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Abstract—An early step in the knowledge discovery process is
deciding on what data to look at when trying to predict a given
target variable. Most of KDD so far is focused on the workflow
after data has been obtained, or settings where data is readily
available and easily integrable for model induction. However, in
practice, this is rarely the case, and many times data requires
cleaning and transformation before it can be used for feature
selection and knowledge discovery. In such environments, it
would be costly to obtain and integrate data that is not relevant to
the predicted target variable. To reduce the risk of such scenarios
in practice, we often rely on experts to estimate the value of
potential data based on its meta information (e.g. its description).
However, as we will find in this paper, experts perform abysmally
at this task. We therefore developed a methodology, KrowDD, to
help humans estimate how relevant a dataset might be based on
such meta data. We evaluate KrowDD on 3 real-world problems
and compare its relevancy estimates with data scientists’ and
domain experts’. Our findings indicate large possible cost savings
when using our tool in bias-free environments, which may pave
the way for lowering the cost of classifier design in practice.

Index Terms—None

I. INTRODUCTION

A critical step in knowledge discovery takes place in the
very beginning: the selection of the data to be used. In
practice, the final dataset used is an amalgamation of many
different attributes, scattered across company-internal data and
public data. For example, in order to predict the sales of
a pharmacy, one might want to acquire historical sales data
for each day, and try to predict these using features like the
number of employees working at a given day (internal data),
the outdoor temperature (external), the current severity of the
flu (external), etc. Acquiring the right data is critical for data
science projects, since the performance of the actual feature
selection and model induction is dependant on the human
decision what datasets to acquire in the first place. In practise,
this decision often takes place in workshops, where project
members decide on what internal and external data sources
to tap for feature selection. Since data sources vary in their
cleanliness, structure and price, each comes at different cost,
which entails a cost-payoff calculation for the selection of data
sources to acquire. Therefore, an implicit outcome of such
workshops is a (human) ranking of the expected relevancy
for the potential features engineerable from the available data
sources.

However, as we find in this paper (see Section II), human
relevancy estimation of individual features is often unreliable.

This constitutes an important problem for data science teams:
For topics where literature or experience listing relevant data
is unavailable, data science teams are essentially in the dark
as to what data sources to acquire.

In Section III, we therefore propose an early method to
more accurately estimate feature relevancy than the current
industry standard — without any more information than the
names and semantic descriptions of the features it contains.
Our method, called KrowDD, is based on crowdsourcing,
where we aggregate many people’s estimates to approximate
a (potential) feature’s Information Gain, before the actual data
for that feature is available.

When compared to domain experts and data scientists,
our method performs significantly better at estimating feature
value in case of a non-skewed target variable. Our contribu-
tions in this paper therefore are:

1) a study quantifying the performance of human feature
relevancy estimation in practice

2) a method to estimate feature relevancy only using meta-
information (name and description)

II. QUANTIFYING EXPERT PERFORMANCE
Imagine, you’d need to build a classifier to predict the

sales of a pharmacy for 7 days into the future. The pharmacy
supplied you with some internal data for past sales, including
features such as the number of employees working on a given
day, the number of products on display in a given branch, etc.
Your initial model doesn’t yield stellar performance, and you
decide to try improving it by integrating public data. You come
up with a few ideas, such as data on the current spread of the
flu virus, data for school holidays as well as weather data.
Obtaining all of these data requires time, which is scarce. You
therefore rank your ideas based on how relevant you deem
them to your target variable (sales) and then start acquiring,
cleaning and integrating these datasets.

In practice, the process of ranking such potential data
sources is either conducted by data scientists directly, or
in consultancy with a domain expert (”subject matter ex-
pert”). In case there is no publicly available report on
what data worked well to predict a target variable, data
scientists need to rely on their intuition to determine
where to invest their time first. Given that the obtained
data in this very first phase ultimately limits the perfor-
mance of any model induced on it, it would be important



Fig. 1: Drag & drop interface to elicit a test subject’s feature relevancy estimations for a
given topic. This figure displays the Income condition, where a person has already ranked
three features. Test subjects would drag a feature (green box) from the right part of the
screen onto the left part of the screen at the position perceived as corresponding to the
feature’s rank. The screenshot shows the simplified vocabulary used to elicit estimates of
people without background in Data Science.

to quantify how well
human intuition — the
de-facto standard —
works with estimating
data relevance.

