
Department of Informatics

Mathis Kappeler
13-765-482
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Abstract

Due to drift, visual odometry systems do not provide a globally consistent map
[11]. SVO [10] by the RPG is a visual odometry system, specialized to use lit-
tle computational resources and provides a locally consistent map. A so called
SLAM (Simultaneous localization and mapping) system provides a globally con-
sistent map, which is needed to perform more tasks that require metric precision
at extended distances. The goal of this thesis is to lay the foundation needed to
turn SVO into an online SLAM system while preserving the SVO advantages.
We managed to turn SVO into an offline SLAM system, with online poten-
tial, by implementing a place recognition and loop closure producing bundle
adjustment constraints. We used the bag of words method to perform the place
recognition. Furthermore, we evaluated numerous parameters and methods for
a future online implementation.
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Nomenclature

Notation

A Matrices are written in capital letters

AT The transpose of A

Aij Cell at i, j of A. Where i is the row index and j the column index

~v Vectors

Acronyms and Abbreviations

CNN Convolutional neural network

BoW Bag-of-Words

MAV Micro Aerial Vehicle

ROS Robot Operating System

RPG Robotics and Perception Group

SLAM Simultaneous Localization and Mapping

VO Visual Odometry
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Chapter 1

Introduction

1.1 Motivation

Visual Odometry systems accumulate drift over time. This is a result of small
computation errors, coupled with the approximation error resulting from lin-
earizations. Due to this drift, a pure odometry system does not provide a
consistent global map [11]. To address problems where metric precision is re-
quired across extended distances, a globally consistent map is indispensable.

One method to reduce the error drift, without using other sensors but a camera,
is to recognize previously visited places, also referred to as place recognition and
loop closure [5]. Detecting loops and using the constraints to perform global
bundle adjustments will consecutively reduce the error in both the map and
the trajectory of the camera, resulting in a globally consistent map. The terms
place recognition and loop closure are not distinctively defined in literature. In
this thesis we use the term place recognition for detecting a previous observed
image scene and loop closure for adding the calculated constraint to the pose
graph. Adding place recognition and loop closure to an odometry system turns it
into a SLAM (Simultaneous localization and mapping) system. The RPG SVO
(Fast semi-direct monocular visual odometry) [10] is a sound VO system and
produces a locally consistent map. The objective of this thesis is to implement
place recognition and loop closure on top of SVO, to obtain a globally consistent
map. The place recognition part of this thesis is inspired the ORB-SLAM [20],
which addressed this issue under related constraints.

1.2 Related Work

Both place recognition and loop closure are topics on which a lot of research has
been done in the past two to three decades. These subjects are central topics
within SLAM, used in robotics. Papers which address these problems are: Fast
and incremental method for loop-closure detection using bags of visual words

1



2 1.3. Contribution

done by Angli et al. [4], Placeless place-recognition [19], Loop closure detection
in SLAM by combining visual and spatial appearance by Ho et al. [17], Ro-
bust place recognition for 3D range data based on point features by Steder et
al.[25] and Bags of binary words for fast place recognition in image sequences
by Gálvez-López et al. [12]. To just mention a few.
The main challenge of this thesis was to find a way to use SVO [10] as a ba-
sis and implement place recognition and loop closure on top of it. Our place
recognition was inspired by the work of Mur-Artal et al. [20], which addresses
the same problem setting in similar circumstances. Mur-Artal et al. are using
a Bag of Words approach for place recognition. Another approach is to use a
convolutional neural network like Gomez-Ojeda et al. [14]

1.3 Contribution

In this thesis, we were able to successfully implement a robust offline place
recognition, loop closure and bundle adjustment, on top of the RPG SVO system
[10]. Using the geometric verification detailed in Section 6.2 our method barely
yields false positives. Moreover, we were able to find ways to keep the real
time advantages of SVO in tact. This means we did not have to increase the
number of image features tracked by SVO, to get place recognition results. See
Section 5.2 for more details. Furthermore we explored the impact of various
parameters and methods on the precision and recall of the place recognition.
The contributions provide a basis for a future online implementation.



Chapter 2

Preliminaries

In this chapter we give some basic information about the core methods of this
thesis. These methods were implemented on top of SVO [10].

2.1 Place Recognition

Place recognition is is about redetecting previously observed image scenes. It
consists of the detection and verification of previous visited places. In Figure
2.1 is an example of a trajectory. If a camera travels along the yellow path,
a loop detection system should rerecognize the previously visited places within
the red square.

Figure 2.1: Google Maps image from the Malaga 7 dataset.

In this thesis we use place recognition based on images and its features. When
an image scene of frame A is recognized in frame B, we obtain a relationship
between two frames in the pose graph. This relation between the two frames is
displayed as two green dots in the Figure 2.2.
The approach we used in this thesis to rerecognize a place is known as the bag
of words method [24].

3



4 2.2. Place Recognition using the Bag of Words Model

Figure 2.2: SVO pose graph of the Malaga 7 dataset visualized in RVIZ.

