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Abstract

Cloud computing offers compared dedicated in-house infrastructure unprecedented advantages
in terms of performance, reliability and cost. Not surprisingly, is cloud computing in 2016 still an
on-going trend in internet computing. Today, the most important service model is infrastructure-
as-a-service and an ever-growing number of commercial vendors edge into the market. While all
vendors provide similar functionality, differences in the non-functional properties such as perfor-
mance, reliability, and cost are significant.

Although all IaaS providers provide performance indicators for these non-functional proper-
ties, studies show that the effectively delivered service performance varies. In consequence, is the
selection of the most relevant cloud service for a given application not straight forward. Cloud
benchmarking (i.e., the process of thoroughly evaluating the performance of these services) is
therefore a common contemporary research topic in the cloud domain.

In this work, we propose a generic application-benchmark to support practitioners in collect-
ing performance data across different cloud providers. In a second step, we use the benchmark
to collect performance data on the performance of several instance types at Amazon EC2 and
Google Compute Engine. Our results show, that compute-specialized instance types deliver a
better performance-cost ratio than general purpose instance types and larger instances are less
cost efficient than smaller ones. Additionally, while instances from Amazon EC2 provide both,
better predictability and stability, instances from Google Compute Engine provide the better per-
formance.

Finally, we outline a performance-cost index, which allows to compare several instance types
across several benchmarks.





Zusammenfassung

Cloud-Computing bietet im Vergleich zur traditionellen in-house Bereitstellung von IT Infras-
truktur noch nie dagewesene Vorteile in Bezug auf Leistung, Zuverlässigkeit und Kosten. Es
überrascht deshalb nicht, dass Cloud Computing auch im Jahr 2016 nach wie vor an Attraktivität
gewinnt.

Das heute wichtigste Geschäftsmodell ist IaaS. Dieses beinhaltet die Bereitstellung grundle-
gender Recheninfrastruktur wie beispielsweise Rechenkapazität, Speicher- und Netzwerkresourcen
als Dienstleistung. Wie Cloud Computing, erfreut sich auch IaaS grosser Beliebtheit und die Zahl
der IaaS Dienstleister steigt stetig.

Obwohl alle IaaS-Dienstleister funktional äquivalente Produkte anbieten, unterscheiden sich
die erbrachten Dienstleistungen in ihren nicht-funktionalen Eigenschaften, wie Leistung, Zuver-
lässigkeit und Kosten, teils signifikant.

Zwar bieten IaaS-Dienstleister Leistungsindikatoren für diese nicht-funktionalen Eigenschaften
an - Studien zeigen allerdings, dass die tatsächlich gelieferte Serviceleistung variiert. Aufgrund
dessen ist die Auswahl des relevantesten Cloud-Dienstleisters für eine bestimmte Anwendung
nicht trivial.

In dieser Arbeit schlagen wir einen generischen, anwendungsbasierten Benchmark vor, der
IaaS Nutzer beim Sammeln der nötigen Daten unterstützt und bei einer Vielzahl von Cloud An-
bietern angewendet werden kann. In einem zweiten Schritt nutzen wir den Benchmark um leis-
tungsbezogene Daten von Instanztypen bei Amazon EC2 und Google Compute Engine zu sam-
meln. Unsere Ergebnisse zeigen, dass rechenspezialisierte Instanztypen ein besseres Leistung-
Kosten-Verhältnis aufweisen als Allzweck-Instanztypen. Zudem zeigen wir, dass grössere In-
stanzgrössen weniger kosteneffizient sind als kleinere. Des Weiteren zeigt sich, dass die Leistung
von Instanzen bei Amazon EC2 zwar stabiler und besser vorhersehbar ist, Google Compute En-
gine aber mehr Leistung für das gleiche Geld bietet.

Um die gesammelten Daten mit anderen Benchmarks vergleichbar zu machen, wird ein neues
Normalisierungsverfahren umrissen. Anhand des „Comparable Benchmark Scores“, kann die
Leistung verschiedener Instanztypen über verschiedene Benchmarks hinweg verglichen werden,
und so ein Leistungs-Kosten Index erstellt werden.
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Chapter 1

Introduction

Cloud computing [AFG+10, BYV+09, MG11] is still an on-going trend in internet computing
[Gar15, Gar16]. In cloud computing, resources, such as CPU processing time, disk space, and
networking capabilities are offered as a service. In consequence, cloud computing offers com-
pared to the traditional computing model that uses dedicated in-house infrastructure, unprece-
dented advantages in terms of performance, reliability and cost [AFG+09, HSS+10]. Today, the
most important service model is infrastructure-as-a-service (IaaS) [Hil09]. In the IaaS model of
cloud computing, computing resources such as "processing, storage, networks, and other fundamen-
tal computing resources" [MG11] are acquired on a pay-per-use basis, typically in form of virtual
machines (VMs) [BYV+09].

Since IaaS is receiving a significant hype in industry, a large number of commercial vendors
have started to offer IaaS services (e.g., Amazon’s EC21, Google’s Compute Engine2, Microsoft’s
Azure3, or Rackspace’s Public Cloud Hosting4). While all these vendors provide similar func-
tionality, differences in the non-functional properties such as performance, reliability, and cost are
significant.

Although all cloud providers provide performance indicators for their services, Lenk et al.
[LML+11] report that these are not sufficient to compare different offerings. Studies listed in
[FJV+12,LC16] show, that the effectively delivered service performance varies between providers.
Additionally, and what is even more interesting, service performance also varies for services
that are provided by the same provider and comply to the same specification [DPC10, LML+11,
FJV+12,GLOT13]. Hardware heterogeneity, contention, and other phenomena can result in tremen-
dously differing performance across supposedly equivalent instances [FJV+12].

The selection of the most relevant cloud service for a given application is consequently an elab-
orate endeavour and hence not straight forward. In order to support practitioners in selecting the
most relevant cloud service for their applications and to mitigate the effects of performance vari-
ations, such as higher costs due to longer running tasks (e.g., [OG14]) and difficulties in resource
planning (e.g., [CLN12]), many researchers have started initiatives to evaluate the performance of
these services [LZO+13]. Cloud benchmarking (i.e., the process of thoroughly evaluating the per-
formance of these services) is a common contemporary research topic in the cloud domain [LC16].

1https://aws.amazon.com/de/ec2/
2https://www.cloud.google.com/products/compute-engine/
3https://www.windowsazure.com/en-us/
4http://www.rackspace.com/cloud/

https://aws.amazon.com/de/ec2/
https://www.cloud.google.com/products/compute-engine/
https://www.windowsazure.com/en-us/
http://www.rackspace.com/cloud/
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1.1 Problem Statement
In general, there exist two distinct approaches to assessing the performance of cloud services,
namely the predictive and the empirical approach [GCMS15]. The predictive approach tries to pre-
dict the performance of the actual application either by simulating the application’s behaviour
in the cloud (e.g., [LZK+11, FFH12]) or by comparing the expected usage profile with data from
existing cloud benchmarks (e.g., [Clo15,LYZK10,SDQR10,MH12,SASA+11,IOY+11]). Results ob-
tained from predictive solutions, especially from cloud simulators, can be quite inaccurate. This is
due the missing consideration of some cloud characteristics, such as physical resource sharing and
multi-tenancy, in current performance prediction models [GCMS15]. In the empirical approach,
solutions collect data by running either simple programs (i.e., a microbenchmark) or real-world
like applications (i.e., an application benchmark) in the cloud (e.g., [KLIZ12, BLL+14, CMS16]).
While results gathered by microbenchmarks are restricted to a specific component of the ser-
vice and thus are not generalizable for actual applications, the benchmarking of real world ap-
plications is practically restricted by the time required and the financial resources available. In
consequence, application benchmarking is only feasible for small applications (e.g., [LYZK10,
GCMS15]). Representative application benchmarks are typically much easier to deploy and exe-
cute than full-blown real-world applications, but testing several instance types of different service
providers and with tailored configurations makes application benchmarking still labour inten-
sive.

However, no matter which approach is chosen, both are challenged by the perpetual change
originated in the nature of cloud environments, making continuous re-evaluation of the results
inevitable [Sch14]. A recent large-scale literature review by Leitner and Cito [LC16] on studies
evaluating the performance of different cloud services yields 15 hypothesis covering often doc-
umented patterns. In their work, Leitner and Cito [LC16] also conduct experiments and reveal
some issues with the current body of knowledge. Consequently, they state the facts that "All in
all, despite the plethora of existing data points, it remains surprisingly difficult to extract meaningful and
portable knowledge from existing research." [LC16]. Further Leitner and Cito [LC16] argue that a
thorough survey across a large number of IaaS providers is necessary in order to assess which of
the assumptions prevalent in the cloud computing community stood the test of time and remain
valid today [LC16].

Hence, we set out to answer the following research question:

RQ 1: How can cloud users application-benchmark different IaaS instance types with regards to the
performance they provide for hosting an arbitrary cloud application, in a repeatable manner and for
instance types of different cloud providers?

In order to support practitioners in selecting a relevant instance type, we also investigate the
following questions based on the data produced in RQ1:

RQ 2.1: Are there diseconomies of scale for larger instance sizes?

RQ 2.2: Is it economical to choose specialized instances for special tasks?

With the data gathered in RQ 1, we can also validate the remaining hypothesis Leitner and Cito
[LC16] formulated in their work. Hence, further research questions are:

RQ 3.1: Is the performance of an instance of a certain size predictable?

RQ 3.2: Is the performance of a certain instance stable?

RQ 3.3: Are larger instances more stable than smaller ones?
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Additionally, we also research the following, more general question:

RQ 4: How can the performance of different instance types and different cloud providers be objectively
compared across multiple benchmarks?

1.2 Contributions

In this work, we lay the foundation for cross-provider and application-aware benchmarking of
IaaS cloud services and work towards an comparable-benchmark-score based performance-cost-
index.

To this end, we continue prior research on benchmarking IaaS providers based on Infrastructure-
as-Code [SLCG14, SCLG15] and propose a generic application-benchmark, which instead of pro-
viding a benchmark application, allows cloud users to benchmark their own application in an
automated and repeatable manner.

We implement this benchmark in Cloud Workbench5(CWB) [Sch14] and by deploying the
benchmark to Amazon EC2 and to Google Compute Engine, we show how our application-aware
benchmark can be used to benchmark an arbitrary cloud service in a fully automated manner. As
a reference-application we choose AcmeAir6. AcmeAir is a performance benchmark developed
and made available by IBM. The AcmeAir web application is a web-service like application ex-
hibiting real business requirements7 and is therefore considered to be well suited as reference-
application.

We benchmark Bursting, General Purpose, and Compute Optimized instance types, and in
total 14 instance configurations at Amazon EC2, and 6 at Google Compute Engine (GCE). Our
results show, that for practitioners it is advisable to choose small but optimized instance types.
In fact, provide compute optimized instance types at Amazon EC2 up to 20% and at GCE up to
30% more performance for the same costs. Additionally, we observe diseconomies of scale at both
providers which in combination with the lack of additional performance stability and the lack of
additional performance predictability do not make up the higher price level. In general, show
all non-bursting instance types a relatively predictable performance, while none of the tested
instance sizes can be classified as stable over time.

Further we develop a performance-cost-index which abstracts from individual metrics by re-
porting on the performance in terms of comparable-benchmark-scores. Additionally, we propose
to extend this performance-cost index with performance data from reference-applications of var-
ious types and domains. By reporting on the performance of the reference-applications on differ-
ent cloud providers, we enable an apple to apple comparison. Consequently, the more properties
a real application shares with one of the reference-applications in the index, the better the index
predicts the performance for the real application. By this means, the index facilitates the compar-
ison of the different cloud services’ performance and incurring costs and by doing so supports
informed decisions regarding cloud service choice.

5https://www.github.com/sealuzh/cloud-workbench
6http://www.acmeair.github.io
7https://www.github.com/acmeair/acmeair

https://www.github.com/sealuzh/cloud-workbench
http://www.acmeair.github.io
https://www.github.com/acmeair/acmeair
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1.3 Thesis Outline
The remainder of this work is structured as follows: In Chapter 2, the theoretical foundation is laid
and important models and concepts are introduced. In Chapter 3, related research is discussed.
Chapter 4 treats the development of a generic application benchmark based on Cloud Workbench
(CWB), with Apache JMeter as driver and with AcmeAir as first reference-application. The ex-
perimental setup is outlined in Chapter 5. The results are presented and discussed in Chapter 6
before in Chapter 7 the performance-cost index is developed. Chapter 8 and 9 round off the work
with a discussion of threats to validity and closing remarks, latter including the conclusion and
an outlook to future work.



Chapter 2

Background

2.1 Definition of Cloud Computing
The main idea behind cloud computing is not a new one, however, it was only in 2006 when
Google’s CEO Eric Schmidt coined the term by describing the business model of providing ser-
vices across the Internet as cloud computing. Since then, the term cloud computing has been used
to represent many different ideas in a variety of contexts [ZCB10,AFG+09]. Therefore, and to pre-
vent any misconceptions, we adopt the definition of cloud computing provided by The National
Institute of Standards and Technology (NIST):

Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access
to a shared pool of configurable computing resources (e.g., networks, servers, storage, appli-
cations, and services) that can be rapidly provisioned and released with minimal management
effort or service provider interaction. [. . . ] [MG11]

The essential characteristics, the service models, and the deployment models are in the fol-
lowing subsections further introduced. All information is taken from [MG11].

