
Master Thesis
June 6, 2017

Cloud Benchmarking
Estimating Cloud Application Performance

Based on Micro Benchmark Profiling

Joel Scheuner
of Muensterlingen, Switzerland (10-741-494)

supervised by
Prof. Dr. Harald C. Gall

Dr. Philipp Leitner

software evolution & architecture lab





Master Thesis

Cloud Benchmarking
Estimating Cloud Application Performance

Based on Micro Benchmark Profiling

Joel Scheuner

software evolution & architecture lab



Master Thesis

Author: Joel Scheuner, joel.scheuner@uzh.ch

URL: https://github.com/joe4dev

Project period: 06.12.2016 - 06.06.2017

Software Evolution & Architecture Lab
Department of Informatics, University of Zurich

https://github.com/joe4dev


Acknowledgements

I would like to offer special thanks to Philipp Leitner for his guidance, valuable feedback, and
overall support during my master thesis as well as over the course of the past three years of joint
research. I’m very much looking forward to continuing this successful collaboration with my
prospective Ph.D. advisor in Gothenburg at Chalmers University. My sincere thanks go to Prof.
Harald Gall for supporting me as a member of the s.e.a.l. research group at University of Zurich
and providing a enriching environment for work and research.

I express my deepest gratitude to all the people who accompanied and supported me on the
way, filled with inspiring learning and joyful collaboration, towards this thesis and the completion
of my master studies. My personal thanks go to my parents for supporting me in uncountable
ways throughout my life. My dear friends, best teammates, and fellow students enriched the past
years of study and life in a manner to keep in best memories. Thank you very much Domi, Genc,
Seebi, Fabio, Moritz, Beni, Martina, Matthias, Greggy, Ale! Your ongoing motivation, inspiring
discussions, and refreshing breaks were invaluable. I say thank you to Seebi, Chrigi, and Yao
for their proofreading efforts. Moreover, thanks to all s.e.a.l.s for your inputs and collegially
integrating me into the group. Last but not least, thank you very much my dearest girlfriend Yao
for motivating and supporting me.





Abstract

The continuing growth of the cloud computing market has led to an unprecedented diversity of
cloud services. To support service selection, micro benchmarks are commonly used to identify the
best performing cloud service. However, it remains unclear how relevant these synthetic micro
benchmarks are for gaining insights into the performance of real-world applications.

Therefore, this thesis develops a cloud benchmarking methodology that uses micro bench-
marks to profile application performance and subsequently estimates how an application per-
forms on a wide range of cloud services. A study with a real cloud provider has been conducted
to quantitatively evaluate the estimation model with 38 selected metrics from 23 micro bench-
marks and 2 applications from different domains. The results reveal remarkably low variability
in cloud service performance and show that selected micro benchmarks can estimate the duration
of a scientific computing application with a relative error of less than 10% and the response time
of a Web serving application with a relative error between 10% and 20%. In conclusion, this the-
sis emphasizes the importance of cloud benchmarking by substantiating the suitability of micro
benchmarks for estimating application performance but also highlights that only selected micro
benchmarks are relevant to estimate the performance of a particular application.





Zusammenfassung

Das anhaltende Wachstum des Cloud Computing Marktes führte zu einer noch nie dagewesenen
Vielfalt an Cloud-Diensten. Bei der Entscheidungsunterstützung zur Wahl des leistungsstärksten
Cloud-Dienstes werden verbreitet Micro Benchmarks eingesetzt, wobei unklar bleibt wie rele-
vant diese künstlichen Micro Benchmarks sind, um Erkenntnisse über die Leistung von realen
Anwendungen zu gewinnen.

Daher wird in dieser Arbeit eine Methode zum Leistungsvergleich von Cloud-Diensten entwi-
ckelt, welche Micro Benchmarks verwendet um ein Leistungsprofil einer Anwendung zu erstellen
und damit die Leistung dieser Anwendung über eine grosse Auswahl an Cloud-Diensten abzu-
schätzen. Eine Studie mit einem realen Cloud-Anbieter wurde durchgeführt, um das Schätzungs-
modell mit 38 ausgewählten Metriken von 23 Micro Benchmarks und 2 Anwendungen aus unter-
schiedlichen Domänen quantitativ zu evaluieren. Die Resultate zeigen, dass sich die Leistung von
Cloud-Diensten bemerkenswert stabil verhält und dass ausgewählte Micro Benchmarks die Lauf-
zeit einer wissenschaftlichen Computing-Anwendung mit einem relativen Fehler von weniger als
10% und die Antwortzeit einer Webserver-Anwendung mit einem relativen Fehler zwischen 10%
und 20% abschätzen können. Zusammenfassend betont diese Arbeit die Wichtigkeit von Leis-
tungsvergleichstests in der Cloud durch das Nachweisen der Eignung von Micro Benchmarks
zum Abschätzen der Leistung einer Anwendung. Allerdings zeigt diese Arbeit auch auf, dass
nur ausgewählte Micro Benchmarks für die Leistungsschätzung einer bestimmten Anwendung
relevant sind.





Contents

1 Introduction 1
1.1 Goals and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 5
2.1 Cloud Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Service Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Cloud Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Virtual Machine Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.4 Virtualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Systems Performance Benchmarking . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Micro Benchmarking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.3 Web Application Benchmarking . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Cloud Benchmarking Automation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.1 Cloud WorkBench (CWB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Related Work 11
3.1 Cloud Performance Variability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Micro Benchmarking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Application Benchmarking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4 Cloud Instance Type Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.4.1 Application Performance Profiling . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4.2 Application Performance Prediction . . . . . . . . . . . . . . . . . . . . . . . 13

4 Methodology 15
4.1 Process Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Benchmark Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2.1 Cloud WorkBench . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2.2 Micro Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.3 Molecular Dynamics Simulation (MDSim) . . . . . . . . . . . . . . . . . . . 27
4.2.4 Wordpress Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3 Benchmark Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.4 Data Pre-Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.5 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.5.1 Construct Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.5.2 Internal Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39



viii Contents

4.5.3 External Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.5.4 Reproducibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5 Results 41
5.1 Benchmarking Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.1.1 Instance Type Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.1.2 Configurations and Sample Sizes . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.1.3 Missing Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2 RQ1 – Performance Variability within Instance Types . . . . . . . . . . . . . . . . . 45
5.2.1 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.2.4 Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.3 RQ2 – Application Performance Estimation across Instance Types . . . . . . . . . . 49
5.3.1 RQ2.1 – Estimation Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.3.2 RQ2.2 – Micro Benchmark Selection . . . . . . . . . . . . . . . . . . . . . . . 56

6 Final Remarks 61
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

A Abbreviations 65



Contents ix

List of Figures
2.1 Cloud Computing Service Models (Adjusted from [Dav16]) . . . . . . . . . . . . . 6

4.1 Process Overview Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2 Architecture Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3 iperf Benchmark Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.4 WPBench Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.5 WPBench Load Pattern Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.6 CWB Benchmark Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.7 RMIT Combined Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.8 Top-Level Process for Data Pre-Processing . . . . . . . . . . . . . . . . . . . . . . . . 36
4.9 Filtering Sub-Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.10 Cleaning Sub-Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.11 Pivoting Sub-Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.12 Pivot Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.1 Variability per Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2 Linear Regression Model for WPBench Read – Response Time . . . . . . . . . . . . 52
5.3 Linear Regression Model for WPBench Read – Throughput . . . . . . . . . . . . . . 53
5.4 Linear Regression Model for WPBench Write – Response Time . . . . . . . . . . . . 55

List of Tables
4.1 Instance Metadata Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Micro Benchmark Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3 FIO Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.4 iperf Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.5 StressNg Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.6 Sysbench – CPU Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.7 Sysbench – File I/O Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.8 Sysbench – Memory Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.9 Sysbench – Mutex Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.10 Sysbench – Threads Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.11 MDSim Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.12 Wordpress Installation – Software Packages . . . . . . . . . . . . . . . . . . . . . . . 30
4.13 WPBench Test Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.14 WPBench Load Pattern Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.15 Monitored System-Level Resource Metrics . . . . . . . . . . . . . . . . . . . . . . . 32

5.1 EC2 Instance Type Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2 Specification and Sample Sizes per Configuration . . . . . . . . . . . . . . . . . . . 43
5.3 Missing Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.4 Redundant Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.5 Relative Estimation Errors [%] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.6 WPBench Response Time and MDSim Duration Estimators [%] . . . . . . . . . . . 58
5.7 WPBench Throughput Estimators [%] . . . . . . . . . . . . . . . . . . . . . . . . . . 58



x Contents

List of Listings
4.1 FIO 4k Sequential Write Shell Command . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 FIO 8k Random Read Shell Command . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3 iperf Shell Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.4 StressNg – CPU Shell Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.5 StressNg – Network Shell Command . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.6 Sysbench – CPU Shell Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.7 Sysbench – File I/O Sequential Write Shell Command . . . . . . . . . . . . . . . . . 26
4.8 Sysbench – File I/O Random Write/Read Shell Command . . . . . . . . . . . . . . 26
4.9 Sysbench – Memory Shell Command . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.10 Sysbench – Mutex Shell Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.11 Sysbench – Threads Shell Command . . . . . . . . . . . . . . . . . . . . . . . . . . . 27



Chapter 1

Introduction

Cloud computing [AFG+09,BYV+09,MG11] fundamentally changes the way how computing ser-
vices are provisioned. It offers computing resources (e.g., Virtual Machines (VMs)1 on Amazon’s
Elastic Compute Cloud), programming environments (e.g., Ruby on Heroku2), or entire applica-
tions (e.g., business apps on Google Suite3) as on-demand utilities on a pay-per-use basis. The rev-
olutionary effect of the disruptive cloud computing paradigm is repeatedly mentioned in recent
literature [You17,BdDPP16,EGHO16] and reputable technology analyst reports [PG17,BNC+16].
Beyond becoming "one of the hottest topics in the field of information systems" [WLJ+16] for
academics, cloud computing surpasses predicted growth rates [BNC+16] reaching a total mar-
ket of over $200 billion in 2016 [PG17]. Some analysts even forecast that cloud computing could
reach the same ubiquity as internet connectivity at the end of this decade [FvdM16] with large
companies shifting their strategies from cloud-first [Nad14] to cloud-only [FvdM16].

In today’s fastest growing service model called Infrastructure-as-a-Service (IaaS) [PG17,
BNC+16], computing resources, such as CPU processing time, disk space, or networking capabil-
ities, can be acquired and released as self-service via an Application Programming Interface (API)
prevalently in the form of VMs. Such VMs are typically available in different configurations or
sizes also known as instance types, machine types, or flavors. This diversity ranges from tiny-
sized VMs with less than 1 (shared) CPU core and 1GB RAM (e.g., f1-micro4) to super-sized VMs
with 128 CPU cores and 1952 GiB RAM (e.g., x1.32xlarge5). The $25 billion IaaS market (as of
2016) [PG17] is further extending its offers headed by the three leading IaaS providers [Dor16]
Amazon Web Services (AWS) Elastic Compute Cloud (EC2)1, Microsoft Azure Virtual Machines6,
and Google Cloud Platform Compute Engine7.

Given the large service diversity, selecting an appropriate VM configuration for an applica-
tion is a non-trivial challenge. While functional properties can be compared by studying provider
information or using tools such as Cloudorado8, non-functional properties, such as performance,
need to be measured tediously. The field of research called cloud benchmarking is devoted to ob-
jectively measure and compare the differences in performance between the various cloud services.
A large body of literature [LC16, IOY+11, OIY+10, SDQR10, FJV+12, OZL+13, Wal08] reports per-
formance measurements for different workloads at the very resource-specific (e.g., CPU integer
operations) and artificial micro-level or at the domain-specific (e.g., Web serving) and real-world
application-level.

1https://aws.amazon.com/ec2/
2https://devcenter.heroku.com/categories/ruby
3https://gsuite.google.com/
4https://cloud.google.com/compute/docs/machine-types
5https://aws.amazon.com/ec2/instance-types/x1/
6https://azure.microsoft.com/en-us/services/virtual-machines/
7https://cloud.google.com/compute/
8https://www.cloudorado.com/cloud_providers_comparison.jsp

https://aws.amazon.com/ec2/
https://devcenter.heroku.com/categories/ruby
https://gsuite.google.com/
https://cloud.google.com/compute/docs/machine-types
https://aws.amazon.com/ec2/instance-types/x1/
https://azure.microsoft.com/en-us/services/virtual-machines/
https://cloud.google.com/compute/
https://www.cloudorado.com/cloud_providers_comparison.jsp


2 Chapter 1. Introduction

Existing literature largely focuses on either application benchmarks or micro benchmarks in
isolation. Researchers propose new cloud-specific application benchmarks [FAK+12, PSF16] and
evaluate their performance [IYE11,DPC10,BLL+14] in cloud environments. However, application
benchmarks tend to require an elaborate setup, run over a long time, and deliver polysemous re-
sults with multiple metrics. The high benchmarking effort lets researchers resort to micro bench-
marks, which are typically easy to install, quick to run, and clear to interpret as single metrics.
Extensive studies have been conducted to collect performance measurements for many different
VM configurations [LC16,VAM+16, IOY+11,OIY+10]. However, it remains unclear how relevant
these artificial benchmarks are to gain insights about the performance of real-world applications.

1.1 Goals and Contributions
The goal of this thesis is to investigate the suitability of micro benchmarks for estimating cloud
application performance across different instance types. Consequently, the following Research
Questions (RQs) are addressed:

RQ1 – Performance Variability within Instance Types

Does the performance of equally configured cloud instances vary relevantly?

This intra-instance type performance variability is relevant for the estimation of application
performance. While high variability could favor (if correlated) or hamper (if random) meaningful
estimates, low variability could facilitate inter-instance type estimation. A correlated high vari-
ability (i.e., different workloads are all either slow or fast) indicates the existence of slower and
faster instances. Estimating this fitness value (i.e., good or bad instance) could be exploited by
placement gaming strategies as proposed in [OZN+12, OZL+13, FJV+12]. Conversely, a random
high variability makes it very hard to find any significant patterns. Finally, low variability reduces
the sample size required to make more accurate and confident estimates.

Knowing the nature of performance variability motivates the subsequent research question:

RQ2 – Application Performance Estimation across Instance Types

Can a set of micro benchmarks estimate application performance for cloud instances of
different configurations?

RQ2 aims towards verifying whether it is possible to build a meaningful model that estimates
application performance for cloud instances of different configurations (i.e., different instance types)
using micro benchmark profiling. This research question is divided into the following two sub-
questions:

RQ2.1 – Estimation Accuracy

How accurate can a set of micro benchmarks estimate application performance?

This sub-question addresses the estimation accuracy of application performance for pre-
viously unseen cloud instance configurations based on the trained model using a set of micro
benchmarks. The performance of such previously unseen cloud instance types could deviate
by factors higher than 2 and therefore rough applications performance estimates exhibiting



1.2 Thesis Outline 3

relative errors of 10-20% can still be beneficial compared to having no guidance during in-
stance type selection. This is particularly true when facing a large choice of potential instance
types.

To optimize the estimation model for practical applicability, the profiling effort should be
restricted to a minimal set of relevant micro benchmarks. This feature selection process is
tackled by the subsequent sub-question:

RQ2.2 – Micro Benchmark Selection

Which subset of micro benchmarks estimates application performance most accu-
rately?

This sub-question also investigates whether some micro benchmarks can be used inter-
changeably with marginal loss of estimation accuracy. Such substitution flexibility could fur-
ther reduce the profiling effort by minimizing the execution time and the number of micro
benchmarking tools to install.

In order to answer these questions, a cloud benchmarking study has been designed, imple-
mented, and conducted in a real cloud computing environment. Hereby, a Web serving appli-
cation benchmark has been crafted from ground up and fully automated using Cloud Work-
Bench [SLCG14, SCLG15] together with existing micro benchmarks.

This thesis makes the following five contributions:
1. It extends Cloud WorkBench (CWB) [SLCG14, SCLG15] with a modular benchmark plugin

system.

2. It presents a newly crafted Web serving application benchmark with three different load
scenarios.

3. It provides an automated CWB benchmark that combines single-instance and multi-instance
micro and application benchmarks.

4. It reports a raw and cleaned data set with cloud benchmarking results from Amazon EC2.

5. It evaluates an estimation model for application performance based on micro benchmark
profiling.

1.2 Thesis Outline
The remainder of this thesis is structured as follows: Chapter 2 introduces cloud computing, nec-
essary fundamentals of systems performance benchmarking for the understanding of this thesis,
and tools to automate cloud benchmarking. Chapter 3 presents related work in the areas of cloud
performance variability, micro benchmarking, application benchmarking, and cloud instance type
selection. Chapter 4 presents the methodology developed in this thesis to combine micro and
application benchmarks, expounds the configuration of micro benchmarks, details about the de-
sign of the Web serving benchmark, describes the data pre-processing pipeline, and discusses the
threats to validity of the presented methodology. Chapter 5 introduces the benchmarking data
set and presents, discusses, and summarizes the results guided by the previously introduced re-
search questions. Finally, Chapter 6 summarizes the contributions, concludes this thesis, and
outlines future work.





Chapter 2

Background

This chapter introduces the necessary background for the understanding of this thesis in the areas
of cloud computing, systems performance benchmarking, and cloud benchmarking automation.

2.1 Cloud Computing
Cloud computing [VRMCL08, Hil09, AI10, BBG11] is most commonly defined as:

a model for enabling ubiquitous, convenient, on-demand network access to a shared
pool of configurable computing resources (e.g., networks, servers, storage, applica-
tions, and services) that can be rapidly provisioned and released with minimal man-
agement effort or service provider interaction.

—The National Institute of Standards and Technology (NIST) Definition [MG11]

The most important literature in the field [AFG+09,BYV+09,MG11] recognizes that the concept of
cloud computing is not completely new and emerged from similar distributed systems paradigms
such as utility computing, grid computing [FE04, FZRL08], and cluster computing. The essential
characteristics of cloud computing [MG11] have been strongly influenced by the business model
of utility computing, where computing resources are offered as a service and charged based on
the actual usage, also known as pay-per-use or pay-as-you-go. This model has been envisioned al-
ready in the 1960s [Mag09] and is commonly referred to as delivering computing resources in
a similar manner than traditional metered utilities such as electricity or water. Technologically,
cloud computing is inspired by the grid computing paradigm, which realizes the idea of connect-
ing commodity hardware to provide computing power at large scale as an alternative to super-
computers since the mid 90s [FZRL08]. However, grid computing became never commoditized
outside the high-performance computing community. Furthermore, the emergence of the cloud
computing terminology in 20071 led to clearer differentiation [FZRL08, AFG+09, BYV+09, MG11]
such that AWS is no more called grid computing [Gar07]. In contrast to more heterogeneous
and widely distributed grids, cloud computing constitutes the emergence of super large scale
data centers (>50000 servers) connected through fast Local Area Networks (LANs) [AFG+09].
This resembles the principle of cluster computing, where a typically heterogeneous set of inter-
connected servers (i.e., nodes) is treated as a single integrated computing resource [BYV+09]. The
novelty of cloud computing is the combination, refinement, and extension of ideas from existing
paradigms to offer illusionary unlimited computing resources [AFG+09] from the pool of mas-
sive multi-tenant data centers [AFG+09, ZCB10] as fully automated [MG11, ZL11] and almost
instantly available [AFG+09] self-service [MG11] that is charged per usage and made available
over the internet [ZCB10].

1https://trends.google.com/trends/explore?date=all&q=cloud%20computing,grid%
20computing

https://trends.google.com/trends/explore?date=all&q=cloud%20computing,grid%20computing
https://trends.google.com/trends/explore?date=all&q=cloud%20computing,grid%20computing


6 Chapter 2. Background

2.1.1 Service Models

Figure 2.1 illustrates the 3 service models of cloud computing [MG11] offering resources at differ-
ent levels of abstraction.

1. IaaS offers low-level compute (e.g., EC22), storage (e.g., Elastic Block Storage (EBS)3), and
network resources (e.g., Virtual Private Cloud (VPC)4). These resources are most com-
monly provided in the form of VMs where users nearly fully control the entire software
stack [KSHD13].

2. Platform-as-a-Service (PaaS) offers a provider-managed environment for building and de-
ploying applications in the cloud (e.g., Heroku5) [HK10] where users control their applica-
tions and data but have no immediate access to the underlying environment software and
hardware infrastructure [MG11].

3. Software-as-a-Service (SaaS) offers fully functional applications (e.g., Google Suite6) where
users have no more profound control than what is exposed in the built-in application set-
tings [MG11].

IaaS PaaS SaaS
Applications

Data

Runtime

Middleware

OS

Virtualization

Servers

Storage

Networking

Applications

Data

Runtime

Middleware

OS

Virtualization

Servers

Storage

Networking

Applications

Data

Runtime

Middleware

OS

Virtualization

Servers

Storage

Networking

User-Managed Provider-Managed

Figure 2.1: Abstractions in Cloud Computing Service Models (Adapted7 from [Dav16])

2https://aws.amazon.com/ec2/
3https://aws.amazon.com/ebs/
4https://aws.amazon.com/vpc/
5https://www.heroku.com/
6https://gsuite.google.com/

https://aws.amazon.com/ec2/
https://aws.amazon.com/ebs/
https://aws.amazon.com/vpc/
https://www.heroku.com/
https://gsuite.google.com/


2.1 Cloud Computing 7

2.1.2 Cloud Infrastructure
Cloud providers typically organize their global infrastructures into geographically distributed re-
gions with discrete data centers. The geographical regions are vaguely described with names of
geographical regions (e.g., West US8), countries (e.g., Ireland9), or states (e.g., Iowa10) and some-
times identified by an API names such as eu-west-1 (Ireland) or us-central1 (Iowa). Regions are
strategically chosen to be in close proximity to customers and the exact data center placement
is often driven by environmental factors such as low energy cost [AFG+09] because power con-
sumption is a dominating cost factor in cloud data centers [Ham09]. Large providers such as AWS
or Google Cloud Platform operate discrete data centers within the same region to achieve high
availability through redundant infrastructure with support for fail-over. This concept is typically
known as Availability Zone (AZ) and denoted by alphabetical suffixes in region identifiers (e.g.,
eu-west-1a or us-central1-a).

