKEY represents the current state-of-
practice in the field of automated mobile testing [30] and therefore is well supported and docu-
mented by the community, (ii) the effort in using it is very low [10] and (iii) being a command-line
tool, it can easily be combined with the terminal and so be launched by and integrated into an
external tool which provides and supports command-line functions.

The aim of selecting SAPIENZ is driven by the fact that (i) SAPIENZ has been found to be (based
on the experimental results presented on [31]) an outperformer in the automated mobile testing
area. Indeed its approach has been discovered to be much more reliable and high-performing
compared to other testing strategies such as those of MONKEY or DYNODROID. (ii) The source
code of SAPIENZ is readily accessible on GitHub and therefore the whole source code can be inte-
grated into another tool (iii) SAPIENZ can also be started using some command-lines.
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Approach

In this work, we aim to build an approach able to (i) automatically test Android applications
with modern state-of-art tools, (ii) automatically collect the arising errors (i.e., stack traces), (iii)
detect the unique errors (i.e., the ones that derive from the same bug), (iv) link such stack traces
with the user reviews that claim about the correspondent problems. We called this approach
BECLOMA (Bug Extractor, Classifier and Linker Of Mobile Apps). Figure 3.1 depicts the main
actions performed by this approach. To give a clearer and more understandable explanation of
how BECLOMA works, we will describe in the following Chapter its key features (see figure 3.1).
Such features represent the three main processes that BECLOMA sequentially performs.

1. the TESTING part uses MONKEY and SAPIENZ to test the APKs under test, reporting their
testing results and extracting possible crashes from the before generated test logs;

2. the CLUSTERING part investigates the similarity between the previous extracted crash logs,
using different metrics and strategies, in order to collect them together and create a crash
log bucket, i.e., a set of unique;

3. the LINKING part represents the core feature of BECLOMA. It preprocesses a set of given
user reviews as well as the set of the previously created crash logs, in order to preprocess
them for the linking procedure. Afterwards, it investigates whether there exists a correlation
between the stack traces and the user feedbacks, with the aim to link, if possible, the reviews
with the crash logs.

3.1 Testing and Traces Collection
The first step in the overall approach basically relies on two of the most used Android testing
tools, in order to exercise the SUT under tests and collect as many failures as possible. First of
all, BECLOMA acts as crawler in order to download the set of desired APKs from the FDroid API.
Thus, it firstly reads a static structured file containing a set of android package names; then, it
builds the necessary HTTP links in order to download the corresponding APK files. Once the
dataset has been built and some testing parameters have been specified, the testing session can be
started. The set of parameters that must be specified are described in detail in Section 4.4.4. The
overall approach of BECLOMA consists in three testing cycles:

1. The single app cycle concerning the testing of a single APK. It represents the time frame for
which each APK in the dataset is tested. After that time frame, the approach starts with the
testing of the next APK indicated in the dataset.
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Figure 3.1: BECLOMA approach

Figure 3.2: Approach performed by BECLOMA for testing a single Android app

2. The dataset cycle describing the time spent for testing the APKs within the dataset exactly
one time for that currently cycle.

3. The session cycle characterizing a testing session, i.e., how many dataset cycles have to be
performed.

Figure 3.3 shows the roles of these cycles in the testing approach, while figure 3.2 illustrates the
process in detail behind the single app cycle. First, during this cycle the APK is systematically tested
according to its specifications and testing parameters. Once the test is finished, the reporting phase
starts. This step consists of saving the generated reports in a given directory. Once the logs have
been stored, they are ready to be investigated. This means, that the reports are parsed with the
intention to find eventually crashes inside them. Afterwards, if a crash occurred, its part relative
to the stack trace from the whole corpus of the log is extracted. At the end, this information is
saved into a specific directory aiming at collecting all the arose failures.
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Figure 3.3: Testing cycles characterizing the testing approach
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Figure 3.4: The idea behind the clustering process

3.2 Clustering of the Collected Traces
As we said before, at the end of the testing phase all the stack traces that have been generated are
stored in a specific directory. However, it is worth noticing that with a high change, most part
of such failures would refer to the same bug. To make our explanation better understandable,
we introduce a new term we call unique crashes. In this sense, a set of unique crashes indicates a
group of duplicates in the cluster which belong to the same bug. In fact, each crash in that cluster
is considered to be interchangeable.

Indeed, in order to identify these unique crashes, the second step of our approach performs
an automatic clustering of the overall bunch of logs. Ideally, at the end of such phase, each cluster
should contain logs that refers to exactly the same bug. For this task, we rely on classic Informa-
tion Retrieval (IR) techniques, collecting features about the logs and comparing them using the
cosine similarity metric. Figure 3.4 shows the overall process for this task. As said before, some
track traces may be overlapping i.e., refers to the same bug of be even duplicates. Despite the trig-
ger method, i.e., the method that raised to the exception, may be the same, there may be different
sequences of function calls in the stack trace, the more the analysis goes deep. However, they
are hardly detectable and is difficult to affirm that two stack traces which have the same trigger
method refer to different bugs. Therefore, some reports may belong to two different bug groups
in the bucket. In order to understand better the clustering approach, a clarification of how a crash
log is structured must be done. For this purpose, the real structure of a crash report is illustrated
in Listing 3.1.

1 // CRASH: com.ringdroid (pid 6207)

2 // Short Msg: android.database.StaleDataException

3 // Long Msg: android.database.StaleDataException: Attempted to access a cursor after it has been closed.

4 // android.database.StaleDataException: Attempted to access a cursor after it has been closed.

5 // at android.database.BulkCursorToCursorAdaptor.throwIfCursorIsClosed(BulkCursorToCursorAdaptor.java:64)

6 // at android.database.BulkCursorToCursorAdaptor.getCount(BulkCursorToCursorAdaptor.java:70)

7 ...

Listing 3.1: Structure of a crash log
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A crash log is usually structured as follows:

• Line 1 represents the top of the crash log, where the concerned package name is made ex-
plicit;

• Line 2 tells in few words the cause of the exception;

• Line 3 complements the cause of the exception giving a long explanation about the exception
itself;

• Line 4 represents the first line of the stack trace and contains the name and the generic cause
of the exception. From this point, all the function calls underlying are part of the stack trace;

• Line 5 is considered the exact reason for the exception, i.e., the trigger method within the
source code that caused the crash;

• From line 6 moving gradually down until the end of the stack trace, there are other nested
function calls which contain additional information about the cause of the exception. Usu-
ally, the most important ones for identifying the cause are in the first few lines.

In order to state whether two crash reports refer to the same bug or not, we used a search based
approach to identify the correct threshold. Indeed, we built an Oracle which is in charge of com-
paring two crash logs and is able to answer the following question: Do they refer to the same bug?.
For its answers it makes use of a similarity tolerance, which has been adapted on the base of our
experimental results. In fact, we manually created the bucket of unique crash logs and conse-
quently adapted the threshold in the oracle in order to enable it to rightly answer its questions
and so reproduce the same bucket.

Preprocessing. The first step of the clustering approach consists in preprocessing the crash re-
ports in order to prepare them to be compared to each other. The preprocessing step is funda-
mental to be performed since (i) it removes possible noise from the logs (remove unless sym-
bols or numbers), (ii) standardizes them making their contents consistent to each other and (iii)
parses and converts them identifying different key elements. To perform such phase, the ap-
proach follows a grammar-based tokenization technique implemented in the well-know Apache
Lucene [13] library. In this respect, we collected all words contained in the crash reports and
preprocessed them using a Lucene tokenizer, called Standard Tokenizer [?]. This tokenizer simply
splits the word fields into lexical units using punctuation and whitespaces as split points. In ad-
dition, it removes unnecessary symbols (e.g., "//"). BECLOMA extends the Lucene tokenizer to
a further CamelCase regular expression. This because it is a worldwide convention that develop-
ers use CamelCase notation for writing programming words such as names of classes, names of
functions or names of variables. Since most of the words included in the crash logs are program-
ming language keywords, BECLOMA complements such StandardTokenizer, so that CamelCase
text fields can be also split at the upper-case letters into separate words.

TF-IDF. Once all words inside the crash logs have been tokenized, we relied on some well know
Information Retrieval techniques in order to link together the duplicated crashes. As features for
such process, we relied on the computation of the tf-idf (term frequency inverse document frequency)
values on the collected stack traces. In this direction, BECLOMA computes tf-idf numerical statis-
tics in order to find the relevance of a word in a collection of documents (in our case, the crash
logs). Tf-idf is a well-know term-weighting scheme and usually is used in Information Retrieval
or text mining [47]. The importance of a term is given by the number of times it occurs in a par-
ticular document, inversely proportional to its appearance in the entire documents collection [7].
Generally, a tf-idf scheme consists of three main components [17]:
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• TF (Term Frequency), i.e., how many times a term appears in the currently scored docu-
ment, where repeated terms indicate the topic of the document; A high tf means that the
word in question has a high relevance for the document. The following simplified equa-
tion [47] describes a formula for calculating it:

tfx,y =
nx,y
| dy |

where nx,y represents the number of occurrences of the term tx in the document dy , while
| dy | represents the number of words inside the document dy .