2.1.1 Essential Characteristics
On-demand self-service. Every customer can acquire and release computing resources on-
demand, in an automated manner and without requiring human interaction from the cloud provider.

Broad network access. The services offered by the cloud provider are available over the inter-
net and accessible by arbitrary device platforms.

Resource pooling. The cloud provider offers a pool of computing resources that can be dynam-
ically assigned and reassigned to multiple resource consumers (multi-tenant model) based on the
consumer’s demand. The customer may be able to specify a location at a higher level of abstrac-
tion (datacenter location) but generally has no control or knowledge over the exact location of the
provided resources.

Rapid elasticity. Computing resources can be provisioned and released on demand, at any
time and in any quantity. Therefore, the resources available for provisioning often appear to the
customer to be unlimited.
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Measured service. The services provided by the cloud provider are equipped with measuring
capabilities and are therefore often charged on a pay-per-use basis.

2.1.2 Service Models
Cloud computing refers to both the hardware located in the datacenters and the software of-
fered as services over the Internet, which is running on that hardware [AFG+10]. Also the NIST
definition [MG11] captures this aspect and introduces three service models for cloud comput-
ing [MG11]. These models can also be seen as three different levels of abstraction and are therefore
also referred to as service levels [FAS+12]. Figure 2.1 illustrates the different levels of abstraction
and indicates which entity is in control and hence in charge.

Infrastructure as a Service (IaaS). IaaS refers to on-demand availability of infrastructural re-
sources, such as network, CPU, operating systems and storage, usually in terms of virtual ma-
chines (VMs) [BYV+09]. The entity owning the cloud is called IaaS provider. Examples of IaaS
providers include Amazon EC21, Google Compute Engine2, Microsoft Azure3, or Rackspace4).

Platform as a Service (PaaS). PaaS refers to providing platform layer resources, including
operatingsystem support and software development and runtime frameworks. Examples of PaaS
providers include Google App Engine5, IBM Bluemix6 and Force.com7.

Software as a Service (SaaS). SaaS refers to providing on-demand applications over the In-
ternet Examples of SaaS providers include Salesforce.com8, Prezzi.com9 or Google Services such
as Maps and Gmail.
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Figure 2.1: Service models and schedule of responsibilities. Taken form [Ger15]

1http://aws.amazon.com/de/ec2/
2https://cloud.google.com/products/compute-engine/
3https://www.windowsazure.com/en-us/
4http://www.rackspace.com/cloud/
5https://cloud.google.com/appengine
6https://console.ng.bluemix.net/
7http://force.com/
8http://www.salesforce.com
9http://taleo.com/

http://aws.amazon.com/de/ec2/
https://cloud.google.com/products/compute-engine/
https://www.windowsazure.com/en-us/
http://www.rackspace.com/cloud/
https://cloud.google.com/appengine
https://console.ng.bluemix.net/
http://force.com/
http://www.salesforce.com
http://taleo.com/
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Additionally to the here introduced service models, several specializations and extensions
such as Database as a service (DBaaS) or Container as a Service (CaaS) have emerged (e.g., [YBDS08],
[DRK14]).

2.1.3 Deployment Models
The NIST [MG11] definition of cloud computing presents four deployment models, namely Pri-
vate Cloud, Community Cloud, Public Cloud and Hybrid Cloud. While all deployment models
exhibit the essential cloud characteristics and service models, they differ in who owns and oper-
ates the cloud resources and who is eligible to consume services.

Private Cloud. The private cloud provides services exclusively to a single organization. It is
owned by the organization, an external provider, or some combination of them [MG11]. A pri-
vate cloud provides the highest degree of control over performance, reliability and security. Its
similarity to a traditional, proprietary datacenter prevents the realization of typical key benefits
such as no up-front capital investment [ZCB10].

Community cloud. The community cloud provides services exclusively to a dedicated commu-
nity of organizations. It is owned by a single or multiple organizations in the community, a third
party, or some combination of them [MG11]. Regarding security, the community cloud could be
seen as a trade-off between security and cloud benefits.

Public Cloud. The public cloud provides services to the general public. It is owned by a busi-
ness, academic, or government organization, or some combination of them [MG11]. While the
public cloud offers several key benefits to its consumers, they lack fine-grained control over
data, network and security settings, which restricts their effectiveness in many business scenar-
ios [ZCB10].

Hybrid cloud. The hybrid cloud combines two or more of the other deployment models by
proprietary or standardized technology that enables application and data portability [MG11] (e.g.,
to circumvent legal restrictions on data security).

Figure 2.2: Deployment models, adapted from [Lab12, DSP10]
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2.2 Resources in IaaS Cloud Computing
To achieve elasticity and the illusion of infinite capacity, cloud providers rely on statistical mul-
tiplexing [AFG+09]. That is, physical resources are shared among users. Based on the fact that
an average user’s demand varies, resources are allocated dynamically to serve single users on
an as-needed basis and thus, general resource utilization can be optimized. In order to hide
the implementation of how resources are multiplexed and shared, physical resources have to be
virtualized [AFG+09]. Armbrust et al. [AFG+09] identify three resource types needed for run-
ning a basic application (computation resources, storage resources and networking resources). Cloud
providers offer these computing resources as bundles, so called "Instance Types" [Ama16b] and
also known as "Machine Types" [Goo16d]. Each instance type offers at least one "instance size",
which determines the actual number of CPU cores, the memory size, and the provided storage
and networking resources. When requesting a virtual machine from a certain instance type and
size, users also have to specify a datacenter within the cloud and a base image. Latter provides
the operating system and additional software packages that should initially be installed in the
virtual machine when it is launched [LC16]. A concrete virtual machine exhibiting an instance
type and instance size, is in the cloud context also called instance.

Amazon EC2 categorizes the available instance types into so called "Instance Families". The
instance family describes the general use case such as "General Purpose" or "Computation Op-
timized". Google follows another naming convention. While Amazon EC2 calls an individual
bundle "Instance Type", Google adheres to the notion of a "Machine Type". Howsoever, a con-
crete virtual machine exhibiting the specification of a "Machine Type" is still called instance.

Both providers offer a wast selection of instance families and types. The ones important to this
work are described in further detail in the subsequent sections.

Burstable Performance

Burstable Performance instance types offer a baseline level of CPU performance but are able to
burst above the baseline for a short period of time. The duration of the bursting duration is either
fixed [Goo16d] or determined by some sort of credit system [Ama16a], where low load periods
accumulate credits and high load periods consume credits.

General Purpose

General Purpose instance types are designed to offer a balance of compute, memory, and network
resources and are therefore suited for a broad range of applications [Goo16d, Ama16b]. Possible
applications are the hosting of small- and mid-sized databases or running backend-servers for
SAP or Microsoft SharePoint [Ama16b].

Optimized

In contrast to the general purpose instance types, optimized instance types are designed for a
special use-case requiring instances providing enhanced resources of a certain type [Goo16d]. So
are compute optimized instance types on EC2 equipped with the highest performing processors
and often also featuring better storage connectivity, compared to general purpose instance types,
in order to be suited for batch-processing jobs or web-server deployments [Ama16b]. Analo-
gously are storage optimized instance types providing high Random I/O performance, huge SSD
drives and high memory, dedicating them to the hosting of NoSQL Databases or cluster file sys-
tems [Ama16b].
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Custom

If none of the predefined instance types fits the users needs, some cloud providers offer custom
instance types (e.g., [Goo16a]). Custom instance types allow the user to specify the number of
vCPUs and the amount of memory according to defined rules. Custom instance types are more
expensive than predefined instance types and thus only ideal for workloads that require a very
unbalanced set of resources [Goo16a].

2.3 Costs for Cloud Resources
There exist several different pricing models for cloud resources. In fact, every cloud provider
has its own model (e.g., [Ama16c, Goo16c]). In the following subsections, the pricing models of
Amazon EC2 and Google Compute Engine are introduced. Although both providers charge not
only for computing resources, but also for storage and networking resources, for this thesis, we
will only consider costs for computing resources.

2.3.1 Pricing Models Amazon EC2
Amazon offers three different pricing models for instances of the same type and size. The "On-
Demand Instance" pricing model, the "Reserved Instances" pricing model, and the "Spot Instance"
pricing model. Additionally to the pricing model, prices also depend on the region in which an
instance is acquired.

On-demand instances On-demand instances are billed on an hourly basis with a fixed price
and thus represent the "pay-as-you-go" pricing model cloud computing is known for. Each in-
stance size has another price and the utilization of instances is measured in so called "instance-
hours". In particular is every instance billed individually by the hour, from the time it is launched
until it is terminated or stopped. One instance-hour is the smallest possible billing unit, conse-
quently each partially consumed instance-hour will be billed as a full hour [Ama16c], i.e.,

ci = fi(max{1, dtie})∀i ∈ I (2.1)

where I is the set of instance sizes of a certain instance type and

ci := charges for a certain instance i ∈ I

ti := time the instance i ∈ I was running

pi := constant per-hour price of instance i ∈ I

fi(x) := the linear cost function of instance i ∈ I for run time x.

While this model allows great flexibility, it does not allow users with recurring needs to qualify
for discounts.

Reserved Instances The reserved instance model allows users with recurring needs to reserve
an instance on an ’always-on’ (24 x 7) basis, or to schedule the use of the instance on a recurring
basis (for example every day from 6 p.m. to 8 p.m. Currently it is not possible to reserve instance
on single days). The benefits of reserved instances compared to on-demand instances are twofold:
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firstly, the user qualifies for a discount based on the duration of the contract and the chosen
payment model, and secondly, the user is guaranteed to get the reserved instance on the specified
time and for the specified duration. But as a consequence, the user looses its flexibility [Ama16d].

Spot Instances Spot instances allow the user to place a request for idle computing capacity.
The price depends on the supply of and demand for spot instances capacity. Every user can place
a request indicating the max-price the user is willing to pay. If the current spot-instance price is
below the max-price, the request is fulfilled and the instance starts running. It terminates as soon
as the spot price exceeds the user’s max-price [Ama16d].

In this thesis we focus only on certain instance types and all of these where acquired using the
on-demand pricing model. The used instance types and sizes are presented in Section 5.2.

2.4 Pricing Models Google Compute Engine
Unlike Amazon EC2, Google Compute Engine neither offers distinct pricing models nor the pos-
sibility to reserve instances. Instead, Google offers a sustained use discount to regular users and
allows users to acquire "preemtible" instances [Goo16c]. An overview of the used instance types
and related prices relevant to this work is depicted in Table 5.3 in Section 5.7.

General Pricing Google Compute Engine offers two families of instance types: predefined ma-
chine types and custom machine types. Predefined instance types have predefined virtualized
hardware properties and benefit from a region dependent fixed price, while custom machine
types are priced according to region, the number of vCPUs and memory that the virtual machine
instance uses [Goo16c]. Apart from the specific pricing, the following billing model applies to all
instance types, predefined or custom.

All instance types are charged a minimum of 10 minutes. For example, if an instance for
2 minutes, it be charged for 10 minutes of usage. After 10 minutes, instances are charged in
1 minute increments, rounded up to the nearest minute. An instance that is running for 11.25
minutes will consequently be charged for 12 minutes of usage [Goo16c], i.e.,

ci =

{
fi(ti) if ti > 10;
fi(10) otherwise. ∀i ∈ I (2.2)

where I is the set of instance sizes of a certain instance type and

ci = charges for a certain instance i ∈ I

ti = time the instance i ∈ I was running

pi = constant per-minute price of instance i ∈ I

fi(t) = dte · pi, the linear cost function of instance i ∈ I .

Sustained use discount Google Compute Engine offers a sustained use discount to users that
utilize an instance for a significant portion of the billing month. The discount increases with
usage-duration and users can get up to a 30% net discount for each instance, that runs the en-
tire month. Sustained use discounts are calculated per inferred instance. Consecutive and non-
overlapping parts of use-periods of different instances of the same instance size are summed
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up and count towards a single "inferred instance". Parallel running instances of the same type
contribute only with their non-overlapping periods towards the "inferred instance". For a visual-
isation of the calculation, please refer to Figure 2.3.

Figure 2.3: Example of GCE’s inferred instance calculation for predefined machine types. Taken
from [Goo16e]

Preemptible VM Instances Preemptible instances are regular instances, which are provisioned
on idle Compute Engine capacity and thus run at much lower price than regular instances. How-
ever, they may be terminated (preemptied) without notice as soon as the capacity is requested for
regular instances. Preemptible instances are idle capacity, consequently their availability varies
with the supply and demand for computing resources [Goo16b].

2.5 Benchmarks

In the context of IT, benchmarking usually refers to the process of measuring the performance of
a particular computing system, or a subcomponent or feature of it [VV12]. To support the tester,
there is a plethora of tools available. As an example, the SPECCpu benchmark10 can be used to
test which CPU can solve the most integer computations in a given time, and the TPC-C bench-
mark11 yields which database system for OLTP12 applications can perform the most transactions
per minute [FAS+12]. In practice, benchmarks are used for to gain insights into performance
bottlenecks as well as for gathering data required to compare different systems, applications or
services to each other [FAS+12]. The system which is benchmarked is often referred to as the sys-
tem under test (SUT). It consists of the components of interest and purely functional components. A
benchmark can only test the whole SUT, hence it is vital to have complete knowledge of the sys-
tem in order to derive accurate information. Beside the SUT, a benchmark also includes the driver,
which generates the workload and is not part of the SUT. Often benchmarks also define rules on
how to setup and run the benchmark, and on how to obtain measurement results [FAS+12]. In
IT, there exist two general types of benchmarks which differ in scope and complexity, namely
microbenchmarks and macro benchmarks [Zha01], the latter are also called application benchmarks.