In existing literature,
we could only find
anecdotal evidence
[1] quantifying the
performance of the
current state of the art
as rather suboptimal. A
more fine-grained view
would be to look at
individual features of
such external datasets;
as datasets might
primarily be obtained
for one or more of the
features they contain.

We therefore set out
to answer how well can
people rank features ac-
cording to their rele-
vance to a target vari-
able.

The question was
structured after the
sequential model data
scientists employ
to acquire more
data, where the most
promising feature (i.e.
the one with highest
expected relevance) is
obtained first, followed
by the second, third,
etc. In order to most accurately represent the real world, we
included both prevalent kinds of human experts employed in
practice: data scientists and domain experts. Test subjects of
each group were asked to rank features according to their
relevance for the target variable. These two groups were
then compared to a third (synthetic) group of test subjects,
where each synthetic ”test subject” would return a randomly
ordered list of the supplied features. This third group will be
called random. To compare and contrast these 3 groups, each
test subject’s ranking needs to be quantified in terms of its
performance. A common way to evaluate the performance
models in literature is by comparing their Area under Curve
when using Receiver Operating Characteristics (ROC AUC)
first presented by Provost et al. [2]. In order to compare
the feature rankings of individuals, we therefore induce a
classifier for each feature count for a test subject’s ranking.
For example, if one person ranked the available features A,
B, C as ”A,C,B”, this would entail training 3 classifiers:

the first classifier only using feature A, the second using
features A and C and the third using features A, C and B.
Using these measures, all groups can be compared at each
feature-count (e.g. for two: a comparison of all groups when
only using the two features ranked highest). This method of
comparing feature rankings is similar to the one proposed by
Slavkov et al. [3].

A. Experiment Setup

An important realisation based on our method of compar-
ison is its model-dependency: the AUC calculated on the 2
highest ranked features with a Naive Bayes classifier might
differ from the AUC of the same features with a Decision Tree.
We mitigate this problem by choosing a classifier that is very
common (Naive Bayes) and then investigate whether other
popular classifiers would have lead to different results. Note,
that in the field of feature selection, which is closely related
to our problem, inducing classifiers with a given selection of
features for its comparison is quite common (e.g. [4]).



In order to support our results, we conduct our experiments
on three different datasets (”conditions”) to generalize. We
chose datasets that are public domain, well known in the ML
community and for which no highly specialized knowledge
would be required. An example for specialized knowledge to
be avoided could be, predicting the likelihood of breast cancer
based on presence of BRCA 1 or 2 gene test outcomes.

In preliminary experiments using simulations, we found our
method to be sensitive to skewed target variables. We therefore
chose 2 datasets with balanced target variable distributions
(Student and Olympics) and one dataset with a skewed target
variable (income). For each dataset, we included roughly as
much relevant features as irrelevant ones, whereas we included
the N highest-ranked features (by their Information Gain) and
the N lowest-ranked features. Table I shows the datasets and
the number of relevant features each.

To simplify our task descriptions for humans, we prepro-
cessed each dataset by binning all numeric variables into 3
equally sized bins (low, medium, high). Rows with more than
50% with missing values in our target features were dropped,
the remaining missing values were imputed by their means.
Simulating a real-world experience, we created comprehensive
(semantic) descriptions of each feature and included them with
their names as meta information. For example, the description
for the third bin (high) of the electricity consumption feature
used to predict whether a country receives at least one medal in
the Olympics: You get the information whether the country has
a high electricity consumption per person (more than 4200kWh
per person) (YES) or less than that (NO). Using these descrip-
tions, we created a website, where people could submit their
ranking for feature relevancy for a given condition, by putting
the most relevant feature on top, followed by the second, third,
etc. through drag-and-drop. The descriptions of each feature
could be accessed by hovering over the corresponding question
mark icon. Figure 1 shows the user interface presented to our
test subjects for this task. The test subjects would drag features
from their unranked set on the right-hand side of the screen
to their ranking on the left-hand side. The unranked set on
the right is shuffled for every participant to avoid biasing the
outcome.

The Area under Curve (AUC) was calculated as the av-
erage of a 10-fold cross validation for each test subject’s
ranking and each cumulative feature count. We then compared
the confidence intervals of each group. Confidence intervals
were calculated through Efron’s bias-corrected and accelerated
bootstrap [5].

For each dataset (”condition”) we used 10 experienced data
scientists and between 10 and 18 domain experts depending
on the dataset and expert availability.