• IDF (Inverse Document Frequency), i.e., the inverse of the document frequency, that repre-
sents the number of document in which the term appears. If the same term appears in fewer
documents, idf shows a high value, whereas if a term is very common it returns a low value.
The equation [47] below describes a simplified version of the inverse document frequency
formula:

idfx =
| D |

| {d : ti ∈ d} |

where | D | is the number of documents in the collection, while | {d : ti ∈ d} | represents the
number of documents which contains the term ti

• TF-IDF, i.e., the product of the two above terms. If it has a high value means that the cur-
rently scored term has a high relevance, otherwise if it returns a low value, the term has
little relevance.

tfidfx,y = tfx,y ∗ idfx

The idf metric actually measures how important a term is. This because a term which appears
very often in a single document will have a high tf score but if this term rarely occurs in the other
ones it will also have have a high idf score and so a low tf-idf value. This would imply that it
shall not have a high relevance. Otherwise, if a word occurs very often both in a single document
and in the entire collection it has a high tf score and a low idf value, which results in a high tf-idf
score.
At the end of this phase, BECLOMA has created for each crash log its correspondent vector space
model, i.e., a weighted vector term, where each term indicates a new dimension in the vector and
is associated with its correspondent tf-idf value.

Cosine Similarity. To state whether two crash reports refer to the same bug, the approach com-
putes cosine similarity between their previously created vectors space model. The cosine similar-
ity is just a measure of similarity between two vectors [46] (in our case, two normalized weighted
vectors consisting of their tf-idf scores). Usually, the resulting similarity ranges from -1 to 1, but
in the case of Information Retrieval, since the frequency of the terms are always positive, the
returned values range from 0 to 1, where 0 indicates that two documents are completely decor-
related, while 1 means that the words contained inside them are exactly the same. The equation
describing the cosine similarity between two vectors is as follows:

cosine similarity = cos(θ) =
A ·B
||A|| ||B||

where, in our case A and B are two normalized weighted term vectors consisting of tf-idf values.
With the term "normalized" is understood that when two weighted vectors are used to compute
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cosine similarity among them, for each time a word is contained within a vector but not in the
other, that term is inserted into the vector that does not contain it by associating a tf-idf score of 0.
Furthermore, in doing so the two vectors will have the same length by making the computation
of their dot product possible.

3.3 Linking approach
To study the correlation between user reviews and the outcomes of automated testing tools, BE-
CLOMA assumes that the set of users feedback have been already classified in according to a
defined taxonomy and preprocessed. In order to classify the users feedback according to a given
taxonomy (and ad oc preprocessed) we relied on an approach implemented by Palomba et al. [40].
In this approach, they proposed some machine learning techniques for automatically classifying a
set of user reviews according to a defined taxonomy. Furthermore, it performs a systematic Infor-
mation Retrieval (IR) preprocessing [5] on both the user reviews and augmented stack traces aimed
at (i) correcting mistakes, (ii) expanding contractions (e.g., can’t is replaced with can not), (iii) fil-
tering nouns and verbs, (iv) removing common words or programming language keywords, and
(v) stemming words (e.g., aiming is replaced with aim).
The text below depicts an example of Information Retrieval preprocessing applied on a user feed-
back:

“Crashes on Messages I would give this 5 stars but it crashes every time I try to access my messages in the app.
I have removed and reinstalled the app signed in and out even reformatted my phone. But it still crashes when I click
Messages every time without fail.”.
Following, the review is preprocessed applying the techniques described above:

“crash messag i would give 5 star crash everi time i tri access messag app i remov reinstal app sign even reformat
phone but still crash i click messag everi time without fail”.

Linking between Crash Logs and Reviews The last step of the approach consists of linking the
information from the stack traces contained in the reports to the relevant user reviews. However,
linking the two sources of information is not at all obvious. This because they come from different
worlds: user reviews contain natural human language which describe the overall scenario that led
to a failure [34], while the stack traces contain technical information about the exceptions raised
during the execution of a certain test case. To account for this aspect, the approach first removes all
information that creates noise in the collected stack traces, only the name and cause of the raised
exceptions are selected, i.e., the first line of the stack trace (in the example 3.1 the line 4). The choice
of considering only some specific parts of the stack traces was driven by experimental results.
These results illustrated how the linking accuracy was influenced by the presence/absence of
this information. After cleaning the reports, the remaining text is augmented with the source code
methods included in the stack trace. This concretely means that each method extracted from the
stack trace gets compared with all methods included in the source code. If a correlation among
them exist, the stack trace is augmented with the body and the set of words related to the that
method. This step extends the information from the reports with contextual information from
the source code, possibly providing additional information useful for the linking process. Also
in this case, the choice was not random but driven by the experimental results. Afterwards,
the approach performs the systematic Information Retrieval (IR) preprocessing [5] used by the
approach implemented by Palomba et al. Finally, the resulting documents are linked using the
asymmetric Dice similarity coefficient [5], which is defined as follows:

Dice(reviewj , crashi) =
|Wreviewj ∩Wcrashi |

min(|Wreviewj |, |Wcrashi |)
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where Wreviewj
represents the set of words composing a user review j, Wcrashi

is the set of words
contained in an augmented stack trace i and the min function normalizes the Dice score with
respect to the number of words contained in the shortest document between j and i. The asym-
metric Dice similarity returns values between [0,1]. In my thesis, pairs of documents having a
Dice score higher than 0.5 were considered as linked by the approach.
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Bug Extractor, Classifier and
Linker Of Mobile Apps

This Section presents BECLOMA1, a Java-based tool aimed at helping developers during the testing
process of their Android mobile applications. The tool is composed by a set of sub-components
that operate sequentially. The first one is the component that is charge of exercising the SUT,
revealing and collecting crashes. The second component processes the gathered data, as explained
in Section 3.2. At the end, the tool is able to recommend traceability links between the stack traces
and a set of mined user reviews for the same app under test. Chapter continues with a technical
description of the implemented components, as well with the instructions to run the tool.

4.1 Testing Component
First of all, if no set of APKs is available yet, BECLOMA can be exploited for downloading the
needed mobile applications from the F-Droid API2. In this respect, as shown in the picture 4.1, the
component FDROIDCRAWLER, is first in charge of parsing a static structured file (e.g. a csv file)
that contains a set of Android packages names that univocally represent a given app of the Google
Play Store. The path of this file is given in the CONFIGURATIONMANAGER, which contains a set
of static properties that get elaborated by BECLOMA.
Second, FDROIDCRAWLER searches and then extracts a set of HTTP links for those android pack-
ages that have been found on the API. Afterwards, it builds the correct HTTP requests and finally
starts the downloading process, saving the returned APKs in a given directory.

The first step of the testing part was to build a set of APKs, with which to perform the testing
process. As said, this can be achieved using either FDROIDCRAWLER or can also be manually cre-
ated. Now, the second step is to prepare and configure the testing environment. In this direction,
figure 4.1 shows an example of a simplified set of parameters which must be given a priori in the
CONFIGURATIONMANAGER file in order to launch a testing session. Indeed, lines 22-41 illustrate
how the testing parameters concerning MONKEY and SAPIENZ are specified. Furthermore, in this
file the directories containing the dataset must be also inserted. These include the location of the
static structured file and the directory where the APKs are going to be stored (lines 4-5). In addi-
tion to them, the directories on which the generated test logs are going to be saved (lines 10-11)
must be given.
An in-depth explanation about the specifications in the CONFIGURATIONMANAGER can be found
in Section 4.4.4.

1the source code of BECLOMA is available at https://bitbucket.org/sealuzh/becloma
2https://f-droid.org/repo/
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1 /**
2 * Dataset directories

3 */

4 CSV_FILE_DIR = Dataset/dataset.csv

5 APK_DIR = Downloads/apks

6

7 /**
8 * Test logs directories

9 */

10 MONKEY_DIR = Reports/MonkeyReports

11 SAPIENZ_DIR = Reports/SapienzReports

12

13 /**
14 * Testing session specifications

15 */

16 MINUTES_PER_APP = 30

17 NR_OF_ITERATIONS = 5

18

19 /**
20 * Monkey parameters

21 */

22 LOG_VERBOSITY = -v

23 PACKAGE_ALLOWED = -p

24 NR_INJECTED_EVENTS = 5000

25 DELAY_BETWEEN_EVENTS = 10

26 PERCENTAGE_TOUCH_EVENTS = 15

27 PERCENTAGE_SYSTEM_EVENTS = 15

28 PERCENTAGE_MOTION_EVENTS = 15

29 IGNORE_CRASH = True

30

31 /**
32 * Sapienz parameters

33 */

34 SEQUENCE_LENGTH_MIN = 20

35 SEQUENCE_LENGTH_MAX = 500

36 SUITE_SIZE = 5

37 POPULATION_SIZE = 50

38 OFFSPRING_SIZE = 50

39 GENERATION = 100

40 CXPB = 0.7

41 MUTPB = 0.3

Listing 4.1: Properties which get elaborated during the testing sessions

As shown in the figure, the tool accepts two further parameters that tune the duration and the
execution of the tests (lines 16-17):

• MINUTES_PER_APP, specifies how many minutes an app will be tested. After that time
frame, a time-out occurs and the testing process gets restarted with the next app. Referring
to the approach explained in Section 3.1, this value represents the single app testing cycle.
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• NR_OF_ITERATIONS, specifies how many times the whole dataset will be tested. This value,
in turn, describes the session cycle.

According to the example 4.1 above and assuming that the dataset consists in 10 apps, the total
estimated testing time for an entire testing session would be:

30min
per

app
∗ 10 apps ∗ 5 iterations = 1500min. (25 hours).