10http://www.spec.org/cpu2006/
11http://www.tpc.org/tpcc/
12Online Transaction Processing

http://www.spec.org/cpu2006/
http://www.tpc.org/tpcc/
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2.5.1 Micro Benchmarks
Micro benchmarks aim at investigating the performance of a single component of interest, whether
hardware or software, and are therefore designed to put a high artificial workload on this specific
component [Gre13]. Micro benchmarks are small in size and sometimes include a short sequence
of code (kernel) that solves a small and well-defined problem. As a result, typically the mean
of several individual executions is reported. Examples for such basic operations are the time it
takes to fetch a data entity from cache/memory, or the time it takes to draw a line on a graphical
terminal [Zha01]. While microbenchmarks are well suited to gather and compare information for
low-level operations of different systems, information on the performance of an actual applica-
tion is difficult to derive [Zha01]. Scheuner [Sch14] further categorized microbenchmarks by the
specific kind of operation they assess. Computation micro-benchmarks gather fundamental CPU
and GPU performance data. I/O micro-benchmarks are used to conduct performance analysis
of read and write operations and thus support the selection of the best storage type for a given
application. Networking micro-benchmarks help to find bottlenecks on the network layer and
scaling micro-benchmarks especially useful for benchmarking applications that acquire resources
on demand to cover peak load periods [Sch14].

2.5.2 Application Benchmarks
Macro benchmarks are in current literature often called application benchmarks. They aim at in-
vestigating the performance of an actual application as component of interest. This application
is either a real life application or a simplified but supposedly representative version of a real life
application. Macro benchmarks are usually bundled with a related workload and a set of input
data. As macro benchmarks try to reveal the actual performance of an application in a scenario
which is representative for a real-life use-case, they place a significant amount of stress on the un-
derlying system. Thus, the accuracy of a result obtained form an application benchmark depends
heavily on the representativeness of the workload, the input data and the benchmark application
itself [Zha01]. While application benchmarks can be used to reveal an actual application’s per-
formance, they fail at investigating performance bottlenecks. Analogously to microbenchmarks,
application benchmarks can be categorized according to the type of application they test: Web,
Data Intesive, High-performance-computing, etc. [Sch14].

2.5.3 Benchmarks for the Cloud
The advent of the cloud changed the way how benchmarking has to be conducted [BKKL09,
FAS+12]. In traditional benchmarking, every component of the SUT was well understood and
could be tested in an isolated environment. In cloud computing, the SUT runs on virtualized
hardware and usually makes use of other cloud services. That said, if the SUT runs in a cloud
environment, it is neither possible to control all components of the SUT nor to prevent resources
consumed by the SUT (e.g., storage, network, etc.) from being disturbed by third-party consumers
[FAS+12]. Binnig et al. [BKKL09] motivate the need for benchmarks which take the essential
cloud characteristics, such as multi-tenancy for instance, into account. In contrast to traditional
SUTs, soft- and hardware components should not depend on a static configuration. Moreover,
metrics such as the average performance under maximal load are due to the cloud’s elasticity
obsolete and need to be combined with new metrics to remain useful. New metrics could include
the systems ability to adapt to a changed workload in terms of performance and costs or the
robustness of the system in the case of a single node failure or even in the case of a complete
datacenter outage [BKKL09]. While traditional benchmarks tend to focus on microbenchmarking,
Binnig et al. [BKKL09] also introduce the need for application benchmarks that test the whole
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application stack and propose benchmarks, that are based on new technologies offering more
Web 2.0 like interactions [BKKL09].

2.6 Application Workloads
A typical benchmark consists of a SUT, a driver and a workload representing a real world sce-

nario [FAS+12]. The workload can thereby be described as the consequence of users accessing an
application or jobs that need to be processed [FLR+14] and thus characterize the stress a bench-
mark puts on the SUT. Workloads can either be synthetic or real [LBMAL12] and are defined by
the workload pattern and the workload mix they yield. While the workload pattern describes the
distribution over time and intensity of the stress, the workload mix describes the composition of
the requests used to generate the stress.

Synthetic Workloads Synthetic workloads model an expected workload and are therefore well
suited for controlled experimentation [LBMAL12]. They allow the experimenter to model every
possible scenario and to observe the effects of a change in the workload (e.g. higher number of
write operations), on the SUT’s performance. However, the representativeness of the gathered
data depends heavily on the assumptions inherent in the workload definition [LBMAL12].

Real Workloads Instead of defining a supposedly representative workload for a given scenario
based on some assumptions, real workloads are recorded during a live run of the SUT and saved
as so called trace. The trace can then be replayed by the driver and by doing so the real workload
be recreated [LBMAL12]. Real workloads are therefore especially well suited to track the effects
of changes to the SUT (or its configuration) on the SUT’s performance.

However, real workload data represents a defined set of benchmark parameters and therefore
the load cannot be easily adapted (e.g., number of concurrent users, fraction of read and write
requests, etc.) to a changed benchmarking scenario [CUWS11].

2.6.1 Workload Patterns
Mao and Humphrey [MH11] present in the context of cloud computing four representative work-
load patterns: Stable, Growing, Cycle/Bursting and On-and-off [MH11]. More recently, Fehling
et al. [FLR+14] extended these. The resulting set of workload patterns is outlined in the following.
All icons apart from "on-and-off" take from [FLR+14].

Stable, Static Cloud resources with a more-or-less flat utilization profile over time
experience stable [MH11], also called static [FLR+14], workload. A stable workload
is characterized by a constant number of requests per time unit [LBMAL12] resulting
in an even utilization within certain boundaries [FLR+14].

Growing/Shrinking, Continuously Changing Cloud resources with a continu-
ously increasing or decreasing utilization over time experience growing [MH11], or
continuously changing [FLR+14], workload. A steadily increasing workload can for
example be caused by a piece of news, a video or other product becoming more and
more popular [MH11]. Analogously will the workload on an information platform
for a certain product steadily decrease as soon as the product is phased out [FLR+14].
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Cyclic/Bursting, Periodic The cyclic/bursting workload [MH11], also called pe-
riodic workload [FLR+14], is characterised by stress peaks at reoccurring time in-
tervals. Stress increases over time till a peak is reached and decreases thereafter.
A typical example for cloud resources experiencing a cyclic/bursting workload are
e-commerce applications [MH11]. During the day the workload is fundamentally
different than at night and holiday shopping seasons may cause more traffic than
normal." [MH11]

On-and-off The on-and-off workload pattern can be seen as a specialization of
the cyclic/bursting pattern. In contrast to the cyclic/bursting workload, the on-
and-off workload does increase and decrease in a rather binary than steady way.
Mao and Humphrey [MH11] name batch processing and data analysis performed
daily or weekly as examples for applications showing this workload pattern [MH11].
These applications have relatively short active periods, after which they remain idle
[FLR+14].

Once in a lifetime Another special case of the cyclic/bursting pattern is the once-
in-a-life-time pattern. It is characterized a sudden and sharp increase in workload,
which, if it is unexpected, in consequence often overloads the servers. An unex-
pected sharp increase in workload could for example be caused by a breaking-news
post on a very popular social media platform or news portal such as Twitter13 or
Slashdot14. Latter caused this scenario also to be called "slashdot-effect". An exam-
ple for a planned scenario causing a once-in-a-lifetime workload is given by the New
York Times. Printed documents from their archives had to be digitalized and gen-
erated four terabyte of pdf documents [Com07]. Once-in-a-lifetime workloads occur
only once in a very long time frame [FLR+14]. In contrast to Fehling et al. [FLR+14],
Mao and Humphrey [MH11] did not consider this specialization at all and Lorido et
al. [LBMAL12] count it towards the regular cyclic/bursting workload pattern.

Unpredictable While some applications experience a workload exhibiting a clear
pattern, other applications’ workloads are unpredictable by nature. So might the
workload of a pizza-ordering-service of a local pizza-store be influenced by time,
weather, prices of products in the supermarket, promotions of competitors etc. and
therefore show an arbitrary combination of the other patterns.

2.6.2 Workload Mix
The workload mix describes the ratio of read-only to read-write interactions [CCE+03, Smi00]. In
the context of database benchmarking, a read-only interaction would be a pure database lookup
such as a SQL select, whereas a read-write interaction could be a create, update or delete opera-
tion.

To name an example, TPC-W specifies three different workload mixes [Smi00], each desig-
nated to stress a certain aspect of the SUT. The browsing mix contains 95% read-only interactions,
the shopping mix 80%, and the ordering mix 50%. While the browsing mix puts a greater load on
the webapplication, the ordering mix stresses the database [Smi00].

13https://twitter.com
14https://slashdot.org/

https://twitter.com
https://slashdot.org/
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2.7 Cloud WorkBench
Cloud Workbench (CWB)15 is a benchmark automation framework levering the idea of "Infras-

tructure as Code" (e.g., [Hüt12]), where benchmarks can be defined entirely as code and thus
be executed with minimal manual interaction [Sch14]. CWB enables the experimenter to define
benchmarks that are portable across cloud providers and thus allow the benchmarking of differ-
ent offerings with one and the same benchmark configuration. The integrated scheduling feature
allows the experimenter to conveniently schedule benchmark executions. A benchmark execu-
tion is triggered either manually or according to the specified schedule, then acquires computing
resources from the cloud provider, provisions the received instances, runs the benchmark, ag-
gregates the benchmark results, and tears-down and releases all resources after the benchmark
execution has finished. In order to acquire virtual machines from a wide range of different cloud
providers, CWB relies on Vagrant. Vagrant is further introduced in Section 2.7.2. The provi-
sioning of resources is done with Chef, an open-source configuration management tool. Chef is
introduced in Section 2.7.2. The Chef community provides readily available configurations for all
common tasks and by doing so, speeds up the benchmark development. In consequence, bench-
marking cloud services with CWB is both less time-consuming and less error prone than with
traditional tools [Sch14].

2.7.1 Benchmark Execution in Detail
A typical benchmark execution is explained in Table 2.1 and depicted in Figure 2.4. The compo-
nents taking part in the benchmark execution are further explained in Section 2.7.2

In CWB, the Chef platform consists of Chef Server, a cookbook repository dedicated to the
management and storage of cookbooks. Chef Client is used to do the initial examination of the
node, to fetch the latest cookbooks from the Chef Server and to provision the node according to
the cookbooks.
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Figure 2.4: CWB architecture. Adapted from [Sch14]

15https://github.com/sealuzh/cloud-workbench
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Phase Step Action

Start: 1 A benchmark execution is started either manually or via the inte-
grated scheduling feature.

Prepare: 2 Virtual machines are acquired by Vagrant and the IaaS provider
initiates the startup of the virtual machines.

3 As soon as the virtual machines are ready, Chef Client is installed
and fetches the most recent benchmark cookbook from the Chef
Server. Subsequently, all software specified in the cookbook is in-
stalled automatically.

Run: 4 When Chef Client finished the provisioning, CWB Server starts the
benchmark.

5 The benchmark is executed locally on the Node and intermediate
results are stored.

Postprocessing: 6 Then the CBW Client aggregates the intermediate results.
7 The CWB Client transfers the aggregated results back to the CWB

Server.

Finish: 8 The results are stored persistently on the CWB Server.
9 Now, the acquired resources are release by Vagrant and the bench-

mark run is complete.

Table 2.1: Execution steps of a benchmark executed with CWB

2.7.2 Components
CWB consists of several components and subcomponents. The four major components which
are essential for the benchmark specification and execution are explained in the following para-
graphs.

CWB Server The CWB Server is the main component of the application. It provides the web
interface, implements the business logic and stores its data in a relational database. Moreover
it provides the scheduling service and orchestrates the different tasks required to setup the SUT
and execute the benchmark. At the end of a benchmark execution, the CWB Server collects the
benchmark metrics and stores them persistently [Sch14].

Chef The Chef16 automation platform is a set of tools to automatically provision nodes (i.e.,
physical or virtual machines) based on a Chef configuration written in Ruby. Chef examines
the current state of a node and compares it with the state specified in the Chef configuration.
If the states differ, Chef installs missing packages, moves files, alters configurations, and runs
scripts in order to converge the actual state to the desired state [Che16a]. A Chef configuration
is called "cookbook" and consists of at least one "recipe". The recipe is the essential part of the
configuration and tells Chef what actions have to be taken in order to converge a node towards
the desired state. Recipes can be made configurable by using attributes. During the examination
phase, information about the node is picked up and made available to the recipes through these

16https://www.chef.io/

https://www.chef.io/
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attributes [Che16b]. In CWB, the Chef platform consists of Chef Server, a cookbook repository
dedicated to the management and storage of cookbooks. Chef Client is used to do the initial
examination of the node, to fetch the latest cookbooks from the Chef Server and to provision the
node according to the cookbooks.

