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Introduction

Given a (m,n)-matrix A, consider the linear program

min
x

aTx s.t. Ax ≤ b (1)

with parameters a ∈ Rn and b ∈ Rm. Define

Ψ(a, b) = argmin x{aTx | Ax ≤ b} (optimal solution set)

φ(a, b) = minx{aTx | Ax ≤ b} (optimal value)

S(a, b) =

{
(x, λ) | ATλ = −a, λ ≥ 0,

Ax ≤ b, λT(Ax− b) = 0

}
(KKT solution set)

Obviously,

• domΨ = domS is a polyhedral convex set, while

• gphS = {(a, b, x, λ) | (x, λ) ∈ S(a, b)} and gphΨ (projection) are

finite unions of polyhedral convex sets.
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Definition. (Robinson ’76, ’79) A multifunction Γ : Rs → Rr is called

polyhedral if gphΓ is a union of finitely many polyhedral convex sets.

Theorem 1. (Robinson ’76, ’81) If Γ : Rs → Rr is polyhedral, then

there is a constant ϱ > 0 such that for each p̄ and some ε = ε(p̄) > 0,

Γ(p) ⊂ Γ(p̄) + ϱ∥p− p̄∥B ∀p ∈ B(p̄, ε), (2)

i.e., some upper Lipschitz property holds with uniform constant.

Notes: Γ(p) may be empty. (2) ⇒ either p̄ ∈ domΓ or p̄ ̸∈ cl domΓ.

(2) implies calmness of Γ.

The optimal set map of (1) is in general not continuous, cf. e.g.,

min εx s.t. 0 ≤ x ≤ 1, i.e., Ψ(ε) =

 {1} if ε < 0
[0,1] if ε = 0
{0} if ε > 0.
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The proof of Theorem 1 makes use of a result by Walkup, Wets ’69:

If Γ : Rs → Rr is graph-convex and polyhedral, then Γ is Lipschitzian

on domΓ w.r. to the Pompeiu-Hausdorff metric, i.e.,

∃ϱ > 0 : dH(Γ(p),Γ(p′)) ≤ ϱ∥p− p′∥ ∀p, p′ ∈ domΓ. (3)

which essentially relies on Hoffman’s Lemma (Hoffman ’52):

Given a (m,n)-matrix A and norms ∥ · ∥α, ∥ · ∥β in Rm and Rn,

respectively. Consider b 7→ M(b) = {x | Ax ≤ b}. Then

∃λαβ > 0 : distβ(x,M(b)) ≤ λαβ ∥(Ax− b)+∥α ∀x ∈ Rn ∀b ∈ domM.

For explicit Hoffman constants λαβ, see e.g. Robinson ’73, Mangasar-

ian ’81, Mangasarian, Shiau ’87, Li ’93 (sharp bound), Kl, Thiere ’96.
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Consequences for the parametric LP (1) (Robinson ’81)

(i) Both the KKT map S and the optimal set map Ψ have the upper

Lipschitz property (2).

(ii) The value function φ is Lipschitzian on bounded subsets of domΨ.

(ii) also follows from Nožička et al. ’74 who show (via partition into

local stability sets): φ is continuous and piecewise quadratic.

Remark 1. Let Γ : Rs → Rr, and let D ⊂ domΓ be convex. If Γ is

”pointwise Lipschitz” on D w.r. to dH and with global constant ϱ, i.e.,

∃ϱ > 0 ∀p̄ ∈ D ∃ε > 0 : dH(Γ(p),Γ(p̄)) ≤ ϱ ∥p− p̄∥ ∀p ∈ D ∩B(p̄, ε),

then Γ is Lipschitzian on D w.r. to dH with constant ϱ.