Once the testing environment has been configured, the automated tool with whom the testing is
going to be performed must be made explicit. Indeed, it has to be specified as parameter in the
MAIN args (as mentioned before in Section 2.3, the tool which can be selected is either MONKEY
or SAPIENZ).
The last configuration step is to define on which kind of device (i.e, a real device, such as a tablet or
a virtual device, such as an emulator) the testing is going to be performed. In addition to them, an
additional argument that starts a timer for a better overview during the testing process can also
be passed as main argument. BECLOMA supports different types of emulators or real devices
running on different android API levels. However, in order to correctly execute SAPIENZ , the
API level shall be Android 4.4, KitKat.
Listing below shows an example of a possible combination of parameters that could be given as
main arguments.

1 $ java -jar BECLOMA.jar -device -monkey -timer

Listing 4.2: Possible BECLOMA command-line

Section 4.4.4 describes the full usage of BECLOMA.

Session cycle. Once the configuration phase is terminated, BECLOMA is able to start concrete
the testing process. As shown in the picture 4.1, it manages the component SESSIONLAUNCHER,
which is in charge of translating the previously specified testing properties into "Java readable
code" and initializing the session cycle mentioned in the approach. Concretely, after BECLOMA
invokes SESSIONLAUNCHER all attached devices respectively the chosen emulators get initial-
ized, i.e., they get rebooted and restarted as root, so that some important write-read-permissions
are enabled during the testing session. Whether the timer has been given as main argument, it
gets also started.
Once the initialization step has been completed, SESSIONLAUNCHER invokes the APPTESTER
component which is in charge of starting the dataset cycle. Listing 4.3 shows a simplified code
snippet about the beginning of this testing cycle.
First of all, as shown in Listing 4.3, the total number of iterations specified in the CONFIGURA-
TIONMANAGER is read and stored into a constant of type int at line 3. After that, the specified
device gets initialized, statically invoking the correspondent method (line 4-9). According to the
boolean variable isTimer, a timer may also be started (line 11-13). Afterwards, a for-loop starts,
where at each iteration the method testAllApp() gets invoked. Referring to the approach explained
in Section 3.1, at each iteration a new object of type APPTESTER is created, which represents ex-
actly one dataset cycle. As shown in the figure 4.1, the SESSIONLAUNCHER would be able to in-
stantiate infinite times the class APPTESTER. However, it must create at least one object of that
type in order to start a testing session.
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1 private appTester;

2 public void startTestingSession() throws Exception {

3 final int NUMBER_ITERATIONS = ConfigurationManager.

getNumberOfIterations();

4 if (IS_EMULATOR) {

5 SessionLauncher.initialiseEmulator();

6 }

7 else {

8 SessionLauncher.initialiseDevices();

9 }

10

11 if (isTimer) {

12 SessionLauncher.initializeTimer();

13 }

14 for (int i = 0; i < NUMBER_ITERATIONS; i++) {

15 System.out.println("Iteration number " + (i+1));

16 this.appTester = new AppTester();

17 this.appTester.testAllApp();

18 }

19 }

Listing 4.3: SESSIONLAUNCHER Code snippet for starting a testing session

Dataset and single app cycles. APPTESTER and CMDEXECUTOR represent the core compo-
nents of the whole testing process. Indeed, APPTESTER can be viewed as brain of the process,
since it tells step-by-step to the body, i.e., the CMDEXECUTOR component, which commands it
has to execute and at what stage of the process it has to perform it.
Listing 4.4 shows a very simplified code snippet of the relation between the two above mentioned
components.

First of all, APPTESTER creates a for-loop in which it iterates each APK file contained in the
APKs directory. Once again, this directory is specified in the CONFIGURATIONMANAGER. The
first if statement checks whether the file in question has an adequate extension, i.e., it is able to
be installed on a android mobile device. After that, APPTESTER uninstalls the concerned APK, so
that at each iteration of the testing it gets reinstalled. This because, it may be that an APK gets
affected by some previously generated sequences (e.g., a sequence of random events that led the
app to an external website).
Afterwards, APPTESTER checks which automated tool has been chosen by the tester, so that it can
tell to the CMDEXECUTOR component, which command-line it has to execute. As stated before,
APPTESTER prepares the single testing components such as which APK, which tool, which testing
parameters, etc., while CMDEXECUTOR executes them without any prior knowledge.
Once the automated tool has been detected, CMDEXECUTOR is able to concretely start the single
app cycle, executing the passed command-line. This is represented in Listing 4.4 by the method
generateReport() (line 33). Indeed, CMDEXECUTOR uses a single instance of the Java-class Runtime
that allows the application to interact with the environment in which the app is running [43].
This is actually achieved by the Runtime.getRuntime() (line 34). The next line concretely executes
the passed command-line.
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1 /**
2 * @class: AppTester

3 */

4 public void testAllApp() {

5 for (File apk : this.apksDirectory) {

6 if (apk.getName().endsWith(".apk") && !apk.isDirectory()) {

7 uninstallApp(apk.getName());

8 installApp(apk.getName());

9 if (IS_MONKEY) {

10 testAppWithMonkey(config.getMonkeyRepDir(), apk.getName

());

11 } else if (IS_SAPIENZ) {

12 testAppWithSapienz(config.getSapienzRepDir(), apk.

getName());

13 }

14 }

15 }

16 // waiting to threads to finish

17 File testLog = CmdExecutor.getCurrentLog();

18 if (hasCrash(testLog)) {

19 generateCrashLog(testLog);

20 }

21 }

22 private void testAppWithSapienz(String dest, final String APK_NAME) {

23 CmdExecutor.generateReport(dest, CommandLines.SAPIENZ_CMD_LINE(APK_NAME));

24 }

25

26 private void testAppWithMonkey(String dest, final String APK_NAME) {

27 CmdExecutor.generateReport(dest, CommandLines.MONKEY_CMD_LINE(APK_NAME));

28 }

29

30 /**
31 * @class: CmdExectutor

32 */

33 public static void generateReport(String dest, String cmd){

34 Runtime runtime = Runtime.getRuntime();

35 Process p = runtime.exec(cmd);

36 StreamGobbler output = new StreamGobbler(p.getInputStream(), cmd, dest)

;

37 output.start();

38 writeTestingEndTime(dest);

39 }

40

41 public static File getCurrentLog() {

42 return lastGeneratedLog();

43 }

Listing 4.4: Testing mechanism between APPTESTER and CMDEXECUTOR
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The returned code of the function call at line 35 consists of a new process object. The process
actually contains the execution of the command line. Assigning the execution of each single
command-line to a new single separate process has advantages; In particular:

• Processes are independent from each other. If the execution of a command-line fails, it can
be interrupted without affecting the entire testing process;

• Multithreading can be easily supported; Indeed, the component STREAMGOBBLER extends
the Thread Java-class which implements the Runnable Java-interface. Each time a new pro-
cess comes in, it starts a new thread in this class.

• Each process has it own timeout. It may be that some command-lines cannot properly ter-
minate and need to be interrupted during their execution.

Reporting phase. STREAMGOBBLER, in turn, is in charge of writing the test report. Each time
its constructor gets instantiated in the generateReport() method in the CMDEXECUTOR class, it
starts a new thread and begins in parallel the writing phase of the log. As shown in Listing 4.5, the
method run() overrides the method located in the Runnable interface. Indeed, it gets automatically
invoked when in the generateReport() method an object of type StreamGobbler calls the function
start() (line 37). Once it gets called, the reporting phase begins. This phase uses a PrintWriter as
well as classic Reader for writing text on a file. Before the test log is written, the metadata about
the testing environments are appended to the writer. At the end of the process the writer is closed
and the thread can terminate. Once the thread is finished, the method writeTestingEndTime() (line
38) can be executed. It complements the metadata, writing the testing end time, so that the total
testing time can be computed.

1 /**
2 * @class: StreamGobbler

3 */

4 @Override

5 public void run() {

6 try {

7 Writer writer = new PrintWriter(outputPath, "UTF-8");

8 InputStreamReader isr = new InputStreamReader(is);

9 BufferedReader br = new BufferedReader(isr);

10 String line;

11 writer.append(TesterData.getMetaData()); // insert metadata

12 while ((line = br.readLine()) != null) {

13 System.out.println(" > " + line); // console overview

14 writer.append(line).append("\n"); // test log

15 }

16 closeWriter();

17 } catch (IOException ioe) {

18 ioe.printStackTrace();

19 }

20 }

Listing 4.5: STREAMGOBBLER code snippet writing a test log
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Listing 4.6 shows a short version of a test log of the app com.danvelazsco.fbwrapper that has been
generated after the execution of MONKEY .

1 /**

2 * Meta-data

3 */

4 Tester Name: Lucas Pelloni

5 Testing Start Time: 05/04/2017 11:18:29

6 Testing End Time: 05/04/2017 11:48:30

7 Total Testing Time: 30 minutes (0.5 hours)

8 Type of testing: testing on a physical device

9 Device name: c0808bf731ab321

10 Percentage of motion events: 2.0% (number of motion events: 60 of 3000 events)

11 Percentage of system events: 6.0% (number of system events: 180 of 3000 events)

12 Percentage of touch events: 1.0% (number of touch events: 30 of 3000 events)

13

14 /**

15 * Test log

16 **/

17 :Monkey: seed=1495075565065 count=3000

18 :AllowPackage: com.danvelazco.fbwrapper

19 :IncludeCategory: android.intent.category.LAUNCHER

20 :IncludeCategory: android.intent.category.MONKEY

21 // Event percentages:

22 // 0: 1.0%

23 // 1: 2.0%

24 // 2: 2.4931507%

25 // 3: 18.698631%

26 // 4: -0.0%

27 // 5: 31.164383%

28 // 6: 18.698631%

29 // 7: 6.0%

30 // 8: 2.4931507%

31 // 9: 1.2465754%

32 // 10: 16.205479%

33 :Switch: #Intent;action=android.intent.action.MAIN;category=android.intent.category.LAUNCHER;end

34 // Allowing start of Intent { act=android.intent.action.MAIN cat=[android.intent.category.LAUNCHER]

35 :Sending Trackball (ACTION_MOVE): 0:(4.0,4.0)

36 :Sending Trackball (ACTION_MOVE): 0:(4.0,-3.0)

37 //[calendar_time:2017-05-05 09:48:23.894 system_uptime:717348]

38 // Sending event #100

39 ...