2.2 Place Recognition using the Bag of Words
Model

One of the first steps of our place recognition pipeline is to determine BoW
matches. BoW is short for Bag of Words. The BoW model consists of the
following components:

� Images

� Features

� Descriptors

� Visual Words

� Vocabulary

� BoW Vector

� Score

The general goal of the Bag of Words Model is to classify images. First visual
features are detected within an image [18]. From these features descriptors are
extracted. Then the descriptors are organized into so called visual words. A
visual word is defined as a subset of the descriptor space, where descriptors are
considered to be similar. Words are defined by nearby descriptors taken from
large datasets. These nearby regions can be found by using k-means clustering
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[16] or similar methods. All the words together represent the vocabulary.
For a given image, the features are detected and described with a suitable de-
scription method. In our implementation we use ORB descriptors [22]. With
the help of the vocabulary one can look up what word the descriptor corresponds
to. For each frame a so called BoW vector is created which is a histogram of
the words within one image.
To compare two frames for a potential scene redetection, we use the TF-IDF
weighting [24] of their BoW vectors. TF-IDF is a product of the word frequency
and the inverse document frequency. The similarity score of a frame pair is high
when the TF-IDF weights correspond to each other.
Like ORB-SLAM [20] we use a so called reference score, which is the minimum
score obtained from consecutive frames observing at least one common land-
mark. This reference score acts as a flexible threshold. In our implementation,
the score between a potential match needs to be above the reference score. The
benefit of using a reference score is the threshold is adopted to a certain image
scene. This way the threshold is customized to the current location.

More information about the Bag of Words Model can be found here: [26].

2.3 Loop Closure

When a scene has been rerecognized, we want to use the resulting constraint
in the pose graph to reduce the drift error. This constraint is obtained by
calculating the translation and rotation between the two matched frames and
adding it to the pose graph. After adding a correct constraint to the pose graph,
one can run a global bundle adjustment, which will reduce the overall error of
the map and the trajectory of the camera.



Chapter 3

System Overview

In this chapter we give an overview of the different technical components rel-
evant in this thesis, including the components used to test a wide variation of
parameter settings. The colors used in the figures of this chapter, illustrate the
relation between the components.

3.1 SVO System and Data Extractor

Figure 3.1 illustrates the pipeline of SVO [10]. The Data Extractor represented
in blue color, is used to extract the needed information form SVO for further
evaluation, such as:

� The frame images

� The timestamp of the image

� The frame id

� The feature coordinates

� The track id of each feature, if tracked

� 3D coordinates of the landmarks

� The descriptor of the extracted feature

� The global pose estimate of each frame, with drift

6
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SVO

Frame Receiver

Data Extractor

Extract 
Information

Is Keyframe?

Yes

Save to 
VI-MAP

Figure 3.1: SVO Tracking and Mapping Pipeline in the red container (Figure
from the original paper) [10]. The data extractor,in the blue container retrieves
the data, necessary for place recognition, from SVO.

The information retrived from the data extractor in Figure 3.1 gets stored in
the VI-MAP, which is a mapping data structure developed by the ASL group
[1]. The VI-MAP is used for further offline processing, see Section 3.2.
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3.2 Place Recognition

In Figure 3.2 the process of the offline place recognition is illustrated. Essen-
tially, feature descriptors are matched with the BoW method to other relevant
feature descriptors. Frame pairs which contain enough matches are checked for
geometric consistency using Ransac, Random sample consensus. Matches which
pass Ransac are accepted as a valid place recognition. To see the impact which
the geometric verification has on the matching precision, see Subsection 6.2.

Place Recognizer

Get BoW matches 
for each Frame

Enough Matches? 

Verified Geometry

Yes

Extract Tanslation 
and Rotation

Yes

Global Bundel 
Adjustment

Load VI-MAP

Update 
VI-MAP

Figure 3.2: This Figure illustrates the logic of the place recognizer implementa-
tion. This process is based on the data stored in the VI-Map see Figure 3.1

.

3.3 Evaluation Pipeline

To be able to make a lot of tests with numerous parameters, we built an eval-
uation pipeline, as can be see in Figure 3.3. This pipeline retrieves the data
output from the subprocesses, namely the SVO Data Extractor component in
Figure 3.1 and the Place Recognizer component Figure 3.2. The data output is
then evaluated and visualized through various plots.
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Evaluation Pipeline

SVO with Data 
Extractor

Run Placegnizer

Execute and 
Retrieve Essential 

Data

Execute and 
Retrieve Essential 

Data

Ground Truth 
Information

Evaluate 
Information

Illustrate Data 
(Plots)

Figure 3.3: The Evaluation Pipeline is used to trigger the components with the
given parameter and store the outcomes as plots and other files.

To evaluate and compare the quality of the a method and the set of parameters
used, the evaluation pipeline produces performance plots and the ground truth
information provided by the datasets. Our evaluation method is explained in
more detail in Chapter 4 and the emerged results in Chapter 6.



Chapter 4

Evaluation Methods

In this chapter we discuss how we evaluated the quality of our place recognition.
We go through what datasets we use and which we had to dismiss. Finally we
explain what methods we use to illustrate our findings.

4.1 Evaluation Pipeline

The evaluation pipeline shown in Figure 3.3 is used to automating the test runs
and the following evaluation. Basically, it spawns all the component processes
and evaluates the resulting data. This pipeline was crucial, because some of the
test series were time intensive. For example, to produce a precision recall curve
as described in Subsection 4.5.3, where we varied the tolerance for the geometric
verification 6.2, we ran the place recognition up to 30 times on large data sets
with up to 3000 keyframes. Having an evaluation pipeline was very convenient
and gave us insights hard to get without it.