Vagrant Vagrant17 is an open-source project with the aim to facilitate the management of vir-
tual machine environments. The first version of Vagrant emerged from efforts to automate the
creation of local development environments in a reproducible manner and with minimal manual
interaction [Sch14] This first version was based on virtual machines provided by VirtualBox18.
More virtual machine providers were added in subsequent versions and Vagrant soon started to
support cloud providers too. Today, all major cloud providers, such as Amazon EC219, Google
Compute Engine20, Microsoft Azure21, and Rackspace22, are supported [Has16]. CWB integrates
Vagrant in order to acquire virtual machines, to trigger the provisioning phase (by delegating to a
provisioning framework such as Chef2.7.2 for instance) and to release virtual machines at the end
of a benchmark execution. Since CWB uses Vagrant opportunistically and without further cus-
tomizations, CWB is capable to make full use of all providers and plugins provided by Vagrant
and hence supports all common cloud providers supported by Vagrant [Sch14].

CWB Client The CWB Client is a small application which allows the SUT to communicate with
the CWB Server. The CWB Client offers functionality to inform the CWB Server about status
changes and to submit benchmark metrics as soon as the benchmark run has terminated [Sch14].

2.8 Apache JMeter
Apache JMeter is an open-source load testing tool written in Java and can be used for analyz-
ing and measuring the performance of any kind of webservice. JMeter can be used to evaluate
performance on both static files and dynamic resources [Fou16a].

JMeter supports a wide range of features out-of-the-box, including variable parametrization,
assertions (response validation), per-thread cookies, caching, configuration variables and the gen-
eration of a variety of reports [Hal08, Eri15]. Additionally, JMeter comes with native support for
several different protocol and request types, such as http, ftp, mail and ldap [Fou16b]. Conse-
quently, JMeter can be used to generate load for every imaginable scenario [Eri15].

However, despite supporting all basic features of a web browser, JMeter is not a web browser.
In contrast to regular web browsers, JMeter neither renders the HTML pages nor executes JavaScript
found in HTML pages [Eri15]. JMeter is indeed capable to display the rendered HTML pages,
but by default excludes the time required to render the page or the time required to execute the
JavaScript from the results [Eri15].

2.8.1 Workload Generation
JMeter generates the workload according to the JMeter Test Plan. The Test Plan is a XML config-
uration specifying all details about the amount and type of requests JMeter has to send in order
to generate the required workload for the SUT.

17https://www.vagrantup.com/
18https://www.virtualbox.org/
19https://aws.amazon.com/ec2/
20https://cloud.google.com
21https://azure.microsoft.com/
22https://www.rackspace.com

https://www.vagrantup.com/
https://www.virtualbox.org/
https://aws.amazon.com/ec2/
https://cloud.google.com
https://azure.microsoft.com/
https://www.rackspace.com
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The JMeter Test Plan itself is composed of several elements. The most important elements are
outlined in the following.

Controllers Controllers are the basic building blocks for the workload and define what type of
request with what data has to be sent to the SUT. Controllers can be either Samplers or Logic
Controllers. While Samplers define the type (GET, POST, etc.) and the data (parameters, head-
ers and body) of the request, Logic Controllers are used to customize the logic JMeter uses to
decide when to send a request. As an example could a HTTP Request Sampler be wrapped into
a Loop Controller and in consequence be run several times. Or a HTTP Request Sampler could
be wrapped into a Once-Only Controller and therefore be run only for the first iteration of the
Thread Group [Fou16b].

Thread Group A thread group is a conjunction of a group of Logic Controllers and Samplers
and can therefore be seen as a testing-manual which describes how a real user would interact with
the SUT. The controls for a thread group allow to specify the number of threads (emulated con-
current users) JMeter should launch, in what period JMeter should create the threads (so called
ramp-up period) and how many times each thread has to execute the Thread Group before termi-
nating [Fou16b].

Although the flexibility of the Jmeter Testplan allows to imitate every imaginable scenario, it
lacks to support the different workload patterns introduced in 2.6.1. The default Thread Group is
due to the few configuration options regarding thread-start and -stop times restricted to imitate
stable and growing workload patterns.

JMeter Plugin To support all of the workload patterns introduced in chapter 2.6.1, JMeter pro-
vides an additional set of Test Plan elements which are available through a plugin. With the
Ultimate Threadgroup23 or the Free Form Arrivals Thread Group24 an arbitrary workload pattern
can be defined [Pok16].

2.8.2 JMeter Results File
Each test run produces a JMeter results file. In the JMeter configuration, the exact format of the
file can be specified, often it is .jtl, which is a comma-separated text file format. The results file
contains all information for each request. An example may be clarifying:

1 timeStamp,elapsed,label,responseCode,responseMessage,threadName,dataType,success,bytes,grpThreads,allThreads,Latency
2 1467376053413,3183,Login,200,OK,ip−172−31−15−5_AcmeAir_API 1−1,text,true,406,17,17,3183
3 1467288194502,15345,Query Flight,200,OK,ip−172−31−15−18_AcmeAir_API 1−158,text,true,342,1070,1070,15345
4 1467376059479,238,Query Flight,200,OK,ip−172−31−15−5_AcmeAir_API 1−11,text,true,342,33,33,238
5 1467376059482,247,Query Flight,200,OK,ip−172−31−15−5_AcmeAir_API 1−12,text,true,342,33,33,247
6 1467288194500,15347,View Profile Information,200,OK,ip−172−31−15−18_AcmeAir_API 1−922,text,true,428,1070,1070,15347
7 1467376056517,196,Update Customer,200,OK,ip−172−31−15−5_AcmeAir_API 1−7,text,true,430,18,18,196
8 1467376059491,245,View Profile Information,200,OK,ip−172−31−15−5_AcmeAir_API 1−1,text,true,430,33,33,245
9 1467376057498,26,logout,200,OK,ip−172−31−15−5_AcmeAir_API 1−6,text,true,264,22,22,26

10 ...

Listing 2.1: Jmeter JTL File Example

23https://jmeter-plugins.org/wiki/UltimateThreadGroup/
24https://jmeter-plugins.org/wiki/FreeFormArrivalsThreadGroup/
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2.8.3 Test Architecture
Hardware capabilities as well as the Test Plan design will both impact the number of threads a
JMeter instance can effectively run [Fou16a]. While for small experiments a single JMeter instance
is sufficient, for more extensive experiments a distributed architecture with multiple JMeter in-
stances for generating the load is vital. Hence, JMeter support two testing modes: a simple, and
a distributed mode.

Simple Mode The simple mode is based on a single JMeter instance that is used to generate
the whole laod required to stress the SUT. During the test run, the results are aggregated in a
single file and after the test execution stored locally on the instance. The resulting test topology is
depicted in Figure 2.5.
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Figure 2.5: JMeter instance topology: simple mode

Distributed Mode The distributed mode is built around a JMeter master instance, which man-
ages and orchestrates several JMeter slave instances. In this mode, the JMeter slave instances
generate the load to stress the SUT. The JMeter master sends the JMeter Test Plan (2.8.1) to all
slave instances and then starts the test. During the test run, single results are collected decentral-
ized by the Jmeter slave instances and after the test run transmitted to the JMeter master, which
aggregates all the results in a single file and stores it locally.
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Chapter 3

Related Work

There exist already several benchmarking studies researching the performance of cloud services
[LZO+13]. Related research highlights the importance of Web 2.0 like workloads and the support
for end-to-end support for the whole benchmarking process(e.g., [BKKL09, FAS+12, CUWS11,
CCVK13]).

Lenk et al. [LML+11] explicitly proposes to develop for every cloud provider a standardized
virtual machine. Not surprisingly, recently developed application benchmarks and benchmark-
suits make heavy use of pre-packaged virtual machine images. In order to ease the deployment
of the benchmark, they pre-package virtual machine images for SUT, driver including workload,
and some kind of management application with all the configurations required to run the bench-
mark. While this approach allows in theory to support every cloud provider, in practice, users of
the benchmark are dependent on the benchmark-developers to provide virtual machine images
for new cloud providers edging into the market and to update images regularly. Thus, to our best
knowledge, there exists not a single benchmark which is cross-browser native. Along the same
lines do only few benchmarks allow to specify a completely custom workload. We identify this
as an issue, since permanent change is inherent in the cloud’s nature.

We pick up the requirements formulated by [FAS+12] and the generic architecture presented
by [ICH+14] as a baseline for the design and the development of our own cross-provider native
and generic application-aware benchmark.

We circumvent both, the manual configuration and benchmark set-up as well as the pre-
packaging of machine images [LML+11] for individual cloud providers by fully embracing the
principles of infrastructure as code [Hüt12]. Consequently, we provide all information required
to set up and configure the driver, the workload and the SUT, as code.

Additionally, we implement basic configuration options [FAS+12] allowing the user to specify
basic settings or even to use a completely custom SUT and/or workload. By doing so, we allow
the cloud user to employ web applications, which make us of bleeding edge technologies, apply
Web 2.0 interaction patterns and thus represent the state-of-the-art.

We tackle the need to authentically reproduce user interactions by employing a workload
generator, which provides natively the required functionality to address named shortcomings,
which are the lack of caching, usage of cookies, parallel downloads and dynamic content loading
[CUWS11].

The resulting, generic benchmark is introduced further in Section 4. After this brief introduc-
tion, we give in the following sections a comprehensive overview of related work in the field of
cloud benchmarking.
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3.1 Application Benchmarks
For a long time, the research community has relied on open-source benchmarks such as TPC-
W [Smi00,Con05] and RUBiS [ACC+02,Con09] but with the advent of Web 2.0, interactive content
and mobile clients, these benchmarks became outdated.

Binning et al. [BKKL09] start a discussion why traditional benchmarks are not sufficient for
analyzing cloud services and offer requirements for a new cloud benchmark. They show which of
these requirements are satisfied by the popular TPC-W benchmark and conclude with some ini-
tial ideas for a new benchmark addressing the shortcomings of the TPC-W benchmark [BKKL09].
While the proposed benchmark addresses the metrics scalability, cost, peak-load handling and
fault tolerance, it does not reflect aspects such as hardware heterogeneity, datacenter location or
time of execution. In a follow up study to Binning et al. [BKKL09], Kossmann et al. [KKL10]
customize the TPC-W benchmark and present the results of benchmarking the end-to-end perfor-
mance and related cost of running enterprise web applications with OLTP workloads on different
cloud services (Amazon, Google, and Microsoft’s) [KKL10]. Inspired by the work of Binning et
al. [BKKL09], Folkerts et al. [FAS+12] start a discussion on what benchmarking should, can, and
cannot be and provide a list of general requirements and challenges for modern cloud bench-
marks [FAS+12].

Since TPC-W [Smi00] and RUBiS [ACC+02], a number of new benchmarks have been pro-
posed, such as TPC-E [TPC15] and SPECWeb2009 [Cor09]. However, as there were no open-
source or free implementations available to the general public, these benchmarks have only been
used by commercial vendors [CUWS11].

In response, Sobel et al. [SSS+08] developed CloudStone, a toolkit consisting of a Web 2.0 ap-
plication architecture with load injectors relying on a Markov model to model user workloads, a
load generator, automation tools, and a methodology and set of parameters for computing the key
metric of dollars-per-user-per-month. Besides the key metric, the presented results, which were
gathered on Amazon EC2, show the maximum number of users for a specific setup consisting of
a VM type and a software configuration [SSS+08].But without capturing or emulating client-side
JavaScript or AJAX interactions, an important aspect of common Web 2.0 applications falls short.

To address all these shortcomings, Cecchet et al. [CUW+11] propose BenchLab, an open-
source benchmark-suite based on multiple modern Web 2.0 applications. BenchLab provides
as SUT several backends, which represent different domains [CUWS11] and are already known
from existing benchmarks (RUBiS [Con09], TPC-W [Smi00] and CloudStone [SSS+08]). More-
over, BenchLab [CUW+11, CUWS11] provides an alternative, novel approach to the emulation of
complex interactions. In contrast to other benchmarks targeting at web applications, BenchLab
makes use of real web-browsers in combination with Selenium1 to capture and emulate client-side
JavaScript or AJAX interactions. To manage and orchestrate all components of the benchmark,
and to store the results, BenchLab provides a web based user interface. To ease the configuration
and setup, BenchLab images are provided on Amazon [CUW+11]. In their studies, Cecchet et al.
show the need to use real web applications as benchmarks and present a tool that authentically
reproduces user interactions [CUW+11, CUWS11].

Smart CloudBench [CCVK13,VK14] is a framework, which supports the whole benchmarking
process from cloud provider selection to decommissioning of resources which were acquired dur-
ing the benchmark setup [CCVK13]. The Smart CloudBench application can be used to deploy
a Java based implementation of the TPC-W [Smi00] benchmark to all cloud providers supported
by Apache jClouds2. From the data gathered with the benchmark, Chhetri et al. infer the perfor-
mance of the tested instance types (i.e. instance sizes) for different scenarios. The whole Smart

1http://www.seleniumhq.org/
2 https://jclouds.apache.org/
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CloudBench application stack is available as pre-packaged Amazon EC2 machine images3 (AMI)
and allows the customization of the TPC-W workload [VK14, CCVK13].