Listing 4.6: Test log of com.danvelazco.fbwrapper

As shown in the figure above, the test logs do not only contain the test results of the tested
app, but also the above mentioned meta-data for documenting and retracing the whole testing
session.

Investigating phase. The single app cycle in the "strict sense", i.e., the stage where the APK
gets stressed with an automated tool is over. At this point, the logs must be investigated about
the possibility that some apps have generated a crash during its testing time frame. In this sense,
the last part of the method testAllApp() illustrated in Listing 4.4, is in charge of stating whether a
test log contains a crash or not. The method for checking whether a test log has collected a crash
inside it is quite intuitive. This because, the syntax used by MONKEY and SAPIENZ in their report
for indicating the presence of a crash is the same. As illustrated in Listing 4.7, a crash can be
delimited using the following two Strings:

• Crash beginning: "// CRASH: "

• Crash end: "// "
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1 ...

2 :Sending Trackball (ACTION_MOVE): 0:(-4.0,-3.0)

3 :Sending Trackball (ACTION_MOVE): 0:(3.0,-1.0)

4 // CRASH: com.danvelazco.fbwrapper (pid 4302)

5 // Short Msg: java.lang.NullPointerException

6 // Long Msg: java.lang.NullPointerException

7 // Build Label: samsung/espressowifixx/espressowifi:4.2.2/JDQ39/P3110XXDMH1:user/release-keys

8 // Build Changelist: 8291

9 // Build Time: 1419156873000

10 // java.lang.NullPointerException

11 // at com.danvelazco.fbwrapper.activity.BaseFacebookWebViewActivity.onKeyDown(BaseFacebookWebViewActivity.java:649)

12 // at com.danvelazco.fbwrapper.FbWrapper.onKeyDown(FbWrapper.java:429)

13 // at android.view.KeyEvent.dispatch(KeyEvent.java:2640)

14 // at android.app.Activity.dispatchKeyEvent(Activity.java:2433)

15 // at com.android.internal.policy.impl.PhoneWindow$DecorView.dispatchKeyEvent(PhoneWindow.java:2021)

16 // at android.view.ViewRootImpl$ViewPostImeInputStage.processKeyEvent(ViewRootImpl.java:3845)

17 // at android.view.ViewRootImpl$ViewPostImeInputStage.onProcess(ViewRootImpl.java:3819)

18 // at android.view.ViewRootImpl$InputStage.deliver(ViewRootImpl.java:3392)

19 // at android.view.ViewRootImpl$InputStage.onDeliverToNext(ViewRootImpl.java:3442)

20 // ...

21 //

22 :Sending Touch (ACTION_DOWN): 0:(215.0,683.0)

23 :Sending Touch (ACTION_UP): 0:(163.15541,597.4464)

24 ...

Listing 4.7: Crash log of com.danvelazco.fbwrapper illustrated within its test log

Indeed, the method generateCrashLog() is in charge of extracting the crash(es) from its test log.
The parsing technique used by this method is to individuate the beginning of the crash using the
"START_CRASH" String. Once the start has been individuated, the loop continues to insert lines
of the log into a local array of Strings (line 13) until it finds the "END_CRASH" String. Once the
end has been reached the loop terminates and CMDEXECUTOR writes the results into an external
file, in order that the crash can be extracted.

1 /**
2 * @class: AppTester

3 */

4 public void generateCrashLog(File testLog) {

5 ...

6 ArrayList<String> crashLog = new ArrayList<>();

7 Pattern start = Pattern.compile(START_CRASH);

8 String line;

9 while ((line = in.readLine()) != null) {

10 Matcher matcher = start.matcher(line);

11 if (matcher.find()) { // crash start

12 while (!line.contains(END_CRASH)) { // crash end

13 crashLog.add(line);

14 line = in.readLine();

15 }

16 }

17 }

18 CmdExecutor.writeToFile(crashLog, dest);

19 }

Listing 4.8: APPTESTER’s method for extracting a crash log from its test log
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At this point, the APK has been tested, reported, if they occurred, the relative crashes extracted.
BECLOMA can now repeat this entire process with the next application (i.e., the next iteration
in the loop inside the method testAllApp()). This scenario is represented by the "yes" answer of
the question "are there still apps in the dataset which have not been tested in this dataset cycle?" in the
figure 3.3. Once all the applications specified in the dataset have been tested exactly one time,
SESSIONLAUNCHER can begin with the next iteration in its loop (Listing 4.3) and so start testing
the whole dataset another time. This scenario, in turn, is described by the "no" answer of the
question above. Indeed, diagram 3.3 consequently starts the dataset cycle again. This loop ends
when the number of iterations reaches the one specified by the user.
In addition, during each test iteration and at the end of the whole testing session useful statistics
are computed and written into external excel files, using the components ONGOINGCALCULATOR
and FINALCALCULATOR. They use the pure Java library Apache POI, for reading and writing files
in Microsoft Office formats [44].
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Figure 4.1: Class diagram of the testing part of the tool



4.2 Clustering 29

4.2 Clustering
First of all, BECLOMA individuates the directory in which all the previously generated crash logs
have been stored. This directory is indicated again in the CONFIGURATIONMANAGER.
As shown in Listing 4.9, BECLOMA loops all the crashes contained inside it and for each of them
it calls the method extractCrashLog(), in the CRASHLOGEXTRACTOR component.

1 /**
2 * @class: Main

3 */

4 CrashLogExtractor extractor = new CrashLogExtractor();

5 final String CRASH_CONTAINER = ConfigurationManager.getCrashContainerDir();

6 File[] crash_container = new File(CRASH_CONTAINER).listFiles();

7 for (File crash : crash_container) {

8 extractor.extractCrashLog(crash);

9 }

Listing 4.9: CRASHLOGEXTRACTOR code snippet converting crash files into CrashLog objects

The method extractCrashLog() converts simple crash log files stored inside a folder into CRASHLOG
Java-objects. Indeed, for each crash log file found inside the directory, the constructor of the
CRASHLOG class get instantiated and so a new object of this type gets created. Each time the
constructor of the CRASHLOG class gets invoked, it automatically creates the structure of the
CRASHLOG-object analogously to the structure of the real crash log file.
For instance, the crash log described in Listing 3.1 is converted into a CRASHLOG-object repre-
sented in Listing 4.10. It is printed out using the trivial Java method toString(), which per default
gives a String representation of the object in question.

1 Crash {

2 crash_path = /Users/Lucas/Desktop/UZH/BA/CrashLogCollector/crash_log_com.ringdroid.txt

3 packageName = com.ringdroid

4 Short = android.database.StaleDataException

5 Long = android.database.StaleDataException: Attempted to access a cursor after it has been closed.

6 first_java_trace_line = android.database.StaleDataException: Attempted to access a cursor after it has been closed.

7 trigger_method = [android.database.BulkCursorToCursorAdaptor.getCount(BulkCursorToCursorAdaptor.java:70)]

8 trigger_class = BulkCursorToCursorAdaptor

9 log_lines = [// CRASH: com.ringdroid (pid 20442), // Short Msg: android.database.StaleDataException, ...]

10 }

Listing 4.10: CRASHLOG-object

From Listing above we can observe how the CRASHLOG-object has assumed the same structure
as the crash log file. Indeed, it analogously describes the package name to which the crash belongs,
the short and the long explanations about the exception, the trigger method, etc. In addition to them,
the CRASHLOG-object stores a list of Strings containing the log words, where each position of the
array is occupied by a different line.

Preprocessing. In according to the approach explained in Section 3.2, the words of the crash
reports must be preprocessed (tokenized) in order to prepare them to be compared to each other.
In this sense, the CRASHLOG class statically invokes the method tokenizeLine() in the LUCENE-
TOKENIZER class for each line contained in the crash log. Listing 4.11 shows how it concretely
works.
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1 /**
2 * @class: CrashLog

3 */

4 for (String line : this.logLines) {

5 LuceneTokenizer.tokenizeLine(line);

6 }

Listing 4.11: Each line inside the crash report is tokenized using LUCENETOKENIZER

To provide a concrete example, the following line, extracted from the crash report in Listing 3.1 is
passed as argument to the method tokenizeLine():

// at android.database.BulkCursorToCursorAdaptor.throwIfCursorIsClosed(BulkCursorToCursorAdaptor.java:64)

The following two boxes show the various tokenization steps that are performed by BECLOMA.