Data scientists were recruited through the freelancer plat-
form Upwork1, at the time of writing one of the largest pools
of online workers for data science type tasks. We limited our
search to data scientists who reported experience in Machine
Learning, Data Science or Data Analytics through their re-

1https://www.upwork.com

spective tags or descriptions. Data scientists were paid $10 for
participation, which at the time of writing is a common pay
for small-scale data science jobs like feature selection. They
were then asked to rank variables for all conditions, whereas
the learning effect was mitigated by randomly permuting the
order of the conditions for a given worker. All data scientists
were asked to additionally answer a questionnaire, in order
to report on their previous experience and education. Domain
experts were Swiss and German volunteers, selected based on
their experience and profession.

1) Condition 1: Olympics: In the Olympics dataset, our
(binary) target variable is, whether a country received at
least one medal in the Olympics or not. To build a model,
we acquired yearly-data for each country that participated in
the Olympics since 1996. Following Bredtmann et al. [6]’s
paper, we included ”region” as one of the relevant features.
Additionally, we acquired the following features from the CIA
World Factbook for each of these countries where available:
education expenditures, inflation rate, unemployment rate,
public debt, electricity consumption, exports and share of
internet users. From these features, we selected 8 binned
features with an Information Gain higher than 0.08 into the
relevant group and 5 features with an Information Gain lower
than 0.02 into the irrelevant group.

Out of 46 approached domain experts, 10 submitted their
answers (response rate 22%). Among them 7 athletes (1
of which actually won gold in the Paralympics) and three
representatives of the sports departments in a city/state or
national government.

2) Condition 2: Student: Our second condition focused
on the (binary) target variable of whether a Portuguese high
school student would finish a Portuguese language class with a
grade above the classes’ median or below. The dataset as well
as all of its features were acquired from the UCI Machine
Learning repository [7].

For this condition, we chose our features from the variables
Fjob (father’s job), Medu (mother’s education level), Mjob
(mother’s job), failures (number of classes failed), paid (does
the student take paid extra classes?), studytime (number of
hours spent studying besides school, famsize (family size),
health (health status), Pstatus (parent relationship status),
absences and age. In total, we chose 8 binary features with
an Information Gain higher than 0.01 and 7 features with an
Information Gain lower than 0.002.

We were able to recruit a total of 18 Swiss or German high
school language teachers as domain experts for this condition.
14 of them were directly approached by us, out of which at
least two have forwarded our emails to their colleagues.

3) Condition 3: Income: In our third condition, we sought a
skewed (binary) target variable, where significantly more than
half instances of the dataset would share the same value of
the target variable. A well-known dataset with this property is
’Census Income’, also available on the UCI Machine Learning
Repository [7]. In most societies — and in particularly in the
US — income is a skewed variable, where a few wealthy
individuals dramatically skew the average income figure of a



TABLE I: Datasets used for the comparison between human
experts and random. For each dataset we included roughly the
same number of relevant and irrelevant features (as judged by
their Information Gain)

Olympics Student Income
Size (rows) 839 649 32561

# Relevant features 8 8 10
# Irrelevant features 5 7 7

Note: These numbers represent the data set after cleansing and binarization.

country. The main reason to include a skewed target variable,
was to explore the influence of the base rate problem described
by Kahneman [8] on expert’s judgments.

In this condition, we chose features describing mari-
tal.status, relationship, education.num (number of years spent
for education), sex, age, hours per week (hours spent at work),
native.country, education, occupation and capital loss. We
used 17 binned variants of these features, among them 10
with an Information Gain higher than 0.02 and 7 with an
Information Gain lower than 0.00008.

We were able to recruit a total of 12 domain experts for
this condition (response rate 60%). Among them were 2 tax
experts, 6 professional fiduciaries and 4 leaders of companies
or department leaders of big companies.

B. Demography

The 20 data scientists participating in this experiment went
through university education and possess at least a Bachelor
of Science (10 Master of Science, 1 PhD). Two data scientists
were female, 18 Male. 10 were from Asian countries, 5 from
Europe, 2 from North America, 2 from Africa and 1 from
South America. They were between 20 and 39 years old with
an average of 29 years. Experience varied between 1 year
and 13 years with an average of 4.5 years of experience.
The Kendall-Tau correlation between experience (in days) and
ranking performance (in terms of AUC) was 0.019 with P=0.83
for absence of an association. The low correlation suggests,
that data scientists with more experience did not perform better
in ranking feature’s by their relevance than data scientists with
less experience.