Dejun et al. [DPC10] study performance stability and performance homogeneity of VMs pro-
vided on Amazon EC2. While performance stability behaves as expected, performance homo-
geneity emerges as an issue. Dejun et al. observe that the performance of VMs of the same type
show very heterogeneous performance profiles, up to a ratio 4 in response time from each other.
While this is a issue in terms of performance predictability, they believe that exploiting perfor-
mance variability could result in an improvement of the overall resource usage. In order to simu-
late CPU-intensive (processing) and I/O intensive workload patterns, they develop three custom
micro-service applications, but withhold details about their concrete implementation [DPC10].

3.2 Micro Benchmarks
Schad et al. [SDQR10] focus on the issue of performance unpredictability in the cloud and ex-
haustively evaluate the performance of Amazon EC2 instances. To this end, they test single and
multiple instances in different datacenters by executing a set of microbenchmarks, which mostly
are part of the Unix Benchmark Utility4. Their analysis clearly shows that both small and large
instances suffer from a large variance in performance. In order to reduce the impact of this is-
sues, they propose to report the used underlying system type (CPU Model, etc.) together with the
results [SDQR10].

Lenk et al. [LML+11] investigate if the performance indicators presented by IaaS providers
are sufficient to compare the actual VM’s performance. Additionally they research the question
if standard benchmarks can be used to make different IaaS Cloud offerings more comparable
in order to assist the user in his decision which Cloud offering to use. They conclude that per-
formance indicators presented by IaaS providers are not sufficient and formulate the need for a
benchmark suite containing all tools required for a cost- and time- efficient performance evalua-
tion. Further, they propose standardized cloud-performance-measurement VMs to compare per-
formance between providers. In their own experiments, they made heavy use of the Phoronix5

microbenchmark they used three different cloud providers, namely Amazon EC26, Flexiscale7

and Rackspace8 [LML+11].
Salah et al. [SASA+11] performed numerous microbenchmarks to empirically evaluate and

especially compare the performance of Amazon EC2, ElasticHosts and BlueLock [SASA+11].
Leitner and Scheuner [LS15] offer some insights into the bursting and non-bursting instance

behaviour of Amazon EC2 bursting instance types [LS15].

3.3 Other Benchmarks
Online Transaction Processing (OLTP) Cooper et al. [CST+10] develop a benchmark frame-
work called Yahoo! Cloud Serving Benchmark (YCSB) for the comparison of systems devel-
oped for cloud data serving and report performance results for four distributed database sys-
tems [CST+10]. Based on the YCSB-framework, Rabl et al. [RGVS+12] benchmark six distributed

3 http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html
4http://phystech.com/download/ubench.html
5http://www.phoronix-test-suite.com/
6https://aws.amazon.com
7http://www.flexiscale.com/
8https://www.rackspace.com

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html
http://phystech.com/download/ubench.html
http://www.phoronix-test-suite.com/
https://aws.amazon.com
http://www.flexiscale.com/
https://www.rackspace.com


24 Chapter 3. Related Work

database systems and Kuhlenkamp et al. [KKR14] partially reproduce the experiments from Rabl
et al. [RGVS+12] within Amazon EC2.

Difallah and Pavlo [DPCCM13] develop an extensible testbed for benchmarking relational
databases. Concretely, they address the need for a comprehensive testbed that supports both a
large number of database systems and a wide range of benchmarks that capture the essence of
an important set of applications and develop a benchmark suite for OLTP benchmarks called
OLTP-Bench [DPCCM13].

VM Startup Time Mao and Humphrey [MH12] conduct a systematic study on the VM startup
time across three cloud providers, namely in Amazon EC2, Windows Azure and Rackspace.

Latency Sensitive Applications Barker and Shenoy [BS10] present in their study two different
use cases for latency-sensitive cloud applications in the cloud and conduct microbenchmarking to
empirically evaluate the efficacy of Amazon EC2 for running latency-sensitive multimedia appli-
cations. Their experiments revealed that the CPU and disk jitter, and the throughput can indeed
fluctuate due to background load from other virtual machines [BS10].

High Performance Computing (HPC) Furthermore, a number of researchers from the field
HPC started evaluating Amazon EC2 for scientific computation tasks (e.g., [Wal08,OIY+08,OIY+09,
NB09, XAL10, JRM+10, ETP+13]). While some of these (e.g., [NB09, OIY+08, ETP+13]) use one or
more standard benchmarks such as LINPACK9, HPCC10, Bonnie11 or NAS Parallel Benchmarks12,
others use representative applications. For instance Jackson et al [JRM+10] deploy a whole set of
applications representing a diverse range of numerical methods and data-structure representa-
tions in the fields of climate, material science, fusion, accelerator modeling, astrophysics, and
quantum chromodynamics [JRM+10]. In contrast to these studies, Iosup et al. [IOY+11] perform
extensive measurements to compare several clouds (Amazon EC2, GoGrid, ElasticHosts, and
Mosso) and compare clouds with other HPC-environments based on real long-term scientific-
computing traces [IOY+11].

Cloud Simulators Li et al. [LZK+11] propose CloudProphet, a performance prediction tool
which employs a trace-and-replay approach to provide accurate application-specific prediction
results. In the tracing step, detailed workload information is tracked. During the replaying step,
an CloudProphet agent running in the cloud environment under test replays the workload trace
and hence emulates the workload. By measuring the performance of the SUT, CloudProphet tries
to estimate the real application performance after the cloud deployment [LZK+11].

In order to evaluate the performance of provisioning policie models, application workload
models, and resources performance models in a repeatable manner and under varying system
and user configurations, Calheiros et al. [CRB+11] developed CloudSim, an extensible simulation
toolkit that enables modelling and simulation of cloud applications and their deployment options
in a cloud environment [CRB+11]. CloudSim supports for system and behavior modelling of
datacenters, VMs and resource provisioning policies. Based on CloudSim, Fattikau et al. [FFH12]
developed CDOSim. CDOSim is a simulation tool that allows to simulate cost and performance
properties of specified cloud deployment options.

9https://www.top500.org/project/linpack/
10http://icl.cs.utk.edu/hpcc/
11http://www.textuality.com/bonnie/
12http://www.nas.nasa.gov/publications/npb.html

https://www.top500.org/project/linpack/
http://icl.cs.utk.edu/hpcc/
http://www.textuality.com/bonnie/
http://www.nas.nasa.gov/publications/npb.html
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3.4 Guidelines and Benchmark Design
There are a number of publications that try to provide guidelines on the subject of benchmark
design and implementation [BKKL09, Hup09, Kou06, SKBB09, Sac11, VMSK12]. For our work, we
adhere to the guidelines collected by Folkerts et al. [FAS+12]. Folkerts et al. [FAS+12] provide a
set of cloud benchmark guidelines which are mostly based on the work of Huppler [Hup09] and
Binnig et. al [BKKL09]. The guidelines by Folkert et al. [FAS+12] are formulated as requirements
to a new cloud benchmark and cover general requirements, implementation requirements, and
workload requirements [FAS+12].

Iosup et al. provide in their work a generic approach to IaaS and PaaS cloud benchmark-
ing, namely a generic benchmark architecture [ICH+14]. While the architecture shows several
participating entities in an abstracted way, it leaves concrete implementations to the user.

3.5 Costs and Cost-optimization
Brebner and Liu [BL10] define 3 representative scenarios for hosting cloud applications and cal-
culate the accruing costs. As only paper, they also consider the different limitations in terms of
quotas, which restrict infinite scaling and sudden scale-out scenarios [BL10].

Farley [FJV+12] shed in their study light on placement gaming. To this end, they simulate
resource scarcity and develop customer-controlled placing strategies for selecting instances in
order to exploit performance heterogeneity [FJV+12].

O’Loughlin and Gillam [OG14] show opportunities for a Cloud Service Broker in relation to
pricing. A Cloud Service Broker could take advantage of performance variations and solve related
and budgeting issues. Firstly, does the time required to complete a task vary with the perfor-
mance, secondly is the number of instances that is required to complete a job in a certain amount
of time dependent on the performance of the individual instances, and thirdly are some compu-
tational requirements better addressed by different instance types, thus analyzing the specifics of
each instance type implies further costs [OG14].

3.6 Benchmark Automation
In this work, we propose a multi-provider benchmark. To empirically evaluate our efforts, we
require means to easily define and execute benchmarks over different cloud providers and in
an automated manner. Previous work has proposed multiple approaches to achieve this, in-
cluding Expertus [JSM+12], Cloud-Bench [SLSR+08] CloudCrawler [CMS13], Smart Cloud-Bench
[CCVK13, VK14],Cloud-Gauge [ERR10], C-Meter [LG] and BenchLab [CUW+11, CUWS11]. Al-
though either of these systems could have been used instead as well, we decided to make use of
our own framework: Cloud Workbench [Sch14, SCLG15].





Chapter 4

Generic Application Benchmark

Traditional cloud benchmarks are often built around a single application, such as an e-commerce
web application as in the case of TPC-W [Smi00] or a bidding system as in the case of RU-
BiS [Con09]. Benchmarking frameworks often re-use these benchmarks and provide support for
a predefined set of these. Consequently, cloud users can choose which benchmark application
should be used as the SUT and the workload is adapted accordingly. Examples of such frame-
works are BenchLab [CUW+11, FAK+12] and Smart CloudBench [CCVK13].

Summing up, traditional benchmarking frameworks embrace the idea of a benchmark as a de-
fined set consisting of a fixed SUT and a mainly fixed workload. These benchmarks test a specific
application with a predefined workload. Although some benchmarks provide the possibility to
configure the workload, it is neither possible to use a custom application as SUT nor to define a
custom workload to stress the system.

In our approach to application benchmarking, we treat the SUT as a black-box. This allows
the cloud user to use any application as SUT, as long as a related workload is provided too.
Our approach offers several advantages. Firstly, our approach allows to re-use any traditional
benchmark and related workload. Secondly, it allows the customization of traditional benchmark
applications to better represent a certain scenario or use-case while using the original workload,
and most importantly, our benchmark even allows to use a real-world application as SUT and a
related real-life web-trace as workload. Hence, generic application benchmark.

4.1 Automation and Portability
Folkerts et al. [FAS+12] name among other things "portability" and "repeatability" as key require-
ments for a new cloud benchmark [FAS+12] and some of the traditional frameworks support
the fully automated and repeated execution of defined benchmarks already [CCVK13, CUWS11,
Sch14]. To cover these requirements, we make use of CWB, which is purpose-designed to sup-
port the acquisition, provisioning, execution and decommissioning of benchmarks and all related
cloud resources. CWB is introduced in more detail in Section 2.7. CWB heavily relies on the
notion of Infrastructure-as-Code, that is, all configurations and setup instructions are defined as
code. This is a fundamentally different approach compared to the more often applied packag-
ing of VM images and virtual appliances1. Although this seems to be an overhead, the induced
benefits clearly outweigh the additional up-front effort required to define all configurations in
code. Firstly, it enables the benchmark to be repeated without manual interaction and more im-
portantly, it allows the benchmark and all its components to be ported to other cloud providers
with minimal effort. In order to port the benchmark to another cloud provider, only the provider

1Virtual appliance := "A service delivered as a complete software stack installed on one or more virtual machines. [. . . ]" [Dis10]
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related parts of the CWB benchmark definition have to be updated. As an example, Listings 4.1
and 4.2 showcase the changes required to migrate the datastorage-part of the CWB benchmark
definition from Amazon EC2 to GCE.

1 mongodb.vm.provider :aws do |aws, override|
2 aws.region = 'eu−central−1'
3 aws.availability_zone = 'eu−central−1a'
4 aws.ami = 'ami−e05ab38f'
5 aws.instance_type = 'c4.large'
6 aws.security_groups = ['cwb−web']
7 aws.private_ip_address = "172.31.2.1"
8 aws.tags = {'Name' => 'mongodb'}
9 end

Listing 4.1: Benchmark def. Amazon EC2

1 mongodb.vm.provider :google do |google, override|
2 google.zone = "europe−west1−b"
3
4 google.image = 'debian−8−jessie−java'
5 google.machine_type = 'n1−highcpu−4'
6 google.scopes = ["cloud−platform"]
7 google.name = "mongodb"
8 end

Listing 4.2: Benchmark def. GCE

4.2 System under Test
Our generic application benchmark requires all potential SUTs to exist in form of a Chef cookbook.
That is, all software required for the application to be run and all related configurations have to be
defined in code. Since Chef is a well established automation solution, a lot of software, ranging
from small utilities to full-blown applications, is already available as Chef cookbook on Chef
Supermarket2.

As a first application for the benchmark, we implemented AcmeAir as Chef cookbooks. Acmeair
is introduced in the following sections. The developed cookbooks are briefly introduced in Sec-
tion 4.2.2.

4.2.1 AcmeAir Performance Sample/Benchmark
The Acme Air Performance Sample/Benchmark was developed by IBM and uses as benchmark

application an implementation of a fictitious airline called "Acme Air". The application was de-
signed to fulfil key requirements of the airline business, such as the ability to scale to billions of
web API calls per day, the need to deploy the application to public clouds, and the need to sup-
port multiple channels for user interaction and thus represents a compelling industry examples
of a system of engagement [Moo11, Spy13].

In-air connectivity, paperless boarding, and mobile applications that alert customers of chang-
ing flight plans on the one hand, and always-on mobile connection with customers, employees,
and partners, cloud hosted services, internet of things, and big data analytics on the other hand,
profile the airline industry as a relevant case [Spy13].