Proof via a ”standard trick”: (finite) open covering of any segment

[b1, b2] ⊂ D. (Robinson ’81, Kl ’84, cf. also Outrata et al. ’98)
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1. Upper Lipschitz stability in quadratic optimization
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The above Lipschitz properties for the parametric LP (1) carry over

to parametric QP

min 1
2x

TQx+ aTx s.t. Ax ≤ b, (a, b) varies, (4)

with given (m,n)-matrix A and symmetric (n, n)-matrix Q. Let

• Ψ(a, b) (φ(a, b)) the global optimal solution set (value) of (4),

• S(a, b) = {(x, y) | Qx+ATy = −a, 0 ≤ y ⊥ (Ax− b) ≤ 0}.

QP theory says: Defining

ΨKKT (a, b) = argmin (x,y){
1
2(a

Tx− bTy) | (x, y) ∈ S(a, b)}, (5)

and its associated value function φKKT , one has

φ(a, b) = φKKT (a, b) and Ψ(a, b) = ProjRnΨKKT (a, b)

for all (a, b) ∈ domΨ(⊂ domΨKKT ).
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As direct consequence of Theorem 1 (Robinson ’76, ’81), one has

S is polyhedral and hence satisfies the upper Lip. prop. (2).

Moreover, there holds

Theorem 2. (Kl ’85, see also Kl ’87 (Proceedings Paraopt I))

1. domΨ is a finite union of polyhedral convex cones,

2. in general, the multifunction Ψ is not polyhedral (counterexample),

3. Ψ satisfies the upper Lip. prop. (2), and φ is Lipschitz on bounded

subsets of domΨ.

Assertion 3. recovers

Robinson ’81 who assumed that Q is positive semidefinite, and

Kummer ’77 who proved: φ continuous and Ψ (Hausdorff-) upper semi-

continuous on domΨ).
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For positive (semi-)definite Q, refinements are possible: Guddat ’76

and Bank et al. ’82 extend Nožička’s idea of local stability sets and

obtain

Corollary 1. Suppose Q is positive semidefinite. Then

(i) Ψ is polyhedral, and domΨ is a convex polyhedral cone.

(ii) The value φ is continuous and piecewise quadratic on domΨ.

(iii) If Q is positive definite, then the optimal solution function x̂ is

Lipschitz and piecewise-affine on its domain.

Proof of (i):

by classical theory of convex quadratic programming.
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Proof of (ii) and (iii) via local stability sets:

Given I, J ⊂ {1, . . . ,m}, define (a, b) ∈ ΣI,J iff relintS(a, b) = set of all
(x, y) such that

Qx+ATy = −a, (Ax)i = bi, i ∈ I, yj = 0, j ∈ J,
(Ax)i < bi, i /∈ I, yj > 0, j /∈ J.

(6)

(ii) With (QI,J)+ = pseudo-inverse of the matrix of equations in (6),(
x̂(a, b)
ŷ(a, b)

)
= (QI,J)+(−a, bI ,0J) for (a, b) ∈ ΣI,J , (7)

defines an element x̂(a, b) of the affine hull of Ψ(a, b).

Hence,

φ(a, b) = 1
2(x̂(a, b))

TQ x̂(a, b) + aT x̂(a, b)

on clΣI,J.

(iii) Theorem 2, Remark 1 and (7) ⇒ x̂ Lipschitz and piecewise
affine on domΨ.
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Positive semidefinite Q, a fixed, b varies

Corollary 2. (Kl ’84, recovered in Kl, Thiere ’95)

Let Q be positive semidefinite, fix a = ā, and consider the QP

min 1
2x

TQx+ āTx s.t. Ax ≤ b, b varies.

Then the optimal set map Ψ̂ = Ψ(ā, ·) is Lipschitzian on domΨ̂ w.r.

to the Pompeiu-Hausdorff metric.