1. Lucene StandardTokenizer
at android database BulkCursorToCursorAdaptor throwIfCursorIsClosed BulkCursorToCursorAdaptor java

64

2. BECLOMA CamelCase Tokenizer
at android database Bulk Cursor To Cursor Adaptor throw If Cursor Is Closed Bulk Cursor

To Cursor Adaptor java 64

3. BECLOMA LowerCase Tokenizer
at android database bulk cursor to cursor adaptor throw if cursor is closed bulk cursor

to cursor adaptor java 64

As shown above, the crash log line gets firstly preprocessed using the StandardTokenizer provided
by Lucene. Afterwards, BECLOMA for the reasons explained in Section 3.2 performs a further
tokenization step, tokenizing the lines using an additional CamelCase tokenizer. Finally, it uses a
simply tokenizer to make the words lower case. This tokenization process is repeated for all lines
of all crash reports stored in the directory. At the end of this process, each CRASHLOG-object
has its own set of preprocessed log lines (in class diagram 4.4, represented by the list of Strings
crashLogWords)

TF-IDF In order to follow the clustering approach described in Section 3.2, BECLOMA creates
for each crash log its correspondent vector space model. For this purpose, it makes use of the
Lucene library again. Indeed, the approach proposed by Lucene consists of (i) executing a index-
ation process with a set of Lucene documents, (ii) creating a term vector for each document (iii)
computing for each term within the vector its tf-idf score.
Diagram 4.2 illustrates the main components of the Lucene indexation process.

Creating documents and adding fields. As a first step, BECLOMA generates a set of Lucene
documents. To do this, it goes through all previously created CRASHLOG-objects and converts
their preprocessed words into Lucene documents. Each document must contain its group of fields
in order to be indexed. Therefore, when a new Lucene document is created, a set of fields must
be set and enclosed inside it. BECLOMA indexes documents which enclose text fields, since they
are already stored, tokenized and indexed. An in-depth explanation about fields and their types
can be found on [14, 16]. In order to be able to compute tf-idf values for the indexed Lucene
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Figure 4.2: Apache Lucene indexing process

documents, BECLOMA must enable the property that they can have term vectors [18]. The first
steps of the Lucene indexing process can be summarized by the following code snippet, which is
a simplified version of the createIndex() method, illustrated in diagram 4.4.

1 /**
2 * @class: TFIDFCalculator

3 */

4 private void createIndex(List<CrashLog> crashLogs) throws IOException {

5 // TODO: create IndexWriter

6 for (CrashLog crash : crashLogs) {

7 ArrayList<String> crash_log_words = crash.getSetOfWords();

8 // type of field is set

9 FieldType fieldType = new FieldType(TextField.TYPE_STORED);

10 // term vector is enabled

11 fieldType.setStoreTermVectors(true);

12 // new document is created

13 Document doc = new Document();

14 for (String word : crash_log_words) {

15 // fields are added into the documents

16 doc.add(new Field(LConstants.FIELD_NAME, word, fieldType));

17 }

18 doc.add(new Field(LConstants.FIELD_ID, crash.getPath(),

fieldType));

19 }

Listing 4.12: TFIDFCALCULATOR describing the Lucene indexing process

As shown in Listing above, BECLOMA goes through all the given crash logs and stores in a local
list their preprocessed log words. Afterwards, the field type TextField is selected (line 9). In the
next line, the above mentioned term vector property is enabled. Then, a new Lucene document is
generated. At this point, BECLOMA goes through each preprocessed word and at each iteration
adds the current word to a new field which has just been created (line 16). The new field has
a name, a content, i.e., the word in question and a type, i.e., the previously selected field type.
Finally, the entire field is added to the document. At the end of the loop an additional field is
added and used as ID for the document (in our case, the crash log path acts as unique attribute in
the index).

Creating IndexWriter and adding documents. In order to index Lucene documents, BECLOMA
must generate an IndexWriter [?]. To achieve this, it creates an object of that type. However, the in-
stantiating process of this class requires some supplementary configurations that must be passed
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to the constructor in order to create a new object of that type. These two pieces of information
consist in (i) the directory where the index should point at and (ii) the Lucene Analyser which is
in charge of analysing the indexed documents. After the specification of these two information,
a new object of type IndexWriter can be created. Once created, all documents can be added to the
index. At the end of the indexing process the writer must be closed.
Listing below complements the code snippet 4.12 with the instantiation of the IndexWriter class
and consequentially with the addition of the documents to the index.

1 /**
2 * @class: TFIDFCalculator

3 */

4 private void createIndex (List<CrashLog> crashLogs) throws IOException {

5 // directory gets specified

6 FSDirectory dir = FSDirectory.open(new File("\Users\Lucas\Desktop\BA\

Index").toPath());

7 // configuration is set

8 IndexWriterConfig config = new IndexWriterConfig(new

StandardAnalyzer());

9 // IndexWriter gets instantiated

10 IndexWriter writer = new IndexWriter(dir, config);

11

12 for (CrashLog crash : crashLogs) {

13 ArrayList<String> crash_log_words = crash.getSetOfWords();

14 FieldType fieldType = new FieldType(TextField.TYPE_STORED);

15 fieldType.setStoreTermVectors(true);

16 Document doc = new Document();

17 for (String word : crash_log_words) {

18 doc.add(new Field(LConstants.FIELD_NAME, word, fieldType));

19 }

20 doc.add(new Field(LConstants.FIELD_ID, crash.getPath(),

fieldType));

21 // document are added to the index using an IndexWriter object

22 writer.addDocument(doc);

23 }

24 writer.close();

25 }

Listing 4.13: TFIDFCALCULATOR describing the instantiation of an IndexWriter

As illustrated in the example above, the location where the index should point at can be inserted
using the Lucene class FSDirectory [15] (line 6). In the next line of code, the analyser which is
used for analysing the Lucene documents is defined. This can be made using a IndexWriterCon-
fig [?], which holds all the configuration that is used to create an IndexWriter (line 8). BECLOMA
defines again a Standard Analyser [?], the same used for preprocessing the crash logs. Finally, a
new IndexWriter can be constructed per the previously configured settings. Once an IndexWriter
is created, all Lucene documents can be added to the index using a simple method called ad-
dDocument(). At the end of the indexing process all preprocessed words contained inside the
CRASHLOG-objects have been converted into Lucene documents and have been indexed.

Computing TF-IDF scores. At this point, the index has been created and each document has
the possibility of storing its vector of terms. Thus, tf-idf values can now be computed for each
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Table 4.1: Structure of the hash map containing its term vector
Crash log path (key) HashMap (value)

../Desktop/BA/CrashLogCollector/crash_log1_com.ringdroid.txt term (key) tfidf (value)
exception 1.73

view 5.12
accessibility 4.77

crash 1.00
scrollable 1.92
adapter 2.44

ringdroid 1.00
... ...

Table 4.2: Vector terms A and B before normalization
Vector A Vector B

terms tf-idf terms tf-idf
handler 3.15 exception 1.73

accessibility 1.7 handler 2.01
crash 1.13 accessibility 4.77

invoke 1.41 crash 1.00
ringdroid 1.00 scrollable 1.92

adapter 2.44
ringdroid 1.00

word of each vector of each crash report. In this direction, BECLOMA invokes the computeScoreMap()
method in the TFIDFCALCULATOR class, which returns a hash map object. This hash map has as
keys the unique locations of the crash logs, each one of them is associated with another hash map
which contains the correspondent term vector. Table 4.1 shows the structure of the hash map,
taking as a reference the crash log presented in Listing 3.1.

As shown in Table 4.1, the terms which have the highest tf-idf relevance are accessibility and
view. Indeed, they have a high term frequency in the currently scored crash log and a low docu-
ment frequency in the entire collection. Terms such as crash or ringdroid have a low tf-idf weight.
In fact, they are generic and irrelevant terms, since they don’t give any useful information about
the topic of the document.

Cosine similarity. In order to state whether two crash logs refer to the same bug, i.e., they can
belong to the same group in the bucket, BECLOMA follows the approach described in Section 3.2.
Indeed, it computes a well-known similarity measure, i.e., cosine similarity [46] between different
crash reports. However, as a necessary preliminary step, the two vectors referring to the two
different crash logs have first be normalized. The normalization process described in the approach
(Section 3.2) is reported in the example shown in Tables 4.2 and 4.3. As illustrated, the vectors A
and B after the normalization process have the same length and have been complemented with
their missing words.

Computing Cosine Similarity to create the bucket. Once the vector terms have been normal-
ized, the cosine similarity among crash reports can be computed. In this direction, BECLOMA
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Table 4.3: Normalized weighted vector terms A and B

Vector A Vector B
terms tf-idf terms tf-idf

exception 0 exception 1.73
handler 3.15 handler 2.01

accessibility 1.7 accessibility 4.77
crash 1.13 crash 1.00

scrollable 0 scrollable 1.92
adapter 0 adapter 2.44
invoke 1.41 invoke 0

ringdroid 1.00 ringdroid 1.00

defines a threshold in the class ORACLE which represents the tolerance for evaluating the simi-
larity between two crash reports. Indeed, if the calculated cosine similarity among them is greater
than the given limit, the two crash logs are considered to describe the same bug, i.e., they will be-
long to the same bug group in the bucket.

Concretely, BECLOMA invokes the fillCrashLogBucket() method, which is in charge of compar-
ing the crash logs, classifying them with the aim of filling the bucket. The bucket consists of a
hash map, which has as keys a set of Strings which act as a labels for the entire bug group they
represent. Each label, in turn, has its own list of CRASHLOG-objects which have been considered
by the ORACLE referring to the same bug.
The bucketing process iterates all crash reports and it concretely works as follows:

1. The method fillCrashLogBucket() firstly extracts the first crash log in the list and insert it into
the bucket, assigning to it the label of the first bug group.

2. Starting from the second iteration, BECLOMA computes the cosine similarity between the
current crash log and all crash logs which are placed at the first position in the list of the
other bug groups.