2.1.3 Virtual Machine Resources
Virtual machines are offered with varying computing capabilities regarding different resources.
Cloud providers usually specify a set of preconfigured instance types11, also known as machine
types12, flavors, or VM sizes13. These instance types differ in their resource characteristics such as
the number of virtual Central Processing Units (CPUs) (vCPUs), the amount of Random-Access
Memory (RAM), the level of network performance (e.g., low, medium, high), and the type of
Input/Output (I/O) (e.g., Hard Disk Drive (HDD), Solid State Disk (SSD)). The concrete instanti-
ation of a particular instance type is called instance and obtained whenever the cloud user acquires
a new VM. Notice that instances typically do not have their own local instance storage but are
connected to a dedicated storage service such as EBS.

Instance types are categorized into families of specialized resources for different use cases.
General purpose instance types are designed for a wide range of used cases with a well-balanced
resource profile. Optimized instance types are specifically equipped for compute-heavy (i.e.,
faster and more virtual CPUs), memory-heavy (more RAM), or storage-heavy workloads (fast
instance storage). Special instance types are designated for specialized applications areas such as
graphics-intensive applications (high-performance Graphical Processing Unit (GPU) cluster) or
fields such as genome research, where customizable hardware acceleration14 is beneficial. Cus-
tom instance types offer configurable resources within certain resource-specific limits (e.g., 1-64
vCPUs15). The concept of bursting instance types is orthogonal to the previously introduced
families of instance types and describes instance types that are designed to operate at baseline
performance and handle period short-term burst of high load at an increased peak performance
level [LS15].

2.1.4 Virtualization
Cloud computing leverages virtualization technology to implement resource sharing and on-
demand provisioning. In virtualization, a Virtual Machine Monitor (VMM), also known as hy-
pervisor, creates an abstraction layer that exposes virtualized computing resources to the user in

8https://azure.microsoft.com/en-us/regions/
9https://aws.amazon.com/about-aws/global-infrastructure/

10https://cloud.google.com/about/locations/
11http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html
12https://cloud.google.com/compute/docs/machine-types
13https://docs.microsoft.com/en-us/azure/cloud-services/cloud-services-sizes-specs
14https://aws.amazon.com/ec2/instance-types/f1/
15https://cloud.google.com/custom-machine-types/

https://azure.microsoft.com/en-us/regions/
https://aws.amazon.com/about-aws/global-infrastructure/
https://cloud.google.com/about/locations/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html
https://cloud.google.com/compute/docs/machine-types
https://docs.microsoft.com/en-us/azure/cloud-services/cloud-services-sizes-specs
https://aws.amazon.com/ec2/instance-types/f1/
https://cloud.google.com/custom-machine-types/


8 Chapter 2. Background

the form of an isolated VM [Por16]. Popek and Goldberg [PG74] formalize the following three
defining characteristics for a correct VMM: fidelity, safety, and performance. Fidelity requires
the VM environment to behave essentially identical to physical hardware. Safety ensures that
the VMM fully manages all hardware resources and VMs remain isolated. Performance demands
for minimal virtualization overhead. Further, a single physical machine (i.e., host) can accommo-
date multiple VMs, which allows for resource sharing while maintaining isolation because of the
safety characteristic. Additionally, the VMM provides a management interface to automatically
create VMs, which is a key feature to deliver on-demand VM provisioning in the cloud.

The most common virtualization techniques in the cloud are Para-Virtualization (PV) and
Hardware-assisted Virtual Machine (HVM). PV instances require VMM-aware guest operating
system extensions, which are typically provided in the form of officially maintained cloud im-
ages16 to initialize a VM. These guest extensions allow to very efficiently share hardware re-
sources between different VMs [BDF+03] and replace privileged instructions with hypercalls to
the VMM. HVM instances require hardware virtualization extension from the host CPU (i.e., Intel
VT or AMD-V) to improve hardware emulation performance. Therefore, customized guest op-
erating systems are optional for fully virtualized guests17. However, custom PV extensions can
still be used to improve performance of slowly emulated operations such as I/O. Two prominent
open source VMMs that support these techniques are Xen [BDF+03] and Kernel-based Virtual
Machine (KVM) [KKL+07], which is part of the Linux kernel since 200718.

2.2 Systems Performance Benchmarking
Systems performance benchmarking is the process of systematically evaluating the speed of com-
puting resources, such as CPU or RAM, at the operating systems level.

2.2.1 Terminology
This section defines fundamental performance testing terminology.

System Under Test (SUT). The System Under Test (SUT) refers to the component or environ-
ment that is evaluated according to clearly defined metrics such as response time. In the context of
IaaS cloud service performance evaluation, the VM obtained from the cloud provider constitutes
the SUT.

Workload. Test workloads refer to the stimulation that is applied to the SUT. Real workloads
are traced from actual load in production systems whereas synthetic workloads are artificially
constructed. In the context of cloud computing, scale-out workloads [FAK+12] are inherently de-
signed for cloud environments and their applications include mechanisms to dynamically acquire
and release cloud resources during workload execution.

2.2.2 Micro Benchmarking
Micro benchmarking refers to the process of stimulating the SUT with simple artificial workloads
(i.e., micro benchmark) and measuring the performance of these operations. Micro benchmarks

16https://cloud-images.ubuntu.com/
17https://wiki.xenproject.org/wiki/Xen_Project_Software_Overview#Guest_Types
18https://kernelnewbies.org/Linux_2_6_20#head-bca4fe7ffe454321118a470387c2be543ee51754

https://cloud-images.ubuntu.com/
https://wiki.xenproject.org/wiki/Xen_Project_Software_Overview#Guest_Types
https://kernelnewbies.org/Linux_2_6_20#head-bca4fe7ffe454321118a470387c2be543ee51754


2.3 Cloud Benchmarking Automation 9

often test a very specific resource, such as CPU integer operations, and are used to identify bot-
tlenecks. In contrast to application benchmarking, micro benchmarking is less sophisticated to
conduct and interpret [Gre13]. Li et al. [LOZC12] compiled an extensive catalogue of metrics and
links them predominantly to micro benchmarks, which can be used to obtain measurements for
these metrics. Scheuner [Sch14] linked micro benchmarks in different resource categories to their
usage in cloud performance evaluation studies.

2.2.3 Web Application Benchmarking
Web application benchmarks use an external load generator to run a workload against the Web
application under test. The workload is specified in a test plan and executed by load testing
tools, such as Apache JMeter19. Hereby, the load testing tool issues HTTP requests to the Web
application and measures the response time of each individual request. Further metrics such as
throughput (i.e., number of requests per second) or failure rate are calculated to assess the Web
application performance.

2.3 Cloud Benchmarking Automation
Benchmarking cloud environments is an elaborate and error-prone task and requires automa-
tion to minimize manual labor and prevent human error. Therefore, research and industry
have proposed several tools to automate the process of repeatedly executing benchmarks in
the cloud. The two most comprehensive and actively maintained tools backed by industry are
CloudBench [SHG+13] and Google’s Perfkit Benchmarker20. Both command line tools are in-
herently designed to support scale-out workloads, include a comprehensive set of benchmarks,
and support several cloud providers. CloudBench has been integrated into the standardized
benchmark SPEC Cloud IaaS 201621 and the Perfkit Benchmarker is used in production to de-
tect performance regressions22. Research has proposed approaches that are based on templated
code generation [JSM+12,JKC+13], declarative Domain Specific Languages (DSLs) [CMS13], and
Infrastructure as Code (IaC) benchmark provisioning [SLCG14, SCLG15]. The following section
introduces the IaC-based CWB tool, which automates the benchmarks in this thesis.

2.3.1 Cloud WorkBench (CWB)
Cloud WorkBench (CWB) [SLCG14, SCLG15] is a Web-based cloud benchmark manager, which
schedules and executes benchmarks without manual interaction. It fosters the definition of con-
figurable and reusable CWB benchmarks that are entirely defined by means of code by leveraging
IaC. Therefore, CWB benchmarks are portable across cloud providers and their regions with min-
imal effort.

19http://jmeter.apache.org/
20https://github.com/GoogleCloudPlatform/PerfKitBenchmarker
21https://spec.org/cloud_iaas2016/
22https://drive.google.com/file/d/0B66A4foojMJtRzRoYjZDRXNDQnc/view

http://jmeter.apache.org/
https://github.com/GoogleCloudPlatform/PerfKitBenchmarker
https://spec.org/cloud_iaas2016/
https://drive.google.com/file/d/0B66A4foojMJtRzRoYjZDRXNDQnc/view




Chapter 3

Related Work

This chapter presents related work in the areas of cloud performance variability, micro bench-
marking, application benchmarking, and cloud instance type selection.

3.1 Cloud Performance Variability
Studies have extensively analyzed the stability of performance delivered by cloud providers.
Thereby, hardware heterogeneity has received most attention and has been attributed to cause
substantial variability within instance types. Although this field has become less active since
reaching its peak between 2010 and 2013, continuous re-evaluation keeps cloud performance
variability an ongoing topic in cloud computing research. Further, unpredictable performance
is often a threat to internal validity for experiments conducted in cloud environments and there-
fore important to quantify.

One of the first large-scale studies to address variability in a cloud environment was con-
ducted by Schad et al. [SDQR10]. They primarily use micro benchmarks to analyze variability
over time within an instance, between instances of the same type, between data centers within
the same region, and between data centers in different regions. They collected hourly measure-
ments for over one month and revealed large variability around 20% for CPU, I/O, and network
performance. The case study with a MapReduce workload validated the significant variability
observed in a cloud environment compared to a local cluster. Other studies also observed high
variability for instances of the same type [DPC10,LYKZ10] and identified hardware heterogeneity
(i.e., instances of the same type obtain different hardware; most importantly different CPU mod-
els) as major cause for CPU performance variability [CGPS12] beyond CPU sharing and noise
due to multi-tenancy [BS10, WN10]. Hardware heterogeneity was exploited in so called place-
ment gaming approaches where bad performing instances are discarded and well performing in-
stances are kept to improve overall performance by 5% to 30% [FJV+12] and reduce costs by up to
30% [OZL+13, OZN+12]. Further studies over time [Kot14, LC16] have shown that performance
variability remained relevant, in particular for smaller instance types. The first long-term study
over the course of one year [IYE11] discovered yearly and daily patters for some cloud services
but also showed that most services perform particularly stable over certain periods.

3.2 Micro Benchmarking
A large body of work aims at measuring cloud service performance for individual resources such
as CPU, I/O, memory, and network. One of the earliest studies in this field focused on bench-
marking Amazon EC2 for high performance scientific computing [Wal08]. Subsequent work ex-



12 Chapter 3. Related Work

tends the scope by including more cloud services and led to some of the most important contribu-
tions in this field [OIY+10, IOY+11]. Assessing and comparing the performance of cloud services
has also become a business and companies such as CloudHarmony1 or Cloud Spectator2 offer
comparison services and publish their own price-performance analysis reports [Spe17]. Some
latest work [VSTB16] investigates how to leverage container technology to obtain results in near
real-time compared to much slower traditional VM-based approaches.

3.3 Application Benchmarking
Seeking for representative workloads for benchmarking cloud services has been an active field
of research since the emergence of cloud computing. One of the earliest efforts geared towards
more modern workloads for the cloud comprises the Cloudstone benchmark [SSS+08], which
proposes a new interaction-heavy Web 2.0 workload. Several conceptual contributions [BKKL09,
FAS+13] suggest ideas and guidelines on how to design and implement application benchmarks
for cloud environments. The most important contribution in this field introduces an entire col-
lection of scale-out workloads called CloudSuite [FAK+12]. For cloud databases, the extensible
Yahoo! Cloud Serving Benchmark (YCSB)3 maintains a large collection of scale-out workloads
for database systems such as HBase4, MongoDB5, or Google Bigtable [CDG+08]. Further, the
widely recognized SPEC consortium6 published the benchmark suite called SPEC CloudTM IaaS
2016 [Con16], which is specifically aimed to measure IaaS cloud performance.

The two largest challenges in this field are supposedly finding representative workloads for
real-world use cases and ensuring reproducibility of benchmark execution. Seeking for represen-
tative workloads is a field that requires ongoing research attention because of continuous changes
in technology and user behavior. Personal experience has shown that lots of application bench-
marking research is almost impossible to reproduce due lack of documentation, discontinued
software7, closed source implementation [DPC10], or unavailable resources [SSS+08, ACC+02].
Nowadays, technologies are available to define reproducible application benchmarks and have
been adopted for example in the latest version of CloudSuite8 (3.0 as of May, 2017), which pro-
vides improved benchmarks and adopts Docker9 container technology to facilitate deployment
and increase transparency [PSF16].

3.4 Cloud Instance Type Selection
This section presents related work with the goal to guide cloud instance type selection by profiling
and predicting application performance.

3.4.1 Application Performance Profiling
Application profiling research aims to capture the performance behavior of applications on dif-
ferent platforms and is most closely related to the work in this thesis.

1https://cloudharmony.com/
2http://cloudspectator.com/
3https://github.com/brianfrankcooper/YCSB
4http://hbase.apache.org/
5https://www.mongodb.com/
6https://www.spec.org/consortium/
7http://incubator.apache.org/projects/olio.html
8http://cloudsuite.ch/
9https://www.docker.com/

https://cloudharmony.com/
http://cloudspectator.com/
https://github.com/brianfrankcooper/YCSB
http://hbase.apache.org/
https://www.mongodb.com/
https://www.spec.org/consortium/
http://incubator.apache.org/projects/olio.html
http://cloudsuite.ch/
https://www.docker.com/


3.4 Cloud Instance Type Selection 13

Evangelinou et al. [ECA+16] use system-level resource monitoring tools (e.g., Pidstat10) to ob-
tain a performance footprint consisting of 23 features from Java applications, cloud databases, and
file I/O-intense applications. These generic application benchmarks are then used to evaluate the
approach with an HTTP application whose performance footprint is mapped to predefined appli-
cation categories. This result is combined with the Palladio design model [BKR09] and a Layered
Queuing Network (LQN) performance model [RS95] to find optimal deployment options regard-
ing combined service efficiency, which is a metric taking into account workload, cost, and per-
formance. The work of this thesis differs by using more lightweight micro benchmarks instead
of generic application benchmarks for application profiling and by providing direct performance
estimates for each instance type instead of solely identifying the optimal instance type.

Canuto et al. [CBMG16] combine system-level resource monitoring with training micro bench-
marks to predict power consumption in heterogeneous data centers. Their approach captures
non-linear relations by applying polynomial or logarithmic transformations where necessary. The
work of this thesis follows a similar workflow but uses micro benchmarks to estimate application
performance instead of monitoring data to predict power consumption.

Hoste et al. [HPE+06] analyze program similarity at a compiler-level to rank the performance
of different platforms. Application profiles are built from 47 microarchitecture-independent char-
acteristics (e.g., instruction mix including the percentage of integer operations). These profiles
are then related to standardized micro benchmarks (i.e., the SPEC CPU2000 benchmarks11) with
similar characteristics. The three approaches normalization, principal component analysis, and
genetic algorithms are applied to predict platform rankings and evaluated using the Spearman
rank correlation coefficient. Their results reveal that small differences in the rank coefficient can
translate to large differences in relative performance. This motivates the need for enhanced in-
sights during instance type selection beyond single instance type recommendations or ordinal
scale rankings (e.g., cost and performance rankings for scientific applications [VAM+16]). Similar
to the work in this thesis, Hoste et al. [HPE+06] relate an application profile to the performance
levels of micro benchmarks. However, their work compares many different real hardware sys-
tems outside the context of cloud computing.

3.4.2 Application Performance Prediction
Predicting application performance in cloud and non-cloud environments is a broad field of re-
search and closely related to the estimation model in this thesis.

Li et al. [LZZ+11, LZK+11] propose the CloudProphet tool, which collects resource traces of
on-premise Web applications and replays them in cloud environments to accurately predict appli-
cation performance for cloud instance types. During resource tracing, low-level system events for
CPU, storage (disk and database), network, and locks are captured. Their proposed dependency
extraction algorithm identifies causalities of event chains (e.g., an incoming HTTP request trig-
gers a block of I/O events). These dependency-annotated traces are replayed in the cloud against
a migrated production database to obtain response time predictions with low error rates below
10% in most cases. They further demonstrate that dependency extraction is crucial for accurate
predictions and that tracing overhead has low impact on application performance [LZZ+11]. In
comparison, CloudProphet focuses on accurate predictions for few instance types whereas this
thesis provides rough estimates for many different instance types. Hence, these approaches are
complementary and could be combined to achieve broad instance type coverage and leverage
CloudProphet to reduce the sampling effort, which is required to train the model in this thesis.

Alipourfard et al. [ALC+17] introduce the CherryPick system, which guides cloud configura-
tion choices and iteratively refines runtime and cost predictions for distributed big data analytic

10https://linux.die.net/man/1/pidstat
11https://www.spec.org/cpu2000/

https://linux.die.net/man/1/pidstat
https://www.spec.org/cpu2000/


14 Chapter 3. Related Work

jobs using a Bayesian Optimization [BCDF10] model. Beyond instance type-dependent variables,
this work also includes the number of VMs for the multi-machine workloads in the optimization
model. The work in this thesis needs less initial training samples and covers other application
domains with scientific computing and Web serving compared to data analytics.

Stewart and Shen [SS05] contribute a comprehensive performance model that claims to accu-
rately predict the throughput and response time of multi-component online services by combin-
ing queuing models with system-level resource monitoring. They model per-component resource
consumption and inter-component communication patterns as functions of input workload prop-
erties. The results reveal that remote method invocation overhead is a critical factor to achieve
low error rates below 14%. In contrast to the work in this thesis, their applications are distributed
across multiple instances. However, their evaluation is conducted in a local 20-node cluster with
three different server types and does not consider a broad range of cloud instance types.



Chapter 4

Methodology

This chapter describes the methodology used to conduct the cloud benchmarking study. At the
beginning, the process overview is outlined and in the following, each step of the process is de-
scribed in detail. Finally, the threats to validity of the presented methodology are discussed.

4.1 Process Overview

Flowchart 4.1 summarizes the four-step benchmarking process including the input and output
for each individual step. Firstly, in the benchmark design (4.2) step, benchmarks were selected,
designed, and integrated into CWB. Hereby, CWB provides guidelines how to structure CWB-
integrated benchmarks1 and cloud benchmarking literature gives general guidelines on bench-
mark design and execution plans. The outcome comprises a set of CWB benchmarks that is au-
tomatically executable via a CWB server. Secondly, in the benchmark execution (4.3) step, these
CWB benchmarks are repeatedly executed in a cloud environment via a CWB schedule. Thereby,
the CWB server automatically collects performance measurements of the benchmark executions.
Thirdly, in the data pre-processing (4.4) step, these measurements are imported, cleaned, and pre-
pared for the main data analysis. Finally, the main data analyses are guided by the RQs introduced
in Section 1.1 and lead to the results presented in Chapter 5.

Figure 4.2 illustrates the high-level architecture of this cloud benchmarking methodology. As
a Benchmark Manager, the CWB Server coordinates the entire lifecyle of all CWB benchmark execu-
tions. Its Scheduler component triggers new executions and its Cloud Manager component abstracts
the cloud Provider APIs, Cloud VM provisioning, and communication with the Cloud VM. Via
the Provider API, Cloud VMs, which represent the SUT, are acquired. Within the cloud VM, the
Chef Client controls the VM provisioning and the CWB Client steers the execution of the entire
benchmark collection. The Chef Client fetches the provisioning configuration for the Cloud VM
from the Provisioning Service and applies it to install and configure all Micro and Application (App)
benchmarks. The CWB Client directs the execution order and handles communication with the
CWB Server such as submitting result metrics to the Representational State Transfer (REST) API.
Multi-VM benchmarks, such as iperf and WordpressBench (WPBench), submit their CWB tasks
to the Load Generator, which generates the specified task workload from another dedicated cloud
VM.

1https://github.com/sealuzh/cwb-benchmarks#write-your-first-benchmark-getting-started

https://github.com/sealuzh/cwb-benchmarks#write-your-first-benchmark-getting-started


16 Chapter 4. Methodology

CWB and Cloud Benchmarking Guidelines

4.2 Benchmark Design

Set of CWB benchmarks

4.3 Benchmark Execution

CWB Collected Performance Measurements

4.4 Data Pre-Processing

Interim Data Set

5.2.1 and 5.3.1 Data Analyses

Results as Presented in Chapter 5

Figure 4.1: Process Overview Flowchart



4.1 Process Overview 17

Figure 4.2: Architecture Overview



18 Chapter 4. Methodology

4.2 Benchmark Design
This section covers the extensions made to CWB, the integration of several micro benchmarks into
CWB, and dedicates the last two subsections to the application benchmarks Molecular Dynamics
Simulation (MDSim) and WPBench.

4.2.1 Cloud WorkBench
CWB was extended to modularly define benchmark plugins and combine them into a collection
of benchmarks called benchmark suite. These extensions are then leveraged to package micro
and application benchmarks into a combined CWB benchmark and implement a remote load
generator to support multi-instance benchmarks.