4.2 Ground Truth for Place Recognition

To evaluate the quality of the place recognition, we picked datasets which con-
tained a position ground truth, see Section 4.3. For each query frame, we need
to evaluate if the potential match is a false negative, true negative, false positive
or true positive. A common practice to evaluate place recognition, is to use a
time and a distance constraint on the frames, extracted from the ground truth
data [7].
We illustrate these constraints in Figure 4.1. The green line segments represent
trajectories from the past, where place recognition is possible, see line B and C
in Figure 4.1. The red line segment is the trajectory from the immediate past,
see line A in Figure 4.1. In this context, immediate is defined by a certain time
duration t∆, see Table 4.1. t∆ prevents matches to the immediate past which
should be not considered as a rerecognition. The arrow head represents the
current position. The green circle is an introduced radius rf in which passed

10
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frames need to redetect previous image scenes. Otherwise this will result in a
false negative, see line C in Figure 4.1. The blue circle is another introduced
radius, see ro in Table 4.1, in which redetection is optional, see line B in Figure
4.1. Optional frames will be evaluated in favor of the evaluated system.

B

C
A

Figure 4.1: In this figure we demonstrate how the ground truth is evaluated. By
two distance constraints and one time constraint. Illustrated by the two circles
and the lines respectively.

To express this formally we introduce some variables in Table 4.1. Additionally
we have the constraints depicted in the Equations 4.1.

Symbol Description
~pq Position of query place
~pd Position of database place
tq Time of query place
td Tim eof database place
rf Forced radius
ro Optional radius
t∆ Time ignored

Table 4.1: This table introduces the variables used within Section 4.2.

~pq 6= ~pd

rf < ro

t∆ > 0

tq > td + t∆

(4.1)

Case tp fp tn fn
If ~pq was matched to ~pq
|~pq − ~pd| ≤ ro ∧ tq − td > t∆ 1 0 0 0
|~pq − ~pd| > ro ∨ tq − td < t∆ 0 1 0 0
If ~pq did NOT match to any database place
∀~p w.r.t 4.1, |~pq − ~p| > rf 0 0 1 0
∀~p w.r.t 4.1, |~pq − ~p| ≤ rf 0 0 0 1

Table 4.2: Here we depict the possible cases of our evaluation. Given the pre-
vailing Constraints (4.1).
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The dataset ground truth containes a GPS coordinate for each second. We used
a weighted average to approximate the position for the frames in between two
ground truth positions. The resulting inaccuracy is neglectable.

4.3 Used Datasets

In general we were looking for datasets which have an adequate frame rate
and contain one or more loop closures. Depending on the speed of movement,
monocular SVO need a frame rate above 15 to keep track of the image features.
Moreover we need a ground truth to be able to evaluate our results. Furthermore
we preferred datasets on which similar work has published their results. So we
can compare and contrast our results to others.

4.3.1 Malaga 7

Malaga 7 is one of 15 datasets provided in Malaga dataset [6]. The 7th part
contains a loop. This dataset was convenient to test our system in the developing
phase. Convenient with respect to the manageable size, which made it easier
to test changes of our components. We collect the basic information about this
dataset in Table 4.3. The trajectory of the path is depicted in Figure 4.2.

Topic Value
Duration 106 s
Distance ∼ 0.7 km
Frame Rate ∼ 20
Description Around a small avenue.

Table 4.3: Malaga 7 Metrics

Figure 4.2: Trajectory of Malaga 7

4.3.2 Malaga 10

Malaga 10 is a relatively big data set with many loop closures and changing
light conditions. We collect the basic information about this dataset in Table
4.4. The trajectory of the path is depicted in Figure 4.3.
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Topic Value
Duration 865 s
Distance ∼ 5.7 km
Frame Rate ∼ 20
Description Multiple loop closures in a suburb area.

Table 4.4: Malaga 10 Metrics

Figure 4.3: Trajectory of Malaga 10

4.3.3 Malaga 6

Malaga 6 is dataset part is similar to Malaga 7, although a slightly longer
distance is traveled. Many image scenes in this dataset are similar to each other,
even being from two separate places. This can be seen in Figure 4.4, along with
camera trajectory. We collect the basic information about this dataset part in
Table 4.5.

Topic Value
Duration 230 s
Distance ∼ 1.2 km
Frame Rate ∼ 20
Description Around building blocks.



14 4.4. Evaluated Datasets

Table 4.5: Malaga 6 Metrics

Figure 4.4: Trajectory of Malaga 6

4.4 Evaluated Datasets

This section is about datasets we evluated, but did not use because of an insuf-
ficient frame rate relative to the movement. The problem is that SVO can lose
track if it does not redetect enough previous detected features.

� The St. Lucia dataset [2]

� The Kitti dataset [13]

SVO [10] has been run on Kitti in the past, but this only works using the stereo
images. Possibly, the St. Lucia dataset would also be trackable using the stereo
images. For this Thesis we used SVO in monocular mode only.

4.5 Illustration Methods

In this section we present and explain the used illustration methods. The il-
lustration methods are mainly usend in the Chapter 6 and Chapter 4. Instead
of explaining the first plot or each plot throughout this report, we choose to
centralize this here and referring to this description throughout the thesis.

4.5.1 Relevant Set

In the relevant set plot we illustrate when the system redetects a place in the
upper plot with the title ”Proposed Matched”. In the lower two plots we com-
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pare this to the ground truth matches. Where the ”Ground Truth Compul-
sory Match” are the matches according to the rf radius described in 4.2. The
”Ground Truth Feasible Match” are derived from the ro radius accordingly.
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Figure 4.5: Example relevant set plot.