3. Whether all computed similarities are smaller than the threshold provided by the ORACLE
means that there is no crash logs in the bucket already which can be considered the same as
the current one. For this reason, BECLOMA creates a new bug group with a new label and
insert into it the current crash log.
Otherwise, in the event that there is at least one computed similarity which is greater than
the threshold, BECLOMA extracts the group inside the bucket which shows the highest
similarity with the crash log and insert it into it. In doing so, it gets added into the group
which "resemble it more".

Diagram 4.3 shows and summarizes the above mentioned bucketing process provided by BE-
CLOMA.
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Figure 4.3: BPMN diagram describing the bucketing process

At the end of the clustering phase, all crash logs collected in the testing phase have been system-
atically classified inside the bucket.
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Figure 4.4: Class diagram of the clustering part of the tool
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Table 4.4: Scheme of the Reviewmap
Package name (key) Review list (value)

com.danvelazco.fbwrapper Review object 1
Review object 2
Review object 3

...
com.amaze.filemanager Review object 1

Review object 2
...

4.3 Linking
As mentioned in the introduction of Chapter 3, the linking phase performed by BECLOMA is in
charge of studying the complementarity between user feedback and the outcomes of automated
testing tools, i.e., crash logs.

Extracting user reviews. The first step in the linking phase performed by BECLOMA is to read
the dataset location, which contains the set of preprocessed and classified user reviews, specified
in CONFIGURATIONMANAGER. Afterwards, BECLOMA uses the REVIEWCOLLECTOR compo-
nent illustrated in diagram 4.5, in order to convert all user feedbacks located in the dataset to a
set of Java-objects. To achieve this, each time BECLOMA finds a new review in the dataset, it
instantiates the class REVIEW, creating a new object of that type. Afterwards, this object gets sys-
tematically inserted into a ReviewMap, located in the REVIEWCOLLECTOR class. This hash map
has as keys a set of labels indicating the names of the packages for which the reviews have been
submitted. Thus, each label is associated with its own list of REVIEW-objects. Table 4.4 depicts a
shortened version of the architecture of the ReviewMap. At this point, BECLOMA has at disposal
two different sources information, i.e., the set of CRASHLOG-objects collected and classified inside
the previously constructed bucket and a set of preprocessed and categorized user reviews.
Before the beginning of the linking process, the set of preprocessed words belonging to each
CRASHLOG-object must be augmented in according to the approach explained in Section 3.3.
In this sense, BECLOMA firstly extracts each CRASHLOG-object from the bucket and then in-
vokes for each of them the method augmentstackTrace() in the CRASHLOG class. Concretely, the
augmenting process works as follows:

1. As explained in Section 3.3, for each CRASHLOG-object only the name and the cause of the
raised exceptions are selected, i.e., the String attribute firstJavaStackTraceLine. Taking again
as reference the crash log illustrated in the figure 3.1, the name and cause of the exception
can be found at line 5. After the preprocessing procedure has been completed, the line looks
like the following:

android, database, stale, attempted, access, cursor closed, bulk, adaptor, count .

As you can see, the line has been already "stemmed and cleaned" using the method stem-
mAndCleanReports() in the AUGMENTER class. This method preprocesses the reports exploit-
ing the Information Retrieval techniques explained at the beginning of Section 3.3. Indeed,
programming keywords such as "if ", "throw" or "java" and too short words such as "to" or
"at" have been removed after the preprocessing procedure.

2. After cleaning the reports, the remaining text is augmented with the source code methods
included in the stack trace. In this direction, BECLOMA firstly extracts all methods present
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in the stack trace. To achieve this, it goes through all log lines in the method augmentStack-
Trace() and for each line it compiles the regular expression positioned at line 7 in Listing
4.14.

1 /**
2 * @class: CrashLog

3 */

4 public void augmentStackTrace()() {

5 for (String line : this.logLines) {

6 if (line.startsWith("// at") && line.contains(".java:")) {

7 String[] temp = line.split("\\(")[0].split("\\.");

8 String method = temp[temp.length-1];

9 this.stackTraceMethods.add(method);

10 }

11 }

12 ...

13 }

Listing 4.14: Regular expression for extracting all methods from a stack trace

The first if statement checks whether the current line belongs to the stack trace body, thus
starting from the line number number 4 in the example 3.1. At line 7, BECLOMA extracts
only the method which is involved in the current line. For instance, the method which will
be extracted from the following crash log line:

android.database.BulkCursorToCursorAdaptor.throwIfCursorIsClosed(BulkCursorToCursorAdaptor.java:64)

will be

throwIfCursorIsClosed

Indeed, the regular expression firstly splits the line by a round bracket creating a local static
array of Strings. Afterwards, it selects the first position in this array. So, it splits the just
created array by a period, forming a second array of Strings. This array is stored into the
variable called temp (line 7). Finally, it selects the last position of this latter. The figure below
depicts the splitting process for the crash log line represented above:

• line.split("\\(")
android.database.BulkCursorToCursorAdaptor.throwIfCursorIsClose,
BulkCursorToCursorAdaptor.java:64)

• line.split("\\(")[0]
android.database.BulkCursorToCursorAdaptor.throwIfCursorIsClose

• String[] temp = line.split("\\(")[0].split("\\.") // length = 4

android,
database,
BulkCursorToCursorAdaptor,
throwIfCursorIsClose

• String method = temp[temp.length-1] // temp[3]

throwIfCursorIsClose
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Once all methods present in the trace stack have been extracted, BECLOMA controls whether
in the list of methods coming from the source code there are elements in common with those
coming from the stack traces. In the event that there are, all additional words, i.e., a list of
keywords concerning that method in the source code, are added to the above illustrated
firstJavaStackTraceLine. Code snippet below summarizes the core of the augmenting process:

1 /**
2 * @class: Augmenter

3 */

4 public List<String> getAdditionalWordsFromSourceCode(){

5 HashMap<String, String> methods = Augmenter.getMethodsFromCSV();

6 List<String> augmentedStackTrace = convertToList(this.

firstJavaStackTraceLine);

7 methods.forEach((pMethod, additionalWords)-> {

8 if (this.stackTraceMethods.contains(pMethod)) {

9 augmentedStackTrace.add(additionalWords);

10 }

11 });

12 return augmentedStackTrace;

13 }

Listing 4.15: Augmenting a stack trace with methods coming from the source code

First of all, the words coming from the source code are stored inside a local hash map called
methods. This hash map has as keys a set of Strings, which represent the name of the meth-
ods found while parsing the source code. Their values consists of a set of Strings, each of
them contains a list of additional words split by a white space. Line 7 goes through each
key element in the hash map and whether BECLOMA notices that there is an element in
common between the list of stack trace methods and those from the source code (line 8), it
adds the associated additional words to the variable augmentedStackTrace (line 9). At the end
of this process, the firstJavaStackTraceLine has been converted into a variable called augment-
edStackTrace and possibly augmented with the set of additional words for those methods in
common. This variable now looks like the following:

android, database, stale, attempted, access, cursor closed, bulk, adaptor, count,
sound, hear, context, supported, filename, rate, channels, launch, intent, title, ...

At this point, BECLOMA has at disposal a set of preprocessed reviews and a set of augmented stack
traces. The final step provides the linking procedure using the asymmetric Dice similarity coeffi-
cient described in Section 3.3.
First, BECLOMA reads the Dice threshold declared inside the LINKER class, which represents
the minimal score the preprocessed reviews and the augmented stack traces must obtain in order to
be considered as linked. In the approach described in Section 3.3, pairs of documents having a
Dice score higher than 0.5 were considered as linked by the approach. In order to compute that
coefficient, BECLOMA passes as arguments in the constructor in the LINKER class the pairs of
documents, both in the form of a list of Strings. Afterwards, LINKER invokes the method evalu-
ateLinking(), which refers to the Façade pattern. Indeed, the SIMILARITYMETRICSFACADE compo-
nent reproduces the design pattern Facade, which provides a simplified interface for evaluating
the asymmetric Dice. Figure 4.16 shows how it concretely works.
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1 /**
2 * @class: SimilarityMetricsFacade

3 * @return a double value representing the similarity between the given texts

4 */

5 public static double evaluateAsimmetricDiceIndex(List<String> pReview, List<

String> augmentedLog) {

6 return AsimmetricDiceIndex.computeAsimmetricDiceIndex(pReview,

augmentedLog);

7 }

Listing 4.16: SIMILARITYMETRICSFACADE implementing the design pattern Facade

After defining how the Dice coefficient is computed, BECLOMA must just go through all CRASHLOG-
objects, extracts for each of them its augmentedStackTrace variable mentioned above. Then, iterates
the whole set of preprocessed reviews stored in the ReviewMap illustrated in Table 4.4, and com-
putes for each review the Dice coefficient among it and the augmentedStackTrace variable. Finally,
if the Dice score results greater than the threshold (in our case, 0.5), BECLOMA writes the cor-
respondent review ID with its set of preprocessed words and the set of words representing the
augmented stack trace of the current crash log into an external csv-File. To achieve this, it uses
the component WRITER located in the package Utilities. At the end of the entire linking process,
BECLOMA writes some metadata into the csv-File such as the date, the number of linked reviews,
etc. The figure 4.17 shows a simplified code snippet representing the linking procedure described
above.