Benchmark Plugins

The initial version of CWB [Sch14] had to be extended to support sequential execution of mul-
tiple benchmarks. Therefore, the monolithic script style of defining single benchmarks was re-
placed with a modular Object Oriented (OO) benchmark plugin system. Custom Chef extensions
in combination with naming conventions2 make modular benchmarks easily pluggable into a
larger collection of benchmarks. This allows to execute multiple benchmarks in succession which
is required to combine micro and application benchmarks. In addition, benchmarks can now
be defined much more concisely and elegantly, individual functionality can be unit-tested using
Rspec3, and smoke-tested locally using the cwb command line utility4.

A CWB benchmark plugin typically executes a benchmark command, extracts some metrics
of interests from the result, and submits these metrics to the CWB server. Each benchmark plugin
overrides the Ruby execute hook method. Therein, the Linux command to start the benchmark tool
is composed and executed. After completion of the benchmark execution, result metrics from the
standard output stream are extracted via regular expression pattern matching. The submit_metric
method from the CWB client library5 is then used to submit named and timestamped metrics to
the CWB server.

Benchmark Suite

Benchmark suites were introduced to CWB to control the execution order of a collection of CWB
benchmark plugins. The OO design of the CWB benchmark execution systems allows to define
benchmark suite6 subclasses that control the execution of the entire collection of benchmarks.
In addition, cross-cutting concerns can be handled in such benchmark suites such as logging
execution progress, notifying the CWB server, handling execution errors, or reporting metadata.

Randomized Multiple Interleaved Trials (RMIT). Abedi and Brecht [AB17] reveal considerable
flaws in the methodoloy used by many performance studies conducted in cloud environments.
Simulations with performance traces from previous benchmarking experiments [SDQR10] have
shown that inappropriate ordering of benchmark executions "could lead to erroneous conclu-
sions" [AB17]. The Single Trial approach, where every benchmark is executed only once, negelects

2https://github.com/sealuzh/cwb-benchmarks/tree/master/cwb#resource
3http://rspec.info/
4https://github.com/sealuzh/cwb-benchmarks#local-testing
5http://www.rubydoc.info/gems/cwb/Cwb/Client
6https://github.com/sealuzh/cwb/blob/master/lib/cwb/benchmark_suite.rb

https://github.com/sealuzh/cwb-benchmarks/tree/master/cwb#resource
http://rspec.info/
https://github.com/sealuzh/cwb-benchmarks#local-testing
http://www.rubydoc.info/gems/cwb/Cwb/Client
https://github.com/sealuzh/cwb/blob/master/lib/cwb/benchmark_suite.rb


4.2 Benchmark Design 19

intra-instance variability. The Multiple Consecutive Trials (MCT) approach, where every bench-
mark is repeated N times before proceeding with the next benchmark, fails to take environmental
changes into account. The Multiple Interleaved Trials (MIT) approach, where in a first round every
benchmark is executed once followed by N repetitions of this first round, ignores periodic pat-
terns that could cause performance deviations for particular repetitions. Therefore, the authors
recommend the use of the Randomized Multiple Interleaved Trials (RMIT) approach for fair com-
parison of competing alternatives. The RMIT approach is a variation of the MIT approach where
the benchmark order within the individual rounds is randomized instead of kept constant. The
cloud benchmarking experiments conducted in this thesis follow the RMIT methodology, which
is implemented as a CWB benchmark suite7.

RMIT Benchmark Suite. Beyond implementing the RMIT methodology, the RMIT benchmark
suite logs execution progress and reports metadata from the instance (e.g., CPU model name),
system (e.g., gcc compiler version), and individual benchmarks (e.g., version number). Execution
progress is logged by submitting a timestamped START and END metric around executing every
single benchmark plugin. Additionally, the benchmark order according to the RMIT methodology
is reported for every CWB execution The instance metadata metrics are explained in Table 4.1 and
the benchmark version numbers are given in Table 4.2.

Metric Name Explanation

CPU model Processor type (e.g., Intel(R) Xeon(R) CPU E5-2670 v2 @ 2.50GHz)

CPU cores Number of total CPU cores as revealed to the VM

RAM total Exact amount of memory in KB available

Compiler version Version string (e.g., gcc (Ubuntu 4.8.4-2ubuntu1 14.04.3) 4.8.4)

Table 4.1: Instance Metadata Metrics

RMIT Combined Benchmark

The entirety of benchmarks used in this thesis are packaged together within the RMIT com-
bined benchmark. This CWB benchmark bundles the RMIT benchmark suite together with the
benchmark plugins of all micro benchmarks (4.2.2) and the application benchmark MDSim (4.2.3)
within a single Chef cookbook called rmit-combined8. The application benchmark WPBench is
specified as internal dependency and automatically resolved by the Berkshelf9 dependency man-
ager.

Load Generator

The load generator provides a REST endpoint to submit CWB tasks, which can run arbitrary
workload against the SUT. These CWB tasks follow the guidelines of a CWB benchmark plugin
and thus provide an instance-independent execution environment for benchmark plugins. This
allows to define load generating benchmark plugins for multi-machine benchmarks (e.g., iperf

7https://github.com/sealuzh/cwb-benchmarks/blob/master/rmit-combined/files/default/
rmit_benchmark_suite.rb#L72

8https://github.com/sealuzh/cwb-benchmarks/blob/master/rmit-combined/
9https://docs.chef.io/berkshelf.html

https://github.com/sealuzh/cwb-benchmarks/blob/master/rmit-combined/files/default/rmit_benchmark_suite.rb#L72
https://github.com/sealuzh/cwb-benchmarks/blob/master/rmit-combined/files/default/rmit_benchmark_suite.rb#L72
https://github.com/sealuzh/cwb-benchmarks/blob/master/rmit-combined/
https://docs.chef.io/berkshelf.html


20 Chapter 4. Methodology

and WPBench) and run their workloads (i.e., Transmission Control Protocol (TCP) network test
and JMeter test plan) against the SUT. The load generator is implemented as Ruby on Rails10

application and available as open source software on Github11. It can be automatically deployed
on a dedicated instance using Vagrant12 and Chef13.

4.2.2 Micro Benchmarks
The selection of micro benchmarks aims for broad-resource coverage and specific-resource testing
while trying to minimize redundancy and profiling execution time. To obtain an extensive in-
stance profile, the selected micro benchmarks cover resources in the domains computation, I/O,
network, and memory. Within each category, micro benchmarks were selected to specifically test
different aspects. For example, the I/O domain is divided into low-level disk I/O and higher-level
file I/O. Each of these subdomains, can be further divided based on operation type (e.g., sequen-
tial/random and read/write) or operation size (e.g., 4k/8k block size). Given the large space of
micro benchmarks, benchmark selection tries to avoid very similar benchmarks that are expected
to deliver redundant information and also attempts to tune execution time under the premise
that still meaningful results are delivered. Consequently, exceedingly long running benchmarks
without suitable tuning options had to be discarded. An additional practical criteria was to favor
benchmarks from the same benchmarking tool where suitable to avoid unnecessary installation
effort.

The selected micro benchmarks are integrated into CWB using CWB benchmark plugins. The
CWB integration basically follows the description in Subsection 4.2.1 whereby deviations are de-
scribed in the following for each micro benchmark. Additionally, Table 4.2 lists the micro bench-
mark tools and their version numbers used in this thesis.

Benchmark Tool Version Source

Flexible I/O (FIO) Tester 2.1.10 14

iperf 2.0.5 (pthreads) 15

StressNg 0.07.27 16

Sysbench 0.4.12 17

Table 4.2: Micro Benchmark Tools

Flexible I/O Tester (FIO)

The FIO benchmark tests sequential write (fio/4k-seq-write) and random read (fio/8k-rand-read) disk
I/O performance. It uses the highly configurable FIO tool18 as an I/O workload simulator. Im-
mediately after each execution, the generated temporary files are deleted to set the system into
pristine state and avoid running out of storage.

10http://rubyonrails.org/
11https://github.com/joe4dev/load-generator
12https://www.vagrantup.com/
13https://www.chef.io/
18https://github.com/axboe/fio

http://rubyonrails.org/
https://github.com/joe4dev/load-generator
https://www.vagrantup.com/
https://www.chef.io/
https://github.com/axboe/fio


4.2 Benchmark Design 21

fio/4k-seq-write. To assess sequential disk write performance, this benchmark replicates the
study setup from [SLCG14] using the same software and benchmark settings. Listing 4.1 reports
the shell command and options used to execute the benchmark. The sequential write workload
size is set to 1 Gibibyte (GiB) using the default block size of 4 KiB (4096 bytes). Furthermore,
the direct I/O mode ignores caches to test raw write performance and the refill buffers mode
circumvents SSD compression effects.

fio --name=write --numjobs=1 --ioengine=sync --rw=write --bs=4k \
--size=1g --direct=1 --refill_buffers=1 --filename=fio.tmp

Listing 4.1: FIO 4k Sequential Write Shell Command

fio/8k-rand-read. To assess random read performance, this benchmark setup is guided by the
recommendations19 from a well-known cloud computing performance engineer20. The shell com-
mand in Listing 4.2 aims to simulate typical file access read operations using a non-uniform access
distribution for a mixed I/O and cache test. The benchmark runtime is limited to 60 seconds and
the block size is set to 8 KiB (8192 bytes).

fio --time_based --runtime=60 --clocksource=clock_gettime \
--numjobs=1 --name=randread --rw=randread --bs=8k --size=2g \
--random_distribution=pareto:0.9 --filename=fio.tmp

Listing 4.2: FIO 8k Random Read Shell Command

Both I/O scenarios extract and report the 6 metrics listed in Table 4.3. The benchmark duration
is reported for every micro benchmark to quantify the profiling effort. Notice that bandwidth
and Input/Output Operations per Second (IOPS) are redundant metrics but are both reported
for convenience because bandwidth is rather used for sequential I/O operations whereas IOPS is
oftentimes preferred for random I/O operations. Latency is captured to assess the efficiency of
the cloud storage connectivity to the compute instances. Additionally, the 95th latency percentile
attributes for typical long-tail distributions observed in cloud environments [SDQR10,XMNB13].
Finally, disk utilization serves as control metric whether the benchmark actually saturates disk
I/O to the expected extent.

iperf

The iperf benchmark is used to measure intra-cloud TCP network bandwidth between the cloud
VM (CWB iperf and iperf server) and a dedicated load generator. This multi-machine benchmark
integrates substantially different into CWB compared to all other single-machine micro bench-
marks. Figure 4.3 illustrates how an iperf benchmark execution is integrated into CWB. Within
the context of the iperf CWB benchmark plugin, CWB iperf starts the daemonized iperf server.
Subsequently, CWB iperf submits the iperf task to a Load Generator, which is hosted on a dedicated
cloud VM, and waits for a completion message. In the meantime, the load generator sequentially
executes the single- and multi-thread scenario against the iperf server. Hereby, the resulting met-

19http://dtrace.org/blogs/brendan/2014/01/10/benchmarking-the-cloud/
20https://twitter.com/brendangregg

http://dtrace.org/blogs/brendan/2014/01/10/benchmarking-the-cloud/
https://twitter.com/brendangregg


22 Chapter 4. Methodology

Metric Name Unit Explanation

Duration ms Total time it takes to execute the read/write I/O workload

Bandwidth KiB/s Average read/write speed

IOPS Ops/s Average number of read/write operations performed per second

Latency µs Average time it takes until an issued I/O request is handled

Latency 95th Percentile µs Upper bound wherein 95% of the I/O requests are handled

Disk Utilization % Percentage of time where the disk is busy

Table 4.3: FIO Metrics

rics are submitted to the CWB server immediatley after execution. Finally, the load generator
notifies CWB iperf to stop the iperf server.

Listing 4.3 reports the iperf command with its static and dynamic options. The static op-
tions specify the 30 seconds runtime and increase the default (4 KB) buffer size to 128 KB to test
maxium bandwidth21. The dynamic options configure the client/server connection and distin-
guish between the single- and multi-threaded scenario. The load generator, in client mode (-c),
connects to the iperf server using the dynamically resolved $HOST variable, which points to the
private Internet Protocol (IP) address of the iperf server. For the single-thread scenario, the "num-
ber of parallel client threads to run"22 is set to 1 via the $NUM_CPU_CORES variable whereas for
the multi-thread scenario, the $NUM_CPU_CORES variable is substituted with the number of vir-
tual cores available to the cloud VM. These two scenarios are tested to investigate whether a
single connection is sufficient for reaching maximum network performance or a multi-threaded
workload is able to exceed this baseline.

iperf -c $HOST -l 128k -t 30 -P $NUM_CPU_CORES

Listing 4.3: iperf Shell Command

For both thread scenarios, the iperf benchmark reports the 2 metrics listed in Table 4.4. Du-
ration is solely reported for consistency reason across all benchmarks because iperf is statically
configured to always run for 30 seconds. Bandwidth is the metric of interest, which measures the
average throughput of the TCP network from client to server.

Metric Name Unit Explanation

Duration s Total time it takes to execute the iperf workload

Bandwidth Mbits/s Average TCP network speed

Table 4.4: iperf Metrics

21http://dtrace.org/blogs/brendan/2014/01/10/benchmarking-the-cloud/
22http://manpages.ubuntu.com/manpages/precise/man1/iperf.1.html

http://dtrace.org/blogs/brendan/2014/01/10/benchmarking-the-cloud/
http://manpages.ubuntu.com/manpages/precise/man1/iperf.1.html


4.2 Benchmark Design 23

CWB iperf iperf Server Load Generator CWB Server

Start Server

Submit iperf Task

Wait for Completion

Test Single-Thread

Submit Metrics

Test Multi-Thread

Submit Metrics

notenote iperf Workloads

Notify Completion

Stop Server

Figure 4.3: iperf Benchmark Execution



24 Chapter 4. Methodology

StressNg – CPU

The StressNg benchmark tool23 contains over 170 stress tests (i.e., stressors) and is designed to
exercise various specific physical and operating system resources. From the almost 70 CPU spe-
cific stressors, 8 stressors were selected to cover the following 3 domains: data types (integer,
double), language primitives (loops, recursive function calls), and algorithms (Euler, Fibonacci,
matrix product). These stressors, referenced as $STRESSOR, are executed using the shell com-
mand shown in Listing 4.4. All stressors assess single thread performance and run for 10 seconds
to minimize profiling effort.

stress-ng --cpu 1 --cpu-method $STRESSOR -t 10 --metrics-brief

Listing 4.4: StressNg – CPU Shell Command

Table 4.5 lists the 2 metrics captured for each of the 8 stressors. Beyond the default duration
metric, throughput estimates the performance of a stressor by capturing its iteration count. Thus,
this "bogus operations per second" counter is a relative metric and cannot be compared across dif-
ferent stressors. The StressNg documentation24 also indicates its insufficient scientific accuaracy
as a benchmarking metric. However, for inter-instance performance estimates, StressNg can still
deliver useful information and is also used for such a profiling purpose in [CBMG16].

Metric Name Unit Explanation

Duration s Total time it takes to execute the StressNg CPU workload

Throughput bogo ops / s Number of iterations achieved by the stressor

Table 4.5: StressNg Metrics

StressNg – Network

The StressNg network benchmark tests local network performance. Listing 4.5 shows the shell
command used to run 4 selected stressors from the StressNg network class workload. The se-
lected stressors test socket operations (sockfd, epoll), User Datagram Protocol (UDP) operations
(udp) and Internet Control Message Protocol (ICMP) random ping flooding (icmp-flood). No-
tice that the ICMP stressor requires root permission and an exclude list had to be used because
StressNg provides no include option. Equivalently to the StressNg CPU benchmark, these stres-
sors are sequentially executed running for 10 seconds each. The total duration is reported once
for the entire class of network stressors instead of individually for each stressor. Otherwise, the
throughput metric works as described for the StressNg CPU benchmark (cf., Table 4.5).

Sysbench – CPU

Sysbench25 is a benchmark suite with micro benchmark workloads for CPU, file I/O, memory,
threads, and mutexes. The additional Online Transaction Processing (OLTP) database workload

23http://kernel.ubuntu.com/~cking/stress-ng/
24https://wiki.ubuntu.com/Kernel/Reference/stress-ng
25https://github.com/akopytov/sysbench

http://kernel.ubuntu.com/~cking/stress-ng/
https://wiki.ubuntu.com/Kernel/Reference/stress-ng
https://github.com/akopytov/sysbench


4.2 Benchmark Design 25

sudo stress-ng --sequential 1 --class network -t 10 --metrics-brief \
--exclude dccp,sctp,sock,sockpair,udp-flood

Listing 4.5: StressNg – Network Shell Command

was not considered for this study to avoid interference with the Wordpress benchmark described
in Subsection 4.2.4.

Listing 4.6 reports the Sysbench CPU shell command used for single- and multi-thread perfor-
mance measurements. This CPU workload computes the primality test in the interval [3, 20000].
The variable $NUM_CPU_CORES is substitued with 1 for the single-thread scenario and with the
number of virtual cores available to the VM for the multi-thread scenario. These two scenarios
were included to check CPU scalability26 and identify any potential cloud limits27. For both thread
scenarios, the Sysbench CPU benchmark reports its total duration as summarized in Table 4.6.

sysbench --test=cpu --cpu-max-prime=20000 \
--num-threads=$NUM_CPU_CORES run

Listing 4.6: Sysbench – CPU Shell Command

Metric Name Unit Explanation

Duration s Total time it takes to check primality for all numbers in [3, 20000]

Table 4.6: Sysbench – CPU Metrics

Sysbench – File I/O

The Sysbench file I/O benchmark tests three different scenarios. All these scenarios use a dy-
namic workload size (i.e., ${FILE_TOTAL_SIZE_GB}) configured to be twice the amount of total
instance RAM to obtain a more realistic cache to disk I/O ratio28. To avoid running out of disk
space during the benchmark run, the disk space attached to VMs had to be increased for larger
instance types with more RAM and the test files had to be cleaned up immediately after workload
execution. The sequential write scenario (seqwr), as shown in Listing 4.7, uses a larger block size
of 1 MB for increased throughput as recommended for sequential I/O tests29. Conversely, the ran-
dom write scenario ($MODE=rndwr), as shown in Listing 4.8, uses a smaller block size of 4 KB as
it is typical for randomly accessing small chunks. This scenario is mirrored with the same settings
for the random read scenario ($MODE=rndrd). The read scenario slightly differs in benchmark
execution because test files have to be laid out using the prepare parameter prior to running the
workload via run.

26https://wiki.mikejung.biz/Sysbench#Sysbench_CPU_Tests
27http://dtrace.org/blogs/brendan/2014/01/10/benchmarking-the-cloud/
28https://wiki.mikejung.biz/Sysbench#Sysbench_Prepare
29https://wiki.mikejung.biz/Sysbench#Sysbench_Fileio_file-block-size

https://wiki.mikejung.biz/Sysbench#Sysbench_CPU_Tests
http://dtrace.org/blogs/brendan/2014/01/10/benchmarking-the-cloud/
https://wiki.mikejung.biz/Sysbench#Sysbench_Prepare
https://wiki.mikejung.biz/Sysbench#Sysbench_Fileio_file-block-size


26 Chapter 4. Methodology

sysbench --test=fileio --file-total-size=${FILE_TOTAL_SIZE_GB}G \
--file-block-size=1M --file-test-mode=seqwr run

Listing 4.7: Sysbench – File I/O Sequential Write Shell Command

sysbench --test=fileio --file-total-size=${FILE_TOTAL_SIZE_GB}G \
--file-block-size=4K --file-test-mode=$MODE run

Listing 4.8: Sysbench – File I/O Random Write/Read Shell Command

Table 4.7 summarizes the metrics reported for each Sysbench file I/O scenario. These metrics
have their corresponding lower-level FIO counterparts (cf., Table 4.3) with different units and
other terminology for throughput (cf., bandwidth).

Metric Name Unit Explanation

Duration s Total time it takes to execute the I/O workload

Throughput MB/s Average read or write speed

Latency ms Average time it takes until an issued I/O request is handled

Latency 95th Percentile ms Upper bound wherein 95% of the acI/O requests are handled

Table 4.7: Sysbench – File I/O Metrics

Sysbench – Memory

The Sysbench memory benchmark tests 2 different scenarios of writing data into an allocated
memory (i.e., RAM) buffer. Listing 4.9 shows the shell command for the scenarios with default
block size and larger block size. The default block size of 1 KB ($BLOCK_SIZE=1K) uses a 1 GB
workload ($TOTAL_SIZE=1G). For the larger block size of 1 MB ($BLOCK_SIZE=1M ), the work-
load was increased to 10 GB ($TOTAL_SIZE=10G) to partially compensate reduced execution
time due to fewer iterations. Testing different workload sizes in the interval [1, 1000] has shown
that throughput does not differ meaningfully and therefore workload size was optimized to ob-
tain faster execution time. For both of these scenarios the throughput and duration is reported as
summarized in the metrics table 4.8.

sysbench --test=memory --memory-block-size=$BLOCK_SIZE \
--memory-total-size=$TOTAL_SIZE run

Listing 4.9: Sysbench – Memory Shell Command

Sysbench – Mutex

The Sysbench mutex benchmark tests the speed of single-thread mutex lock operations. List-
ing 4.10 shows the configuration used to repeatedly request a single mutex lock within a loop.