The transformation of the industry from clients-facing applications to applications that have
to offer more and more mobile and business to business services, is also what motivated the
AcmeAir performance benchmark. The main aim of AcmeAir is to showcase an application,
which is able to process over a billion web API requests per day and thus would belong to the

2 https://supermarket.chef.io/

https://supermarket.chef.io/
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programmable web’s "Billionaire’s Club"3. The Acme Air Performance Sample/Benchmark is
open source and available on Github4.

AcmeAir is composed of two systems, a web application and a database. In the subsequent
sections, these are further described.

Web application

The AcmeAir web application is composed of three distinct components: the user interface, a
restful API and a data service integrating the database. Hence, AcmeAir can be qualified as a
three-tier online-transaction processing (OLTP) application [Fow03].

Presentation Layer To fulfil the key requirement of supporting multiple channels for use inter-
action, AcmeAir provides a GUI dedicated to classic desktop browsers as well as a mobile app.
The desktop browser GUI is based on the current web standards (HTML5, CSS3, JavaScript) and
makes use of the Dojo JavaScript framework5.

The mobile app is designed as hybrid app to provide a consistent design across Android and
iOS devices and also makes use of technologies such as Apache Cordova6 to get access to mobile
unique features (such as location and camera etc.), allowing the mobile application to fully take
advantage of device specifics.

Domain Layer AcmeAir has explicitly been designed to support multi-channel and therefore
offers the same core services to desktop, mobile, and business partner services. This allows
AcmeAir to provide a consistent user experience regardless of the device and business partner.
This is realized by a well defined REST API which is based on IBM’s Worklight7 server technol-
ogy [Spy13].

Data Source Layer The Data Service implements basic functionality for storing and retrieving
data form the data source. It provides the functionality as a service and hides the implementation
details for the data management by doing so. Moreover it does not implement any business logic.
For every data source that should be supported, a dedicated data service has to be implemented.

Database

The data source is the actual database and is managed by the data service. It stores bookings, cus-
tomers, sessions, flights, flight segments, and airports. While bookings and sessions are generated
during the test run, 394 flight segments which connect 31 airports are predefined.

Implementation Alternatives

The actual AcmeAir application can be implemented in several ways. Since the web application
is written in Java, it is not restricted to a specific web server technology. The data service is de-
coupled from the web application and registers itself with the Java Naming and Directory Service
(JNDI8). The actual connection is established at runtime over a JNDI lookup. At this point, the
following implementations are available in the official AcmeAir Github repository9:

3 http://www.programmableweb.com/news/which-apis-are-handling-billions-requests-day/2012/05/23
4https://github.com/acmeair/acmeair
5 https://dojotoolkit.org/
6 https://cordova.apache.org/
7http://www-03.ibm.com/software/products/en/ibm-mobilefirst-foundation
8https://docs.oracle.com/javase/tutorial/jndi/ops/index.html
9https://github.com/acmeair/acmeair

http://www.programmableweb.com/news/which-apis-are-handling-billions-requests-day/2012/05/23
https://github.com/acmeair/acmeair
https://dojotoolkit.org/
https://cordova.apache.org/
http://www-03.ibm.com/software/products/en/ibm-mobilefirst-foundation
https://docs.oracle.com/javase/tutorial/jndi/ops/index.html
https://github.com/acmeair/acmeair
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Webserver:

• IBM WebSphere Liberty10

Database:

• MongoDB 2.6.411

• WebSphere Extreme Scale 8.6.0.812

4.2.2 AcmeAir Chef Cookbooks
To implement an AcmeAir Chef Cookbook, we chose the original version of AcmeAir, which is
described in section 4.2.1. AcmeAir was downloaded from Github13 and built from source as
described in the AcmeAir Github Wiki. To this end, we had to setup a dedicated virtual ma-
chine providing all required dependencies such as Java 7 and several IBM dependencies such as
WebSphere Liberty 8.5.5.6 and the WebSphere Extreme Scale libraries.

In the following, we briefly describe the acmeair-morphia-wlp-distributed and the acmeair_mongodb
Chef cookbooks, which we used later for the data collection. These cookbooks are required to set
up a distributed SUT, which consist of a web application instance running WebSphere Liberty
and a database instance running MongoDB. Prior to these cookbooks, to start out with we also
had developed a cookbook implementing WebSphere Liberty and MongoDB on a single instance
and another cookbook implementing WebSphere Liberty and WebSphere Extreme Scale also on a
single instance.

Web Application Cookbook

In order to setup the AcmeAir sample application in a fully automated manner, we developed
acmeair-morphia-wlp-distributed. The cookbook was tested with Ubuntu 14.04 and Debian 8.3 (Jessie)
operating systems, although for the experiments only Debian 8.3 (Jessie) was used. Moreover we
implemented also several configuration options which can be seen in the attributes file acmeair-
morphia-wlp-distributed/attributes/default.rb

The acmeair-morphia-wlp-distributed cookbook installs first all required software to fetch (apt
git package) and unzip (apt unzip package) the AcmeAir build files from Github. Then, IBM
WebSphere Liberty is installed by using the Chef wlp cookbook available on Chef Supermarket.
In order to be able to connect to the MongoDB, the mongo-to-java driver is installed. Additionally,
to make the newly installed driver available to Websphere Liberty, the MongoDB feature has to be
installed. After that, the webapplication is deployed, all configuration-file templates are extended
with the actual configuration information provided by the benchmark definition and then applied
to Websphere Liberty. After a possible heap space tuning, the Websphere Liberty server is started
eventually.

Database Cookbook

To set up and configure the database on a dedicated instance, we implemented an independent
cookbook for it, namely acmeair_mongodb. The cookbook makes heavy us of the already existing
mongodb cookbook available on Chef Supermarket.

10https://developer.ibm.com/wasdev/websphere-liberty/
11https://www.mongodb.com/download-center#enterprise
12http://www-03.ibm.com/software/products/de/websphere-extreme-scale
13 https://github.com/acmeair/acmeair/commit/f16122729873ef0449ea276dfb2d2a1d45bebb40

https://developer.ibm.com/wasdev/websphere-liberty/
https://www.mongodb.com/download-center#enterprise
http://www-03.ibm.com/software/products/de/websphere-extreme-scale
https://github.com/acmeair/acmeair/commit/f16122729873ef0449ea276dfb2d2a1d45bebb40
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To shorten the provisioning phase and to ease the deployment of the SUT in general, we de-
cided to make a database dump and to pre-load that data instead of generating it during the
set-up phase. Hence, the database is preloaded with 1 million customers, 47280 flights, 394 flight
segments and 31 airports from the dump. Note: the flights loaded from the dump are only avail-
able between May and October 2016.

The data in the dump generates a database of size 668MB, from which 520MB are data. This fits
entirely in the main memory of the database server. Moreover, the database contains 6 collections,
with 1047718 objects in total. The images stored in the Web server file system use 792KB of disk
space.

Additionally to the database, also a database user with privileges on the AcmeAir database is
loaded into the database.

An detailed listing of the MongoDB statistics is in the appendix: 9.3. All available configura-
tion options can be seen in the attributes file acmeair_mongodb/attributes/default.rb.

4.3 Driver
Cecchet et al. [CUWS11] outline the importance of realistic workload generation as an important
part of a cloud benchmark [CUWS11] and report that existing web client emulators do not au-
thentically generate requests and therefore may not place a realistic load on the server [CUW+11].
Most existing client emulators do neither download embedded resources (e.g., images, CSS, JS,
etc.) nor trigger AJAX interactions as real web browsers would. Additionally, to optimize page
loading speeds, real web browsers also apply strategies to download embedded resources in par-
allel, while modern web applications send out different versions of the same resource based on
the browser type (e.g., mobile, tablet or desktop). As a result, the load experienced by the SUT is
not authentic [CUWS11, Sac12].

Instead of implementing a custom client emulator (e.g., [CUWS11, CCE+03, Cor16]), we pro-
pose JMeter14, which is briefly introduced in Section 2.8. We chose JMeter over Faban15 (e.g., used
in [SSS+08, CMS13, CMS16]) due to the abilities to (1) support caching, (2) support cookies, (3)
define custom headers (user agent specification), (4) retrieve embedded resources, (5) to use a
thread/connection pool to simulate parallel fetching [Fou16a] and (6) create workloads based on
real web application traces [Hal08, Eri15].

With JMeter as driver, our generic application benchmark supports a broad range of SUTs.
Namely all systems supporting common protocols such as http, ftp, soap/xml and ldap [Hal08,
Eri15].

4.3.1 JMeter Cookbooks
In order to be use with CWB, also JMeter had to be implemented as Chef cookbook. Since Folkerts
et al. [FAS+12] also name configuration as key requirement to new cloud benchmarks, we provide
an extended set of configuration options. To this end, we split up the responsibilities of installing
JMeter and setting up the JMeter Test Plan between different cookbooks. We implemented a gen-
eral cookbook cwb-jmeter, which is used to set up Jmeter. This cookbook downloads and installs
JMeter and files required. Moreover, it modifies file permission in the file system. Further we
identified and implemented the most common needs for configuration (e.g., installation directory
path, user for permissions, etc.). All configuration options available can be seen in the attributes
file: cwb-jmeter/attributes/default.rb. The JMeter Test Plan and all Files related to the test plan itself

14http://jmeter.apache.org/
15 http://faban.org/

http://jmeter.apache.org/
http://faban.org/
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are managed by the workload cookbook, which in most cases will be provided by the user. The
specifics of the workload cookbook are outlined in Section 4.4.4

4.4 Workload
In the era of Web 2.0, modern Web applications make extensive use of JavaScript, CSS and AJAX
to enable rich interactivity (e.g., [BKKL09, CUW+11]). An authentic workload should therefore
include all interactions a real user would have with the SUT [CUWS11]. Depending on the SUT’s
domain, the workload is different. Facing this fact, a modern application benchmark neither can
nor should capture the idiosyncrasies of every domain. Thus, instead of providing predefined
workloads for every domain, we provide convenient ways to define authentic workloads.

In general, there exist two types of workloads, namely real workloads and synthetic work-
loads. Both are introduced in Section 2.6. In JMeter, both workload types are defined as a JMeter
Test Plan. JMeter Test Plans are briefly introduced in Section 2.8.1. To use a specific workload
with our generic benchmark, it has also to be defined in code, namely as Chef cookbook.

For this work, we use the workload which is delivered with the AcmeAir performance bench-
mark. The AcmeAir workload and its specifics are introduced in Section 4.4.3

In the next sections, we look closer at how real and synthetic workloads can be defined in a
JMeter Test Plan.

4.4.1 Definition of Real Workloads
Among others, there exist the following three ways to derive a workload definition from a real
workload:

JMeter Script Recorder In order to define real workloads, JMeter provides a built-in test script
recorder, also referred to as a proxy server [Eri15], which can be used for recording a test plan
while the user browses the SUT [Hal08]. Once configured, the test script recorder tracks all inter-
action between the browser and the SUT, creates test sample objects for them and finally generates
a JMeter Test Plan [Eri15].

Modern Web Browsers As an alternative to the built-in test script recorder, some web browsers16

and browser plugins17 can be used to record and save web traces as HAR files. Flood.io18 pro-
vides an online conversion tool19 to convert these HAR files to JMeter Test Plans. For Chrome
users, there exists a plugin20, which can be used to generate a JMeter Test Plan from a browser
trace.

Access Logs In contrast to the just mentioned approaches which generate a test plan on a
client system, there also exists the possibility to generate a trace from log files, such as the Apache
Access Log21. Workloads generated based on log files approximate the real workloads best, con-
versely they are the most complex.

16Chrome 52, Firefox 48, Internet Explorer 9
17Fiddler, Firebug, Paw
18 https://blog.flood.io/convert-har-files-to-jmeter-test-plans/
19 https://flood.io/har2jmx
20https://guide.blazemeter.com/hc/en-us/articles/206732579-Chrome-Extension
21For more sources please refer to Section 9.6 in the Appendix.

https://blog.flood.io/convert-har-files-to-jmeter-test-plans/
https://flood.io/har2jmx
https://guide.blazemeter.com/hc/en-us/articles/206732579-Chrome-Extension
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Folkert et al. [FAS+12] mention in their work the requirement "scalability". The Jmeter Test Script
recorder as well as modern web browsers generate traces, which are recorded on a per-user basis.
Therefore, workloads generated with these approaches scale linearly with the number of emu-
lated users. If the definition is based on a log file and the log file is taken from a production
system, the resulting workload is often too complex to be easily scalable to a certain amount of
users.

4.4.2 Definition of Synthetic Workloads
To create test plans manually, Jmeter is equipped with a GUI and also commandline tools. For a
detailed explanation of how to define synthetic workloads, we refer to Halili [Hal08]. However,
while this is especially handy to capture rather trivial scenarios or to setup test workloads, this is
mostly impractical for defining non-trivial testing scenarios. [Eri15].

4.4.3 AcmeAir Benchmark Workload
Together with the AcmeAir performance benchmark, Spyker [Spy13] developed a related syn-
thetic workload. This workload emulates the browsing session of a typical user and tests all
implemented features. Since the workload is synthetic and is defined on a per-user basis, the load
can be scaled with the number of emulated users. Hence, the key requirements "Representative-
ness" and "Scalability" proposed by Folkerts et al. [FAS+12] are fulfilled. As "Metric", the third key
requirement according to Folkerts et al. [FAS+12], Spyker propose "requests per day", in order to
be able to assess if AcmeAir really belongs to programmable web’s "Billionaire’s Club"22.