Sketch of proof: Combine the global (!) constants ϱΦ, ϱΨ in

• ∀b∃ε > 0 : Ψ̂(b′) ⊂ Ψ̂(b) + ϱΨ∥b′ − b∥B ∀b′ ∈ B(b, ε), by Theorem 2,

• Φ(b, c) = {x | Ax ≤ b, Qx = Qc, āTx = āTc} is graph-convex and

polyhedral, so Φ is Lipschitz on domΦ with constant ϱΦ > 0,

use Ψ̂(b) = Φ(b, zb, zb) ∀zb ∈ Ψ̂(b) to show

Ψ̂ is ”pointwise Lipschitz” w.r. to dH with global ϱ = ϱ(ϱΨ, ϱΦ).

Since domΨ̂ is convex, Ψ̂ is Lipschitzian on domΨ̂, by Remark 1.
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1. Upper Lipschitz stability in quadratic optimization

2. Further Lipschitz stability concepts and basic models

For brevity, KK ’02 will refer to the book

Klatte, Kummer, Nonsmooth Equations in Optimization, Kluwer 2002.
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Definition. Let Γ : P ⇒ Z (P,Z Banach spaces) be a multifunction

and z̄ ∈ Γ(p̄), B closed unit ball, B(x, ε) := {x}+ εB (Minkowski sum).

Γ has the Aubin property (Aub. p.) at (p̄, z̄) if there are ε, δ, L > 0,

Γ(p) ∩B(z̄, ε) ⊂ Γ(p′) + L∥p′ − p∥B ∀p, p′ ∈ B(p̄, δ). (8)

Note: The definition includes Γ(p) ∩B(z̄, ε) ̸= ∅ for p near p̄.

Specializations

(i) Calmness: If (8) only holds for p′ = p̄, Γ is called calm at (p̄, z̄).

However, Γ(p) ∩B(z̄, ε) = ∅ for some p near p̄ is possible.

(ii) Strong Lipschitz stability: If Γ(p) ∩ B(z̄, ε) = {z(p)} for p near p̄ in

(8), Γ is called locally single-valued and Lipschitz (l.s.L.) at (p̄, z̄).
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Relations to certain regularity concepts:

Γ has Aub.p. at (p̄, z̄) ⇔ Γ−1 is metrically regular at (z̄, p̄),

Γ calm at (p̄, z̄) ⇔ Γ−1 is metrically subregular at (z̄, p̄),

Γ l.s.L. at (p̄, z̄) ⇔ Γ−1 is strongly (metrically) regular at (z̄, p̄).

Of course, for P = Rs, Z = Rr, calmness of Γ is a localized variant of

the upper Lipschitz property (2), and one immediately has

If Γ satisfies (2), then Γ is calm at each (p, z) ∈ gphΓ.
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Basic models for the remaining paper

We study two models with canonical perturbations p = (a, b) near p̄ = 0

and convex polyhedral constraints of the form

M(b) = {x ∈ Rn | Ax− c ≤ b},

where c ∈ Rm, A (m,n)-matrix (with rows Ai) are fixed.

Model 1. With h ∈ C1(Rn,Rn), consider the variational condition

VC(a, b): a ∈ h(x) +NM(b)(x), x ∈ M(b).

Model 2. With f ∈ C2(Rn,R), consider the nonlinear program

NLP(a, b): Minimize f(x)− ⟨a, x⟩ s.t. x ∈ M(b).
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The normal cone map (b, x) ∈ gphM 7→ NM(b)(x) is polyhedral:

u ∈ NM(b)(x) ⇔ uT(ξ − x) ≤ 0 ∀ξ ∈ M(b)

⇔ x ∈ argmax ξ{uTξ | Aξ − c ≤ b}

⇔ ∃λ ≥ 0 : ATλ = u, λ ⊥ Ax− c− b ≤ 0

⇔ ∃y ∈ Rm : ATy+ = u, Ax− c− y− = b

Thus, x solves VC(a, b) if and only if for some y ∈ Rm,

F1(x, y) := h(x) + ATy+ = a
F2(x, y) := Ax− c − y− = b

(Kojima’s form), (9)

or, equivalently, if and only if for some λ ≥ 0(
a
−b

)
∈
(

h(x) +ATλ
c−Ax

)
+NRn×Rm

+
(x, λ). (normal cone form) (10)
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With h = Df , (9), or equivalently (10), describe the parametric

KKT system of a solution x to NLP(a, b).