4.2 Benchmark Design 27

Metric Name Unit Explanation

Duration s Total time it takes to execute the Sysbench – Memory workload

Throughput MB / s Sequential write speed to RAM

Table 4.8: Sysbench – Memory Metrics

The single metric of interest being reported for this benchmark is the total time it takes to acquire
and release all 5 ∗ 107 mutex locks (Table 4.9).

sysbench --test=mutex --mutex-num=1 --mutex-locks=50000000 \
--mutex-loops=1 run

Listing 4.10: Sysbench – Mutex Shell Command

Metric Name Unit Explanation

Duration s Total time it takes to execute the Sysbench – Mutex workload

Table 4.9: Sysbench – Mutex Metrics

Sysbench – Threads

The Sysbench threads benchmark simulates a single-thread and a highly concurrent thread lock
scenario. Using the shell command in Listing 4.11, the variable $NUM_THREADS is set to 1 for the
single-thread scenario and to 128 for the highly concurrent scenario where many threads com-
pete for a single thread lock. In this workload, every thread acquires a lock, performs a yield
operation to pause the current thread, and subsequently releases the lock when being resched-
uled. The average time it takes to run such a single lock-yield..unlock sequence is reported
as latency in addition to the total duration as listed in the metrics table 4.10. In comparison to the
Sysbench mutex benchmark which focuses on single-thread mutex lock performance, this thread
benchmark additionally investigates scheduler performance via the highly concurrent thread lock
scenario.

sysbench --test=threads --thread-locks=1 --num-threads=$NUM_THREADS run

Listing 4.11: Sysbench – Threads Shell Command

4.2.3 Molecular Dynamics Simulation (MDSim)
The MDSim benchmark serves as a representative for scientific computing applications. An
MDSim performs step-wise evolution of moving particles in a three-dimensional space according



28 Chapter 4. Methodology

Metric Name Unit Explanation

Duration s Total time it takes to execute the Sysbench – Threads workload

Latency ms Average time it takes to run a single lock-yield..unlock sequence

Table 4.10: Sysbench – Threads Metrics

to the physical laws considering particle positions and velocities [BCX+06]. This scientific ap-
plication was also used for benchmarking cloud instances by Varghese et al. [VAM+14, VSTB16,
VAM+16].

The MDSim benchmark integrates into CWB similar than a typical micro benchmark. MDSim
ships as a single C source file and has to be compiled on the target system during the installation
step. For compilation, the option -fopenmp and the gcc version 4.8.4 is used. Compared to
the original version used in [VAM+16], the number of particles in the simulation and number of
steps (i.e., iterations) was exposed as a dynamic parameter to conveniently adjust the workload
size. While maintaining the same number of simulation steps as in [VAM+16], the number of
particles had to be reduced from 10000 to 1000 to reduce simulation time from multiple hours to
below 10 minutes. This total simulation time is reported as the duration metric (Table 4.11).

Metric Name Unit Explanation

Duration s Total time it takes to simulate all 200 steps

Table 4.11: MDSim Metrics

4.2.4 Wordpress Benchmark
The Wordpress benchmark called WPBench was designed and implemented to serve as a repre-
sentative for Web serving applications. WPBench runs different JMeter30 load scenarios against a
Wordpress31 server and measures typical metrics such as response time and throughput. Word-
press was chosen because it is the most popular Content Management System (CMS) software
(59% market share) used by 27.0% of the top 10 million websites32 as of May 5, 2017 according
to the Web technology surveys from W3Techs33. It has also been used for benchmarking cloud
VMs [BLL+14].

Figure 4.4 illustrates the interaction design of WPBench. The overall interaction pattern resem-
bles the iperf micro benchmark as described in section 4.2.2 (cf., Figure 4.3). On the asynchronous
Start server call, the Wordpress server starts the Web server, the corresponding database, and a
performance monitoring agent. The Submit JMeter task message contains the JMeter test plan for
all three load scenarios. These scenarios create detailed log files which are analyzed to summarize
each test scenario. While the log files remain on the load generator for more detailed analysis, the
metric summary is submitted to the CWB server. Afterwards, the Wordpress server notifies test

30http://jmeter.apache.org/
31https://wordpress.org/
32https://w3techs.com/technologies
33https://w3techs.com/technologies/overview/content_management/all

http://jmeter.apache.org/
https://wordpress.org/
https://w3techs.com/technologies
https://w3techs.com/technologies/overview/content_management/all


4.2 Benchmark Design 29

CWB WPBench Wordpress Server Load Generator CWB Server

Start Server

Submit JMeter Task

Wait for Completion

Run Scenario 1 (Read)

Run Scenario 2 (Search)

Run Scenario 3 (Write)

notenote Load Scenarios (4.2.4)

Compute Metric Summary

Submit Metrics
Notify Completion

Stop Server

Figure 4.4: WPBench Execution

completion and CWB WPBench stops the server to prevent interference with subsequent bench-
marks.

WPBench is substantially more involved than all other benchmarks used in this thesis. The
following sections elaborate on the extended Wordpress installation automation, the generation
of test data sets including migrations, the three different load scenarios, and the load patterns
within these scenarios. Additionally, system resource monitoring during test execution and the
distributed testing mode are described.

Automated Wordpress Installation

WPBench is able to automatically install and setup Wordpress including all of its dependencies
to achieve portability across different platforms and cloud providers as encouraged by CWB
[SLCG14]. The Wordpress installation builds upon the Chef cookbook wordpress from the Chef
Supermarket community34 to implement necessary extensions required for WPBench within a

34https://supermarket.chef.io/cookbooks/wordpress

https://supermarket.chef.io/cookbooks/wordpress


30 Chapter 4. Methodology

fork35. Beyond several corrective changes, capabilities to automatically setup the Wordpress core
and install plugins were added. Plugin support was mandatory for the Fakerpress plugin36 to gen-
erate a test data set and for the Disable Check Comment Flood plugin to disable spam protection
during load testing. The most relevant software packages are summarized in Table 4.12.

Software Version Source

Wordpress 4.7.1 37

Wordpress plugin – FakerPress 0.3.1 38

Wordpress plugin – Disable Check Comment Flood 1.0 39

PHP 5.5.9 40

MySQL 5.5.54 41

Table 4.12: Wordpress Installation – Software Packages

Test Data Set

A Wordpress test data set is generated leveraging the Fakerpress Wordpress plugin. Table 4.13
summarizes the quantities of the data set that comprises users in different roles, categories, tags,
comments, and posts including sample images. FakerPress is configured to obtain real images
from the 500px42 photographer community. These images are stored with on-the-fly generated
identifiers by Wordpress. Thus, the test plan has to be adjusted for each data set. Furthermore,
data generation is too time consuming (~10-20 minutes) to perform on every new instance from
scratch. For these reasons, the test data set is typically cached by creating a reusable VM image.
This is the only part that comprises some manual work (e.g., image capturing) and thus makes
the benchmark not fully portable in an automated way. However, a migration script and instance
cleanup script is provided by WPBench to minimize this one time effort.

Load Scenarios

The three different load scenarios of WPBench aim to simulate short read, search, and write Web
browsing sessions. To accurately capture representative Web browser scenarios, a JMeter proxy43

recorded these real Firefox browsing sessions. In iterative refinement, these captured traces were
generalized, organized, and enriched with additional configurations. For generalization, all hard-
coded Web server addresses had to be replaced with a dynamically configurable site variable.
All external requests (e.g., loading fonts from a Content Delivery Network (CDN) provider or
avatar icon from Gravatar44) were disabled to prevent them from distorting the response times of
the SUT. Finally, repetitive operations such as posting a comment had to be parametrized with
dynamic content to mimic more representative workload and to circumvent the double posting
validation. Organizing these over 200 HTTP requests required some logical grouping according to
their inherent interaction structure (e.g., group all immediate and dynamic HTTP request caused
by a user search) to keep the test plan manageable. Additional configuration elements include

35https://github.com/joe4dev/wordpress
36https://wordpress.org/plugins/fakerpress/
42https://500px.com/
43https://www.blazemeter.com/blog/jmeters-superpower-http-proxy-server
44http://en.gravatar.com/

https://github.com/joe4dev/wordpress
https://wordpress.org/plugins/fakerpress/
https://500px.com/
https://www.blazemeter.com/blog/jmeters-superpower-http-proxy-server
http://en.gravatar.com/


4.2 Benchmark Design 31

Component Type Attribute Quantity

Users Administrator 10

Users Editor 50

Users Author 100

Users Contributor 500

Users Subscriber 1000

Taxonomies Category 20

Taxonomies Tags 50

Posts Pages (100% image rate) 20

Posts Normal (75% image rate) 200

Comments 2000

Table 4.13: WPBench Test Data Set

browser session managers, assertions, and different timers. The cookie manager simulates real-
istic handling of HTTP cookies. Assertions selectively check whether the Web server responses
deliver the expected page content. Uniform random timers precede the first interaction of each
scenario to prevent bursty request patterns (i.e., all threads performing the same request at the
same time). All subsequent interactions then use a constant timer to mimic users thinking time
between interactions in the millisecond interval [500, 4000].

Load Pattern

WPBench uses a step-wise growing load pattern configured as shown in Table 4.14 and visualized
in Figure 4.5. Starting with 10 threads (i.e., virtual users), every 30 seconds another 10 threads are
added until after 5 minutes the target concurrency of 100 threads is reached. This load is then kept
constant for 3 minutes. Subsequently, the tear-down phase runs until all 100 threads finished their
current load scenario. This load pattern is implemented via the JMeter Concurrency Thread Group
plugin45, which is a more modern alternative than the default JMeter thread group46.

Target concurrency 100

Ramp-up steps count 10

Ramp-up time 5 min

Hold target rate time 3 min

Table 4.14: WPBench Load Pattern Configuration

System Resource Monitoring

Following the active benchmarking methodology proposed in [Gre13], several resources of the
SUT were monitored at system-level during test plan execution. Table 4.15 lists the monitored

45https://www.blazemeter.com/blog/advanced-load-testing-scenarios-jmeter-part-4-
stepping-thread-group-and-concurrency-thread

46http://jmeter.apache.org/usermanual/test_plan.html#thread_group

https://www.blazemeter.com/blog/advanced-load-testing-scenarios-jmeter-part-4-stepping-thread-group-and-concurrency-thread
https://www.blazemeter.com/blog/advanced-load-testing-scenarios-jmeter-part-4-stepping-thread-group-and-concurrency-thread
http://jmeter.apache.org/usermanual/test_plan.html#thread_group


32 Chapter 4. Methodology

0

20

40

60

80

100

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00

Elapsed Time [min]

N
um

be
r 

of
 C

on
cu

rr
en

t T
hr

ea
ds

Figure 4.5: WPBench Load Pattern Visualization

Metric Unit Explanation

Memory utilization % Percentage of total instance RAM used

Disk I/O queue length length Number of outstanding I/O requests

Network I/O received bytes Number of bytes received

Established TCP connections number Number of established TCP connections

CPU combined (user + system) % Time where CPU is busy

CPU idle % Time where CPU is idle

CPU steal % Time where CPU is allocated to another tenant

Table 4.15: Monitored System-Level Resource Metrics

metrics47 covering memory, disk I/O, network I/O, TCP connections, and three different CPU
utilization indicators. Three CPU utilization metrics (i.e., combined, idle, steal) were used to at-
tribute for CPU throttling as discussed in [LS15] because cloud VMs are often artificially throttled
by the VM hypervisor and thus do not get all CPU cycles. These three metrics sums up to 100%
utilization together with the additional iowait metric. Monitoring is implemented using the JMeter
plugin PerfMon48. The PerfMon server agent49 gets automatically installed during the WPBench
installation and started at the beginning of the WPBench execution.

Distributed Testing

A distributed testing mode was implemented to support powerful instance types where one sin-
gle load generator is unable to generate sufficient workload. Using the JMeter remote testing
mode50, a load generator serves as a coordinating JMeter master node and N JMeter slave nodes

47https://jmeter-plugins.org/wiki/PerfMonMetrics/
48https://jmeter-plugins.org/wiki/PerfMon/
49https://jmeter-plugins.org/wiki/PerfMonAgent/
50http://jmeter.apache.org/usermanual/remote-test.html

https://jmeter-plugins.org/wiki/PerfMonMetrics/
https://jmeter-plugins.org/wiki/PerfMon/
https://jmeter-plugins.org/wiki/PerfMonAgent/
http://jmeter.apache.org/usermanual/remote-test.html


4.3 Benchmark Execution 33

concurrently run the load scenarios against the SUT. Supporting the distributed testing mode
required a few adjustments to the test plan such as naming the thread groups dependent on the
slave machine. This is necessary to distinguish the source of each response time sample in the log
files.

4.3 Benchmark Execution

This section describes how the previously designed benchmarks are configured and subsequently
automatically executed in CWB. It also describe where and how the resulting performance met-
rics are persisted.

The benchmark configuration in CWB defines the provider-specific resources, refers to the
previously described RMIT combined benchmark (4.2.1), and specifies an execution schedule.
Figure 4.6 depicts all these elements within the CWB Web interface. The provider-specific (e.g.,
AWS) Vagrantfile section (i.e., line 5-17) describes the geographic area (i.e., region) of the data
center (e.g., eu-west-1 in Ireland) and the isolated location (i.e., availability zone51) within this
region (e.g., eu-west-1a). It also refers to a captured base image (e.g., the Amazon Machine Image
(AMI) containing the cached test data set described in 4.2.4). Furthermore, it specifies the instance
type (e.g., m1.small), a list of security groups (e.g., cwb-web defining firewall rules to allow Secure
Shell (SSH) and HTTP traffic), and the storage attached to the VM (e.g., 12 GB gp2 SSD EBS).
The benchmark-specific Vagrantfile section (i.e., line 19-31) refers to the adjusted test plan for the
test data set (e.g., test-plan-aws-pv for the AWS PV instance types) and the benchmark cookbook
(e.g., rmit-combined). It also specifies benchmark attributes such as the load generator used for
this benchmark definition. The execution schedule in the right sidebar expresses in Cron syntax
at what times a new execution is triggered. The example schedule in Figure 4.6 triggers a new
execution 8 times a day (i.e., at 1am, 4am, 7am, 10am, 1pm, 4pm, 7pm, and 10pm).

Figure 4.7 illustrates the interactions when the RMIT benchmark is triggered by the scheduler.
Following the execution design of CWB [SLCG14, SCLG15], the CWB server acquires the cloud
VM including its subsidiary resources (e.g., storage, private and public IPs). As soon as the cloud
VM is reachable via SSH, the CWB server initiates the provisioning (i.e., installation and config-
uration of all benchmarks) of the cloud VM via the Chef Client52. This client agent obtains the
latest benchmark configuration from the provisioning service (e.g., Chef Server53). The obtained
configuration is applied to the cloud VM to prepare the VM for subsequent benchmark execu-
tion. The CWB server asynchronously starts the RMIT benchmark suite (4.2.1), which controls
the execution of all micro and application benchmarks. Finally, the cloud VM notifies the CWB
server upon benchmark completion such that the CWB server can release the VM resources via
the provider API.

The resulting collection of performance metrics is stored in the CWB server and the detailed
WPBench log files remain on the load generator. The majority of metrics is submitted to the CWB
server during benchmark execution and stored in a relational database. They can be exported as
a Comma-Separated Values (CSV) file or inspected via the CWB Web interface. For more in-depth
analyses, the WPBench log files contains entries for every single HTTP request and system-level
resource traces (4.2.4) at 1 second resolution.

51http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-
zones.html

52https://docs.chef.io/chef_client.html
53https://docs.chef.io/server_components.html

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
https://docs.chef.io/chef_client.html
https://docs.chef.io/server_components.html


34 Chapter 4. Methodology

Figure 4.6: CWB Benchmark Definition



4.3 Benchmark Execution 35

Scheduler CWB Server Provider API Cloud VM Provisioning Service

Trigger Execution

Acquire VM

Provision VM
Fetch Configuration

Configuration

Apply Configuration

Provisioning Completed

Start Benchmarks

Execute Benchmarks

subsub RMIT Benchmark Suite (4.2.1)

Notify Completion

Release VM

Figure 4.7: RMIT Combined Execution



36 Chapter 4. Methodology

4.4 Data Pre-Processing
This section describes how the performance data is pre-processed for the main analyses, which
are detailed in the results Chapter 5. After briefly summarizing the export of the raw data, the
pre-processing steps filtering, pivoting, and cleaning are described. The data science Integrated
Development Environment (IDE) RapidMiner Studio54 is used to model and implement this pre-
processing pipeline. A supplementary shell script automates the entire pipeline by leveraging
dynamically configurable macros. All scripts as well as the input and output data set are docu-
mented and freely available on Github55.

To obtain the raw metrics data from the CWB server in an appropriate CSV format, an en-
hanced CSV exporter script was written in Ruby to combine and export all metrics from multiple
CWB benchmarks (i.e., instance types) into a single CSV file. This exporter script also assigns
benchmark iterations on the same instance (e.g., 1-3) for every metric result entry based on the
timestamp order.

Figure 4.8 visualizes the top-level process for data pre-processing. This process reads the
previously exported raw metrics and produces an interim data set. Firstly, the 1 Filter sub-
process (Figure 4.9) removes irrelevant data for the main analyses. It discards failed or other non-
finished CWB executions, iteration numbers above 3 originating from detailed execution logging,
and columns with static (e.g., manually defined unit from CWB) or redundant information (e.g.,
execution status because previous filtering only included finished executions).

Figure 4.8: Top-Level Process for Data Pre-Processing

Figure 4.9: 1 Filtering Sub-Process Figure 4.10: 3 Cleaning Sub-Process

Secondly, the 2 Pivot sub-process (Figure 4.11) rotates the tabular data such that the unique
values of the metrics column are converted to new columns. A new row identifier column is

54https://rapidminer.com/products/studio/
55https://github.com/joe4dev/cwb-analysis

https://rapidminer.com/products/studio/
https://github.com/joe4dev/cwb-analysis


4.5 Threats to Validity 37

Figure 4.11: 2 Pivoting Sub-Process

created by concatenating the VM identifier of the provider and the benchmark iteration counter.
The pivot operator uses this new provider_vm_id_iteration column as the group attribute and the
metric_name column as index attribute as illustrated in the pivot schema shown by Figure 4.12.
To keep the new column names consistent with the values from the metrics column, the value_
column name prefix introduced by the pivot operator is removed. Additionally, the remainders
of the unused execution log is removed by discarding this irrelevant column. Subsequently, the
custom Convert Units operator coverts inconsistent units or throws an exception upon detecting
unresolvable inconsistencies. For a subset of metric columns (e.g., excluding metadata or version
columns), this operator checks whether all values are expressed in the same unit. While values
with consistent units are kept, the operator attempts to apply a set of known conversions (e.g.,
"Kb/sec" to "Mb/sec") for values with inconsistent units. It yields the converted value for suc-
cessful conversions or throws an exception otherwise. Thus, the operator ensures unit consistency
and can safely isolate the values by discarding the unit string. This operator is implemented as a
Groovy script using regular expression pattern matching. The last step of the pivot sub-process
guesses the data types (e.g., integer or polynomial) for the new tabular schema obtained through
pivoting.

Thirdly, the Loop over Source sub-process segments the entire metric collection into N groups
according to their CWB benchmark names (i.e., sources or instance types) and executes the 3
Clean sub-process (Figure 4.10) for each of these groups. This is necessary because some oper-
ations only have meaningful semantics if they are applied on a per benchmark basis (i.e., per
instance type). Such a constraint is exemplified by the replacement of missing values in the first
step of the cleaning sub-process. The intra-instance type variability is presumably small enough
to use an average value for replacing few missing values. However, this operation wouldn’t yield
meaningful values if performed over the entire data set across different instance types. The subse-
quent steps reorder the columns alphabetically and move the special non-metric columns (e.g., the
identifier column provider_vm_id_iteration) to the front. The output of all cleaning sub-processes
is combined again via the Append operator. Finally, the pre-processed data is written to an interim
CSV file and stored in an enriched format within the local RapidMiner data repository.

4.5 Threats to Validity

This section discusses the threats to validity along the following common categories in empirical
research: construct validity, internal validity, and external validity [KPP+02, WKP10, Yin08]. Ad-
ditionally, reproducibility is addressed because of its particular importance in the field of cloud
benchmarking.



38 Chapter 4. Methodology

Figure 4.12: Pivot Schema

4.5.1 Construct Validity
Construct validity refers to the extent to which the methodology actually measures parameters
relevant to the research questions.

In the context of RQ1 and given the instance type is a controlled variable, the independent
variable is the individual VM instance acquired from the cloud provider (identifiable via the
provider_vm_id) and the dependent variable is the measured performance level on a particular
instance. Therefore, construct validity is the extent to which the micro and application bench-
marks represent the actual VM performance. As an example, a benchmark that yields a random
number would result in particularly low construct validity, whereas a benchmark that entirely sat-
urates the CPU of an instance and correctly measures this peak performance would result in high
construct validity. To mitigate this threat, benchmark-specific guidelines are followed for their
configuration and the rationals behind the parameters are explained in the methodology Chap-
ter 4. Furthermore, general performance benchmarking methodologies, such as active bench-
marking [Gre13] (cf., Section 4.2.4), are implemented. Several benchmarks report their resource
utilization and provide additional confidence that the benchmark actually stresses the SUT. As
an example, the FIO I/O benchmark reports disk utilization rates beyond 97% for most instance
types, except for a few old instance types, which still achieve utilization rates above 88% for the
read and above 98% for the write scenario.

In the context of RQ2, the independent variable is the instance type and the dependent vari-
able is the measured performance level on a particular instance. Therefore, construct validity
is the extent to which the benchmarks capture varying performance between different instance
types. To mitigate this threat, a large set of benchmarks covers multiple resource domains (i.e.,
computation, I/O, network, RAM) and several different aspects within each domain (cf., Sec-
tion 4.2.2).

One of the biggest threats with benchmarks is that they test or measure something different
than intended. Anecdotally, an expert in the field provocatively claimed that almost 100% of
the benchmarking reports are actually wrong because benchmarking is "very very error-prone"56.