HTTP Requests and Workload Mix

Spyker [Spy13] and his fellows used the following workload to benchmark their setup of AcmeAir.
The listing takes the format: requests per iteration × request (info)[HTTP request type, approx. per-
centage of all successful requests sent to the webapplication].

1 × Login [POST, 12%]
¼× Update Customer:

– View Profile Information [GET, 3%]
– Update Customer [POST, 3%]

5 × Query Flight [GET, 50%]
1 × Book flight (only if last query returned a valid result) [POST, 7%]
1 × List all Bookings [GET, 8%]
¼× Cancel Bookings (in 25% of the cases cancel all bookings apart from 2) [POST, 10%]
1 × Logout [GET, 7%]

Total GET ' 68%
Total POST ' 32%
¼= triggered every 4th iteration

This workload tests all implemented features of the web application and puts the stress clearly
on the web application. In total, all GET requests count for 68% of all requests sent to the web
application.

22 http://www.programmableweb.com/news/which-apis-are-handling-billions-requests-day/2012/05/23

http://www.programmableweb.com/news/which-apis-are-handling-billions-requests-day/2012/05/23
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4.4.4 Workload Cookbooks
In order to allow a separation of concerns, we have split the JMeter related provisioning steps
into two cookbooks, namely, the cwb-jmeter which manages the set up of JMeter, and user pro-
vided workload cookbooks, which have only a single responsibility, namely to provide the JMeter
Test Plan. To further ease the development of workload cookbooks, we provide several work-
load cookbooks showcasing different use-cases, for exmaple jm-acmeair-default, jm-acmeair-api or
jm-acmeair-default-double-peak to just mention a few. The jm-acmeair-default represents the exact
workload as provided by Spyker [Spy13]. jm-acmeair-api is an improved version of the original
AcmeAir workload (jm-acmeair-default) and jm-acmeair-default-double-peak is an extended version,
which makes use of JMeter Plugins to generate a cyclic/bursting workload pattern with two in-
tensive peaks.

More complex JMeter Test Plans often depend on additional files. In our case, these files are
the airport-definitions in the form of CSV files and some request pre- and post-processors. To be
able to reuse these files among several workloads, we implemented their installation in separate
cookbooks, namely the cookbooks with the -assets postfix (e.g., jm-acmeair-default-assets).

For all workload cookbooks, the available configuration options can be derived from the re-
spective attributes files <cookbook-name>/attributes/default.rb

4.5 Benchmark Architecture
Iosup et al. [ICH+14] propose in their work a generic benchmark architecture. We use their ar-
chitecture as a template and duly appropriate it to match our needs. The benchmark architecture
slightly varies depending on the JMeter mode (2.8.3). If JMeter is executed in the simple mode,
only one JMeter instance is acquired. If the more complex, distributed JMeter mode is applied,
JMeter slave instances are added to the driver system in order to generate the workload in a
distributed manner. The resulting benchmark architecture is depicted in Figure 4.1. Whatsoever
JMeter mode is chosen, the CWB Server is always the initial starting point for every benchmark ex-
ecution. Vagrant acquires instances at the cloud provider of choice and the Chef Client provisions
them with the Chef cookbooks provided by the Chef Server. In most of the cases, a distributed
JMeter setup is used to generate load to the SUT. In Figure 4.1, the SUT shows AcmeAir, consist-
ing of a web application instance and a database instance. This setup includes one JMeter instance
acting as master and several JMeter instances acting as slaves. The JMeter master sends the JMe-
ter Test Plan to the JMeter slave instances and starts the test execution. In specified intervals the
JMeter-Slaves send the collected results back to the JMeter master which collects and aggregates
the results. After the test is terminated, the JMeter-master processes the results and send the indi-
vidual metrics back to the CWB server. A more detailed description of the benchmark execution
is provided in the background section, namely in Table 2.1.
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Figure 4.1: Benchmark Architecture (SUT: AcmeAir)





Chapter 5

Experimental Setup

To benchmark different IaaS providers, we propose a generic application benchmark which is de-
signed to be cross-provider native. To showcase this ability, we have chosen two representative
IaaS providers for our study, namely Amazon EC2 and GCE. Amazon EC2 has been selected be-
cause of its presence in related benchmarking literature (e.g., [SDQR10, DPC10, MH12, KKR14])
and its relevance in practice. In contrast to Amazon EC2, which started its service in 2007, GCE
offers its service only since 2013 [Ryz15] and is given centre stage only in few performance bench-
marking studies.
This chapter is dedicated to stating the details of the experimental setup, the individual experi-
ments and their execution. The collected data is presented in Chapter 6.

We used CWB to set up the SUT and to collect a relevant amount of performance measure-
ments. Some complete examples of used CWB benchmark definitions can be found in the ap-
pendix, namely in Section 9.4.

5.1 Used Workload
The workload we used for the experiment is derived from the workload Spyker [Spy13] used.
We created a Chef cookbook for it. This allows us to implement the workload in a configurable
manner and, in a later phase, to create easily different versions of the workload without changing
any code. Additionally, we also fixed a minor bug.

As outlined in Section 4.4.3, does the original workload test mainly the API service. Therefore,
we call our adapted version of the workload originally proposed by Spyker [Spy13] simply "API"
and the related workload coobook jm-acmeair-api.

To reduce code duplicity and to ease configuration even further, we split the workload into
two cookbooks: one cookbook for the JMeter Test Plan (jm-acmeair-api) and another cookbook for
static files, such as custom implementations of post-processors, CSV files, and so forth. Since the
originally proposed workload depends on the same files, we can simply reuse the jm-acmeair-
default-assets cookbook.

5.2 Bugfix and Adaptations
During some pre-test runs we observed a reduction in active JMeter threads as soon as the server
experienced heavy load. This reduction in active threads was caused by requests, which tried to
access non-existent data collected by prior requests. When the web service is not able to answer a
request or the request timed out, an error code is registered without any response body. In some
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cases, subsequent requests tried to access data in the response body, which, of course, were not
present. We fixed this bug by changing the behaviour on failure. Concretely, we changed the
following in the JMeter Test Plan:

<stringProp name="ThreadGroup.on_sample_error">continue</stringProp>

to:
<stringProp name="ThreadGroup.on_sample_error">startnextloop</stringProp>

Moreover we change the behaviour of the cookie manager. In Order to simulate an authentic
login behaviour, we changed the cookie-clearing policy of the cookie manager to clear all cookies
at the end of an iteration. Concretely, we changed the following lines of code in the JMeter Test
Plan:

<boolProp name="CookieManager.clearEachIteration">false</boolProp>

to:
<boolProp name="CookieManager.clearEachIteration">true</boolProp>

5.3 Monitoring
To be able to monitor the web application as well as the different JMeter instances, we developed
the cwb-monitoring cookbook, a simple wrapper cookbook that runs all commands required to (1)
be able to instantly connect VisualVM1 to the instance and (2) to start vmstat2.

VisualVM Java applications are only allowed to use a limited amount of memory, which is fur-
ther divided into Heap Space and Permgen. Both can be tuned by the developer. VisualVM allows
to monitor and track the memory and related information by accessing the Java Virtual Machine
(JVM). This was especially useful to determine the maximum number of JMeter Threads a single
JMeter instance is able to run without breaking down.

vmstat vmstat reports information about processes, memory, paging, block IO, traps, and cpu
activity and thus can be used to monitor the actual resource consumption during the test run. We
configured vmstat to log the current stats to a file in order to be able to post process this file in the
case of irregularities. We used vmstat especially to make sure, that the VMs performance is not
throttled by the hypervisor (as for instance in the case of bursting instance types running out of
credit [LS15]) and to find bottlenecks in the configuration.

5.4 Tuning
At some point in our pre-testing phase, we encountered an error message indicating that the
operating system was not able to allocate enough file handles. To tune the OSs, we developed the
cwb-tuning cookbook. It simply increases the allowed maximum number of open file handles.

5.5 Cookbooks and Configuration
This section provides the details on which instance was provisioned with what cookbooks and
what configuration is used.

1 https://visualvm.java.net/
2 https://wiki.ubuntuusers.de/vmstat/

https://visualvm.java.net/
https://wiki.ubuntuusers.de/vmstat/
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5.5.1 System under Test

For our experiments, we used the distributed AcmeAir architecture, deploying the web applica-
tion on a dedicated instance and the database to another instance. While the configuration varied
slightly from provider to provider, we provisioned all instances (of the same function) with the
same cookbooks. Examples of complete CWB benchmark definitions for each provider and show-
ing all components, can be found in the appendix in Section 9.4.

Web Application Instances The web application has for both providers been provisioned with
the acmeair_wlp_morphia_distributed cookbook, which sets up the Websphere Liberty server as well
as the AcmeAir web application. Moreover, we provisioned the wep application instances with
the cwb-tuning and the cwb-monitoring cookbooks.

The web application has to know the internal or external ip address from the instance hosting
the database. The Vagrant provider (cloud provider plugin) for Amazon EC2 allows to setup a
virtual private cloud (VPC) in a certain availability zone. This is allows to setup the different
instances with fixed internal ip addresses. These are determined by a simple calculation, but
could also be configured manually. In contrast to Amazon EC2, the Vagrant provider for GCE
does not allow to setup VPCs or any other kind of fixed internal ip addresses. Therefore, we
had to implement an additional script for the lookup of the internal ip address through the GCE
metadata service. In consequence, the configurations a slightly different, but do not influence the
experiments in any way. For each instance size, we also tuned the heap space.

However, apart from the ip address configuration and updates to the heap space configu-
ration, all configuration are identical. The differing parts in the configuration are depicted in
Listings 5.1 and 5.2.

1 chef.json = {
2 'config' => {
3 'tuning' => {
4 #adapted for each instance size: max memory− 512mb
5 'heap_xms' => '512m',
6 'heap_xmx' => '3g'
7 }
8 },
9 'mongodb' => {

10 #'ip_from_file' => false,
11 #'ip_file_path_name' => '/home/admin/ip.env',
12 'ip' => IP_DB,
13 'name' => 'acmeair',
14 'port' => 27017,
15 'user' => {
16 'name' => 'acmeairusr',
17 'password' => 'Login4Acme!'
18 }
19 }
20 }

Listing 5.1: Webapp Configuration EC2

1 chef.json = {
2 'config' => {
3 'tuning' => {
4 #adapted for each instance size: max memory− 512mb
5 'heap_xms' => '512m',
6 'heap_xmx' => '3g'
7 }
8 },
9 'mongodb' => {

10 'ip_from_file' => true,
11 'ip_file_path_name' => '/home/admin/ip.env',
12 'ip' => 'value should be overwritten!',
13 'name' => 'acmeair',
14 'port' => 27017,
15 'user' => {
16 'name' => 'acmeairusr',
17 'password' => 'Login4Acme!'
18 }
19 }
20 }

Listing 5.2: Webapp Configuration GCE

Database Instances In contrast to the web application instances, the configuration for the
database instance did not change at all. The database instance were provisioned only with the
acmeair_mongodb cookbook.
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5.5.2 Driver and Workload
During our experiments, we used both, the simple and the distributed JMeter mode. Nevertheless
did the configuration and the selected cookbooks for the JMeter master instance only vary in
few points, namly in the configuration parameter specifying if the master instance has slaves or
executes the benchmark by itself.

To collect the data which is used later to evaluate the performance of the different instance
types, we only used the workload described in Section 5.1 and the related workload cookbooks
jm-acmeair-api (JMeter Test Plan) and jm-acmeair-default-assets (files required for the test plan).

Workload

Analogously to the web application instance which has to determine the ip address of the database
instance for every provider in an appropriate way, the JMeter master has to query the ip address
of the web application instance. To this end, the same mechanism (Section 5.5.1) is applied. Thus,
a small difference in the configuration is required.

Note: The workload cookbook is provisioned to the JMeter master instance.

1 'acmeairapi' => {
2 'testplan' => {
3 'user_in_db' => 1000000,
4 'connection_timeout' => 30000,
5 'response_timeout' => 30000,
6 'target_host' => {
7 'port' => 9080,
8 'name' => 172.31.3.1,
9 #'name_from_file' => true,

10 #'file_path_name' => '/home/admin/ip.env'
11 }
12 },
13 'threadgroup' => {
14 'num_threads' => 2500,
15 'ramp_up_time' => 0,
16 'duration' => 1200,
17 'delay' => 0
18 }
19 }

Listing 5.3: Worklaod Configuration EC2

1 'acmeairapi' => {
2 'testplan' => {
3 'user_in_db' => 1000000,
4 'connection_timeout' => 30000,
5 'response_timeout' => 30000,
6 'target_host' => {
7 'port' => 9080,
8 'name' => 'this should be overwritten!',
9 'name_from_file' => true,

10 'file_path_name' => '/home/admin/ip.env'
11 }
12 },
13 'threadgroup' => {
14 'num_threads' => 2500,
15 'ramp_up_time' => 0,
16 'duration' => 1200,
17 'delay' => 0
18 }
19 }

Listing 5.4: Workload Configuration GCE

JMeter Master Instances To provision the JMeter master instance, the previously implemented
cookbook cwb-jmeter has been used. Throughout all of our experiments, we used the same cook-
books with the same configuration.