C. Results

Figure 2 shows the results of the experiment in all condi-
tions. Strict superiority, the case where the confidence interval
of one group is clearly higher than the one of another group,
is not visible. In fact, all groups seem to perform remarkably
similar.

Table II shows our comparison of the groups using Welch’s
t-test for unequal variance [9] and calculated effect sizes using
Hedges’ g [10] for small sample sizes.

Figure 3 sheds light on the relative performance of experts
across all three conditions. In this figure, we used linear
interpolation to normalize the AUC for each group to the range
[0, 1], whereas 1 is the highest AUC and 0 the lowest AUC
achievable for a given number of features.

TABLE II: Comparing human experts with random: Hedges’
g effect size [10] for 6 features

Data Scientists Random

Domain experts 0.283+ 0.508*

Data scientists 0.296+

(a) Student dataset

Data Scientists Random

Domain experts 0.150+ -0.045+

Data scientists -0.207+

(b) Income dataset

Data Scientists Random

Domain experts -0.769+ -2.002**

Data scientists -0.953**

(c) Olympics dataset

Note: + indicates P > 0.05, * indicates P <= 0.05 and ** indicates
P <= 0.01. P-values were calculated using Welch’s t-test for unequal

variance [9].

No group significantly outperforms another in the relative
case either. We therefore conclude, that we can not observe
a significant improvement of using any group of experts over
another in our targeted conditions (subject to the limitations
outlined below). In all conditions with balanced target variable
distributions, we find random to not significantly differ from
experts. In case of Income, there is a significant difference
judging by the t-test, albeit with low effect size (Hedges’ g).

D. Discussion

In the results above, we observe that experts (data scientists
and domain experts) ranking of features according to their
relevance is not much better than random selection. This
finding needs to be related to literature in order to better
understand the reason for this effect.
We conjecture, that human biases might be responsible for
the abysmal result of experts. It has been established by
various well-known psychologists, that expert judgments are
subject to human biases, may be poorly calibrated or could
be self-serving (e.g. Tversky and Kahnemann [11], Krinitzsky
[12]). This leads to systematic bias being present in expert
judgments.

A prominent example for such a bias leading to misjudg-
ments is the availability bias originally introduced by Tversky
and Kahneman [13]. It is used to describe the phenomenon
of overestimating the probability of an outcome based on
the ease with which it comes to mind. If domain experts
or data scientists have not gathered prior experience on the
relevancy of a feature to a target variable, they might defer to
the availability heuristic to estimate the likelihood of a feature
being influential or not. The availability bias can extended by
the overconfidence bias, i.e. that the confidence people have



Fig. 2: Human experts compared against random. The x-axis denotes the number of features involved in training the classifier,
while the y-axis show the range of AUC (including a 95% confidence interval) produced when training with said number of
features. There is no strict superiority by any group visible, which suggests that experts are not significantly better than random
at ranking feature according to their relevance.

Fig. 3: Performance on test subjects across all conditions
combined. y-axis is the normalized AUC of each condition
(higher is better), with error bars for 95% CI, whereas the
x-axis denotes the number of features used for training. This
figure shows the average human performance relative to the
respective maximum / minimum of each dataset. No clear
difference is visible in the relative case either.

in their judgment tends to be higher than its accuracy — a
phenomenon that becomes stronger with more difficult tasks.

Given the sheer size and the complexity of the existing
literature on feature selection, one could safely conclude that
the task of ranking features according to their relevance could
be considered rather difficult for humans. The two biases
outlined above are well accepted and affect experts in many
fields with human decision making.

For example, in risk analysis, experts are polled to estimate
the confidence interval of a given event to occur. McKenzie
et al. [14] find, that people’s 90% confidence interval contain
a true value about 50% of the time. They observed similar
levels of overconfidence in experts and laymen (46% vs
49%). In finance, Oberlechner et al. [15] find expert currency
dealers to be overconfident, despite the evolutionary argument
that irrational traders would sustain continuous losses and be
pushed out of market eventually and despite the immediate and
accurate feedback for judgments cast. In medicine, Blendon
et al. [16] surveyed 831 physicians and 1207 patients on the
extent of a possible medical errors that they or their immediate
family members experienced. Physicians reported 35% of

such errors, while patients reported 42%, indicating possible
overconfidence on the side of physicians (or overt sensitivity
of patients). A similar gap is visible when investigating the
health consequences of such medical errors, which physicians
report to be serious in 18% of cases, whereas patients see
this figure at 24%. Berner and Graber [17] review medical
papers on diagnostic error due to overconfidence in different
areas of medicine, ranging from fields depending on visual
interpretation (radiology and pathology), where errors seem to
be lowest (ranging from 2%-5%), to the clinical specialities,
where diagnostic error is approximated to be 15%. The pres-
ence of these errors seems to be stationary over time, which
might be attributed to Tetlock’s [18] finding, that experts are
less likely to change their minds than non-expert, when new
evidence disproving their beliefs appears.