This gives us a visual impression about the quality and quantity of the matches
and mismatches. On the x-axis we represent all the keyframes. The y-axis
represents a match with the value 1 and no match with the value 0.

4.5.2 Confusion Matrix

A confusion matrix, seen in 4.6, is one way to illustrate what keyframes are
matched to which other keyframes. Both x- and y-axis represents the the indexes
of the ordered keyframes. A dot in the 2D plane stands for a match between
the two corresponding keyframes. We choose only to represent a match from
the query frame to the database frame and not vice versa. This is why our
confusion matrices are asymmetric.
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Figure 4.6: Example confusion matrix plot.

4.5.3 Precision Recall Curve

The precision recall curve is a nice way to visualize the trade off between preci-
sion and recall based on the choice of one parameter. The precision represents
the ratio between true positives and the total detected positives:

tp

tp + fp
(4.2)

The recall is the ratio between the true positives and all the potentially positive
matches:

tp

tp + fn
(4.3)

See the sets in Figure 4.7.
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TP
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FP
R
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Retrieved Set

Precision

Recall

Figure 4.7: Illustration of TP, TN, FN, TN, sets and the sets used for the
precision recall curve. Furthermore, we illustrated the relevant and retrieved
set.

Let us assume that we change a threshold which determines if a score of a
potential match is counted as a match or not. If this threshold is high, the
recall value decreases but the precision increases. With a precision recall curve
over various tolerances, one can find a well suited tolerance threshold. If we
have a look at Figure 4.8, we can see that there is a threshold which leads to
a 0.9 precision and a 0.75 recall. Depending on the application this could be a
good threshold which results in a high recall and has a decent precision.
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Figure 4.8: Example precision recall curve plot.

4.5.4 Tolerance Recall Curve

After geometric verification the overall precision is usually one or close to one.
Consequently, recall is the changing factor in the precision recall curve, see
Subsection 4.5.3. Within the process of geometric verification, we use a tolerance
which represents the square of the pixel radius in which the projection needs to
be, to count as an inlier. We write more about the tolerance in Subsection 6.3.
To illustrate what tolerance leads to what recall we created the tolerance recall
curve. See the example Figure 4.9.
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Figure 4.9: Example tolerance recall curve plot.

4.5.5 Orb Vocabulary Scores of Keyframes

Figure 4.10 illustrates different score values for each keyframe. The ”best” score
is the highest BoW vector score of all other keyframes, except the ones which
share landmarks with the current one. The ”min” score is simply 75% of the best
score. At last, the ”reference” score is an interesting approach which we adapted
from ORB-SLAM [20]. The reference score is the minimum BoW vector score
to all the keyframes with shared landmarks. This results in a varying threshold
for each frame. The reference score is later used as a threshold for BoW vector
matches with this keyframe.
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Figure 4.10: Match scores achieved by each query.

4.5.6 Common Word Count of Keyframes

In Figure 4.11 we have the max number of common words, or common ORB
descriptors, to one other keyframe. The min number of common words is set to
0.8 ∗min common words.
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Figure 4.11: Common word count for each keyframe.
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4.5.7 Amount of Frames passing hurdles

Figure 4.12 illustrates how many keyframes passes certain loop closure crite-
ria. ”Min common words” shows how many frames pass the minimum common
words threshold. Respectively the ”reference score” and the ”min score” shows
how many frames passed these thresholds. See Subsection 4.5.5 for more infor-
mation about the scores.
The ”ORB matches” line shows the number of keyframes which have at least
shared similar ORB descriptors, which also correspond to 3D landmarks. The
highest and most resource consuming criteria, is the geometric verification of
the BoW mathces, displayed as ”inliers”.

 0
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 0  50  100  150  200  250  300  350  400

Amount of frames passing hurdles

min common words
reference score

min score
orb matches

inliers

Figure 4.12: Amount of database frames which matches the different criteria
for the keyframes.

4.5.8 Feature Observations from Keyframes

In Figure 4.13 we display the observation metrics. ”Total” is the number of key-
points in each keyframe. ”Associated” represents the keypoints in each keyframe
which have been observed by other keyframes, or in other words the number of
landmarks in each keyframe. Moreover, ”matched” depicts the maximum num-
ber of BoW matches for each keyframe. At last ”inliers” show the maxiumum
number of geometric keypoint inliers of each keyframe. Inlier counts below the
threshold are shown as 0.
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Figure 4.13: Amount of features observed from the keyframes.



Chapter 5

Implemented Approaches

In this chapter we present two implemented approaches. In the first approach
we based our place recognition on the landmarks provided by SVO [10]. We
needed to adapt the SVO parameters to get enough landmarks to perform place
recognition, see Section 5.1.
In our second approach we ran SVO with its default parameter and extracted
additional features from the keyframes. Based on these additional features we
did place recognition and loop closure with the help of the 3D information
provided by the SVO landmarks. See Section 5.2.

5.1 Using SVO Landmarks for Place Recogni-
tion

In this approach we use the landmarks of SVO, which are features that have been
observed and redetected in several consecutive frames. Based on the multiple
observations, SVO calculates the relative 3D positions of the features turning
them into so called landmarks.
In this section we will discuss the changes we did in this approach. The results
are documented in Chapter 6.