56https://www.youtube.com/watch?v=vm1GJMp0QN4&feature=youtu.be&t=18m29s

https://www.youtube.com/watch?v=vm1GJMp0QN4&feature=youtu.be&t=18m29s


4.5 Threats to Validity 39

This threat does not affect the estimation model because benchmarks are treated as black box.
However, it may lead to false conclusions in root cause analysis such as erroneously identify-
ing CPU performance as the bottleneck due to a designated CPU benchmark, which is actu-
ally memory-bound57. To mitigate this threat, the benchmarks are carefully designed according
to guidelines from research and industry, their parameters are rationalized in the methodology
Chapter 4, and their implementations are publicly available for inspection on Github58.

4.5.2 Internal Validity
Internal validity refers to the extent to which changes of the dependent variable may have been
attributed to the existence of confounding variables instead of the modeled independent variable.

In the context of this study, internal validity is the extent to which cloud environmental factors,
such as multi-tenancy, evolving infrastructure, or dynamic resource limits, affect the performance
level of a VM instance. This is typically the biggest threat in cloud benchmarking studies because
such confounding factors are oftentimes not only out of control for the experimenter but also not
even measurable or known. Therefore, RQ1 is dedicated to investigate the cumulative effect of
ubiquitous confounding factors on benchmark performance in terms of intra-instance-type vari-
ability. However, although these results can serve as a temporary approximation, this short-term
study could have still been subjected to longitudinal patterns (e.g., monthly or yearly load peaks
in EC2), whose investigation were out of scope of this thesis and left for future work. Periodic
patterns regarding intra-instance iterations are addressed by implementing the RMIT execution
methodology [AB17] as described in Section 4.2.1. Furthermore, to mitigate interferences dur-
ing benchmark execution in the VM under test, other processes (e.g., cron) are terminated and
periodic tasks (e.g., apt package updater) are disabled. Nevertheless, the resource monitoring
overhead might still cause certain interference during WPBench execution.

4.5.3 External Validity
External validity refers to the extent to which the results are generalizable to observations
throughout the study domain beyond those under immediate observation.

The three most relevant threats to external validity are to what extent the results are gener-
alizable to other cloud providers, larger instance types, and other application domains. Being
the market leader for many years [Dor16], EC2 was the obvious choice as a cloud provider. Fur-
thermore, its most extensive offer in terms of different instances types and comparability to a
large body of prior work makes EC2 best suitable for this study. However, the results need to
be validated for other providers, which is viable with manageable time effort because of the high
automation-level of the presented methodology and design for the provider-agnostic CWB tool-
ing. While this study almost fully covers instance types ranging from low-tier to high-tier, the
extra large instance types were not considered in the study to keep experimentation costs at a
reasonable level.

This study is limited to two applications from distinct domains and further experimentation
is required to investigate whether suitable micro benchmarks can be found for applications in
other domains. Additional Web serving benchmarks are demanded to investigate to what ex-
tent this large and heterogeneous domain is comparable with the newly crafted WPBench. The
results for MDSim, serving as a representative for scientific computing applications, are specula-
tively widely applicable within this domain because of its similar nature to micro benchmarks.
Overall, more applications have to cover other domains such as data analytics, data serving, Web

57http://www.brendangregg.com/blog/2017-05-09/cpu-utilization-is-wrong.html
58https://github.com/sealuzh/cwb-benchmarks

http://www.brendangregg.com/blog/2017-05-09/cpu-utilization-is-wrong.html
https://github.com/sealuzh/cwb-benchmarks


40 Chapter 4. Methodology

search, or media streaming. Although the large set of micro benchmarks already broadly cov-
ers many system resources, additional multi-thread scenarios could improve the generalizability
across more instance types.

4.5.4 Reproducibility
Reproducibility, sometimes called reliability [Yin08], refers to the extent to which the methodol-
ogy and analysis is repeatable at any time for anyone and thereby leads to the same conclusions.
Reproducibility is of utmost importance in cloud benchmarking because of the inherent dynamic-
ity of the cloud environments themselves. Changes in the cloud environment can make it impos-
sible to obtain the same results at another time. Therefore, cloud benchmarking methodologies
need to be designed, implemented, and tested carefully to eliminate any methodological errors.
Thus, whenever different results are observed applying the same methodology, these differences
can be attributed to changes in the cloud environment itself and are not caused by any method-
ological errors. To mitigate this threat, the methodology is highly automated and together with
the performance data set publicly available. Repeated benchmark executions are fully automated
via CWB and thus avoid any human execution error. Merely a few initial one-time setup steps are
required, such as running the WPBench test plan migration script. All tooling and benchmarks to
repeat this study are publicly available as open source software59. Furthermore, the entire analy-
sis is publicly available on Github60 including documented raw and interim data sets as well as
analysis and automation scripts.

59https://github.com/sealuzh/cwb-benchmarks
60https://github.com/joe4dev/cwb-analysis/

https://github.com/sealuzh/cwb-benchmarks
https://github.com/joe4dev/cwb-analysis/


Chapter 5

Results

This chapter introduces the benchmarking data set and presents, discusses, and summarizes the
results guided by the research questions introduced in Chapter 1.

5.1 Benchmarking Data Set
Using the methodology introduced in the previous chapter, a benchmarking data set was collected
for the Amazon EC2 cloud provider. All configurations build upon the officially maintained
Ubuntu 14.04 LTS images1. The exact releases2 depend on the virtualization technology and are
ami-acb59bdf (eu-west-1) as of April 1, 2017 for HVM instances and ami-dd26a5cb (us-east-1) as of
April 4, 2017 for PV instances. Furthermore, the general purpose storage type gp2 is attached to
every instance because AWS recommends this type for most workloads3.

5.1.1 Instance Type Specifications
Table 5.1 lists the specifications for the EC2 instance types in this study. It includes all avail-
able (as of April 2017) non-bursting instance types with a memory size below 15 GiB, except
for c1.medium which consistently failed during experimentation for an unknown reason. This
RAM threshold was chosen to keep experimentation cost at a reasonable level because the I/O
workload grows substantially with increasing RAM size. The mixture between PV-based legacy
instance types and more modern HVM-based instance types allows for fair comparison with prior
research and adequate consideration of contemporary technology. Table 5.1 also provides the EC2
Compute Unit (ECU) specification, which Amazon used to promote as their own relative measure
for CPU performance. An ECU is equivalent to the CPU power of a m1.small instance or a 1.0-1.2
GHz 2007 Opteron or Xeon processor type [OIY+10]. Amazon claims to conduct benchmarking
to align the ECU measure with CPU power in particular regarding integer operations4. How-
ever, AWS quietly discontinued this approach in 2014 and moved to a more traditional way, as
customary in on-premise data centers, of specifying the number of vCPUs and the type of pro-
cessor5. The ECU model is insufficient to describe the family of general purpose instance types
that follow a formal model for burstable CPU performance [LS15]. These bursting instance types

1https://cloud-images.ubuntu.com/locator/ec2/
2https://cloud-images.ubuntu.com/query/trusty/server/released.txt
3http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html
4https://aws.amazon.com/ec2/faqs/#What_is_an_EC2_Compute_Unit_and_why_did_you_

introduce_it
5http://blogs.gartner.com/kyle-hilgendorf/2014/04/16/aws-moves-from-ecu-to-vcpu/

https://cloud-images.ubuntu.com/locator/ec2/
https://cloud-images.ubuntu.com/query/trusty/server/released.txt
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html
https://aws.amazon.com/ec2/faqs/#What_is_an_EC2_Compute_Unit_and_why_did_you_introduce_it
https://aws.amazon.com/ec2/faqs/#What_is_an_EC2_Compute_Unit_and_why_did_you_introduce_it
http://blogs.gartner.com/kyle-hilgendorf/2014/04/16/aws-moves-from-ecu-to-vcpu/


42 Chapter 5. Results

Instance Type vCPU ECU RAM [GiB] Virtualization Network Performance

m1.small 1 1 1.7 PV Low

m1.medium 1 2 3.75 PV Moderate

m3.medium 1 3 3.75 PV /HVM Moderate

m1.large 2 4 7.5 PV Moderate

m3.large 2 6.5 7.5 HVM Moderate

m4.large 2 6.5 8.0 HVM Moderate

c3.large 2 7 3.75 HVM Moderate

c4.large 2 8 3.75 HVM Moderate

c3.xlarge 4 14 7.5 HVM Moderate

c4.xlarge 4 16 7.5 HVM High

c1.xlarge 8 20 7 PV High

Table 5.1: EC2 Instance Type Specifications6

are not included in this study because their inherently varying performance impedes controlled
benchmarking.

5.1.2 Configurations and Sample Sizes
Table 5.2 shows the region-dependent instance specifications and sample sizes for each configu-
ration. Each previously introduced instance type is tested at least once in a European data center
and a subset is also tested in a North American data center. The regions eu-west-1 (Ireland) and us-
east-1 (N. Virginia) were chosen to compare the results with prior work [LC16]. Correspondingly,
the AZ "a" is used consistently across all regions. Notice that the hourly costs in the European
region are ~3-13% higher compared to the North American region. The tailing columns in Ta-
ble 5.2 report the number of benchmark executions and the resulting number of measurements
including their totals. Each configuration is scheduled to execute once every 3 hours (i.e., 8 times
per day) and runs 3 iterations. Every iteration takes between 45 and 70 minutes depending on the
instance type. This corresponds to almost continuous execution on a rolling basis (i.e., a new in-
stance is acquired once the previous instance is released) between 4 to 8 days for two low-tier, two
medium-tier, and one large-tier instance type. All measurements were collected between April
and May 2017.

5.1.3 Missing Values
The missing values observed for this data set during pre-processing can be categorized into three
severity levels. They can be expected by design, easily replaceable, or imputable with side ef-
fect. Firstly, some instance-specific metrics are submitted once per overall benchmark execution
and therefore have missing values for the second and third iteration. These metrics comprise
the instance metadata (cf., Table 4.1), benchmark version numbers (cf., Table 4.2), and the RMIT

6 http://www.ec2instances.info/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/previous-generation/

http://www.ec2instances.info/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/previous-generation/


5.1 Benchmarking Data Set 43

Instance Type Region / AZ Cost / h [USD]* Executions Measurements

m1.small eu-west-1a 0.047 35 9030

m1.small us-east-1a 0.044 33 8514

m1.medium eu-west-1a 0.095 1 258

m3.medium (pv) eu-west-1a 0.073 1 258

m3.medium (hvm) eu-west-1a 0.073 61 15738

m3.medium (hvm) us-east-1a 0.067 35 9030

m1.large eu-west-1a 0.190 1 258

m3.large eu-west-1a 0.146 58 14964

m3.large us-east-1a 0.133 1 258

m4.large eu-west-1a 0.111 3 774

m4.large us-east-1a 0.108 1 258

c3.large eu-west-1a 0.120 1 258

c4.large eu-west-1a 0.113 4 1032

c4.large us-east-1a 0.100 3 774

c3.xlarge eu-west-1a 0.239 1 258

c4.xlarge eu-west-1a 0.226 3 774

c4.xlarge us-east-1a 0.199 1 258

c1.xlarge eu-west-1a 0.592 1 258
*Linux On-Demand as of 2017-05-19 Total 244 62952

Table 5.2: Specification and Sample Sizes per Configuration



44 Chapter 5. Results

Benchmark # Missing RSD min [%] Instance Type

Metric # Total RSD max [%] Region / AZ

fio/4k-seq-write 1
10

m3.medium

Latency 105 us-east-1a

sysbench/fileio-4k-rand-write 5
14

m1.small

Throughput 99 us-east-1a

fio/4k-seq-write 348 5
multiple

Duration 684 10

sysbench/fileio-4k-rand-read-prepare 348 1
multiple

Duration 684 4

Table 5.3: Missing Values

benchmark execution order (cf., Section 4.2.1). Secondly, some metrics report static values by de-
sign but were introduced after the start of the experiment to consistently report a duration value
for every benchmark. The missing values of these three metrics can be replaced easily with their
well-known execution times from the benchmark design using the constants 60000 for the dura-
tion of the fio/8k-rand-read benchmark (cf., 4.2.2) and with 30 for the durations of the single- and
multi-thread iperf benchmarks (cf., 4.2.2). Thirdly, a few metrics report values that are inherently
dynamic and cannot be replaced without selectively affecting the nature of the data distribution.

Therefore, Table 5.3 reports these dynamic metrics with missing values in more detail. The sin-
gle missing value for the latency of the fio/4k-seq-write benchmark might be caused by erroneous
benchmark output or unsuccessful metric submission. However, replacing this single value with
the average out of the 104 remaining samples should not affect the data distribution much as it
constitutes less than 1% of the samples. The 5 missing throughput values for the sysbench/fileio-
4k-rand-write were caused due to value-dependent unit reporting of the Sysbench tool, which
was not considered in the metric extraction at first. Sysbench switches its default reporting unit
from Mb/sec to Kb/sec for values below 1 Mb/sec. Before this adjustment to the metric extraction
was applied, the values below 1 Mb/sec failed to match the regular expression and were thus
ignored causing these missing values. Using the average replacement method would skew this
data towards a higher average and lower Standard Deviation (SD). Therefore, the average from
all samples below 1 Mb/sec is used as a more adequate replacement value. The 348 missing
values for the durations of the FIO and Sysbench I/O benchmarks originated from the fact that
these metrics were introduced after the start of the experiment to consistently report a duration
value for every benchmark. Their large fraction of missing values (~50% of the overall samples)
and non-neglectable Relative Standard Deviation (RSD) (1-10% grouped by instance type and
region configuration) definitely influence the shape of the data when using the average replace-
ment method. If these duration values would be important for the analysis part, a more robust
replacement method must be chosen (e.g., predicting the duration from correlated attributes such
as bandwidth).



5.2 RQ1 – Performance Variability within Instance Types 45

5.2 RQ1 – Performance Variability within
Instance Types

This section outlines the approach, presents and discusses the results, draws its implications, and
summarizes the findings for RQ1:

RQ1 – Performance Variability within Instance Types

Does the performance of equally configured cloud instances vary relevantly?

5.2.1 Approach
To answer this research question, the relevant subset of data is prepared and the variability is
assessed by calculating the RSDs as formally defined in Equation 5.1

RSD = 100 · σm

m
(5.1)

where σm is the absolute standard deviation and m is the arithmetic mean of the metric m.
Starting from the extensive interim data set (cf., Section 5.1 and Figure 4.1), the iterations are

aggregated, the relevant metrics are selected, and the relevant samples are filtered. Iteration ag-
gregation groups all samples by the unique provider instance id, which every VM instance ob-
tains when being acquired. Calculating the average for numerical metrics or the mode (i.e., most
often appearing value) for nominal metrics allows to compare the performance of different in-
stances of the same instance type. Metric selection reduces the originally 86 metrics to 38 relevant
metrics to answer this research question. Most of the ignored metrics are static by design for the
RMIT benchmark (e.g., version numbers, fixed workload durations) and for the instance type (e.g.,
number of CPU cores, available memory). Others include execution metadata (e.g., RMIT bench-
mark order), runtime statistics (e.g., disk utilization during FIO benchmark), non-mean values
(e.g., 95% percentiles), or redundant metrics (e.g., IOPS because of bandwidth). The redundant
metrics are identified by calculating all pairwise correlations. Table 5.4 lists the selected and dis-
carded metrics exhibiting perfect correlation (i.e., ρ = 1) according to the Pearson Correlation
Coefficient (PCC). Sample filtering only considers configurations with more than 30 samples as
relevant for this analysis and ensures sample size consistency. These filtered configurations fo-
cus on smaller instance types because prior work has shown that they tend to deliver less stable
performance than larger instance types [LC16, WN10, Kot14] besides being more cost-efficient to
benchmark. Furthermore, randomized sub-sampling is applied to ensure that every configuration
uses the same number of samples (i.e., 33). The use of a local random seed ensures reproducibility
of the sampling process. All these steps are implemented as RapidMiner processes and automated
via a shell script7.

To assess overall performance variability, the distribution of the RSDs is summarized for each
relevant configuration using a combined violin and dot plot to attribute for its non-normal dis-
tribution. An RSD is considered to be relevant if it exceeds the threshold of 5%, following the
definition of a large benchmarking study [LC16]. These steps are implemented as an RScript8 and
also available on Github9.

7https://github.com/joe4dev/cwb-analysis/tree/master/rq1
8https://www.r-project.org/
9https://github.com/joe4dev/cwb-analysis/blob/master/rq1/rsd-plots.R

https://github.com/joe4dev/cwb-analysis/tree/master/rq1
https://www.r-project.org/
https://github.com/joe4dev/cwb-analysis/blob/master/rq1/rsd-plots.R


46 Chapter 5. Results

Selected Discarded

fio/4k-seq-write-bandwidth fio/4k-seq-write-iops

fio/8k-rand-read-iops fio/8k-rand-read-bandwidth

sysbench/mutex-latency sysbench/mutex-duration

sysbench/threads-1-latency sysbench/threads-1-duration

sysbench/threads-128-latency sysbench/threads-128-duration

Table 5.4: Redundant Metrics

5.2.2 Results
Figure 5.1 summarizes the variability in terms of RSD for each relevant configuration using violin
plots with annotated mean values. All medians are clearly below the 5% threshold and almost all
means, denoted by the blue diamond, lie underneath this relevant variability threshold. Only the
mean for the configuration m3.large (eu) exceeds the 5% threshold due to few clear outliers that
exhibit large distances (factor 8-20) from the median. Thus, performance does not vary relevantly
for the majority of benchmarks in all these tested configurations.

5.2.3 Discussion
This result is fairly surprising and contrasts the findings of prior work. Many benchmarking
studies repeatedly confirmed large variability in performance between supposedly identical in-
stances [FJV+12, OZL+13, SDQR10, LYKZ10, DPC10, CGPS12, WN10, BS10, EKKJP10, OZN+12].
Concerning Amazon EC2, all these studies exclusively focus on instance types of the first genera-
tion10. A more recent study [LC16] additionally included three second generation instance types
and has shown that their performance is considerably more stable according to their experiments
conducted between July and August in 2014. Taking m3.large as an example for such a second
generation instance type, a direct comparison of the exact same CPU benchmark (i.e., Sysbench
Single Thread) revealed that their RSD is identical at a very predictable level of 0.13%. For the
first generation instance type m1.small (Amazon’s oldest instance type announced in 200610), the
same direct comparison indicates more stable CPU performance due to eliminated hardware het-
erogeneity. Consistently serving the same CPU models could reduce the RSD from 3.19% (2014)
to 0.25% (2017) in the European region and from 12.81% to 0.30% in the North American re-
gion. Nevertheless, its more than two times higher RSD compared to larger instance types such
as m3.large is presumably caused by noisy neighbors due to resource sharing of the underlying
hardware for small instance types such as m1.small. Amazon confirms the presence of shared
resources for m1.small when prohibiting vulnerability and penetration testing on this instance
type11.

File I/O performance became substantially more stable moving from HDD-backed storage to
SSD-backed storage. Although using the same benchmark tool as in [LC16], the File I/O results
are not directly comparable because they tested a combined read and write workload on HDD
storage while this study tests different I/O types (write/read), I/O modes (sequential/random),
and block sizes (1m/4k) on SSD storage. Nevertheless, contrasting to their observed substantial

10https://aws.amazon.com/blogs/aws/ec2-instance-history/
https://aws.amazon.com/blogs/aws/new-ec2-second-generation-standard-instances-and-price-
reductions-1/

11https://aws.amazon.com/security/penetration-testing/

https://aws.amazon.com/blogs/aws/ec2-instance-history/
https://aws.amazon.com/blogs/aws/new-ec2-second-generation-standard-instances-and-price-reductions-1/
https://aws.amazon.com/blogs/aws/new-ec2-second-generation-standard-instances-and-price-reductions-1/
https://aws.amazon.com/security/penetration-testing/


5.2 RQ1 – Performance Variability within Instance Types 47

●●●●●●
●●●●●●●

●●●●●

●●

●●
●●

●●

●●

●●

●

●●

●

●

●
●

●

●●●●●●●
●●●●●●●

●●●

●●●●

●●

●

●

●●
●

●

●

●●

●
●

●

●

●●

●●●●●●●●●●●●●●
●●●●●●

●●●●●●
●●●

●●

●

●
●

●

●

●

●

●●●●●●●●●●●●●●●
●●●

●●●
●●●●

●●●●
●●

●●

●

●

●

●
●

●●●●●●●●●●●●

●●
●●

●●●●

●●●

●

●

●●●●

●

●

●

●

●

●

●

●

●

4.41 4.3
3.16 3.32

6.83

0

5

10

20

30

40

50

m1.small (eu) m1.small (us) m3.medium (eu) m3.medium (us) m3.large (eu)

Configuration [Instance Type (Region)]

R
el

at
iv

e 
S

ta
nd

ar
d 

D
ev

ia
tio

n 
(R

S
D

) 
[%

]

Figure 5.1: Variability per Configuration



48 Chapter 5. Results

variability ranging from 20% to almost 100% RSD, sequential write throughput with larger block
size performed remarkably stable with RSDs mostly below 1.5%. Scenarios with smaller block
sizes and random I/O mode inherently performed less stable with RSDs in the intervals [5, 14]%
for write and [12, 22]% for read I/O types. The lower level I/O benchmark FIO confirmed this
generally low variability with RSDs below 10% for both of its I/O scenarios: 4k Sequential Write
and 8k Random Read.

Most surprisingly, network performance achieved almost perfect stability, which contrasts
the 25% RSD observed several years ago between March and April in 2012 [FJV+12]. Presum-
ably, AWS fundamentally changed their approach to intra-AZ networking and might perform
customer-based placement optimizations using strategies such as placement groups12.

Amazon’s shifts towards delivering more stable performance has been also observed in an-
other recent experiment with a Web serving workload [DISL17], which yielded RSDs below the
5% threshold. The results in this thesis provide further evidence for this observation and expand
its validity to a broad range of micro and application benchmarks.