The argued-for difficulty of our task at hand, paired with
known human biases — such as overconfidence — particularly
applying to experts, might have lead to the performance of
experts not surpassing random.

E. Related Work

Our method is based on literature in the fields of Feature
Selection and Crowdsourcing.

Feature Selection is used to (i) avoid overfitting through
dimensionality reduction, (ii) providing faster and more cost
efficient models and (iii) to gain deeper insight into the
underlying processes generating the data [19]. Kohavi et al.
[20] proposed to categorize existing techniques into wrappers
and filters, whereas wrappers learn a classifier in tandem with
feature selection. By contrast, filters are classifier-independent
and are typically used before classifier induction. Popular
examples for filters include Information Gain [21], the Pearson
Correlation and Markov blanket filters [4]. Information Gain
belongs to the univariate filters, and is based on variable en-
tropy [22]. Averaging independent estimates of many different
people, a hypothesis termed Wisdom of Crowds, has been
shown to be relatively accurate in some conditions [23].

To the best of our knowledge, existing feature selection
techniques require data for the features under processing to
be present to calculate metrics on it.



Our method, by contrast, does not require data to be present
at the time of processing. Instead, our method is based on
estimating the conditional entropy of the features part of
feature selection.

For example, Francis Galton analyzed the accuracy of
individual estimates of an ox’s weight at a regional fair [24].
He found, that the average estimate (1197 pounds) was off
by just 1 pound (the actual weight of the ox was 1198
pounds). Treynor [25] ran two bean jar contests, where he
let 46 and 56 students estimate the number of beans in a
jar. In the first experiment, the estimate diverged by roughly
4% (810 actual beans, 841 estimated), while in the second
experiment it diverged by roughly 2% (850 actual beans, 871
estimated). James Surowiecki [23] established the conditions
for the Wisdom of Crowds to work when (i) knowledge
about the cause is available, (ii) the crowd is motivated to
be accurate, (iii) the crowd is independent and (iv) diverse.
Simmons et al. [26] provide an excellent overview over the
Wisdom of Crowds hypothesis and its conditions. Additionally,
they look at the impact of systemic biases present in individual
decision making.

In the context of crowdsourced feature selection, Cheng et
al. proposed Flock [1], a method and system for crowdsourced
feature generation. Flock is a platform to guide crowds to
nominate features and provide labels for them. To nominate
features, Flock lets crowd workers compare positive and
negative examples of the binary target class. Crowd workers
are then asked to state a reason how they differ. These
reasons are later clustered into features, followed by recruiting
crowd workers to provide labels for the clustered features
for the remainder of the dataset. Another approach based on
comparing examples was proposed by Zou et al. [27], where
crowd workers are asked to name a feature common to two out
of three displayed examples, followed by providing labels for
the nominated feature. Both approaches are based on the crowd
providing labels for the nominated features in order to induce
a classifier. This requires asking crowd workers to label the
full dataset for the nominated features — a potentially costly
endeavor that does not scale well to larger datasets. Besmira
et al. [28] propose to use budgeted learning when labelling the
training set and the test set for feature selection. Our approach
avoids this problem altogether, as it does not depend on crowd
labelling.

III. POSSIBLE REMEDY: KROWDD

In this section, we will present KrowDD: a method to
estimate feature relevancy to a target variable only by knowing
meta-data (name and description) of the feature, i.e. without
access to the feature’s data. Such a method can be helpful
when estimating the usefulness of datasets for Knowledge Dis-
covery applications; before running an actual feature selection
algorithm.

The idea is based on approximating values used to calculate
the Information Gain, a common feature selection method.
More specifically, we let the crowd estimate the conditional
means used in the calculation of the conditional entropy of a

variable. When applied to a set of features, an approximation
of an order by relevancy arises. Since the complexity of
Information Gain grows linearly with the number of features
part of the analysis, our method scales linearly to large
numbers of potential external datasets.