The correspondence λ ↔ y between multipliers in (9) and (10) is a

Lipschitzian homeomorphism, we prefer here the form (9).

Given any p = (a, b), define for both model 1 and model 2

S(p) = {(x, y) | F (x, y) = p}, (KKT solution set)

X(p) = {x | ∃y : F (x, y) = p}, (stationary solution set)

Y (p, x) = {y |F (x, y) = p}, (multiplier set w.r. to (9))

Λ(p, x) = {λ | ∃x : (x, λ) satisfies (10)}. (multiplier set w.r. to (10))

For some given solution x̄ ∈ X(0) of the initial problem at p̄ = 0, let

Q := Dh(x̄) (or := D2f(x̄)).
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Example: Parametric linear programs - Lipschitz behavior

min −
2∑

i=1
(1 + ai)xi

s.t. x1 − 1
2 ≤ b1

x2 − 1
2 ≤ b2

x1 + x2 − 1 ≤ b3

(a, b) → (0,0)

Argin mapping Ψ

is (isolated) calm

Has Ψ the Aubin property at the origin? No!

Proposition. (KK ’02) Given any f : Z × P → R and M : P ⇒ Z (Z

Hilbert space), Ψ̃(p, a) = Argmin {f(z, p) − ⟨a, z⟩ | z ∈ M(p)} has the

Aubin property at (p̄,0, z̄) only if Ψ̃ is single-valued around (p̄,0).
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1. Upper Lipschitz stability in quadratic optimization

2. Further Lipschitz stability concepts and basic models

3. Lipschitz stability under constraint non-degeneracy
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Let S and X be the maps associated with VC(a, b).

Theorem 3. If S has the Aubin property at (0, (x̄, ȳ)) ∈ gphS then

(i) LICQ holds at x̄, i.e., {Ai | i : Aix̄ = ci} is linearly independent,

(ii) S is locally single-valued and Lipschitz (l.s.L) at (0, (x̄, ȳ)).

If h or Df are only locally Lipschitz, (i) holds, but (ii) fails.

Notes.

• Direct proof of (i),(ii) via structure of (9): Kummer ’98, KK ’02.

• Knowing (ii), (i) also follows from characterizations of l.s.L.

• Original proof of Theorem 3 (ii): by Dontchev, Rockafellar ’96 - a

consequence of its version on VI with fixed constraints

(∗) p ∈ h(x) +NK(x) (p varies near 0),

with solution set X (p), where h ∈ C1(Rn,Rn), K convex polyhedron,

since the KKT system (10) of our V C(a, b) is of type (∗).
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Now linearize (∗) and consider at x̄ ∈ X (0)

the affine VI p ∈ h(x̄) +Dh(x̄)(x− x̄) +NK(x),

with solution set L(p). Then, at (0, x̄), and with AP = Aubin

property:

X AP ⇔ L AP ⇔ (strR): L l.s.L. ⇔ X l.s.L.

Note: (strR) is Robinson’s ’80 strong regularity for system (∗).

Main tools in the original proof:

• Coderivative characterization for the AP, cf. Mordukhovich ’93.

• Reduction theorem by Robinson ’84, cf. also Robinson ’91, ’16:

∀(x, u) ∈ gphNK : u+v ∈ NK(x+w) ⇔ v ∈ NK0
(w) if (v, w) small,

where K0 := K0(x, u) = {w ∈ TK(x) | w ⊥ u} (critical cone),

• Theory of piecewise affine maps (openness, coherent orientation,

one-to-one maps), cf. Scholtes ’94, Robinson ’92, Ralph ’93.

Recent proofs: cf. Dontchev, Rockafellar ’14, Ioffe ’16.
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Corollary 3. (Consequences for the stationary solution map X)

If X has the Aubin property at (0, x̄), and LICQ holds at x̄ w.r. to

Ax− c ≤ 0, then X is l.s.L. at (0, x̄).

