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1.  Introduction 

Companies in the fashion industry are increasingly looking for reliable data to make informed decisions 
and to prioritize their sustainability efforts. Life Cycle Assessment (LCA) provide a comprehensive and 
holistic way to assess environmental impacts over the full life cycle; yet, credible LCA data on the 
cultivation and processing of textiles is still limited. The World Apparel and Footwear Life Cycle 
Assessment Database (WALDB5) was founded to solve this data challenge and to deliver robust data for 
environmental impact assessment and footprinting. One key limitation concerns LCA data on cotton 
cultivation. To date, the entire cultivation of cotton is represented in the form of two data points, i.e., 
country-generic LCA datasets which uniformly describe cotton cultivation in the context of the USA and 
in China. In other words, there is a lack in the coverage and geographical representativeness of LCA data 
representing global cotton cultivation.  

We believe that the integration of spatial data into LCA calculations can deliver more representative 
data for the assessment of cotton cultivation, when combined with a computerized method for 
regionalized LCI modeling. Regionalized LCI modeling is the procedure that generates and links process 
datasets to the location where they occur (Mutel et al. 2012). Spatial explicit data on various context 
conditions (precipitation, soil properties, etc.) and production parameters (crop-specific fertilizer input, 
yield, etc.) is now available, in decent resolution and on a global scale (Hengl et al. 2014; Monfreda et al. 
2008; Mueller et al. 2012). However, the consideration of such data in the generation of LCA datasets is 
too labor-intensive with the classical means of data processing. Agricultural LCA datasets are mainly 
generated manually, according to specific guidelines6 and emissions models and involving a wide array of 
raw data sources, ranging from public available databases (FAOSTAT, EUROSTAT, etc.), company data, 
surveys, case studies, publications, measurements, etc. (Nemecek et al. 2015). They typically are site-
generic meaning that one datasets represent an entire country.  

Reinhard et al. (2017) have developed a regionalization framework that is capable of processing the 
spatial explicit data on various context conditions and production parameters into comprehensive LCA 
datasets. This work-in-progress article examines the extensions of the framework for the generation of 
robust and geographically representative cotton datasets.  
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We first review the core elements of the method for regionalized LCI modeling developed by 
(Reinhard et al. 2017) and show how it is used for the generation of regionalized cotton datasets. We next 
highlight geographically explicit results for cotton cultivation in China and in Turkey and show 
exemplarily how we compute country specific average datasets. We conclude with a discussion of the 
advancement provided by and improvement options of the framework.    

2.  Method 

2.1  Framework for regionalized LCI modeling  

We compiled a repository of publicly available raster data indicating harvested area, yield, fertilizer 
application rates, irrigation requirement of all major crops as well as data on precipitation, soil properties 
and terrain. We use this repository to produce comprehensive cultivation dataset (CD) on cotton 
cultivation. For each specific location or grid-cell, we translate the contextual information (such as 
production volume, input of mineral fertilizer, precipitation, soil organic carbon content, yield, etc.) into a 
regionalized CD in the nomenclature of the ecoinvent database (Figure 1). Such CDs typically comprise 
40-80 exchange flows describing the type and amount of resources used (e.g. water, land), the 
intermediate flows required (e.g. the application of mineral and organic fertilizer or the use of field 
operations) and the accompanying release of emissions into soil, air and water (e.g. nitrate, di-nitrogen 
monoxide, phosphate emissions).  

 
Figure 1: Regionalized LCI modeling. Bridging the gap between spatial data and cultivation datasets. 

The processing of the spatial data into a comprehensive CDs is a non-trivial task. On the one hand, 
the spatial parameters cannot be used directly but require a high degree of manipulation until they 
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represent one or several exchange flows of relevance in an agricultural CD. We developed functions for 
the harmonization of raster data resolutions (e.g. 30x30 arc second, 5x5 min, etc.) and for processing 
different spatial data formats (Geotiff, NetCDF, etc.). into Pandas data frames, a Python Data Analysis 
Library. We can merge different data frames on the basis of a shared index consisting of latitude-
longitude combinations. Using this index as a basis, we can efficiently join data frames of different 
resolutions into one and the same data table.  

In addition, because not all exchange flows can be computed on the basis of spatial data, the datasets 
need to be complemented with default data from background databases. We process and expand spatial 
data by using background data from the ecoinvent database (version 3.2). The integration of ecoinvent 
data allows the consideration of the entire background life-cycle (field operations, production of 
fertilizers, etc.). It also facilitates the generation of complete CDs, even when detailed data is missing or 
cannot be computed. A detailed description of the framework is given in Reinhard et al. (2017).  

2.2  Generating and assessing regionalized cotton datasets 

We generate and assess cotton datasets for a resolution of ~10 x 10 km grid scale. We focus on the 10 
largest cotton producers, i.e., India, China, USA, Pakistan, Brazil, Uzbekistan, Australia, Turkey, Burkina 
Faso & Mali, which already cover 88% of the world’s cotton production. We compute CDs for each grid-
cell where cotton cultivation takes place. The final output is a geo-referenced CD table which indicates, 
for each relevant latitude-longitude combination, all exchange flows (e.g. input of natural resources; input 
of fertilizers, irrigation and machinery; and the output of emissions) associated with a particular CD. All 
exchange flows refer to the cultivation of one hectare of cotton in a cradle-to-gate perspective7.  

We can transform this geo-referenced CD table into a geo-referenced impact table for any LCIA 
indicator of interest. In this work-in-progress article, we assess environmental impacts for each CD in the 
inventory table only according to the midpoint indicator climate change (CC, IPCC2013 GWP100a). The 
result is a geo-referenced table that indicates GHG emissions on a per hectare basis for each ~10 x 10 km 
latitude-longitude combination, i.e., grid-cell.    