5.1.1 Modification of SVO

Performing place recognition on the SVO landmarks after running SVO with its
default parameters, shown in Table 5.2, does not result in any inlier matches.
As can be seen in Figure 5.1, no keyframe passes the orb matches hurdle. The
plot is explained in more detail in Subsection 4.5.7. The light blue graph repre-
sents the frames which were geometrically verified as matches. The reason for
the lack of orb matches when running SVO on its default parameters are the
number of observations in each frame.

23
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Figure 5.1: Here we see the result of running place recognition on the landmarks
extracted from SVO. Running SVO on its default features. No keyframes passes
the inlier hurdle, which means we do not get a match.

The default SVO parameters are optimized to perform a robust visual odometry,
with as little resources as possible. That is, the numbers of tracked features
in SVO are kept as low as possible, to save computational resources. The
performance of SVO is one of the main advantages of SVO compared with other
visual odometry systems. When it comes to place recognition with BoW, a
minimum number of features are needed to redetect a certain scene [8]. With
the default parameters of SVO, around 120 features are tracked at all times,
this is not enough to reliable redetect enough landmarks for place recognition.
Consequently we needed to change the SVO parameters to increase the number
of tracked features. Our parameter choices are shown in Table 5.2. They were
made based on the criteria explained in Table 5.1.
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Parameters Description
grid size The frame is divided into

patches. This parameter deter-
mines the size of these patches.
For each patch, the best feature
is used by SVO to track the
movements. This guarantees
a certain distribution of the
tracked features which is more
robust than having a local heap
of features.

kfselect numkfs upper thresh If at least this number of fea-
tures are tracked, the current
frame will not be considered as
a keyframe.

kfselect min num frames between kfs If the last keyframe was
selected less than kfse-
lect min num frames between kfs
frames ago, this frame will not
be considered as a keyframe.

kfselect numkfs lower thresh If less than kfse-
lect numkfs lower thresh fea-
tures are tracked, the current
frame will be marked as a
keyframe.

kfselect min angle If the angle of the camera
has not changed at least kfse-
lect min angle degrees since the
last keyframe, the current frame
will not be considered as a
keyframe.

Table 5.1: In this table we describe the impact of the parameters. The order
of the parameter is essential. However there are a few more parameters which
determine the selection of a keyframe. If one of the criteria is met the function
returns the corresponding boolean value. If none of the kfselect criteria is met
a new keyframe is selected.

Parameters SVO Values Proposed Values
grid size 35 13
kfselect numkfs upper thresh 120 2000
kfselect min num frames between kfs 2 5
kfselect numkfs lower thresh 70 500
kfselect min angle 20 3

Table 5.2: This table shows the proposed and default SVO parameter values.

The parameters with the prefix kfselect are used to decide if a new keyframe is
picked or not. See Table 5.1. With the help of a callback function set in SVO,
we extracted all the frames along with its SVO information. Information like
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3D coordinates of the landmarks, 2D coordinates of the landmarks projected
into the keyframe image. For more information take a look at Section 3.1.

5.1.2 Retrieval of Rotation and Translation

Running 2D to 3D Ransac successfully, the rotation and translation. The scale
of the retrieved translation ~t does correspond to the scale used in SVO. The
scale is preserved, since the 3D coodinates are given by SVO. Therefore the
loop closure constraint can be added to the pose graph, as explained in 2.3.

This method is also used by the ORB-SLAM implementation [20]. Since they
perform place recognition on the tracked features, this makes sense.

5.2 Using Additional Keyframe Features for Place
Recognition

In Malaga 7 we have 2121 frames, around 350 are getting defined as keyframes by
SVO. This means that the additional features, used in the approach discussed
in Section 5.1, are tracked throughout all the frames. However, since we do
place recognition only on the keyframes we only need the additional landmarks
in the keyframes, which is roughly 1

6 th of all the frames. To not waste that
computation power, we came up with an alternative method, where we extracted
additional features on the keyframes and used 2D to 2D Ransac to verify the
geometry of the BoW matches. Using this approach we can run SVO with
default parameters and still redetect image scenes. The results are documented
in Chapter 6.

5.2.1 Modification of the Data Extractor

In this approach we run SVO on its default parameters. On the keyframes re-
trieved by the data extractor 3.1, we perform feature detection and save their
descriptors in addition to the landmarks detected by SVO. We use these ad-
ditional features for place recognition and to perform 2D to 2D Ransac for
geometric verification of the matched features.

5.2.2 Retrievement of Rotation, Translation and Scale

After performing BoW matches like we did in the approach discussed in Section
5.1, we perform a 2D to 2D geometric verification. This is a consequence of not
having 3D information on the added features, discussed in Subsection 5.2.1.
If Ransac verifies the geometry of the features we can use the fundamental
matrix to retrieve the rotation matrix and the translation vector like this:

E = K ′TFK (5.1)
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K and K ′ in (5.1) being the intrinsic calibration matrices of the two images
involved. In our case K = K ′, since the two images where taken by the same
camera. E is called the essential matrix, which we will use for further compu-
tation.

[U, S, V ] = SV D(E) (5.2)

Where SVD in (5.2) is the singular value decomposition [9]. Now we will define
some additional matrices in (5.3):

B =

 0 1 0
−1 0 0
0 0 1


L = U

0 −1 0
1 0 0
0 0 0

UT

M = −U

0 −1 0
1 0 0
0 0 0

UT

(5.3)

Now we can compute two candidates for the rotation matrix R1 and R2 and
two candidates for the translation vector t1 and t2 in (5.4).