Idea of proof:

• Trivially, LICQ persists under small perturbations.

• Well-known consequence: LICQ implies that Λ(p, x), p = (a, b), is

a singleton for (p, x) ∈ gphX near (0, x̄), say Λ(p, x) = {λ(p, x)}.
Moreover (cf. Kl, Tammer ’90), λ(·, ·) has a representation as a

polynomial in a, b, x and h(x).

• So, for some neighborhood U of (0, x̄), the multiplier map Λ is

single-valued and Lipschitzian on (domX × Rn) ∩ U .

• Standard estimation gives: X is Aubin ⇒ S is Aubin.

• Apply Theorem 3.
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Let (x̄, ȳ) ∈ S(0,0), J = {i | Aix̄ = ci}, Q = Dh(x̄), Ai i-th row of A.

Characterization of ”S is l.s.L.” via complementarity

S is l.s.L at (0,0, x̄, ȳ) if and only if the stability system

(i) Qu+
∑

i∈J αiA
T
i = 0,

(ii) ȳiAi u = 0 (∀i ∈ J)
(iii) αi Ai u ≥ 0 (∀i ∈ J)

(11)

has only the solution (u, αJ) = (0,0).

(11) includes: LICQ holds at x̄, put u = 0.

Characterization of ”S is l.s.L.” via matrix criterion

Let I+ = {i | ȳi > 0}, I0 = {i | ȳi = 0}, and AI matrix with rows Ai,

i ∈ I, and ÃI = [AI 0]. Then S is l.s.L at (0,0, x̄, ȳ) if and only if

R =

(
Q AI+

−AI+ 0

)
nonsingular and ÃI0 R

−1 (ÃI0)
T is a P-matrix.

(12)
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Lipschitz stability for general models/perturbations

Both criteria were in fact proved as characterizations of l.s.L. for the

solution map S(a, b, t) of the following general model (similarly (10)’):

Let h ∈ C1, g ∈ C2 and consider parameter (a, b, t) near (0,0, t̄),

F1(x, y) := h(x, t) +
∑m

i=1 y
+
i Dxgi(x, t)

T = a
F2(x, y) := g(x, t) − y− = b

(9)′

put in (11), (12) Q = Dxh(x̄, t̄) +
∑

ȳ+i D2
x gi(x̄, t̄), Ai = Dx gi(x̄, t̄).

Condition (11): first given by Kummer ’91 as a characterization via

injectivity of the strict graphical (Thibault) derivative, see also KK ’02,

Facchinei, Pang ’03, Dontchev, Rockafellar ’14.

Condition (12): goes back on classical work by Robinson ’80, nice

straightforward proof in Outrata, Kočvara, Zowe ’98, for equivalent

matrix criteria cf. also Kojima ’80, Jongen et al. ’87, Bonnans, Shapiro

’00, KK ’02, Facchinei, Pang ’03, Dontchev, Rockafellar ’14.
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Extension of Thm. 3 and Cor. 3 to non-polyhedral constraints

Let (x̄, λ̄) ∈ Rn × Rm be a solution of the equation 0 ∈ F(x, λ), where

F is the KKT multifunction associated with

P (a, b) :
minx f(x)− ⟨a, x⟩
subject to g(x)− b ∈ K,

Suppose K closed convex cone, and here f, g ∈ C1.

Let S(a, b) = F−1(a, b), (a, b) near 0, and

Λ(x, a, b) = {λ | (x, λ) ∈ S(a, b)} .

Theorem 3(i)’. (Kl, Kummer ’13)

Given a KKT point (x̄, λ̄) ∈ S(0), suppose S has the Aubin property at

(0, x̄, λ̄). Then g(x) ∈ K is nondegenerate at x̄, i.e.,[
(∗) Dg(x̄)Tu = 0 and u ∈ spanNK(g(x̄))

]
imply u = 0.

and so Λ(x̄,0) = {λ̄}.
27



”metric = strong metric regularity” for non-polyhedral K:

Optimal solution sets for convex optimization problems

Convex problems: f is convex and the graph of G(x) = g(x) + K is

convex, f, g ∈ C1, cf. Kl, Kummer ’13.