5.2.4 Implications

The nowadays largely stable performance (i.e., low variability) for equally configured cloud in-
stances has several implications for researchers and practitioners.

Research presented several approaches that exploit performance variability, especially caused
by hardware heterogeneity, to reduce costs up to 30% [OZL+13, OZN+12] or improve perfor-
mance up to 5% for CPU and 35% for network workloads [FJV+12]. The results of this thesis
suggest that such instance seeking approaches, also called placement gaming, are not worthwhile
anymore. Furthermore, cloud benchmarking studies spent a lot of resources into obtaining rele-
vant sample sizes to achieve statistically plausible results within typical confidence intervals (i.e.,
95% or 99%). While a single sample is sufficient for many benchmarks to achieve the 99% confi-
dence interval, around 10 to 20 samples are required for less stable benchmarks for the 95% con-
fidence interval. Thus, the data indicates that benchmarking efforts can be reduced considerably
because fewer sample sizes suffice especially for highly stable categories such as CPU or intra-AZ
network performance. This motivates new areas of research because collecting a relevant amount
of performance data for a broad range of instance types becomes more viable. For example, RQ2
investigates whether micro benchmark measurements from different configurations can profile
and estimate application performance across different instance types.

For practitioners, stable performance delivers a fair offer and is attractive for variability-
sensitive use cases such as running software performance test suites. In a fair offer, every cloud
customer consistently obtains the same performance for equally specified services. The results
indicate that customers can trust Amazon’s instance type specification and do not have to be con-
cerned about getting poorly performing instances. It also alleviates the threat that few optimizing
customers (e.g., Netflix allegedly13) obtain better performing instances than regular users. Further,
software performance test suites are susceptible to platform-induced performance variability be-
cause their goal is to detect changes in performance at the code-level. Thus, lower variability
reduces the interference factor and requires less iterations to detect code-level regressions with
high confidence. Therefore, cloud computing with its seemingly unlimited computing resources,
provides an attractive model to offload and parallelize long running software performance test
suites.

12http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/placement-groups.html
13https://www.reddit.com/r/aws/comments/547xbx/netflix_found_5x_performance_variation_

between/

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/placement-groups.html
https://www.reddit.com/r/aws/comments/547xbx/netflix_found_5x_performance_variation_between/
https://www.reddit.com/r/aws/comments/547xbx/netflix_found_5x_performance_variation_between/


5.3 RQ2 – Application Performance Estimation across Instance Types 49

5.2.5 Summary
The data supports that performance for equally configured cloud instances does not vary rele-
vantly for most benchmarks in Amazon’s EC2 cloud, neither for small, medium, and large in-
stance types tested in two different regions. Whereas some prior work becomes inapplicable, this
also opens up new avenues for future research.

5.3 RQ2 – Application Performance Estimation
across Instance Types

RQ2 – Application Performance Estimation across Instance Types

Can a set of micro benchmarks estimate application performance for cloud instances of
different configurations?

This research question addresses the feasibility of estimating application performance from
micro benchmarks and is divided into two sub-questions, which are dedicated to evaluate the
accuracy of the estimates (RQ2.1) and identify the most suitable micro benchmark estimators
(RQ2.2). For both sub-questions, the approach, discussion, implications, and summary is pre-
sented in the following.

5.3.1 RQ2.1 – Estimation Accuracy

RQ2.1 – Estimation Accuracy

How accurate can a set of micro benchmarks estimate application performance?

Approach

To answer this research question, the relevant subset of data is prepared and a linear regression
model is trained and evaluated for every application benchmark.

Starting from the extensive interim data set, data preparation selects the relevant metrics, en-
hances the data set with instance type metadata, filters the relevant samples, and labels training
and test data. Metric selection follows the same procedure as described for RQ1 (5.2.1). Data
enrichment then maps the CWB benchmark name to instance type metadata such as its API name
(e.g., m1.small), number of virtual CPUs, or ECU. Sample filtering selects three iterations from the
same execution for each instance type in the European data center. These limited sample sizes are
motivated by the findings from RQ1 and should exemplify the practical applicability of this ap-
proach. Finally, the boundary instance types (i.e., the smallest and largest) are labeled as training
data to capture the largest possible instance type diversity.

A forward feature selection algorithm is combined with linear regression to automatically
identify the best performing set of features (i.e., metrics) regarding the relative error performance
criterion. Forward feature selection starts with an empty set of features and iteratively adds a
previously unused feature. In a sub-process, the candidate feature set is then used to build a lin-
ear regression model with the training data. This model is applied to the test data and the mean



50 Chapter 5. Results

relative error is calculated between the predicted and actual application performance. In doing
so, only features that yield the highest gain for the performance criterion (i.e., minimize the rela-
tive error) are kept. This sub-process is repeated until no additional feature can further improve
the relative error. At the end, forward feature selection outputs a weighted feature list and var-
ious performance indicators such as the relative error or the Pearson correlation coefficient, also
known as squared correlation or R2. All these steps are implemented as RapidMiner processes
and available on Github14. Furthermore, every prediction model was reproduced in an RScript
and manually reviewed regarding its prediction outcome and visual fitting.

Results

Table 5.5 reports the estimation accuracy in terms of the relative estimation error achieved by
the best micro benchmark predictor for WPBench and MDSim. For WPBench, all three sce-
narios (i.e., read, search, write) are evaluated regarding their metrics Response Time (RT) and
Throughput (TP). The boundary instance types are labeled as training data (i.e., Train) and the rel-
ative estimation error is listed per instance type. Notice that no suitable micro benchmark could
be found for the WPBench throughput metrics across all instance types. Therefore, the through-
put results only include instance types with one and two virtual CPUs. Hence, these results are
less significant and not directly comparable against the other application metrics. For each in-
stance type, the averaged relative error over the three iterations indicates how far the estimated
performance consistently lies above (cf., +) or below (cf.,-) the actual performance. Wherever the
actual values are spread on both sides of the regression line, the pipe (cf., |) indicates the absolute
error due to high variability between iterations. In summary, the mean Relative Error (RE) com-
bined with the max RE indicates the fitness of cross instance performance estimation. The max
RE estimates the upper bound for the relative error assuming that the smallest instance performs
worst and the largest instance performs best. This provides an orientation on how far the mini-
mum and maximum of the application performance is spread. Hence, a high max RE implies that
high accuracy (i.e., low relative error) is harder to achieve. Conversely, a low max RE diminishes
the significance of low relative errors because they are more likely to occur by chance.

The most accurate estimates are achieved by MDSim and the read and search scenarios of
WPBench as shown in Table 5.5. Duration estimates for MDSim reach 8.2% accuracy for its du-
ration values in the interval [69.7, 491.7] seconds (cf., max RE of 600%). The read and search
scenarios of WPBench exhibit by far the largest spread in their response time distribution in the
interval [65.8, 1457.8]. This spread is illustrated in Figure 5.2 for the read scenario and results in
a maximum relative error of 21000%. Nevertheless, moderate relative errors of 12.5% and 17.5%
are achieved on average. Furthermore, these linear regression models are statistically significant
at the 0.001 level and thus support the assumption of low variability shown in RQ1.

The estimation accuracies for the throughput of the WPBench read and search scenario are
relatively weak given the reduced test set and therefore further limited spread in their application
performance data. However, the mean relative error is strongly driven by the high overestimation
(i.e., lower actual throughput than estimated) of m3.medium application performance and the
high underestimation (i.e., higher actual throughput than estimated) of m1.large performance as
illustrated in Figure 5.3. Both regression models also show statistical significance at the 0.001
level.

The relative errors for the WPBench write scenario are generally high, particularly given the
relative low spread of their performance data. Additionally, even within the same instance type,
application performance is overestimated and underestimated simultaneously and therefore pro-
vided as modulus value. Furthermore, their regression models are less significant at the 0.05
(response time) and the 0.1 (throughput) level, which adds further evidence for the existence

14https://github.com/joe4dev/cwb-analysis/tree/master/rq2

https://github.com/joe4dev/cwb-analysis/tree/master/rq2


5.3 RQ2 – Application Performance Estimation across Instance Types 51

WPBench

Read Search Write MDSim

Instance Type RT TP RT TP RT TP Duration

m1.small Train Train Train Train Train Train Train

m3.medium (pv) +6.9 -17.9 +7.5 -21.1 |21.5| |23.9| +5.4

m3.medium (hvm) +14.7 +64.3 +6.1 +64.9 |42.6| |26.4| +5.8

m1.medium +9.0 -8.4 +9.0 -13.5 |36.2| |26.1| -0.2

m3.large -17.8 +2.2 -25.6 +2.7 |53.1| |33.0| -10.2

m1.large +17.0 -66.6 +17.5 -68.5 |40.9| |41.6| -0.8

c3.large -17.4 +0.8 -26.1 +2.3 |51.5| |32.7| -10.1

m4.large -3.6 +0.2 -12.8 +0.5 |52.8| |34.1| -12.4

c4.large -9.7 Train -18.4 Train |50.3| Train -12.5

c3.xlarge -26.3 -34.4 +32.8 -11.2

c4.xlarge -2.2 -17.6 +26.1 -13.7

c1.xlarge Train Train Train Train

Mean RE 12.5 23.0 17.5 24.8 40.8 31.1 8.2

Max RE 2100 310 1810 280 140 120 600

Table 5.5: Relative Estimation Errors [%]



52 Chapter 5. Results

●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

0

1000

2000

25 50 75 100

Sysbench CPU − Multi Thread Duration [s]

W
P

B
en

ch
 R

ea
d 

−
 R

es
po

ns
e 

T
im

e 
[m

s]

Instance Type

●

●

●

●

●

●

●

●

●

●

●

●

m1.small

m3.medium (pv)

m3.medium (hvm)

m1.medium

m3.large

m1.large

c3.large

m4.large

c4.large

c3.xlarge

c4.xlarge

c1.xlarge

Group

● test

train

Figure 5.2: Linear Regression Model for WPBench Read – Response Time



5.3 RQ2 – Application Performance Estimation across Instance Types 53

●●●

●
●●

●
●●

●●●

●●●

●●●

●●●

1

2

3

100000 200000 300000 400000

StressNg − Network Ping [bogo operations/s]

W
P

B
en

ch
 R

ea
d 

−
 T

hr
ou

gh
pu

t [
re

qu
es

ts
/s

]

Instance Type

●

●

●

●

●

●

●

●

●

m1.small

m3.medium (pv)

m3.medium (hvm)

m1.medium

m3.large

m1.large

c3.large

m4.large

c4.large

Group

● test

train

Figure 5.3: Linear Regression Model for WPBench Read – Throughput



54 Chapter 5. Results

of performance variability between different iterations. This hypothesis is further investigated
by performing statistical tests for the 5 instance types used in RQ1 with relevant sample sizes
between 33 and 61 executions (cf., Table 5.2) from the interim data set. A One-way ANOVA
test [BGT12] is performed upon the iteration column as its group attribute. The results confirm
that both response time and throughput vary greatly (i.e., particularly high f value) between the
3 different iterations with high significance (i.e., p < 0.001) for all 5 tested instance types. ANOVA
is an omnibus test and therefore only confirms a statistically significant difference between the
iterations but does identify the specific iterations that differ statistically significant from each
other. Therefore, a Mann Whitney U-Test, also called Wilcoxon rank-sum test or Wilcoxon-Mann-
whitney test, is conducted to demonstrate that even the differences between all pairs of iterations
are statistically significant for all 5 instance types. The increasing performance between the in-
dividual iterations becomes apparent in the linear regression model shown in Figure 5.4. Notice
that the statistical tests have also shown that apart from WPBench, none of the other benchmarks
exhibit statistically significant differences between iterations.

Discussion

The attribution of relative errors to instance types in Table 5.5 reveals certain patterns that might
originate from differences in virtualization or processor generations between instance types. For
the throughput in the WPBench read and search scenarios, the estimation for the HVM version
of m3.medium overestimates application throughput by ~64%. Interestingly, its PV counterpart
achieves similar application performance but performs ~50% worse in its estimator benchmark
StressNg – Network Ping. This might be caused by additional latency introduced in the VMM
for PV instances for privileged instructions (i.e., system calls). Conversely, HVM instances can
bypass the VMM for operations that are slow when being emulated such as network calls15, which
dominate the workload of the StressNg – Network Ping benchmark.

For the same WPBench scenarios, application throughput for m1.large is underestimated by
~67%. Interestingly, its official successor m3.large, following Amazon’s upgrade path for previ-
ous generation instances16, fits the regression line almost perfectly (~2.4% RE). While m3.large
provides only slightly better throughput (~10%) than its predecessor, it outperforms m1.large by
almost factor 3 in the network Ping benchmark. Figure 5.3 visualizes this observation with the
double-vCPU instance type m1.large being on par with the single-vCPU instance types in the
lower corner. Further investigation of the CPU models that are served for these instance types
reveals that the turbo boost frequency of 2.8 Gigahertz (GHz)17 for m1.large is considerably lower
than for the more modern CPU model served for m3.large, which reaches 3.3 GHz18 in turbo
mode. The turbo mode can dynamically increase the clock frequency of a single CPU core as
needed if other cores are idling and is thus capable of delivering higher single core performance
with its additional thermal and power headroom provided by an extra CPU core19. This expla-
nation conforms with the other modern two-vCPU instances types (e.g., c3.large20) reaching even
higher frequencies in turbo mode (e.g., up to 3.6 GHz) by specification. Notice that the actual de-

15https://www.slideshare.net/AmazonWebServices/deep-dive-on-delivering-amazon-ec2-
instance-performance-64919720

16https://aws.amazon.com/ec2/previous-generation/
17https://ark.intel.com/products/64590/Intel-Xeon-Processor-E5-2650-20M-Cache-2_00-

GHz-8_00-GTs-Intel-QPI
18https://ark.intel.com/products/75275/Intel-Xeon-Processor-E5-2670-v2-25M-Cache-2_50-

GHz
19http://www.intel.com/content/www/us/en/architecture-and-technology/turbo-boost/turbo-

boost-technology.html
20http://ark.intel.com/products/75277/Intel-Xeon-Processor-E5-2680-v2-25M-Cache-2_80-

GHz

https://www.slideshare.net/AmazonWebServices/deep-dive-on-delivering-amazon-ec2-instance-performance-64919720
https://www.slideshare.net/AmazonWebServices/deep-dive-on-delivering-amazon-ec2-instance-performance-64919720
https://aws.amazon.com/ec2/previous-generation/
https://ark.intel.com/products/64590/Intel-Xeon-Processor-E5-2650-20M-Cache-2_00-GHz-8_00-GTs-Intel-QPI
https://ark.intel.com/products/64590/Intel-Xeon-Processor-E5-2650-20M-Cache-2_00-GHz-8_00-GTs-Intel-QPI
https://ark.intel.com/products/75275/Intel-Xeon-Processor-E5-2670-v2-25M-Cache-2_50-GHz
https://ark.intel.com/products/75275/Intel-Xeon-Processor-E5-2670-v2-25M-Cache-2_50-GHz
http://www.intel.com/content/www/us/en/architecture-and-technology/turbo-boost/turbo-boost-technology.html
http://www.intel.com/content/www/us/en/architecture-and-technology/turbo-boost/turbo-boost-technology.html
http://ark.intel.com/products/75277/Intel-Xeon-Processor-E5-2680-v2-25M-Cache-2_80-GHz
http://ark.intel.com/products/75277/Intel-Xeon-Processor-E5-2680-v2-25M-Cache-2_80-GHz


5.3 RQ2 – Application Performance Estimation across Instance Types 55

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1000

2000

3000

4000

25 50 75 100

Sysbench CPU − Multi Thread Duration [s]

W
P

B
en

ch
 W

rit
e 

−
 R

es
po

ns
e 

T
im

e 
[m

s]

Instance Type

●

●

●

●

●

●

●

●

●

●

●

●

m1.small

m3.medium (pv)

m3.medium (hvm)

m1.medium

m3.large

m1.large

c3.large

m4.large

c4.large

c3.xlarge

c4.xlarge

c1.xlarge

Group

● test

train

Figure 5.4: Linear Regression Model for WPBench Write – Response Time



56 Chapter 5. Results

livered CPU models might differ compared to their official manufacturer specifications because
AWS operates custom designed processor models in its EC221 data centers.

Implications

The ability to estimate application performance with an acceptable accuracy highlights the use-
fulness of micro benchmarks. However, technological factors such as the type of virtualization
(i.e., PV vs HVM) or processor generations (low vs high turbo mode) can have a profound impact
on estimation accuracy and are not captured in the linear model. It seems that modern instance
types are more prone to micro benchmark-favoring optimizations and previous generation in-
stance types are more susceptible to micro benchmark-hampering penalties. Thus, choosing a
modern instance as training data could lead to general application performance underestimation,
while the choice of such a previous generation instance could potentially overestimate application
performance.

Benchmarks should be executed multiple times and statistical tests should be conducted to
investigate whether performance varies significantly between different iterations. The write sce-
nario of WPBench demonstrates how benchmark-induced variability between iterations severely
impacts the meaningfulness of a model. Beyond benchmark-induced variability, this methodol-
ogy would also detect platform-induced variability caused by bursting schemes such as the EC2
CPU bursting 22 [LS15] or EBS I/O bursting23.

Summary

The results show that micro benchmarks are able to estimate the performance for a scientific
application with a mean relative error below 10% and the response time of a Web serving appli-
cation with a relative error between 10% and 20%. Throughput estimates are less accurate with
a relative error around 25% and the write scenario of the Web serving benchmark suffered from
benchmark-induced performance variability and thus exhibits high error rates above 30%.

5.3.2 RQ2.2 – Micro Benchmark Selection
RQ2.2 – Micro Benchmark Selection

Which subset of micro benchmarks estimates application performance most accurately?

Approach

The approach for this research question follows the feature selection process as described in the
approach section for RQ2.1.

Results

For the response time across all scenarios of WPBench and the duration of MDSim, forward fea-
ture selection included the Sysbench – CPU Multi Thread micro benchmark in the linear model.

21https://aws.amazon.com/blogs/aws/new-c4-instances/
22http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/t2-instances.html#t2-instances-

cpu-credits
23http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html#

EBSVolumeTypes_gp2

https://aws.amazon.com/blogs/aws/new-c4-instances/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/t2-instances.html#t2-instances-cpu-credits
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/t2-instances.html#t2-instances-cpu-credits
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html#EBSVolumeTypes_gp2
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html#EBSVolumeTypes_gp2


5.3 RQ2 – Application Performance Estimation across Instance Types 57

For the WPBench write scenario, two additional benchmarks were proposed with equal weights
but rejected because their contribution to the model was statistically insignificant with p=0.393 for
fio/8k-rand-read-latency and p=0.450 for fio/4k-seq-write-bandwidth. Similarly, for MDSim, the
additional attribute fio/8k-rand-read-iops was discarded due to its p-value 0.0976 at the border of
being insignificant. To adjust for the reduced sample size for the throughput metrics, the feature
selection algorithm was modified to select the single best performing metric. Subsequently, the
WPBench read and search scenario both choose the StressNg – Network ICMP Ping benchmark.
As this benchmark is also in the top 5 list for the write scenario and the difference in terms of
relative error is only marginal (<1.3%), it has been manually selected to ensure consistency.

Table 5.6 and Table 5.7 presents the best benchmark estimators and two instance type specifi-
cation metrics serving as a baseline. For each estimator, the mean relative error with its range and
the squared correlation R2 are provided. R-squared, also known as coefficient of determination,
measures how well the data fits the regression line where 0% implies that the model captures no
variability in the data and 100% implies that the model perfectly fits all data on the regression
line. Finally, the max RE is provided analogous to its previous definition in 5.3.1.

For the response time of the WPBench read and search scenarios and the duration of MDSim
presented in Table 5.6, the multi thread Sysbench – CPU benchmark serves as a good estimator.
The almost perfect fit of the regression model (i.e., R2 > 98.9) together with low relative errors
below 10% for MDSim and between 10% and 20% for the read and write scenarios of WPBench
indicate that this multi thread CPU benchmark can be a very suitable estimator. Further, the
vastly inferior results for the single thread version of the same benchmark reveal that they cannot
be used interchangeably. In addition, the improvements upon the vCPU and ECU baselines are
substantial. Although ECU is already ~50% more accurate than using the number of vCPUs,
the Sysbench benchmark outperforms this baseline by factor 17 to 29 in terms of relative error.
The CPU benchmark also fits the regression line considerably better with over 33% improvement
upon squared correlation compared to the baseline metrics.

For the throughput of the WPBench read and search scenarios, the StressNg – Network ICMP
ping benchmark serves as moderate estimator. The ICMP benchmark works well as a WPBench
throughput estimator for the majority of the instance types. However, two outliers strongly affect
the mean relative error as discussed in Section 5.3.1 and illustrated in Figure 5.3. Therefore, the
mean relative error is only marginally better (<5%) than the baseline and the squared correlation
is even worse than the baseline metrics.

Discussion

While the results support the conjecture that these estimates could be meaningful for applications
with a resource profile similar to micro benchmarks, such as MDSim, the linear model also works
surprisingly well for a more diverse application such as WPBench. The MDSim application is
very CPU heavy, potentially stresses the main memory, but does not involve I/O operations. De-
spite the fact that MDSim performs higher-level real-world computations compared to low-level
artificial micro benchmark workloads, such as iterating over meaningless loops, resource usage
of MDSim is presumably very similar to a CPU micro benchmark. Conversely, the WPBench ap-
plication is much more heterogeneous and its resource footprint is not inherently obvious using
various kind of system resources. Beyond CPU-driven request processing, WPBench receives re-
quests and sends responses over the network, reads and writes content from the file system, and
requires the scheduler to switch between its various database or Web server processes. There-
fore, it is not apparent whether micro benchmarks are able to capture such a varying workload.
Nevertheless, the results revealed that the linear model is able to assess application response time
surprisingly well, prevalently with error rates below 20%.