R1 = det(UV T )UBV T

R2 = det(UV T )UBTV T

~t1 =
[L32L13L21]

T

||[L32L13L21] ||

~t2 =
[M32M13M21]

T

||[M32M13M21] ||

(5.4)

Only one of the rotation and one of the translation solutions are feasible. We
can find the unique solution, by using the cheirality constraint [21].
The derivation of this is taken from the book Autonomous Mobile Robots by
Siegwart et al. [23].

Now we have the rotation and the translation up to a scale. To retrieve the
scale used in SVO, we use the 3D landmark informations from SVO. In Fig-
ure 5.2 we got two lengths denoted by dl and df . df is the distance of an inlier
landmark calculated based on the 2D-2D fundamental matrix. dl is the distance
of the landmark given by the SVO coordinate. Now we have the coefficient dl

df

used to obtain the approximate SVO scale of the translation vector.
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df
 

R,t

dl 

Figure 5.2: Here we illustrate how we retrieve the scale of the translation, by
using the 3D information of the SVO inlier landmarks. The filled dots represents
the minimum amount of information needed to perform the 5-point algorithm
[21] and calculate the fundamental matrix. A higher accuracy is achieved by
having more information, displayed as hollow dots. In general the dots repre-
sents matched 2D image features. For the red dots we have 3D information, from
SVO. The blue pyramids depict the camera and the yellow arrow the rotation
and the translation between the two poses.

For each frame tracked by SVO, we have multiple landmarks. So using the
average distance of geometric verified landmarks will result in a more robust
coefficient:

c =

n∑
i=1

dli

dfi

n

(5.5)

Now we can use c~t and R to insert the loop closing constraint in our pose graph.
Addressed in Section 2.3.



Chapter 6

Results

In this chapter we compare the results of our approaches. Furthermore we
analyze the effects of certain parameters.

6.1 Place Recognition Results

In this section we present and compare the results of our implemented ap-
proaches. The first approach was where we run the place recognition on the
landmarks of SVO. In the second approach we added additional features to the
keyframes. See Chapter 5 for more details about the approaches.

6.1.1 Results in Numbers

The details of the datasets can be found in Section 4.3. The numbers presented
in this subsection are the best results achieved by numerous parameter settings.
From our perspective the best result is the result where the highest precision
was achieved and recall acted as the second criterion.

Malaga 7

Property Landmark Approach Added Features Approach
Keyframes 352 343
Total Positives 82 148
TP 82 148
FP 0 0
Precision 1 1
Recall 0.69 0.96

Table 6.1: Results for the runs on Malaga 7.

29
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Malaga 6

Property Landmark Approach Added Features Approach
Keyframes 615 530
Total Positives 0 1034
TP 0 107
FP 0 20
Precision 0 0.84
Recall 0 0.36

Table 6.2: Results for the runs on Malaga 6.

Table 6.2 has a surprising result, the landmark approach does not get any
matches. When we compare the candidates of the two approaches, our con-
clusion is that the Malaga 6 dataset needs way more landmarks than Malaga
7, because there are many similar features within one frame. Even the added
feature approach has both lower precision and recall compared with Malaga 7.

Malaga 10

Property Landmark Approach Added Features Approach
Keyframes 2738 2427
Total Positives 934 1034
TP 859 960
FP 75 74
Precision 0.92 0.93
Recall 0.36 0.51

Table 6.3: Results for the runs on Malaga 10.

In Table 6.3 one can see that the recall for both approaches is about half of
the recall of the recall in Table 6.1. This is caused by place revisitation from
the other direction. The image scene do differ a lot, but our evaluation method
demands a match.

6.1.2 Relevant Sets

To give a better visual impression of the place recognition, we created the so
called relevant set plots. In the following plots you can see the results for
Malaga 6, 7 and 10 for both of our approaches. See more details of these plots
in Subsection 4.5.1.
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Figure 6.1: Relevant set of Malaga 7, using the landmark approach.
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Figure 6.2: Relevant set of Malaga 7, using the additional feature approach.



32 6.1. Place Recognition Results

Keyframe #
0.5

0.0

0.5

1.0

1.5

M
a
tc

h
 o

r 
n
o
 M

a
tc

h Proposed Match

Keyframe #
0.5

0.0

0.5

1.0

1.5
M

a
tc

h
 o

r 
n
o
 M

a
tc

h Ground Truth Compulsory Match

0 100 200 300 400 500 600 700
Keyframe #

0.5

0.0

0.5

1.0

1.5

M
a
tc

h
 o

r 
n
o
 M

a
tc

h Ground Truth Feasible Match

Figure 6.3: Relevant set of Malaga 6, using the landmark approach.
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Figure 6.4: Relevant set of Malaga 6, using the additional feature approach.
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Figure 6.5: Relevant set of Malaga 10, using the landmark approach.
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Figure 6.6: Relevant set of Malaga 10, using the additional feature approach.

As we can see in all the Figures 6.1, 6.2, 6.3, 6.4, 6.5 and 6.6, there are almost
no false positives. If a wrong place recognition constraint is added to the pose
graph, serious inaccuracies could be the consequence.