Information Gain measures the information obtained for
predicting a target variable by knowing the value of a feature
variable. The Information Gain for a target variable Y given
a feature X can be calculated by

IG(Y |X) = H(Y )−H(Y |X)

Whereas H(X) denotes the entropy [22] of a variable X
calculated by

H(X) = −
∑
i

p(xi) · log2 p(xi)

and H(Y |X) denotes the conditional entropy of Y given X
calculated by

H(Y |X) = −
∑
j

p(xj) ·
∑
i

p(yi|xj) · log2 p(yi|xj)

The conditional entropy of H(Y |X) denotes the expected
number of bits needed to transmit a variable Y if the other
party knows the value of X.

For the case of binary variables, the term to calculate the
Information Gain can be simplified, such that it only needs
values for P (Y = 1|X = 0), P (Y = 1|X = 1), P (Y = 1)
and P (X = 1). Their counter parts can be calculated by
subtracting the variable from 1. Note, that categorical variables
can be transformed to binary variables through dummy extrac-
tion. Numerical variables can be transformed to categorical
variables through binning at a user-defined loss of precision.
Our method is based on estimating the value for these variables
through the median of a number of crowd estimates. As shown
in the related work section, averaging many crowd estimates is
commonly used in literature to estimate unknown parameters.
Applied to our case, an estimation of the share of entries
in a variable is required, where a certain property is true:
P (Y = 1|X = 0). Practically, one could ask a crowd of people
questions in the following format: ”What’s the share of Y
having X = 0. For example: ”What’s the share of countries
winning at least one gold medal in the Olympics, which
consume less energy per capita than average).”
Crowd estimates through averaging are inherently noisy and
imperfect. It is therefore necessary to quantify the error
associated with noise in our validation.

IV. VALIDATION

We evaluated our method by reusing the real-world datasets
(conditions) introduced in Section II. Based on our finding,
that the different human experts surveyed in Section II did
not diverge significantly from each other, we combined their
judgments. This allows us to compare KrowDD’s performance
directly with human experts and reduced cognitive load.



A. Experiment Setup

In order to approximate Information Gain following the
KrowDD approach, we elicited crowd estimates for the fol-
lowing meta-data for each feature:

• P (Y = 1|X = 0): The probability of the target given the
feature was False.

• P (Y = 1|X = 1): The probability of the target given the
feature was True.

• P (X = 1): The (prior) probability of the feature variable
being True.

For each feature, we acquired at least 16 estimates for
this meta-data priced at $0.10. The sample size of estimates
per feature is stated as lower threshold (of 16 estimates),
since repeated answers of the same workers were removed
post-collection. Estimates for P (Y = 1) (the prior of the
target variable) were priced at $0.04 and sampled using the
same strategy. All estimates were obtained from crowdworkes
recruited through Amazon Mechanical Turk (AMT)2, where
we limited our selection to experienced3 US workers. AMT
samples were collected on workday mornings Eastern Time in
parallel for a given condition. P (Y = 1) was already known
(as 0.5) in conditions, where we picked the target variable to
be symmetrically distributed (Olympia and Student). Only in
Income, we turned to the crowd to find it.
To compare KrowDD with our human judgments obtained
in Section II using their confidence intervals, we subsam-
pled 9 crowd answers for the variables required to calculate
KrowDD’s Information Gain (without replacement). Subsam-
pling allowed us to generate multiple estimates for the AUC
created by KrowDD-guided feature selection, such that we
could calculate its confidence interval. More specifically, we
iteratively subsampled 9 crowd estimates with replacement for
each feature and conditional mean. We repeated the process
above 19 times, resulting in 19 AUC scores per feature
per condition for KrowDD. The confidence intervals were
calculated by the bias-corrected and accelerated bootstrap
introduced by Efron [5] using 10,000 bootstrap samples.