2.3  Aggregating to country average CDs 

To date, LCI database operate mainly with datasets on the global (site-generic) and/or the country 
level (site-dependent level). Therefore, the geo-referenced CD table in our resolution cannot be used 
directly in LCI databases but require an aggregation into representative averages. We aggregate the geo-
referenced CD table into a production-volume weighted country average by first multiplying all exchange 
flows associated with a particular CD with the relative contribution to the overall production volume of 
the country—the production volume produced by each grid-cell also comes with the spatial explicit data 
on cotton cultivation (Monfreda et al. 2008). The aggregation to a weighted average is performed by 
summing up all exchange flows. 
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3.  Results 

3.1  Geographically differentiated GHG emissions 

Figure 2 shows the spatially explicit environmental impacts per hectare cotton cultivated for CC for 
Turkey and for China.  

 
Figure 2: Heatmap of GHG emissions (in kg CO2 eq. per hectare) associated with cotton cultivation 

in Turkey (left corner) and China. The size of each grid-cell represents ~10 x 10 km.  

The spatial distribution of GHG emissions correlates largely with the application intensity of N-based 
mineral fertilizer. GHG emissions are dominated by the energy intensive production of N-based mineral 
fertilizer and resulting N2O emissions; both typically cause around 70% of the impacts.  

3.2  Country averages CDs 

Table 1 shows selected exchange flows of the production-volume weighted country average for Turkey. 
 

Exchange flow Unit Turkey 

Mean CoV 

Nitrogen fertilizer kg N/ha 140.74 0.45 

Potassium fertilizer kg P2O5/ha 46.31 0.74 
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Potash fertilizer  kg K2O/ha 24.30 0.74 

N2O emissions kg N2O/ha 3.03 0.39 

Phosphorus emissions kg P/ha 1.86 1.65 

Nitrate emissions kg NO3-N/ha 125.53 0.32 

Tab. 1. Production-volume weighted average of important exchange flows of the Turkish and the 
Chinese datasets and their variability measured as the coefficient of variation (CoV). 

The coefficient of variation (CV) indicates a high spatial sensitivity. This confirms that the spatially 
explicit computation of these flows is important to obtain geographically representative CDs. 

4. Discussion 

The goal of this work-in-progress article was to show how the integration of spatial data into LCA 
calculations can improve the coverage and geographical representativeness of cotton cultivation. The case 
study confirms that regionalized LCI modeling matters. Emissions of high environmental relevance such 
as N2O, nitrate and phosphorous also show great spatial variability. In this regard, our framework 
increases geographical representativeness of agricultural datasets by making feasible the consideration of 
spatial conditions which cannot be accounted for in site-dependent (country-generic) datasets. 
Furthermore, it can increase reproducibility by enforcing consistent use of assumptions and methods, a 
topic of particular importance with regard to emission modeling8. Finally, the framework can increase 
completeness because it allows for calculation and consideration of all relevant data points for a particular 
spatial scale of interest.   

In this regard, our research will probably deliver the most comprehensive dataset on cotton cultivation 
produced so far; a set of roughly one million data points (CDs) will be aggregated into 10 country-
weighted average cotton datasets representing 88% of the world’s cotton production. This will enhance 
the current situation significantly (two data points representing roughly 38% of the world’s cotton 
production) and provide much more reliable data basis to make informed decisions and to prioritize 
sustainability efforts in the apparel industry in the framework of the WALDB. 

Furthermore, the case study shows that the regionalization framework can be used as a tool to 
improve cultivation dataset coverage and representation in LCI databases. It also offers novel possibilities 
for the aggregation and analysis of agricultural process data. Our aggregation was focusing on the 
generation of country averages, but could have been performed according to other political boundaries, 
such as a particular state or city district, or according to relatively homogeneous regions. However, what 

                                                                
8 Due to inconsistent use of assumptions and methods, recent CDates in the ecoinvent database focused on the 

harmonization of the emissions modeling in agricultural datasets (Nemecek et al. 2014). 



6 
 
 

constitutes a homogeneous region, “is a matter for scientific inquiry“ (Mutel 2012) meaning that the ideal 
spatial scale of a CD is dependent on focused characteristics. For example, the spatial scale of a CD 
optimized for the reduction in the variability of nitrate emissions will be much smaller than the spatial 
scale of a CD optimized for the reduction of the variability in fertilizer application rate. Future research 
should therefore investigate multi-objective aggregation procedures that trade off exchange flow 
relevance (in terms of environmental impacts), variability, data quality and spatial proximity to build 
representative UDP from the body of data produced by our framework. This would increase the 
representativeness of agricultural datasets in LCI databases and improve the general utility of the 
framework for the domain of LCA. The performance of these approaches should be compared with the 
approach of spatial autocorrelation proposed by Mutel et al. (2012). 

The framework is built upon spatial raster data, a rather new source of raw data in the domain of LCI 
modeling. The use of spatial raster data generates dependencies but also new opportunities. For example, 
spatially explicit data of crop production and fertilizer input is, to our knowledge, only available from 
EarthStat (Mueller et al. 2012). This means that the results of our regionalization framework are currently 
bound to the year 2000 and therefore subject to future-dependent CDates. Recent initiatives for open 
spatial data (Earth Observation Center 2017; FAO 2017; P. Panagos, Borelli, and Meusburger 2015; 
Panos Panagos et al. 2014) might diminish such dependencies in the long term. On the other hand, many 
of the spatial raster files in our repository come with a spatial-explicit rating of data quality (Mueller et al. 
2012). This rating is not used in the current framework. Future work should therefore focus on the 
integration of such data quality ratings for the assessment of uncertainty.  
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