Stationary solution sets of local minimizers

SOCP: K = 2nd-order cone, f, g ∈ C2, cf. Outrata, Ramirez ’11

including algebraic characterizations.

SDP: K = Sm
+, f, g ∈ C2, cf. Fusek 13. Characterizations for ”X

l.s.L.” are known for SDPs e.g. from Bonnans, Shapiro ’00, D.Sun

’06, Chan, D.Sun ’08.

Note. The mentioned characterizations of l.s.L. for SOCP/SDP in-

clude non-degeneracy.
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Let X be the stationary solution map X of VC(a, b), (0, x̄) ∈ gphX and

J = {i | Aix̄ = ci}.

We say that the stability system (11),

(i) Qu+
∑

i∈J αiA
T
i = 0,

(ii) yiAi u = 0 (∀i ∈ J),
(iii) αi Ai u ≥ 0 (∀i ∈ J),

(11)

is nonsingular at (0,x̄),

if for each y ∈ Y (0, x̄), (11) has only solutions (u, αJ) with u = 0.
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Theorem 4. Let (0, x̄) ∈ gphX.

(i) If X has the Aubin property at (0, x̄) then MFCQ holds at x̄, i.e.

∃u : Aiu < 0 ∀i ∈ J (= Slater’s CQ in our model).

(ii) X is l.s.L. at (0, x̄) if and only if both x̄ satisfies MFCQ and the

stability system (11) is nonsingular at (0, x̄).

◦ (i) and (ii)”only if” also hold for h ∈ C0,1, Qu := Th(x̄;u) (KK ’02).

◦ Linearity of constraints is only essential for ”(ii) if-direction”,

cf. Kl, Kummer ’05.

◦ Aubin = l.s.L.? open to my knowledge
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L.s.L. and strong coherent orientation condition (SCOC)

Under MFCQ at x̄, the standard multiplier set Λ0 = Λ(0, x̄) is a

bounded polyhedron, let Λe be the set of its vertices.

Let J = {i | Aix̄ = ci}. Given λ ∈ Λe, put I+(λ) = {i | λi > 0} and

T (λ) = {I | I+(λ) ⊂ I ⊂ J, AI has full row rank}.

Corollary 4 X is l.s.L. at (0, x̄) if and only if both x̄ satisfies MFCQ

and (SCOC) Luo et al. ’96 is satisfied at (0, x̄), i.e.,

For all λ ∈ Λe, the determinants of the matrices

R(λ) =

(
Q AI+(λ)

−AI+(λ) 0

)
have the same sign ±1,

and for each I ∈ T (λ), ÃIR(λ)−1(Ã)TI is a P-matrix.

(13)
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Note. Lu, Robinson ’08 give a more general version of Corollary 4,

allowing in VC(a, b) only perturbations b ∈ domM to avoid MFCQ,

where M(b) constraint set map.

What about nonlinear constraints or perturbations?

∃ counterexamples showing Theorem 4 (ii) cannot be carried over to

1◦ perturbed constraints of type A(t)x− c ≤ b, see Robinson ’82,

2◦ perturbed constraints g(x) ≤ b, gi convex polynomials, one needs

some condition involving limits xk → x̄, cf. Kl, Kummer ’05.

Counterexample for 2◦. See next slide.
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Counterexample for 2◦. (Kl, Kummer ’05)

min 1
2x

2
1 + x2 − a1x1 − a2x2 s.t. − x2 ≤ b1, x21 − x2 ≤ b2.