B. Results

Figure 4 compares KrowDD’s performance with human
experts for a given number of features (x-axis). One can
see KrowDD to yield better results in cases with balanced
target variable (Olympics and Student), but performing slightly
worse in case of skewed target variable (Income). In Income’s
case, KrowDD’s 95% confidence interval overlaps with human
expert’s, whereas its mean performance is lower. In cases
with balanced target variable, KrowDD’s confidence interval
does not overlap with expert’s for most feature counts (x-
axis), passing a simple CI overlap-test, which suggests CI-
superiority of KrowDD. The difference between human experts
and KrowDD in all cases is quantified and documented in table
III. Figure 4 also shows the reference performance of the best

2http://mturk.com
3Workers with more than 4000 approved answers (called HIT) and a total

of less than 4% rejections

TABLE III: Comparison between KrowDD and human experts:
Hedges’ g effect size [10] for 1-9 features. Cases where
KrowDD performs better than humans are highlighted in bold.
Student and Olympics saw tend to show better performance
of KrowDD than human experts, income shows KrowDD to
perform worse.

Student Income Olympics

1 0.707** -0.959** 1.606***

2 0.788** -0.443+ 1.448***

3 0.719* -0.285+ 1.375***

4 0.773** -0.499+ 1.716***

5 0.899*** -0.737** 2.167***

6 0.435+ -0.711* 1.864***

7 0.560+ -0.780** 2.105***

8 0.660* -0.422+ 1.812***

9 0.415+ -0.133+ 1.901***

Note: + indicates P > 0.05, * P <= 0.05, ** P <= 0.01 and ***
P <= 0.001. P-values were calculated using Welch’s t-test for unequal

variance [9].

possible feature selection and worst possible selection for each
number of features, which were established through exhaustive
search.

In order to estimate a feature’s Information Gain, KrowDD
samples estimates of crowd workers for the variables described
above. We calculated our AUC, by using 9 crowd estimates per
variable. While we have selected the number 9 experimentally
before running the actual evaluation, some guidance as to the
number of samples per variable necessary would be helpful for
applying KrowDD in practice. Figure 5 therefore compares
the absolute difference between the aggregate estimate of a
variable and its actual value across all conditions. For example,
if 5 crowd workers estimated P (X4 = 1|Y1 = 0) = 0.64 (by
their median estimates for P (X4 = 1|Y1 = 0)) and the actual
value of P (X4 = 1|Y1 = 0) = 0.7, the delta would be 0.06.
Note, that P (X4 = 1|Y1 = 0) designates the conditional mean
of the fourth feature in the first condition. The figure shows,
the accuracy of the aggregated crowd judgment improves as
the number of judgments increases until roughly a sample size
of 6 is reached, suggesting that 6 crowd-samples per variable
might be enough.

V. DISCUSSION

Given the results of KrowDD’s performance, we see first
evidence for two findings: KrowDD is vulnerable to skewed
target distributions; and in case of balanced target variable
distribution, it outperforms human experts. Particularly the
case of skewed target distributions is interesting, as it re-
produces a finding of Kahnemann and Tversky’s landmark
paper on the psychology of prediction [29]. In their paper,
Kahnemann and Tversky find that people predict outcomes
by their representativeness of evidence — prior probability of
the outcome is systematically ignored. Applied to KrowDD’s
case, crowd workers asked to estimate P (Y = 1|X = 0) and
P (Y = 1|X = 1) could not take the prior probability of Y



Fig. 4: Average AUC and confidence intervals for KrowDD and human experts (data scientists and domain experts). The x-axis
denotes the number of features used to train the classifier and the y-axis the average AUC with a 95% confidence interval
(higher is better). The graph suggests KrowDD to perform better than human experts in cases with balanced target variable,
and worse in case of a skewed target variable.

Fig. 5: Combined crowd errors for P (X = 1),
P (Y = 1|X = 0) and P (Y = 1|X = 1). For each data
point, we sampled 19 times without replacement. The x-axis
denotes the number of answers samples in each iteration and
the y-axis the delta to the actual values.

into account, which might have lead these estimates astray. In
the data, we indeed see a significant difference (P < 0.001
using a t-test, with large effect size) between the accuracies of
estimates of conditional probabilities in the case of balanced
vs skewed target variable. The effect sizes (Hedges’ g) for
estimates for P (Y = 1|X = 0) and P (Y = 1|X = 1) when
comparing the skewed with the balanced conditions were
5.091 and 4.567 respectively.
Herzog et al. [30] found the crowd to predict outcomes of sport
events (soccer and tennis) accurately. This might mean, that
crowd workers might inherently perform better at predicting
sports events (such as the Olympics) than experts, which could
be a possible explanation why KrowDD (powered by such
crowd workers) performs better than experts. If crowd workers
had a systematic knowledge advantage over experts in the
investigated conditions, our observed superiority of KrowDD
in balanced target variable cases would be rendered moot. To
shed light on a possible knowledge advantage of the crowd
employed by KrowDD from Amazon Mechanical Turk, we
therefore compared their performance in feature relevance

TABLE IV: Comparing KrowDD with the ranking perfor-
mance of crowdworkers from AMT: Hedges’ g effect size [10]
for 1-9 features. Cases where KrowDD performs better than
laypeople are highlighted in bold. Student and Olympics again
show KrowDD to be superior, while human intuition seems to
work better in Income.