58 Chapter 5. Results

WPBench MDSim

Benchmark Read RT Search RT Write RT Duration

Sysbench – CPU Multi Thread Duration

RE±Range 12.5±7.1 17.5±8.7 40.8±34.9 8.2±4.7

R2 99.2 98.9 42.5 99.8

Sysbench – CPU Single Thread Duration

RE±Range 454±520 411.72±451 41.7±20.8 232±163

R2 85.1 83.8 38.7 87.3

Baseline

vCPUs

RE±Range 616±607 546±515 127±89.8 317±184

R2 68.0 68.7 28.1 68.3

ECU

RE±Range 359±219 319±185.13 100±79.17 206±95

R2 64.6 64.7 27.3 65.6

Max RE 2100 1810 140 600

Table 5.6: WPBench Response Time and MDSim Duration Estimators [%]

WPBench

Benchmark Read TP Search TP Write TP

StressNg – Network ICMP Ping IOPS

RE±Range 23.0±27.5 24.8±27.4 31.1±16.9

R2 66.4 57.4 25.6

Baseline

vCPUs

RE±Range 42.7±13.0 40.1±10.9 38.6±25.9

R2 94.7 96.7 29.6

ECU

RE±Range 27.0±30.5 27.3±25.8 30.6±19.4

R2 91.5 87.8 30.1

Max RE 310 280 120

Table 5.7: WPBench Throughput Estimators [%]



5.3 RQ2 – Application Performance Estimation across Instance Types 59

Implications

Concurrency plays an important role when estimating the performance across instance types with
a different number of vCPUs. The Sysbench – CPU single thread versus multi thread scenario
revealed that micro benchmarks need to match its estimation target application in terms of opti-
mization for multi core (cf., multi vCPUs) platforms. It also shows that CPU micro benchmarks
are suited to identify optimal instance types for workloads with a particular concurrency level
(e.g., single threaded). Further, it emphasizes that benchmark parameters, such as the level of
concurrency, can have a profound impact on results.

The baseline metrics vCPU and ECU are insufficient to estimate the performance of certain
applications. The number of vCPUs fails to capture fundamental technological differences such
as different CPU clock frequencies and thus exhibits large relative errors for many instance types.
Although the ECU metric yields considerably better estimates than vCPU, its relative error is
still unacceptably high above 100%. Therefore, ECUs could be used at most to obtain a very
rough estimate if no other metric is available but application specific micro benchmarks should
be favored to obtain the most accurate application performance estimate. Finally, the number of
vCPUs should never be used in isolation for estimating application performance.

Summary

The multi thread Sysbench – CPU benchmark serves as the best estimator for the response time
of WPBench and the duration of MDSim. In all these cases, the benchmark-based performance
estimates vastly outperform the baseline estimates using ECU or the number of vCPUs. For in-
stance types with one and two vCPUs, the StressNg – Network ICMP Ping benchmark estimates
the WPBench throughput best. However, its generally good fit is severely impacted by outliers
and thus improvement upon the baseline is only marginal on average.





Chapter 6

Final Remarks

This chapters summarizes the contributions, concludes this thesis, and outlines future work.

6.1 Conclusion
This thesis investigated the relevancy of widely-used artificial micro benchmarks to estimate real-
world application performance. A cloud benchmarking methodology has been designed that
combines single-instance and multi-instance micro and application benchmarks. The methodol-
ogy has been instantiated in a study with a market-leading cloud provider and a linear estimation
model has been evaluated. Over 60000 measurements were collected to answer the research ques-
tions from Chapter 1:

RQ1 – Performance Variability within Instance Types

Does the performance of equally configured cloud instances vary relevantly?

Outcome: No. Performance does not vary relevantly for most benchmarks in Amazon’s EC2
cloud for all intensively tested configurations in two different regions.

The low performance variability motivates inter-instance type performance estimation be-
cause only the sufficiency of small sample sizes makes such an approach practically viable:

RQ2 – Application Performance Estimation across Instance Types

Can a set of micro benchmarks estimate application performance for cloud instances of
different configurations?

Outcome: Yes. Selective micro benchmarks are able to estimate certain application perfor-
mance metrics with acceptable accuracy.



62 Chapter 6. Final Remarks

The sub-questions of RQ2 address the accuracy of the application performance estimates and
the selection of suitable micro benchmark estimators:

RQ2.1 – Estimation Accuracy

How accurate can a set of micro benchmarks estimate application performance?

Outcome: A scientific computing application achieves relative error rates below 10% and
the response time of a Web serving application is estimated with a relative error between 10%
and 20%.

RQ2.2 – Micro Benchmark Selection

Which subset of micro benchmarks estimates application performance most accu-
rately?

Outcome: A single CPU benchmark was able to estimate the duration of a scientific com-
puting application and the response time of a Web serving application most accurately. It has
also been shown that benchmarks cannot necessarily be used interchangeably even if they
test the same resource and benchmark parameters can have a profound impact.

This thesis substantiates the suitability of micro benchmarks for estimating application perfor-
mance but also highlights that only selected micro benchmarks are relevant regarding a particular
application. Thus, this thesis motivates the use of such estimates during instance type selection as
more insightful guidance compared to ordinal scale instance type rankings. It also emphasizes the
importance of cloud benchmarking by showing that benchmark-based metrics can vastly improve
estimation accuracy upon using instance specification-based metrics. Further, this thesis corrobo-
rates the dynamicity of cloud environments with indications that the tested cloud provider shifts
from delivering best effort performance to specifically designed performance levels with high
predictability.

6.2 Future Work
This section discusses possible extensions to this thesis and outlines a vision on how to reduce
application profiling effort.

One non-addressed issue in this thesis is the threat to what extent the results are applicable
to other cloud providers and application domains (cf., threats to external validity Section 4.5.3).
Beyond covering traditional instance types offered by well-known providers [Dor16], such as
Microsoft Azure1, a particularly interesting extension would examine individually tailorable in-
stance types such as offered by Century Link2 or Google’s Cloud Platform3. Applications from
other domains may find other suitable micro benchmark estimators or may reveal that the pro-
posed linear regression model is insufficient to capture their miscellaneous performance bottle-
necks.

The evaluation of the estimation model in this thesis is limited to single-instance applications.
However, today’s cloud environments are dominated by scale-out workload [FAK+12], where the

1https://docs.microsoft.com/en-us/azure/virtual-machines/virtual-machines-windows-
sizes

2https://www.ctl.io/servers/#Features
3https://cloud.google.com/custom-machine-types/

https://docs.microsoft.com/en-us/azure/virtual-machines/virtual-machines-windows-sizes
https://docs.microsoft.com/en-us/azure/virtual-machines/virtual-machines-windows-sizes
https://www.ctl.io/servers/#Features
https://cloud.google.com/custom-machine-types/


6.2 Future Work 63

components of an application are distributed across multiple instances. Therefore, a possible ex-
tension to apply the estimation model for multi-instance applications is outlined in the following.
As a black-box approach, the estimation model is inherently incapable to optimize the sizing of
individual instances for multi-instance applications. Nevertheless, estimates for individual appli-
cation components can be combined by leveraging application-specific knowledge. For instance,
given a throughput estimate for an application component behind a load balancer, the overall
application throughput behaves asymptotically additive depending on the number of applica-
tion components. Isolating individual application components remains a big challenge but can
be alleviated by modular application architectures such as Microservices4. The estimation model
is directly applicable to application components that can be isolated in the context of a VM. This
implies that the load generator, external dependencies of the application component, and their
inter-component network connections must not impose a bottleneck upon the application per-
formance of interest. Thus, for application components without external dependencies (e.g., the
database in a typical three-tier Web application stack), the estimation model is directly applicable
given the existence of a suitable load test. For application components with external dependen-
cies (e.g., the Web server has a dependency to the database), isolation can be partially simulated
by intentionally over-provisioning external dependencies during the training phase of the model.

Currently, the estimation approach is evaluated in a traditional performance testing setting
and primarily presented to support initial cloud instance selection. However, it is generally fea-
sible to apply this approach to any kind of instance-type dependent application performance
metrics. Therefore, future work can evaluate its accuracy with runtime performance metrics from
different instance types to reduce dedicated performance testing efforts. Runtime metrics from
performance monitoring tools such as Newrelic5 can build a fine-grained application profile from
representative real-world workloads for an instance type. Different instance types can be ac-
quired to process production workload and simultaneously obtain training data. Starting from
two training samples, the estimation approach can guide further instance type selection or reveal
better offers from other providers. In this way, cloud instance selection can become an integral
part of vertical scaling strategies instead of being perceived as wasted effort.

One key issue that limits the applicability of the proposed estimation approach in industrial
settings is the need for application deployment and performance testing on at least two cloud
instance types (i.e., the boundary instances labeled as training data). Contemporary technology
facilitates application deployment with the advent of container platforms such as Docker6 or con-
figuration management software such as Chef7 or Puppet8. However, many applications still
involve considerable manual labor to deploy and test in a cloud environment. Therefore, future
work could explore whether VMM-based resource throttling (e.g., CPU cap9) or tool-based re-
source limiting (e.g., Cpulimit10) are able to simulate a wide range of instance types on a single
machine. Such a visionary instance type simulator would allow to obtain training data for a large
range of imaginary instance type configurations in a one-time effort without the need to port the
application into the cloud. However, the training of the model in a different environment raises
the big threat how representative such artificially introduced resource limits can capture real-
world cloud resources. Notice that elaborate deployment is less relevant for micro benchmarks
because they are typically easy to install and also generic. Thus, the continuous profiling effort
across many instance types can be shared by a community or offered as a service by the cloud
provider as recommended by Evangelinou et al. [ECA+16].

4https://martinfowler.com/articles/microservices.html
5https://newrelic.com/
6https://www.docker.com/
7https://www.chef.io/chef/
8https://puppet.com/
9https://wiki.xen.org/wiki/Credit_Scheduler#Cap

10https://github.com/opsengine/cpulimit

https://martinfowler.com/articles/microservices.html
https://newrelic.com/
https://www.docker.com/
https://www.chef.io/chef/
https://puppet.com/
https://wiki.xen.org/wiki/Credit_Scheduler#Cap
https://github.com/opsengine/cpulimit




Appendix A

Abbreviations

AMI Amazon Machine Image

API Application Programming Interface

App Application

AWS Amazon Web Services

AZ Availability Zone

CDN Content Delivery Network

CMS Content Management System

CPU Central Processing Unit

CSV Comma-Separated Values

CWB Cloud WorkBench

DSL Domain Specific Language

EC2 Elastic Compute Cloud

ECU EC2 Compute Unit

EBS Elastic Block Storage

FIO Flexible I/O

GB Gigabyte (1 GB = 109 Bytes = 1 000 000 000 Bytes)

GHz Gigahertz

GiB Gibibyte (1 GiB = 230 Bytes = 1 073 741 824 Bytes)

GPU Graphical Processing Unit

HDD Hard Disk Drive

HVM Hardware-assisted Virtual Machine

IaaS Infrastructure-as-a-Service

IaC Infrastructure as Code



66 Chapter A. Abbreviations

ICMP Internet Control Message Protocol

IDE Integrated Development Environment

I/O Input/Output

IOPS Input/Output Operations per Second

IP Internet Protocol

KiB Kibibyte (1 KiB = 210 Bytes = 1 024 Bytes)

KVM Kernel-based Virtual Machine

LAN Local Area Network

LQN Layered Queuing Network

MCT Multiple Consecutive Trials

MIT Multiple Interleaved Trials

MDSim Molecular Dynamics Simulation

NIST National Institute of Standards and Technology

OO Object Oriented

OLTP Online Transaction Processing

PaaS Platform-as-a-Service

PCC Pearson Correlation Coefficient

PV Para-Virtualization

RAM Random-Access Memory

RE Relative Error

REST Representational State Transfer

RMIT Randomized Multiple Interleaved Trials

RQ Research Question

RSD Relative Standard Deviation

RT Response Time

SaaS Software-as-a-Service

SD Standard Deviation

SSD Solid State Disk

SSH Secure Shell

SUT System Under Test

TCP Transmission Control Protocol



67

TP Throughput

UDP User Datagram Protocol

VM Virtual Machine

VMM Virtual Machine Monitor (i.e., the hypervisor)

VPC Virtual Private Cloud

WPBench WordpressBench (i.e., the Wordpress benchmark)





Bibliography

[AB17] Ali Abedi and Tim Brecht. Conducting repeatable experiments in highly variable
cloud computing environments. In 8th ACM/SPEC International Conference on Perfor-
mance Engineering (ICPE), April 2017.

[ACC+02] Cristiana Amza, Anupam Chanda, Alan L Cox, Sameh Elnikety, Romer Gil, Karthick
Rajamani, Willy Zwaenepoel, Emmanuel Cecchet, and Julie Marguerite. Specifica-
tion and implementation of dynamic web site benchmarks. In Workload Characteri-
zation, 2002. WWC-5. 2002 IEEE International Workshop on, pages 3–13. IEEE, 2002.

[AFG+09] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy H. Katz,
Andrew Konwinski, Gunho Lee, David A. Patterson, Ariel Rabkin, and Matei Za-
haria. Above the clouds: A berkeley view of cloud computing. Technical Report
UCB/EECS-2009-28, EECS Department, University of California, Berkeley, February
2009. URL: http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-
2009-28.html.

[AI10] Syed A. Ahson and Mohammad Ilyas. Cloud Computing and Software Services: Theory
and Techniques. CRC Press, Inc., Boca Raton, FL, USA, 1st edition, 2010. URL: http:
//www.crcpress.com/product/isbn/9781439803158.

[ALC+17] Omid Alipourfard, Hongqiang Harry Liu, Jianshu Chen, Shivaram Venkataraman,
Minlan Yu, and Ming Zhang. Cherrypick: Adaptively unearthing the best cloud con-
figurations for big data analytics. In 14th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 17). USENIX Association, 2017.

[BBG11] Rajkumar Buyya, James Broberg, and Andrzej M. Goscinski. Cloud computing: Prin-
ciples and Paradigms, volume 87. John Wiley & Sons, March 2011. URL: http:
//eu.wiley.com/WileyCDA/WileyTitle/productCd-0470887990.html.

[BCDF10] Eric Brochu, Vlad M Cora, and Nando De Freitas. A tutorial on bayesian optimiza-
tion of expensive cost functions, with application to active user modeling and hier-
archical reinforcement learning. arXiv preprint arXiv:1012.2599, 2010.

[BCX+06] Kevin J. Bowers, Edmond Chow, Huafeng Xu, Ron O. Dror, Michael P. Eastwood,
Brent A. Gregersen, John L. Klepeis, Istvan Kolossvary, Mark A. Moraes, Federico D.
Sacerdoti, John K. Salmon, Yibing Shan, and David E. Shaw. Scalable algorithms for
molecular dynamics simulations on commodity clusters. In Proceedings of the 2006
ACM/IEEE Conference on Supercomputing, SC ’06, 2006. doi:10.1145/1188455.
1188544.

http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html
http://www.crcpress.com/product/isbn/9781439803158
http://www.crcpress.com/product/isbn/9781439803158
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470887990.html
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470887990.html
http://dx.doi.org/10.1145/1188455.1188544
http://dx.doi.org/10.1145/1188455.1188544


70 BIBLIOGRAPHY

[BdDPP16] Alessio Botta, Walter de Donato, Valerio Persico, and Antonio Pescapé. Integration
of cloud computing and internet of things: A survey. Future Generation Computer
Systems, 56:684 – 700, 2016. doi:10.1016/j.future.2015.09.021.

[BDF+03] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf
Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of virtualization.
SIGOPS Oper. Syst. Rev., 37(5):164–177, October 2003. doi:10.1145/1165389.
945462.

[BGT12] Linda S. Fidell Barbara G. Tabachnick. Using Multivariate Statistics. 6th Edition.
Pearson, 6 edition, 2012.

[BKKL09] Carsten Binnig, Donald Kossmann, Tim Kraska, and Simon Loesing. How is the
weather tomorrow?: Towards a benchmark for the cloud. In Proceedings of the Second
International Workshop on Testing Database Systems (DBTest ’09), pages 9:1–9:6. ETH
Zurich, 2009. doi:10.1145/1594156.1594168.

[BKR09] Steffen Becker, Heiko Koziolek, and Ralf Reussner. The palladio component model
for model-driven performance prediction. Journal of Systems and Software, 82(1):3
– 22, 2009. Special Issue: Software Performance - Modeling and Analysis. doi:
10.1016/j.jss.2008.03.066.

[BLL+14] A. H. Borhani, P. Leitner, B. S. Lee, X. Li, and T. Hung. Wpress: An application-
driven performance benchmark for cloud-based virtual machines. In 2014 IEEE 18th
International Enterprise Distributed Object Computing Conference, pages 101–109, Sept
2014. doi:10.1109/EDOC.2014.23.

[BNC+16] Dave Bartoletti, Lauren E. Nelson, Andras Cser, Sophia I. Vargas, William Mar-
torelli, Liz Herbert, Andre Kindness, Paul Miller, Charlie Dai, and Frank Liu. Predic-
tions 2017: Customer-obsessed enterprises launch cloud’s second decade, Novem-
ber 2016.

[BS10] Sean Kenneth Barker and Prashant Shenoy. Empirical evaluation of latency-sensitive
application performance in the cloud. In Proceedings of the First Annual ACM SIGMM
Conference on Multimedia Systems (MMSys ’10), pages 35–46, 2010. doi:10.1145/
1730836.1730842.

[BYV+09] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg, and Ivona
Brandic. Cloud computing and emerging it platforms: Vision, hype, and reality
for delivering computing as the 5th utility. Future Generation Computer Systems,
25(6):599–616, 2009. doi:10.1016/j.future.2008.12.001.

[CBMG16] Mauro Canuto, Raimon Bosch, Mario Macias, and Jordi Guitart. A methodology for
full-system power modeling in heterogeneous data centers. In Proceedings of the 9th
International Conference on Utility and Cloud Computing (UCC ’16), pages 20–29, 2016.
doi:10.1145/2996890.2996899.

[CDG+08] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach,
Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable: A
distributed storage system for structured data. ACM Trans. Comput. Syst., 26(2):4:1–
4:26, June 2008. doi:10.1145/1365815.1365816.

[CGPS12] D. Cerotti, M. Gribaudo, P. Piazzolla, and G. Serazzi. Flexible cpu provisioning in
clouds: A new source of performance unpredictability. In 2012 Ninth International
Conference on Quantitative Evaluation of Systems, pages 230–237, Sept 2012. doi:10.
1109/QEST.2012.23.

http://dx.doi.org/10.1016/j.future.2015.09.021
http://dx.doi.org/10.1145/1165389.945462
http://dx.doi.org/10.1145/1165389.945462
http://dx.doi.org/10.1145/1594156.1594168
http://dx.doi.org/10.1016/j.jss.2008.03.066
http://dx.doi.org/10.1016/j.jss.2008.03.066
http://dx.doi.org/10.1109/EDOC.2014.23
http://dx.doi.org/10.1145/1730836.1730842
http://dx.doi.org/10.1145/1730836.1730842
http://dx.doi.org/10.1016/j.future.2008.12.001
http://dx.doi.org/10.1145/2996890.2996899
http://dx.doi.org/10.1145/1365815.1365816
http://dx.doi.org/10.1109/QEST.2012.23
http://dx.doi.org/10.1109/QEST.2012.23


BIBLIOGRAPHY 71

[CMS13] Matheus Cunha, Nabor Mendonça, and Américo Sampaio. A declarative environ-
ment for automatic performance evaluation in iaas clouds. In Sixth IEEE Interna-
tional Conference on Cloud Computing (CLOUD), pages 285–292, June 2013. doi:
10.1109/CLOUD.2013.12.

[Con16] The SPEC Consortium. Spec cloud™ iaas 2016 benchmark, 2016. URL: http://
spec.org/cloud_iaas2016/ [cited 2016-09-08].

[Dav16] Christian Davatz. Who provides the most bang for the buck? an application-
benchmark based performance analysis of two iaas providers. Master’s thesis, Uni-
versity of Zurich – Software Evolution and Architecture Lab s.e.a.l., August 2016.

[DISL17] Christian Davatz, Christian Inzinger, Joel Scheuner, and Philipp Leitner. An ap-
proach and case study of cloud instance type selection for multi-tier web applica-
tions. In 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Comput-
ing (CCGrid), 2017.

[Dor16] Lydia Leong; Gregor Petri; Bob Gill; Mike Dorosh. Magic quadrant for cloud in-
frastructure as a service, worldwide, August 2016. URL: https://www.gartner.
com/doc/reprints?id=1-2G2O5FC&ct=150519.

[DPC10] Jiang Dejun, Guillaume Pierre, and Chi-Hung Chi. EC2 Performance Analysis for Re-
source Provisioning of Service-Oriented Applications, pages 197–207. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2010. doi:10.1007/978-3-642-16132-2_19.

[ECA+16] Athanasia Evangelinou, Michele Ciavotta, Danilo Ardagna, Aliki Kopaneli, George
Kousiouris, and Theodora Varvarigou. Enterprise applications cloud rightsizing
through a joint benchmarking and optimization approach. Future Generation Com-
puter Systems, pages –, 2016. doi:10.1016/j.future.2016.11.002.

[EGHO16] Rania El-Gazzar, Eli Hustad, and Dag H. Olsen. Understanding cloud computing
adoption issues: A delphi study approach. Journal of Systems and Software, 118:64 –
84, 2016. doi:https://doi.org/10.1016/j.jss.2016.04.061.