6.1.3 Confusion Matrix

From confusion matrices seen in the Figures 6.8, 6.10 and 6.12 we can see that
the Added Feature Approach gets matches on all the data sets. The precision
of the added feature approach used on the Malaga 6 dataset is lower due to very



34 6.1. Place Recognition Results

similar image scenes.
See Subsection 4.5.2 for more detailed information on the confusion matrix plots.
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Figure 6.7: Confusion Matrix of Malaga 7, using the landmark approach.
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Figure 6.8: Confusion Matrix of Malaga 7, using the additional feature ap-
proach.
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Figure 6.9: Confusion Matrix of Malaga 6, using the landmark approach.
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Figure 6.10: Confusion Matrix of Malaga 6, using the additional feature ap-
proach.
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Figure 6.11: Confusion Matrix of Malaga 10, using the landmark approach.
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Figure 6.12: Confusion Matrix of Malaga 10, using the additional feature ap-
proach.

6.1.4 Observations

The plot details used to illustrate the feature observations is explained in Sub-
section 4.5.8.
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For the additional feature approach we did not extract the number of inliers.
This is why there are no inliers illustrated on the plots. However the Ransac
probability is set to 0.99 which means for a geometric verified match, a signifi-
cant amount of inliers need to be given.
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Figure 6.13: Observations of Malaga 7, using the landmark approach.
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Figure 6.14: Observations of Malaga 7, using the additional feature approach.

In the Figures 6.14, 6.16 and 6.18, where we use the additional feature approach,
you can see the big disparity between the total and associated observations.
This disparity represents the added features to the keyframes. In contrast to
the landmark approach the number of matched features are getting larger than
the number of landmarks.
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Figure 6.15: Observations of Malaga 6, using the landmark approach.
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Figure 6.16: Observations of Malaga 6, using the additional feature approach.

 1

 10

 100

 1000

 10000

 0  500  1000  1500  2000  2500  3000

Observations

total
associated

matched
inlier

Figure 6.17: Observations of Malaga 10, using the landmark approach.
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Figure 6.18: Observations of Malaga 10, using the additional feature approach.

6.1.5 Common Words Count

As expected we see larger number of common words for the Figures 6.20, 6.22
and 6.24, where we use the additional feature approach. In contrast we observe
smaller numbers of common words in the Figures 6.19, 6.21 and 6.23, where we
used the landmark approach.
It is worth pointing out that the common word counts for Figure 6.22, do not
have as large spikes as Figure 6.20 and 6.24. This leads to the lower precision
and recall values.
For more information on these plots see 4.5.6.
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Figure 6.19: Common Words Count of Malaga 7, using the landmark approach.
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Figure 6.20: Common Words Count of Malaga 7, using the additional feature
approach.
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Figure 6.21: Common Words Count of Malaga 6, using the landmark approach.
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Figure 6.22: Common Words Count of Malaga 6, using the additional feature
approach.
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Figure 6.23: Common Words Count of Malaga 10, using the landmark approach.
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Figure 6.24: Common Words Count of Malaga 10, using the additional feature
approach.

6.1.6 Scores

In general we have higher scores where we used the additional feature approach,
seen in Figure 6.26, 6.28 and 6.30 than in the landmark approach, seen in Figure
6.25, 6.27 and 6.29. See Subsection 4.5.5, for more details on these plots.
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Figure 6.25: Scores of Malaga 7, using the landmark approach.
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Figure 6.26: Scores of Malaga 7, using the additional feature approach.
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Figure 6.27: Scores of Malaga 6, using the landmark approach.



Chapter 6. Results 43

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0  100  200  300  400  500  600

S
co

re
 [

0
-1

]

Keyframe [#]

Scores

reference
best
min

Figure 6.28: Scores of Malaga 6, using the additional feature approach.
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Figure 6.29: Scores of Malaga 10, using the landmark approach.
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Figure 6.30: Scores of Malaga 10, using the additional feature approach.
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6.1.7 Amount of frames passing hurdles

In this subsection we illustrate the Figures 6.31, 6.33, 6.35, 6.32, 6.34 and 6.36,
which shows what each keyframe was evaluated to. See Subsection 4.5.7 for
more details information on these plots.
Comparing these hurdles to the dataset maps in 4.3, gives you a intuition on
why certain values vary at a given keyframe.
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Figure 6.31: Amount of frames passing hurdles of Malaga 7, using the landmark
approach.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0  50  100  150  200  250  300  350

A
m

o
u
n
t 

o
f 

Fr
a
m

e
s 

[#
]

Keyframe [#]

Amount of frames passing hurdles

min common words
reference score

min score
orb matches

inliers

Figure 6.32: Amount of frames passing hurdles of Malaga 7, using the additional
feature approach.



Chapter 6. Results 45

 0

 10

 20

 30

 40

 50

 60

 70

 0  100  200  300  400  500  600  700

Amount of frames passing hurdles

min common words
reference score

min score
orb matches

inliers

Figure 6.33: Amount of frames passing hurdles of Malaga 6, using the landmark
approach.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  100  200  300  400  500  600

A
m

o
u
n
t 

o
f 

Fr
a
m

e
s 

[#
]

Keyframe [#]

Amount of frames passing hurdles

min common words
reference score

min score
orb matches

inliers

Figure 6.34: Amount of frames passing hurdles of Malaga 6, using the additional
feature approach.