Student Income Olympics

1 1.439*** -1.029** 2.156***

2 0.918** -0.547+ 2.294***

3 0.919** -0.164+ 1.867***

4 1.334*** -0.270+ 1.721***

5 1.256*** -0.999** 2.077***

6 0.616+ -0.705* 2.281***

7 0.660* -0.737* 1.786***

8 0.879** -0.326+ 1.573***

9 0.884** 0.195+ 1.966***

Note: + indicates P > 0.05, * P <= 0.05, ** P <= 0.01 and ***
P <= 0.001.

ranking to KrowDD’s performance. In essence, crowd workers
went through the same ranking procedure as experts have in
Section II. Table IV shows the comparison of crowd workers
using KrowDD and employing lay crowd workers in ranking
features directly. We find the same pattern as when comparing
KrowDD to experts: it performs better in cases of balanced
target variables, and worse in case of a skewed one. Based on
this finding we are assured, that it was indeed KrowDD giving
crowd workers from Amazon Mechanical Turk an edge over
experts.

Using these findings, we are convinced that KrowDD poses
a first step on a path improving feature relevancy estimation
through meta-data. For the case of a balanced target variable,
KrowDD might be able to save data science teams a substantial
amount of time and resources.



VI. LIMITATIONS AND FUTURE WORK

The method proposed in this paper faces a few threads to
its validity.

The experiments in this article focussed on using lay people
as drivers for KrowDD, due to lower cost and higher availabil-
ity. More generally, drawing upon the finding of suboptimal
domain expert performance from Section II, KrowDD might
constitute a method with which domain expert knowledge
might be put to use in a better fashion than current state-
of-the-art. For example, to estimate feature relevancy when
predicting the likelihood of breast cancer, a user of KrowDD
might draw upon physicians’ insight as a driver for KrowDD.

Another important point to consider is that KrowDD is
based on Information Gain as introduced by [21]. It therefore
inherits Information Gain’s advantages and disadvantages.
Specifically, ex-ante, KrowDD can not estimate the relevance
of interactions between two features due to it being a univariate
feature selection metric. Closely related, KrowDD does not
consider feature autocorrelation in its current form: looking
for semantically similar variables would lead to similar utility
scores (approximated IG), despite the fact that both of them
might explain the same variance of the target variable. While
it has been shown that autocorrelated features may not be
redundant to a classifier [31], KrowDD does not discount its
relevancy metric for the arising interaction effect.

Another threat to KrowDD’s performance might be posed
by regional differences. For example, estimating the relevancy
of features used to predict whether a German bank would give
credit or not might be better answered by a German crowd than
a US crowd due to the cultural differences of credit handling.

Lastly, in this article, we only supplied AUC numbers
based on a Naive Bayes classifier (which was selected based
on its popularity and representativeness). We reran the full
evaluation using two other popular classifiers (C4.5 and a
Multilayer Perceptron), and found them to not change our
main takeaways.

VII. CONCLUSION

This article outlines two main contributions: it shows that
human experts (data scientists, domain experts) do not perform
significantly better in selecting relevant datasets than random.
In a situation, where a data scientist is tasked with adding
external data to improve a model, this finding implicates, that
the data scientist’s intuition on what data to look for may be
flawed. Given systematic flaws in an people’s judgments, we
conjecture, that data scientists often spend time and resources
obtaining, cleaning and integrating data for ineffective fea-
tures.

Our second contribution addresses this issue: we present a
method called KrowDD, that supports data scientists in esti-
mating the relevancy of a feature to their target variable, before
data for that feature was obtained. KrowDD was evaluated
on 3 different data sets and significantly outperformed human
experts in 2 of them. We therefore find KrowDD to yield good
results in problems with a balanced target variable, i.e. where

both outcomes of a target variable occur equally frequently in
the dataset.

Both contributions, the suboptimality of current state-of-
the-art as well as KrowDD may help raise the awareness for
the problem of data selection, which could pave the way to
improve the situation in practice.
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