Then x̄ = (0,0) is a minimizer at (a, b) = (0,0), MFCQ holds. Let

W+(x̄, λ) = {u | uTDgi(x̄) = 0, i ∈ I+(λ)},

Q(λ) = D2f(x̄) +
∑

λiD
2gi(x̄).

Obviously, Λ(x̄) = {λ ≥ 0 | λ1 + λ2 = 1} and

Q(λ) =

(
1+ 2λ1 0

0 0

)
λ ∈ Λ(x̄) ⇒ λ1>0

or λ2>0 ⇒ W+(x̄, λ) = R× {0}.

Thus, Q(λ) is positive definite on W+(x̄, λ) (∀λ ∈ Λ(x̄)).

Hence, the strong 2nd-order sufficient optimality condition (strong

SSOC) plus MFCQ hold true, but one can show:

the stationary/optimal solution map X is not l.s.L.
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In contrast to our example

min 1
2x

2
1 + x2 − a1x1 − a2x2 s.t. − x2 ≤ b1, x21 − x2 ≤ b2,

the problem with linearized constraints

min 1
2x

2
1 + x2 − a1x1 − a2x2 s.t. − x2 ≤ b1, −x2 ≤ b2,

has a l.s.L. solution map X near the origin and MFCQ plus strong
SSOSC hold (special case of Corollary 4 for local minimizers).

Consequently,

characterizations for l.s.L. of X and that for linearized g differ!

Ways out:

• Require in addition Constant Rank CQ, see Luo et al.’96, Facchinei,
Pang’03, or study weaker types of Lipschitz stability.

• Study in 2◦ ”l.s. and Hölder” under MFCQ, as e.g. Gfrerer’ 87.

Note. For linear SIP, the solution set mapping X is l.s.L. (= Aubin)
iff Slater CQ plus some strong uniqueness condition are satisfied, cf.
Canovas et al. ’07.
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Many important and well-studied approaches and results in our con-

text of variational problems involving polyhedral multifunctions were

omitted or only sketched in this talk:

• extensions to the case of locally Lipschitz h or Df ,

• study of optimization problems min f(p, x) s.t. g(p, x) ∈ K, K finite

union of convex polyhedra, e.g. perturbed MPECs,

• characterizations of calmness or isolated calmness of S or X,

• characterizations of l.s.L. if x̄ is a local minimizer in NLP,

• study of the related modulus or radius of Lipschitz stability,

• analysis under special perturbations, where, e.g., metric and strong

regularity differ in general, or directional CQs could be used,

• applications to convergence analysis of algorithms.

37



4 ∗ main contributors to the area of this talk

have a jubilee in 2017:

Stephen M. Robinson celebrated his 75th birthday.

Bert Jongen celebrated his 70th birthday.

Bernd Kummer celebrated his 70th birthday.

Jǐri Outrata celebrated his 70th birthday.

Congratulation!

∗ Thanks to Jan Rückmann for extending the original list which might

be even longer
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J.F. Bonnans, A. Shapiro, Perturbation Analysis of Optimization Problems. Springer
(2000).

M.J. Canovas, D. Klatte, M. Lopez, J. Parra. Metric regularity in convex semi-infinite
optimization under canonical perturbations. SIAM J. Optim., 18: 717-732, 2007.

Z.X. Chan and D. Sun. Constraint nondegeneracy, strong regularity and nonsingu-
larity in semidefinite programming, SIAM J. Optim.. 19: 370-396, 2008.

A. Dontchev, R.T. Rockafellar. Characterizations of strong regularity for variational
inequalities over polyhedral convex sets. SIAM J. Optim., 6:1087–1105, 1996.

A. Dontchev, R.T. Rockafellar. Implicit Functions and Solution Mappings, 2nd
Edition, Springer 2014.

F. Facchinei, J.-S. Pang. Finite-dimensional Variational Inequalities and Comple-
mentarity Problems, Springer 2003.

P. Fusek. On metric regularity for weakly almost piecewise smooth functions and
some applications ..., SIAM J. Optim., 23: 1041-1061, 2013.
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