1 /**
2 * @class: Main

3 */

4 public void performLinking() {

5 crashLogBucket.forEach((crash_log_location, crashlogs) -> {

6 for (CrashLog crashLog : crashlogs) {

7 List<Review> reviewList = reviewMap.get(crashLog.getPackageName());

8 for (Review review: reviewList) {

9 List<String> preprocessedReview = review.getPreProcessedReview();

10 List<String> augmentedStackTrace = crashLog.getAugmentedStackTraces();

11 double diceIndex = SimilarityMetricsFacade.evaluateAsimmetricDiceIndex

(preProcessedReview, augmentedStackTrace);

12 if (diceIndex >= DICE_THRESHOLD) {

13 String content += "review_id: " + review.getId() + ", "

14 + "\n pReview: " + preProcessedReview.toString() + ", "

15 + "\n aStackTrace: " + augmentedStackTrace.toString() + ", "

16 + "\n DiceScore: " + diceIndex + "\n";

17 }

18 }

19 }

20 }

21 Writer.writeOnFile(content, Paths.get("linking_results.csv");

22 }

Listing 4.17: Linking process
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First, the list of crash logs stored for each bug group in the bucket gets iterated (line 5-6). After-
wards, the correct list of review is individuated by specifying the package name of the crash log
(line 7). This is possible because the reviewMap has a set of keys the name of packages for which
the reviews have been submitted. Then, each Review in the just created reviewList gets iterated in
the line 8. At this point, two list of Strings store the preprocessed words of the current review as
well the augmented stack trace of the current crash log (line 9-10. Later, using the SIMILARITY-
METRICSFACADE component the Dice score among the pairs of documents is computed (line 11).
Line 12 checks whether the calculated coefficient is greater thatn the threshold. If this is the case,
the content String (line 13) is updated with the review id, the set of words indicating the prepro-
cessed review and finally the augmented stack trace. At the end of the entire linking procedure
(line 21), the content String is written into an external file located at the specified path.
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Figure 4.5: Class diagram of the linking part of the tool
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4.4 Installation and usage of BECLOMA
BECLOMA is still in a experimental stage. Thus, the implementation of it has been tested just
with Android 4.4 and Mac OS 10.11. Augmenting the compatibility of it with multiple operating
systems is plan of my future agenda.

4.4.1 General Configuration
First of all, in order to be able to use BECLOMA some external components must be installed
and configured. The following shows the environment configurations that must be applied (they
must be sequentially installed).

• Brew
Brew [24] is a manager for installing the missing packages for Mac OS. It can be installed
running the following command line on a Mac OS:

$ /usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"

• Android SDK Platform-Tool
In order to easily install the Android SDK Platform-Tools component, which is required for
launching SAPIENZ and MONKEY just download and install Android Studio, the official IDE
for Android [4]. The download link can be found at:

https://developer.android.com/studio/index.html

• pip
Pip is a manager for installing python packages on a Mac OS. It is needed for installing some
python dependencies used by SAPIENZ. It can be easily installed running the following
command line:

$brew install pip

or if it fails

$ sudo easy_install pip

4.4.2 Sapienz Environment Configuration
In order to be able to perform a testing session using SAPIENZ, the emulators respectively the
attached devices must have installed the API 19 level (version code KitKat) [3]. The following
describes the configurations steps which have to be performed for using SAPIENZ.

• Environment variables
Include the following aapt path as environment variable in the bash profile:

/Users/<user_name>/Library/Android/sdk/build-tools/19.x.x
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• Python dependencies
Install some required python dependencies using the requirements.txt file located in the SAPIENZ
directory:

$ sudo pip install -r requirements.txt

• Python version
The adequate python version(2.7) must be installed. Despite the correct version is installed,
there may be a problem with the installation of the python dependencies. If that were the
case, the following command line must be executed:

$ brew install python

4.4.3 Monkey Environment Configuration
The only requirement to use monkey is that the package of Android SDK Platform-Tool has been
successfully installed.

4.4.4 Settings
In order to start a testing session a set of specifications must be declared in the CONFIGURATION-
MANAGER file. This file configures the initial settings and the set of all parameters that will be
processed by BECLOMA during the testing process. It is located in the BECLOMA source code
and is renamed as config.properties. The most important properties have been already presented
in the figure 4.1. In this sense, the following provides a detailed description about the testing
parameters presented in the figure 4.1 [20, 31]:

• MONKEY

– VERBOSITY ([-v, -v-v-v])
It defines the verbosity of the log. Each additional -v increases the verbosity level.

– RANDOM_EVENTS (int)
Number of random events that will be generated by MONKEY in the testing cycle of a
single APK.

– DELAY_BETWEEN_EVENTS (millisec)
It inserts a delay between the above specified number of random events.

– PERCENTAGE_TOUCH_EVENTS (int, [0,100])
It adjusts the percentage of touch events of the total number of events (e.g., down-up
events in the screen)

– PERCENTAGE_SYSTEM_EVENTS (int, [0,100])
It adjusts the percentage of system events of the total number of events (e.g., volume
controls)

– PERCENTAGE_MOTION_EVENTS (int, [0,100])
It adjusts the percentage of motion events of the total number of events (e.g., random
movements)

– IGNORE_CRASHES (boolean, [true,false])
It defines whether MONKEY stops when a crash or an unhandled exception occurs.
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• SAPIENZ

– SEQUENCE_LENGTH_MIN (int)
Minimum number of events that will be generated for each SAPIENZ cycle.

– SEQUENCE_LENGTH_MAX (int)
Maximum number of events that will be generated for each SAPIENZ cycle.

– SUITE_SIZE (int)
The number of chromosomes (i.e., test cases) that an individual (i.e., test suite) owns.

– POPULATION_SIZE (int)
Numbers of individuals in the population in the genetic algorithm.

– OFFSPRING_SIZE (int)
The numbers of elements the offspring has in the whole test suite variation operator.

– GENERATION (int)
It sets the maximum generation number.

– CXPB (double, [0,1])
It defines the crossover probability used by the genetic algorithm.

– MUTPB (double, [0,1])
It defines the mutation probability used by the genetic algorithm.

In addition to them, the following specifications must be inserted:

• EMULATOR_NAME
The name of the emulator on which the tests will be performed;

• AVD_BOOT_DELAY (sec)
This time indicates how many seconds BECLOMA has to wait, when the attached devices
or the emulators get rebooted;

• TIME_UNIT (sec, min, hours)
It specifies the time unit recognized by the following timeouts;

• MONKEY_TIMEOUT
It indicates after how long the testing cycle of a single APK tested with MONKEY gets
automatically interrupted so that the testing of the next app can start. These time frames
can be very useful since there may happen that some devices, after generating a very large
number of UI events are not longer able to process new incoming events, freezing the entire
Android system.

• SAPIENZ_TIMEOUT
Same as above, only for SAPIENZ.

• ADB_EXEC_DIR
It indicates the location of the executable file abd (Android Debug Bridge), a command-line
tool which facilitates the communication between the user and the Android OS.
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Table 4.5: Command-line arguments supported by BECLOMA
Supported arguments Description
-device Performs the testing on a physical attached android device
-emulator Performs the testing on a virtual specified android emulator
-monkey The dataset will be tested using monkey
-sapienz The dataset will be tested using sapient
-timer Optional. Starts a timer for a better overview during a testing session

4.4.5 BECLOMA usage
After specifying settings and parameters in the CONFIGURATIONMANAGER file, BECLOMA is
ready to be started. The line below shows the usage of the BECLOMA command-line:

$ java -jar BECLOMA.jar [-emulator | -device] [-monkey | -sapienz] [timer]

Table 4.5 lists all of the supported BECLOMA arguments and explains their meaning.
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Results and Discussion

We evaluated the BECLOMA testing approach by conducting an empirical study on a smaller
dataset of apps i.e., 60 APKs. Afterwards, we used the collected crash logs for evaluating the cor-
rectness and reliability of our clustering approach, forming a bucket of unique crash reports. Fi-
nally, we chose the 3 apps that seemed most relevant to our study with enough reports generated
by the testing tools and suitable reviews for investigating the accuracy of our linking approach.

5.1 Stack Trace Extraction
To conduct our experiment, we selected a dataset of 60 APKs, grouping them together exploiting
the FDroid-crawler we built. We made our selection as follows: we tried to chose a dataset con-
taining the most varied number of APKs. Indeed, we chose very popular apps which have a high
number of downloads (e.g., Telegram) as well as less known apps with a low number of down-
loads (e.g., Ringdroid). The entire dataset can be found in the folder "Dataset" in the BECLOMA
source code. Afterwards, we tested the whole dataset 3 times with the Android testing tools, i.e.,
MONKEY and SAPIENZ , running each tool for 30 minutes per app. According to the testing cycles
described in Section 3.1, this can be translated as follows:

1. Number of iteration characterizing the session cycle: 3 iterations;

2. Number of apps forming the dataset cycle: 60 apps;

3. Time frame describing the single app cycle: 30 min.

We conducted our experiment in the following environment: 2 Samsung Galaxy Tab 8 inches,
with Android Kitkat 4.4 (API 19) on which we run the automated testing tools and Mac OS 10.11
for starting BECLOMA. The testing parameters we inserted in the settings file are summarized in
Table 5.1.

The reason behind the parameters we chosen for MONKEY is based on experimental results.
Indeed, we conducted few demo-experiments in order to state which combination of parameters
led to the greater number of crashes. Furthermore, we changed the percentage of the system,
motion and touch events at the beginning of each dataset cycle in order to variate our testing
strategy. The selection behind the SAPIENZ parameters is consistent with the empirical study
conducted by Mao et al. [31]. At the end of each session cycle we used our clustering approach to
deduplicate the collected crash logs and form a bucket of unique ones.