[EKKJP10] Y. El-Khamra, H. Kim, S. Jha, and M. Parashar. Exploring the performance fluc-
tuations of hpc workloads on clouds. In 2010 IEEE Second International Confer-
ence on Cloud Computing Technology and Science, pages 383–387, Nov 2010. doi:
10.1109/CloudCom.2010.84.

[FAK+12] Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos, Mohammad Al-
isafaee, Djordje Jevdjic, Cansu Kaynak, Adrian Daniel Popescu, Anastasia Ailamaki,
and Babak Falsafi. Clearing the clouds: a study of emerging scale-out workloads on
modern hardware. In Proceedings of the seventeenth international conference on Architec-
tural Support for Programming Languages and Operating Systems (ASPLOS ’12), pages
37–48, 2012. doi:10.1145/2150976.2150982.

[FAS+13] Enno Folkerts, Alexander Alexandrov, Kai Sachs, Alexandru Iosup, Volker Markl,
and Cafer Tosun. Benchmarking in the cloud: What it should, can, and cannot be.
In Selected Topics in Performance Evaluation and Benchmarking, volume 7755 of Lecture
Notes in Computer Science, pages 173–188. Springer, 2013. doi:10.1007/978-3-
642-36727-4_12.

[FE04] Ian Foster and Carl Kesselman (Eds.). The Grid 2. Blueprint for a New Computing
Infrastructure. Morgan Kaufmann, 2 edition, 2004.

http://dx.doi.org/10.1109/CLOUD.2013.12
http://dx.doi.org/10.1109/CLOUD.2013.12
http://spec.org/cloud_iaas2016/
http://spec.org/cloud_iaas2016/
https://www.gartner.com/doc/reprints?id=1-2G2O5FC&ct=150519
https://www.gartner.com/doc/reprints?id=1-2G2O5FC&ct=150519
http://dx.doi.org/10.1007/978-3-642-16132-2_19
http://dx.doi.org/10.1016/j.future.2016.11.002
http://dx.doi.org/https://doi.org/10.1016/j.jss.2016.04.061
http://dx.doi.org/10.1109/CloudCom.2010.84
http://dx.doi.org/10.1109/CloudCom.2010.84
http://dx.doi.org/10.1145/2150976.2150982
http://dx.doi.org/10.1007/978-3-642-36727-4_12
http://dx.doi.org/10.1007/978-3-642-36727-4_12


72 BIBLIOGRAPHY

[FJV+12] Benjamin Farley, Ari Juels, Venkatanathan Varadarajan, Thomas Ristenpart,
Kevin D. Bowers, and Michael M. Swift. More for your money: Exploiting per-
formance heterogeneity in public clouds. In Proceedings of the Third ACM Symposium
on Cloud Computing (SoCC ’12), pages 20:1–20:14, 2012. doi:10.1145/2391229.
2391249.

[FvdM16] Amy Ann Forni and Rob van der Meulen. Gartner says by 2020, a corporate "no-
cloud" policy will be as rare as a "no-internet" policy is today, June 2016. URL:
http://www.gartner.com/newsroom/id/3354117.

[FZRL08] I. Foster, Y. Zhao, I. Raicu, and S. Lu. Cloud computing and grid computing 360-
degree compared. In Grid Computing Environments Workshop, pages 1–10, Nov 2008.
doi:10.1109/GCE.2008.4738445.

[Gar07] Simson L. Garfinkel. An evaluation of amazon’s grid computing services: Ec2, s3
and sqs. Technical report, Center for, 2007.

[Gre13] Brendan Gregg. Systems Performance: Enterprise and the Cloud. Prentice Hall, 2013.

[Ham09] James Hamilton. Cooperative expendable micro-slice servers (cems): low cost, low
power servers for internet-scale services. In Conference on Innovative Data Systems
Research (CIDR’09)(January 2009), 2009.

[Hil09] David Hilley. Cloud computing: A taxonomy of platform and infrastructure-level
offerings. Technical Report GIT-CERCS-09-13, Georgia Institute of Technology,
2009. URL: http://www.cercs.gatech.edu/tech-reports/tr2009/git-
cercs-09-13.pdf.

[HK10] Christina N. Höfer and Georgios Karagiannis. Taxonomy of cloud computing
services. In IEEE Globecom Workshops, pages 1345–1350, December 2010. doi:
10.1109/GLOCOMW.2010.5700157.

[HPE+06] Kenneth Hoste, Aashish Phansalkar, Lieven Eeckhout, Andy Georges, Lizy K. John,
and Koen De Bosschere. Performance prediction based on inherent program sim-
ilarity. In Proceedings of the 15th International Conference on Parallel Architectures and
Compilation Techniques (PACT ’06), pages 114–122, 2006. doi:10.1145/1152154.
1152174.

[IOY+11] Alexandru Iosup, Simon Ostermann, Nezih Yigitbasi, Radu Prodan, Thomas
Fahringer, and Dick Epema. Performance analysis of cloud computing services for
many-tasks scientific computing. IEEE Transactions on Parallel and Distributed Sys-
tems, 22(6):931–945, June 2011. doi:10.1109/TPDS.2011.66.

[IYE11] Alexandru Iosup, Nezih Yigitbasi, and Dick Epema. On the performance vari-
ability of production cloud services. In 11th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (CCGrid), pages 104–113, May 2011. doi:
10.1109/CCGrid.2011.22.

[JKC+13] Deepal Jayasinghe, Josh Kimball, Siddharth Choudhary, Tao Zhu, and Calton Pu.
An automated approach to create, store, and analyze large-scale experimental data
in clouds. In 14th IEEE International Conference on Information Reuse and Integration
(IRI), pages 357–364, August 2013. doi:10.1109/IRI.2013.6642493.

http://dx.doi.org/10.1145/2391229.2391249
http://dx.doi.org/10.1145/2391229.2391249
http://www.gartner.com/newsroom/id/3354117
http://dx.doi.org/10.1109/GCE.2008.4738445
http://www.cercs.gatech.edu/tech-reports/tr2009/git-cercs-09-13.pdf
http://www.cercs.gatech.edu/tech-reports/tr2009/git-cercs-09-13.pdf
http://dx.doi.org/10.1109/GLOCOMW.2010.5700157
http://dx.doi.org/10.1109/GLOCOMW.2010.5700157
http://dx.doi.org/10.1145/1152154.1152174
http://dx.doi.org/10.1145/1152154.1152174
http://dx.doi.org/10.1109/TPDS.2011.66
http://dx.doi.org/10.1109/CCGrid.2011.22
http://dx.doi.org/10.1109/CCGrid.2011.22
http://dx.doi.org/10.1109/IRI.2013.6642493


BIBLIOGRAPHY 73

[JSM+12] Deepal Jayasinghe, Galen Swint, Simon Malkowski, Jack Li, Qingyang Wang, Junhee
Park, and Calton Pu. Expertus: A generator approach to automate performance test-
ing in iaas clouds. In 5th IEEE International Conference on Cloud Computing (CLOUD),
pages 115–122, June 2012. doi:10.1109/CLOUD.2012.98.

[KKL+07] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony Liguori. kvm: the linux
virtual machine monitor. In Proceedings of the Linux symposium, volume 1, pages 225–
230, 2007.

[Kot14] Lars Kotthoff. Reliability of computational experiments on virtualised hardware.
Journal of Experimental & Theoretical Artificial Intelligence, 26(1):33–49, 2014. doi:
10.1080/0952813X.2013.784812.

[KPP+02] Barbara A Kitchenham, Shari Lawrence Pfleeger, Lesley M Pickard, Peter W Jones,
David C. Hoaglin, Khaled El Emam, and Jarrett Rosenberg. Preliminary guidelines
for empirical research in software engineering. IEEE Transactions on Software Engi-
neering, 28(8):721–734, 2002.

[KSHD13] Steffen Kächele, Christian Spann, Franz J. Hauck, and Jörg Domaschka. Beyond iaas
and paas: An extended cloud taxonomy for computation, storage and networking.
In 6th IEEE/ACM International Conference on Utility and Cloud Computing (UCC), pages
75–82, December 2013. doi:10.1109/UCC.2013.28.

[LC16] Philipp Leitner and Jürgen Cito. Patterns in the chaos — a study of performance
variation and predictability in public iaas clouds. ACM Trans. Internet Technol.,
16(3):15:1–15:23, April 2016. doi:10.1145/2885497.

[LOZC12] Zheng Li, Liam O’Brien, He Zhang, and Rainbow Cai. On a catalogue of metrics
for evaluating commercial cloud services. In Proceedings of the 2012 ACM/IEEE 13th
International Conference on Grid Computing (GRID ’12), pages 164–173, 2012. doi:
10.1109/Grid.2012.15.

[LS15] Philipp Leitner and Joel Scheuner. Bursting With Possibilities – an Empirical Study
of Credit-Based Bursting Cloud Instance Types. In 8th IEEE/ACM International Con-
ference on Utility and Cloud Computing (UCC), 2015. doi:10.1109/UCC.2015.39.

[LYKZ10] Ang Li, Xiaowei Yang, Srikanth Kandula, and Ming Zhang. Cloudcmp: Comparing
public cloud providers. In Proceedings of the 10th ACM SIGCOMM Conference on Inter-
net Measurement (IMC ’10), pages 1–14, 2010. doi:10.1145/1879141.1879143.

[LZK+11] Ang Li, Xuanran Zong, Srikanth Kandula, Xiaowei Yang, and Ming Zhang. Cloud-
prophet: Towards application performance prediction in cloud. In Proceedings of
the ACM SIGCOMM 2011 Conference (SIGCOMM ’11), pages 426–427, 2011. doi:
10.1145/2018436.2018502.

[LZZ+11] Ang Li, Xuanran Zong, Ming Zhang, Srikanth Kandula, and Xiaowei Yang. Cloud-
prophet: predicting web application performance in the cloud. ACM SIGCOMM
Poster, 2011.

[Mag09] Frederic Magoules. Fundamentals of Grid Computing: Theory, Algorithms and Technolo-
gies. Chapman & Hall/CRC, 1st edition, 2009.

[MG11] Peter Mell and Timothy Grance. The nist definition of cloud computing. Technical
Report 800-145, National Institute of Standards and Technology (NIST), September
2011. URL: http://csrc.nist.gov/publications/nistpubs/800-145/
SP800-145.pdf.

http://dx.doi.org/10.1109/CLOUD.2012.98
http://dx.doi.org/10.1080/0952813X.2013.784812
http://dx.doi.org/10.1080/0952813X.2013.784812
http://dx.doi.org/10.1109/UCC.2013.28
http://dx.doi.org/10.1145/2885497
http://dx.doi.org/10.1109/Grid.2012.15
http://dx.doi.org/10.1109/Grid.2012.15
http://dx.doi.org/10.1109/UCC.2015.39
http://dx.doi.org/10.1145/1879141.1879143
http://dx.doi.org/10.1145/2018436.2018502
http://dx.doi.org/10.1145/2018436.2018502
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf


74 BIBLIOGRAPHY

[Nad14] Satya Nadella. Mobile first, cloud first [online]. March 2014. Press Briefing of
Microsoft CEO. URL: http://www.microsoft.com/en-us/news/speeches/
2014/03-27nadella.aspx [cited 2014-07-07].

[OIY+10] Simon Ostermann, Alexandria Iosup, Nezih Yigitbasi, Radu Prodan, Thomas
Fahringer, and Dick Epema. A performance analysis of ec2 cloud computing ser-
vices for scientific computing. In Cloud Computing, volume 34 of Lecture Notes of the
Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering,
pages 115–131. Springer, 2010. doi:10.1007/978-3-642-12636-9_9.

[OZL+13] Z. Ou, H. Zhuang, A. Lukyanenko, J. K. Nurminen, P. Hui, V. Mazalov, and A. Ylä-
Jääski. Is the same instance type created equal? exploiting heterogeneity of public
clouds. IEEE Transactions on Cloud Computing, 1(2):201–214, July 2013. doi:10.
1109/TCC.2013.12.

[OZN+12] Zhonghong Ou, Hao Zhuang, Jukka K. Nurminen, Antti Ylä-Jääski, and Pan
Hui. Exploiting hardware heterogeneity within the same instance type of amazon
ec2. In Proceedings of the 4th USENIX Conference on Hot Topics in Cloud Computing
(HotCloud’12), 2012. URL: http://dl.acm.org/citation.cfm?id=2342763.
2342767.

[PG74] Gerald J. Popek and Robert P. Goldberg. Formal requirements for virtualizable third
generation architectures. Commun. ACM, 17(7):412–421, July 1974. doi:10.1145/
361011.361073.

[PG17] Christy Pettey and Laurence Goasduff. Gartner says worldwide public cloud ser-
vices market to grow 18 percent in 2017, February 2017. URL: http://www.
gartner.com/newsroom/id/3616417.

[Por16] Matthew Portnoy. Virtualization Essentials. Sybex, 2 edition, 2016.

[PSF16] Tapti Palit, Yongming Shen, and Michael Ferdman. Demystifying cloud benchmark-
ing. In 2016 IEEE International Symposium on Performance Analysis of Systems and Soft-
ware (ISPASS), pages 122–132, April 2016.

[RS95] J. A. Rolia and K. C. Sevcik. The method of layers. IEEE Transactions on Software
Engineering, 21(8):689–700, Aug 1995. doi:10.1109/32.403785.

[Sch14] Joel Scheuner. Cloud WorkBench. Bachelor’s thesis, University of Zurich – Software
Evolution and Architecture Lab s.e.a.l., 2014.

[SCLG15] Joel Scheuner, Jürgen Cito, Philipp Leitner, and Harald Gall. Cloud WorkBench:
Benchmarking IaaS Providers based on Infrastructure-as-Code. In Proceedings of the
24th International World Wide Web Conference (WWW’15) - Demo Track, 2015.

[SDQR10] Jörg Schad, Jens Dittrich, and Jorge-Arnulfo Quiané-Ruiz. Runtime measurements
in the cloud: Observing, analyzing, and reducing variance. Proceedings of the VLDB
Endowment, 3(1):460–471, September 2010. doi:10.14778/1920841.1920902.

[SHG+13] M. Silva, M.R. Hines, D. Gallo, Qi Liu, Kyung Dong Ryu, and D. Da Silva. Cloud-
bench: Experiment automation for cloud environments. In IEEE International Confer-
ence on Cloud Engineering (IC2E), pages 302–311, March 2013. doi:10.1109/IC2E.
2013.33.

http://www.microsoft.com/en-us/news/speeches/2014/03-27nadella.aspx
http://www.microsoft.com/en-us/news/speeches/2014/03-27nadella.aspx
http://dx.doi.org/10.1007/978-3-642-12636-9_9
http://dx.doi.org/10.1109/TCC.2013.12
http://dx.doi.org/10.1109/TCC.2013.12
http://dl.acm.org/citation.cfm?id=2342763.2342767
http://dl.acm.org/citation.cfm?id=2342763.2342767
http://dx.doi.org/10.1145/361011.361073
http://dx.doi.org/10.1145/361011.361073
http://www.gartner.com/newsroom/id/3616417
http://www.gartner.com/newsroom/id/3616417
http://dx.doi.org/10.1109/32.403785
http://dx.doi.org/10.14778/1920841.1920902
http://dx.doi.org/10.1109/IC2E.2013.33
http://dx.doi.org/10.1109/IC2E.2013.33


BIBLIOGRAPHY 75

[SLCG14] Joel Scheuner, Philipp Leitner, Jürgen Cito, and Harald Gall. Cloud WorkBench -
Infrastructure-as-Code Based Cloud Benchmarking. In Proceedings of the 6th IEEE In-
ternational Conference on Cloud Computing Technology and Science (CloudCom’14), 2014.
doi:10.1145/2740908.2742833.

[Spe17] Cloud Spectator. Price-performance analysis of the top 10 public iaas vendors. Tech-
nical report, Cloud Spectator, 2017.

[SS05] Christopher Stewart and Kai Shen. Performance modeling and system management
for multi-component online services. In Proceedings of the 2Nd Conference on Sympo-
sium on Networked Systems Design & Implementation - Volume 2, NSDI’05, pages 71–
84, Berkeley, CA, USA, 2005. USENIX Association. URL: http://dl.acm.org/
citation.cfm?id=1251203.1251209.

[SSS+08] Will Sobel, Shanti Subramanyam, Akara Sucharitakul, Jimmy Nguyen, Hubert
Wong, Arthur Klepchukov, Sheetal Patil, Armando Fox, and David Patterson.
Cloudstone: Multi-platform, multi-language benchmark and measurement tools for
web 2.0, 2008.

[VAM+14] Blesson Varghese, Ozgur Akgun, Ian Miguel, Long Thai, and Adam Barker. Cloud
benchmarking for performance. In Cloud Computing Technology and Science (Cloud-
Com), 2014 IEEE 6th International Conference on, pages 535–540. IEEE, 2014.

[VAM+16] Blesson Varghese, Ozgur Akgun, Ian Miguel, Long Thai, and Adam Barker. Cloud
benchmarking for maximising performance of scientific applications. arXiv preprint
arXiv:1608.00406, 2016.

[VRMCL08] Luis M. Vaquero, Luis Rodero-Merino, Juan Caceres, and Maik Lindner. A break in
the clouds: Towards a cloud definition. ACM SIGCOMM Computer Communication
Review, 39(1):50–55, January 2008. doi:10.1145/1496091.1496100.

[VSTB16] Blesson Varghese, Lawan Thamsuhang Subba, Long Thai, and Adam
Barker. Container-based cloud virtual machine benchmarking. arXiv preprint
arXiv:1601.03872, 2016.

[Wal08] Edward Walker. Benchmarking amazon ec2 for high-performance scientific comput-
ing. Usenix Login, 33(5):18–23, October 2008.

[WKP10] Hyrum K. Wright, Miryung Kim, and Dewayne E. Perry. Validity concerns in
software engineering research. In Proceedings of the FSE/SDP Workshop on Future
of Software Engineering Research (FoSER ’10), pages 411–414, 2010. doi:10.1145/
1882362.1882446.

[WLJ+16] Nianxin Wang, Huigang Liang, Yu Jia, Shilun Ge, Yajiong Xue, and Zhining Wang.
Cloud computing research in the {IS} discipline: A citation/co-citation analysis. De-
cision Support Systems, 86:35 – 47, 2016. doi:10.1016/j.dss.2016.03.006.

[WN10] Guohui Wang and T. S. Eugene Ng. The impact of virtualization on network perfor-
mance of amazon ec2 data center. In Proceedings IEEE INFOCOM, pages 1–9, March
2010. doi:10.1109/INFCOM.2010.5461931.

[XMNB13] Yunjing Xu, Zachary Musgrave, Brian Noble, and Michael Bailey. Bobtail: Avoiding
long tails in the cloud. In NSDI, volume 13, pages 329–342, 2013.

[Yin08] Robert K Yin. Case Study Research: Design and Methods. Applied Social Research
Methods. SAGE Publications, 4th edition, 2008.

http://dx.doi.org/10.1145/2740908.2742833
http://dl.acm.org/citation.cfm?id=1251203.1251209
http://dl.acm.org/citation.cfm?id=1251203.1251209
http://dx.doi.org/10.1145/1496091.1496100
http://dx.doi.org/10.1145/1882362.1882446
http://dx.doi.org/10.1145/1882362.1882446
http://dx.doi.org/10.1016/j.dss.2016.03.006
http://dx.doi.org/10.1109/INFCOM.2010.5461931


76 BIBLIOGRAPHY

[You17] M. Yousif. The state of the cloud. IEEE Cloud Computing, 4(1):4–5, Jan 2017. doi:
10.1109/MCC.2017.4.

[ZCB10] Qi Zhang, Lu Cheng, and Raouf Boutaba. Cloud computing: state-of-the-art and
research challenges. Journal of internet services and applications, 1(1):7–18, 2010. doi:
10.1007/s13174-010-0007-6.

[ZL11] Gong Zhang and Ling Liu. Why do migrations fail and what can we do about it? In
Proceedings of the 25th International Conference on Large Installation System Administra-
tion (LISA’11), pages 25–25, 2011.

http://dx.doi.org/10.1109/MCC.2017.4
http://dx.doi.org/10.1109/MCC.2017.4
http://dx.doi.org/10.1007/s13174-010-0007-6
http://dx.doi.org/10.1007/s13174-010-0007-6

	Introduction
	Goals and Contributions
	Thesis Outline

	Background
	Cloud Computing
	Service Models
	Cloud Infrastructure
	Virtual Machine Resources
	Virtualization

	Systems Performance Benchmarking
	Terminology
	Micro Benchmarking
	Web Application Benchmarking

	Cloud Benchmarking Automation
	Cloud WorkBench (CWB)


	Related Work
	Cloud Performance Variability
	Micro Benchmarking
	Application Benchmarking
	Cloud Instance Type Selection
	Application Performance Profiling
	Application Performance Prediction


	Methodology
	Process Overview
	Benchmark Design
	Cloud WorkBench
	Micro Benchmarks
	Molecular Dynamics Simulation (MDSim)
	Wordpress Benchmark

	Benchmark Execution
	Data Pre-Processing
	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity
	Reproducibility


	Results
	Benchmarking Data Set
	Instance Type Specifications
	Configurations and Sample Sizes
	Missing Values

	RQ1 – Performance Variability within Instance Types
	Approach
	Results
	Discussion
	Implications
	Summary

	RQ2 – Application Performance Estimation across Instance Types
	RQ2.1 – Estimation Accuracy
	RQ2.2 – Micro Benchmark Selection


	Final Remarks
	Conclusion
	Future Work

	Abbreviations