46 6.2. Impact of Geometric Verification

 0

 50

 100

 150

 200

 250

 0  500  1000  1500  2000  2500  3000

Amount of frames passing hurdles

min common words
reference score

min score
orb matches

inliers

Figure 6.35: Amount of frames passing hurdles of Malaga 10, using the landmark
approach.
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Figure 6.36: Amount of frames passing hurdles of Malaga 10, using the addi-
tional feature approach.

6.2 Impact of Geometric Verification

Figure 6.37 represents an example, where two images having a sufficient number
of BoW matches. Looking closely at the image pair, we can see that they do
not contain the same image scene. Without any further verification this would
lead to a false positive. Using geometric verification, where we try to find a
translation model of the matched points, we can get rid of almost all the false
positives. In Figure 6.38 we illustrate an image pair which contain the same
image scene. This BoW match passed the geometric verification in contrast to
Figure 6.37.



Chapter 6. Results 47

Figure 6.37: An example of a false positive BoW match, which can be detected
as an outlier with the help of geometric verification.

Figure 6.38: An example of a true positive BoW match, which gets approved
by geometric verification.

On all runs throughout all datasets, see Section 4.3, there were less than 0.25
of the geometric verified matches which were false positives. In Figure 6.39 you
can see an example of a run where we did not used geometric verification. Some
of the the proposed matches are false. See Subsection 4.5.1 to read more about
the details of this plot.
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Figure 6.39: Relevant Set without geometric verification.

6.3 Impact of Tolerance used for Geometric Ver-
ification

Within the process of the geometric verification 3D to 2D we try to find a feasible
translation model. Using this model we can calculate the projection of the query
frame 3D features into the database frame and vice versa. If these projections
are within a certain tolerance radius of the matched 2D feature we evaluate
it as an inlier. We illustrated two different tolerance radii in Figure 6.40 and
Figure 6.41. Figure 6.40 and Figure 6.41 has a pixel tolerance radius of

√
1000

and
√

5000 respectively. Within these two figures the colors are essential. The
projected and the matched feature do have the same color. The circle represents
the tolerance within the projected point has to be, in order to be evaluated as
an inlier. When a model has enough inliers, we have verified the geometric
correlation between the matched features.
With a bigger tolerance value more matches will pass the geometric verification.



Chapter 6. Results 49

Figure 6.40: Using tolerance radius
√

1000.

Figure 6.41: Using tolerance radius
√

5000.

In Figure 6.42 we see that the precision vary very little, by using different
tolerance values. Th recall on the other hand changes from about 0.28 to 0.36.
To have a better view on what impact the tolerance has on the recall, we created
Figure 6.43.
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Figure 6.42: This is the precision recall curve resulting from the our landmark
approach on Malaga 10. Where we vary the tolerance between

√
200 and

√
4800

pixel.

To evaluate a decent tolerance value, we created a tolerance recall Figure 6.43,
explained in detail in Subsection 4.5.4. Based on that Figure we can see that
we get the most recall when the tolerance radius is slightly above

√
2000.
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Figure 6.43: Tolerance Recall curve run on the Malaga 7 dataset, see Subsection
4.3.1. The tolerance values of plot are the squared pixel radius

Using a Ransac inlier threshold around 45 leaded to the best results according
to Subsection 6.1.1.
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6.4 Effect of the Ransac inliers threshold

Looking at the precision recall Figures 6.44 and 6.45, resulting from the added
feature approach on Malaga 6. We see that both the precision and the recall
value are changing depending on the Ransac Inlier threshold or Ransac thresh-
old.
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Figure 6.44
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Chapter 7

Discussion

In this chapter we summarize the outcome of this thesis and its limitation.
Finally we discuss the possible future work based on our effort.

7.1 Conclusion

The main contribution of this thesis is the implementations of an offline place
recognition and loop closure system based on SVO [10]. The implementation
provides a globally consistent map, which makes it a SLAM system. Our eval-
uation of the different methods and parameter, pave the way for a future online
implementation. A robust visual SLAM with the advantages of SVO, will allow
to perform tasks with metric precision. This will in particularly by interesting
for long term missions.

7.2 Future Work

The next step will be to take the gained insights, obtained through this thesis
and build an online SLAM system. In the online system, the place recognition
will be done on the fly. As soon as a place recognition passes all the hurdles,
the new constraint will be added to the pose graph. One thread will take care
of the global bundle adjustment, reducing the drift in both the map and the
camera trajectory. This will require some caution to not end up with race con-
ditions, optimizing the data while SVO uses the data to continuously track the
landmarks and updates the pose graph.

In this thesis we used the Bag of Words method for place recognition. It would
be very interesting to evaluate how well a convoluted neural network would
perform. In terms of precision, recall and the computational resources needed.
The results of Gomez-Ojeda et al. [14], show that a CNN approach can be very
robust to weather and illumination changes, which would be a huge benefit for

52
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a long term system.

As we have shown in Section 6.2, geometric verification eliminates practically
all the false positives. An additional method to reduce the number of false
positives we thought about is to use the distance between the camera positions
of the query and database frame. Feasible matches are within a certain distance.
The place recognition implementation could use this constraint to reduce the
search space. This will not only improve the position but save computational
resources.
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Appendix A

Sources

A.1 Sources

Loop Closure and Evaluation
https://github.com/uzh-rpg/multiagent_orb

SVO
https://github.com/uzh-rpg/rpg_svo_pro

VI-Map data structure and loop closure
https://github.com/ethz-asl/multiagent_mapping_basic
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