Table 5.2 shows the results of the empirical study we conducted. As shown in Table, SAPIENZ
revealed the largest number of unique crash logs in each iteration of the experiment. However, it
should be noted that the number of total crashes revealed by MONKEY in the third dataset cycle is
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Table 5.1: Chosen parameters for SAPIENZ and MONKEY to conduct our empirical study
Automated testing tool Chosen parameters

Monkey verbosity = -v -v -v
random events = 3000
delay between events = 10
percentage touch events = 8
percentage system events = 8
percentage motion events = 8
ignore crashes = true

Sapienz min sequence = 20
max sequence = 500
suite size = 5
population size = 50
offspring size = 50
generation = 100
crossover = 0.7
mutation = 0.3

Table 5.2: Testing results
Iteration number Crashes Monkey Sapienz
First dataset cycle App crashed 7 16

Unique crashes 14 19
Total crashes 39 45

Second dataset cycle App crashed 12 23
Unique crashes 21 28
Total crashes 46 57

Third dataset cycle App crashed 23 21
Unique crashes 13 20
Total crashes 87 54

clear greater that the ones found by SAPIENZ . This because, the percentage of system events has
conspicuously grown (from 8% to 35%). This caused some sequences of events of that type that
could not be elaborated by the devices, leading the app to failure. In fact, the number of unique
crashes for MONKEY is not greater than the ones found by SAPIENZ , since they do not represent
crashes caused by the application under test, but they can be categorized as native crashes.

5.2 Linking approach
The following Subsections present the results we obtained of our empirical study. Subsection 5.2.1
shows the precision of our linking approach, answering the RQ2, while Subsection 5.2.2 presents
our evaluation about the complementarity among stack traces and users feedback, answering
RQ3.
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Table 5.3: Precision of the linking procedure

App Precision

com.amaze.filemanager 60%
com.danvelazsco.fbwrapper 72%

com.ringdroid 64%
Average 65%

5.2.1 Precision Linking Approach
RQ2 To what extent can we link the defects arose from automated testing tools?

To answer the RQ2, we exploited the linking procedure provided by BECLOMA. Concretely,
we selected from the previously tested dataset the 3 apps which seemed most relevant to our
study with enough unique crash reports generated by MONKEY and SAPIENZ and a set of ad-
equate reviews. The apps we chosen are com.amaze.filemanager, com.danvelazsco.fbwrapper and
com.ringdroid. We limited our study to a small group of apps because the time constraints and
the high effort to manually validate the data. Table 5.3 shows the precision values obtained by
the linking approach implemented by BECLOMA over our limited dataset. The results reported
in this Table confirm the accuracy and reliability of our linking procedure. Indeed, it shows its
effectiveness in achieving quite high precision scores, i.e., the percentage of correctly retrieved
links was 65%. We can affirm, that our approach performs in an accurate manner, providing a
precise correlation between stack traces and crash-related user feedbacks.

5.2.2 Complementarity of Stack Traces and User Reviews
RQ3 How complementary are the two source of information? Can we leverage on both of them to increase
the effectiveness of the testing process?

To answer RQ3, we firstly identified those links which correctly correlated a stack trace with
its correspondent user review. Secondly, we categorized different type of issues concerning the
crash-related user reviews and the stack traces, computing the followings metrics:

• IC : % of issues reported in both reviews and crash logs;

• IR: % of issues reported only in user reviews;

• IT : % of issues reported only in crash logs.

In order to compute these metrics, we first defined Tissues as the total number of issues discovered
for a given app. Therefore, consider Lpos as the number of unique true positive links between
crash reports and crash-related user feedbacks revealed by BECLOMA. Afterwards, let be Clogs

the number of crash reports which have been extracted but remain unlinked to any review. Then,
consider Rcrash as the number of user reviews, for which there exists no correlation to any crash
report. Finally, we can define the relation between the three above proposed metrics as follows:

Tissues = Lpos + Clogs +Rcrash

Thus, we can formally introduce the three overlap metrics introduced above as follow:

IC =
Lpos

Tissues
IR =

Rcrash

Tissues
IT =

Clogs

Tissues
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Table 5.4: Complementarity of Reviews and Stack Traces

App IC IR IT

com.amaze.filemanager 17% 50% 33%
com.danvelazsco.fbwrapper 45% 45% 10%

com.ringdroid 24% 62% 14%
Average 29% 52% 19%

Table 5.4 shows the achieved results for our reduced dataset. As we can see from the it, the re-
sults concerning the IR values (i.e., the percentage of issues we can only find in user reviews) show
in average greater scores than the IT values (i.e., the percentage of issue encountered uniquely
through automated tools). Indeed, the number of issues reported only in user reviews is, on av-
erage, 52%. This percentage is conspicuously greater than the number expressing the other two
metrics (in fact, IC shows 29% and IC only 19%).
From these results, we can draw an unambiguous conclusion, i.e., that the number of issues high-
lighted by the stack traces (IT ), obtained through the execution of automated testing tools, is
substantially smaller that the one identifying the number of issues reported in user reviews (IC).
Thus, we can summarize our first finding as follows:

IT < IC < IR

As highlighted in Table 5.4, the number of common issues detected when relying on both user
reviews and stack traces is, on average, only 29%. To find the cause of a such low percentage, we
manually analysed the user reviews of our reduced dataset. Indeed, we found that the content
of the reviews tend to describe the scenario of a crash which occurs during a particular input
event. However, such scenario may imply some sensible sequences of events, which are hard to
randomly replicate by automated testing tools.
For instance, for the com.danvelazsco.fbwrapper app, the review shown below claims about
a crash occurring during a particular swipe input event, which is probably hardly replicable by
automated testing tools.

“Quick fix for messages crash Slide in from the right go to preferences and use either desktop version or basic
version...”

Similarly, for the com.ringdroid app an user claim that:
“Force closes when I search Maybe the problem is my large library but it truly is unusable...”

In this case, the user imputes the crash to his large library: obviously such particular condi-
tions are difficult to be reproduced with an automated testing tools. From these considerations,
we can draw our second conclusion. In this sense, we can conclude that issues concerning user
reviews are conceptually different to issues detected by the stack traces. However, despite the
number of issues revealed by user feedback being the greatest, there can exist a sort of comple-
mentary between issues detected by stack traces and users feedback. Indeed, this is highlighted
in Table 5.4 that for app com.danvelazsco.fbwrapper shows an example of that complemen-
tarity.

With our findings we believe that we confirmed the importance and relevance to integrate
user reviews in the validation process of a mobile application. Our results are quite promising,
since they concretely showed the complementary between both source of information. However,
there are still some limitations in the automated testing tools, since in many cases they are not
able to reproduce some sensible scenarios describe in the user feedback. We argue that, we might
augment the information in stack traces with the aim to link more crash-related user reviews with
their correspondent crash reports.
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Conclusions and Future Work

In my thesis we investigated the importance of integrating user reviews in the validation process
of mobile applications. For this purpose, we introduced an approach called BECLOMA which is
able to (i) test a set of apps and extract possible crashes, (ii) form a bucket of unique crash reports
and (iii) investigate the complementarity between crash-related user reviews and the bucketed
stack traces. With the aim to evaluate the performance of BECLOMA, we performed an empirical
study over a dataset containing different types of mobile applications. First, we downloaded our
sample of APKs from the FDroid API and we launched an experiment on them. Afterwards, we
reported its results, i.e., the total number of crashes and unique crashes which occurred during
the testing phase. Then, we created a bucket of unique crash logs. For this purpose, we first
manually built an oracle according to the crash reports we collected. Afterwards, we adapted its
threshold in order to reproduce that bucket. Finally, we started our linking procedure by linking
the crash-related user reviews and the stack traces we bucketed. Again, we reported its results in
Chapter 5.

We strongly believe, that our findings might convince other mobile developers to perform
such an user-oriented testing by validating the reliability of their mobile applications. Indeed,
despite BECLOMA still remains in an experimental stage, we argue that our results are quite
promising. However, we are conscious that we tested our approach with a small dataset and
thus we may adapt both the clustering and the linking threshold whether BECLOMA would be
used with another, maybe greater set of apps. With a new set of apps, we believe that BECLOMA
would require some manual effort for setting the correct threshold.

We are convinced that our findings and preliminary results lay the foundations for further
research into the field of integration of user feedback into the testing process. At this stage, BECLOMA
operates with a relative small number of user reviews and mobile applications. It would be nice
to test the effectiveness of its approach with a very large amount of both sources of information.

There are different directions to investigate for future work. First, it could be possible to in-
troduce a new tool which would be able to (i) summarize stack traces and user reviews linked
together, supporting the activities performed by developers in their bug fixing sessions. (ii) create
a prioritisation scheme for the generated failures taking into account the user reviews and finally
(iii) generate specific test cases directly from user reviews.
Furthermore, we plan to improve the augmenting process of the stack traces implemented by BE-
CLOMA. Indeed, we are convinced that a better selection of the words which augment the stack
traces would improve the linking scores between crash-related user and these stack traces. For in-
stance, we could consider not only the source code methods included in the stack traces but also
the common classes among them. This would imply a greater set of words for the stack traces
which may results in a better linking score.

Finally, we could implement a further feature for BECLOMA which is in charge of addition-
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ally filtering the reviews. Indeed, our approach considers also these reviews which present a
positive connotation, i.e., those that not refer to any crash but just express a positive opinion
about the given app. For instance, we could try to conceive a filter function which analyses the
reviews and discards, according to an external text file containing some stop words, those which
express a position opinion about the app.
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