The acmeair-single cookbook is the generic application benchmark adapter for CWB. It imple-
ments the API, which is required for CWB to be able to start and terminate the benchmark execu-
tion and which triggers the post-processing of the benchmark results and the subsequent transfer
of the metrics back to the CWB server. All in all, the JMeter master instance is provisioned with
the following cookbooks:

• jm-acmeair-api
• jm-acmeair-default-assets
• acmeair-single (the generic application benchmark adapter for cwb)
• cwb-tuning
• cwb-monitoring
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JMetre Slaves Instances The JMeter Slave instance are also provisioned with the same cook-
books apart from the integration cookbook and the test plan cookbook. The JMeter Test Plan is at
execution time sent along by the JMeter master instance. Thus, slaves instances are provisioning
with the following Chef cookbooks:

• cwb-jmeter
• jm-acmeair-default-assets
• cwb-tuning
• cwb-monitoring

5.6 OS, Architectures, Storage, Images
All tests were executed with Debian 8.3 (Jessie) as operating system (OS) based on a x84_64 archi-
tecture. In Amazon EC2, we used the 8 GiB of EBS storage and HVM virtualization. On GCE we
used 10 GB of type "persistent disk" storage and the default virtualization technique.

To speed up the provisioning phase, we created custom VM images for both Amazon EC2 and
GCE. This is not a mandatory step, but helps to reduce the time required for provisioning and by
doing so helps to prevent time-outs during the provisioning phase. However, the provisioning
itself still is done by Chef. The Chef recipes are executed as in the case if the software were not
installed already, but with skipping the software installation part.

Concretely, we package for each cloud provider an image with the following properties:

OS: Debian
Architecture: x86_64
Packages: openjdk-7-sdk,
Commands: apt-get update

Table 5.1: Image specification

As base images, we used ami-47d93c28 ,and debian-8-jessie-v20160718 respectively.

5.7 Instance Specifications and Prices
The specifications of the instance sizes and related prices for the instances used in the experiments
with Amazon EC2 are depicted in Table 5.2, the ones for GCE in Table 5.3.

5.8 Deployment Details
CWB and Chef We deployed the CWB server as well as the Chef server on Amazon EC2 and
used this deployment to benchmark both providers. The CWB server was deployed to a Ama-
zon t2.medium instance, while the Chef server was deployed to a t2.small instance. Since the
files submitted by the JMeter master instances can be quite big (especially for long benchmark
executions), the file server has raised requirements regarding heap space.
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Instance
Type

Instance
Size vCPU RAM

(GiB) Storage Price / h* ECU**

Bursting
Performance

t2.micro 1 1 EBS $0.015 Variable
t2.small 1 2 EBS $0.03 Variable
t2.medium 2 4 EBS $0.06 Variable

General Purpose
(latest)

m4.large 2 8 EBS $0.143 6.5
m4.xlarge 4 16 EBS $0.285 13

General Purpose
(old) m3.medium 1 3.75 SSD $0.079 3

CPU Optimized
(latest)

c4.large 2 3.75 EBS $0.134 8
c4.xlarge 4 7.5 EBS $0.267 16

* Prices for Frankfurt region on 2016/08/08
** Elastic Compute Unit

Table 5.2: EC2 Prices [Ama16c]

Instace
Type

Machine
Type vCPU RAM

(GB) Storage Price / h* GCU**

Bursting Instance g1-small 1 1.7 HDD / SSD $0.030 1.38

CPU optimized n1-highcpu-2 2 1.8 HDD / SSD $0.084 5.5
n1-highcpu-4 4 3.6 HDD / SSD $0.168 11

General Purpose
n1-standard-1 1 3.75 HDD / SSD $0.055 2.75
n1-standard-2 2 7.5 HDD / SSD $0.110 5.5
n1-standard-4 4 15 HDD / SSD $0.220 11

*prices for Europe/Asia on 2016/08/08
** Google Compute Unit

Table 5.3: Google Compute Engine Pricing [Goo16c]

SUT Configurations The different deployment configurations used for the SUT in the different
experiments are depicted in Table 5.4. Each configuration code takes the form provider_type_dbconf ,
where provider is either Amazon EC2 (A) or GCE (G), type is bursting(b), non-bursting(nb), gen-
eral purpose(gp), or computation optimized(co). dbconf denotes the database instance type used,
such that the higher number represents the configuration with the better specification (more cpu
or more memory or better storage).

In all deployments, were the SUT and the driver deployed to the same availability zone. For
Amazon EC2, this is eu-central-1a in the Frankfurt region (eu-central-1). For GCE, the zone is
europe-west1-b.

5.9 Benchmark Execution Details
In Table 5.5, we summarize the details about the individual benchmark executions configurations.
This table lists all benchmark executions, which contributed to the set of data evaluated in the
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Configuration
Code c Webapp DB

A_nb1m t2.micro t2.micro
A_b1m t2.micro t2.micro
A_nb1s t2.small t2.micro
A_b1s_1 t2.small t2.micro
A_b1s_2 t2.small t2.small
A_nb2 t2.medium t2.micro
A_b2_1 t2.medium t2.micro
A_b2_1 t2.medium t2.small
A_gp2_1 m4.large t2.small
A_gp2_2 m4.large m3.medium
A_gp4 m4.xlarge t2.small
A_co2_1 c4.large t2.small
A_co2_2 c4.large m3.medium
A_co4 c4.xlarge t2.small
G_b g1-small g1-small
G_gp_1 n1-standard-1 n1-standard-1
G_gp_2 n1-standard-2 n1-standard-1
G_gp_4 n1-standard-4 n1-standard-1
G_co_2 n1-highcpu-2 n1-highcpu-2
G_co_4 n1-highcpu-4 n1-standard-1

Table 5.4: Instance Configuration Index

results section in Section 6.

5.10 Data Storage and Post-Processing

As introduced in the Background section (2.8.2), JMeter produces in each test run a results file.
This results file contains information about every request sent during the test run and allows
therefore manifold insights. Hence, the result files were transferred from the instances before
these were destroyed. For this purpose, we added an external fileserver to our benchmark setup.
The file server is also implemented as Chef cookbook and thus can be easily deployed with and
without CWB.

5.11 Error Handling

In some cases, we had to deal with transient faults, which originated either in the cloud provider
(e.g., instances not starting up correctly) or in our own tooling (e.g., timeouts from the Chef server
used for instance provisioning). In these cases, we have simply cancelled the benchmarking run
and discarded the resulting measurements.
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Configuration
Code c

Total
Count Count JMeter

Instances Threads Total
Threads

Exec.
Time

Ramp-up
Time

A_b1m 24

4 12 3000 36000 600 600
3 14 3500 49000 600 600

11 20 2500 50000 600 600
6 24 1500 36000 600 600

A_b1s_1 26

11 12 3000 36000 600 600
7 14 3500 49000 600 600
3 20 3000 60000 600 600
5 24 2500 60000 600 600

A_b1s_2 16 11 20 3000 60000 600 600
5 24 2500 60000 600 600

A_b2_1 11 1 14 3500 49000 600 600
10 20 3000 60000 600 600

A_b2_2 16 16 20 3000 60000 600 600

A_nb1m 18
1 1 2500 2500 6000 0
2 1 2500 2500 4200 0

15 1 1500 1500 4200 0

A_nb1s 17
1 1 2500 2500 3000 0
1 1 2500 2500 6600 0

15 1 2500 2500 4200 0

A_nb2 14 1 1 2500 2500 6600 0
13 1 2500 2500 4200 0

A_co2_1 35
1 24 2000 48000 600 600

11 24 3500 84000 600 600
23 1 5000 5000 600 0

A_co2_2 26 26 1 5000 5000 600 0

A_gp2_1 37
11 20 3000 60000 600 600

3 24 3000 72000 600 600
23 1 5000 5000 600 0

A_gp2_2 27 27 1 5000 5000 600 0

A_co4 19 3 24 3000 72000 600 600
16 1 5000 5000 600 0

A_gp4 23

2 20 3000 60000 600 600
1 20 4000 80000 600 600
2 24 3000 72000 600 600
1 24 3500 84000 600 600

17 1 5000 5000 600 0

G_b1 13 13 1 2500 2500 600 0

G_gp1 26 26 1 2500 2500 600 0

G_gp2 26 26 1 2500 2500 600 0

G_gp4 24 2 1 2500 2500 600 0
22 1 5000 5000 600 0

G_co2 18 18 1 2500 2500 600 0

G_co4 23 23 1 5000 5000 600 0

Table 5.5: Benchmark execution details
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5.12 Used Metric
For the evaluation of the results, we post-processed all files gathered during the different test runs.
As metric, we decided to choose the mean of the successful request counts per second the SUT
can sustain. Moreover, in order to get as accurate data as possible, we developed an algorithm to
extract the relevant part from all results of a benchmark execution.

5.12.1 Mean Successful Requests per Second SRPS

In our benchmarking efforts, we try to gather data on the maximum throughput of the web appli-
cation. Concretely, we are interested in the mean amount of successful request the web application
can handle per second, i.e.,

MSRPS = SRPS =
1

k

k∑
i=1

SRPSi (5.1)

Where

k ∈ N is the execution duration in seconds
SRPSi is the successful requests count for second i

A similar metric is also used by TPC-W. The primary metrics of TPC-W are the "WIPS rating"
and "system cost per WIPS". In TPC-W, WIPS is defined as the number of web interactions per
second that can be sustained by the SUT [Smi00].

The WIPS metric has several advantages compared to other common performance metrics
such as response time or count of concurrent users. Firstly, WIPS is not network sensitive. For
our use-case, this has the benefit that we can setup the driver and the SUT at the same cloud
provider which allows a fully automated configuration. If the SUT and the driver are not hosted
at the same cloud provider, some kind of registry service has to be implemented in order to make
the driver aware of the target’s ip address. Secondly, the arrival rate of the requests has no impact
on the maximum throughput, as long as there are more requests arriving than can be served. If
more requests arrive than the server can serve, they are queued up. This has an impact on the
observed response time, but not on the MSRPS metric, as long as the server is not overloaded
(which results in an immediate drop).

5.12.2 Extraction Algorithm
To ensure our results are accurate and represent the actual performance of the different deploy-
ment configurations, we developed an algorithm to extract a relevant part of the data. We es-
pecially aim at eliminating the warm-up phase as well as potential shut-down disruptions. Our
algorithm uses three input parameters, namely (1) how long the relevant sampling duration is,
and (2) how much padding should be added at the end of the sampling period, representing the
time a typical shut down takes and (3) a gap size used to ignore gaps of that size in the data. An
application example is shown in Table 5.6. Figure 5.2 depicts a real application. The length of the
black bar indicates the length and the actual position of the identified relevant data. The hight of
the bar indicates the SRPS if computed over the extracted data.
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We list in Table 5.6 some sample data. For our example, we want to extract only the relevant
data, namely the data from second 5 to second 9. Therefore we specify as sampling duration
8 and as padding 3. For our example, the resulting SRPS = 1300 and the standard deviation
σSRPS ' 31.622

SRPS 100 400 700 1250 1300 1300 1250 1350 1300 800 400 20

time in seconds 1 2 3 4 5 6 7 8 9 10 11 12

Sampling Duration 5 SRPS 1300
Padding 3 σSRPS 31.6227766

Table 5.6: Extraction Algorithm Example
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Figure 5.1: Visualization of the example

For all of our calculations and further analysis, we used a sampling period of 130 seconds and
a padding of 10 seconds, which corresponds to a nett sampling period of 120 seconds. Figure 5.2
shows the application of the algorithm to the single measurements from different configurations.
The length of the black bar indicates the length and the actual position of the identified relevant
data. The hight of the bar indicates the SRPS if computed over the extracted data.
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Figure 5.2: Visualization of real data





Chapter 6

Experimental Results and
Discussion

Leitner and Cito [LC16] conducted a principled literature review and present the state of the art
in existing research on performance variation in public IaaS offerings. Thereby, they formulate 15
hypothesis relating to possible factors influencing the experienced performance.

In the following sections, we start out by verifying that we collected a relevant amount of
data. Then we evaluate, if the size of the database instance represents a bottleneck. If so, the
results obtained from our benchmarks cannot be accredited only to the performance of the web
application instance.

Having these basic preconditions covered, we continue by drawing on some of the 15 hypoth-
esis constructed by Leitner and Cito [LC16] and discuss and compare their reported results with
the results revealed in this work. To this end, we first briefly explain the elimination of hypothe-
sis that cannot be answered with our own data, and then validate the remaining hypothesis one
after another with one exception: we conduct the evaluation of the performance of larger instance
types compared to smaller instance types (H:4.2) just after introducing the formulas for instance
stability (H:2.2) and discussing the special case of bursting instance types (H:2.3).

6.1 Preliminaries
In the following two sections, we cover the preconditions we base our evaluation on and which
have to be met, in order to compare our results to the results obtained by Leitner and Cito [LC16].

6.1.1 Relevant Amount of Data
In total we tested 20 different configurations. Table 6.1 summarizes the conducted experiments.
For each configuration, the number of executed benchmarks is indicated as #. Moreover, the
columns I and II show how many benchmark executions of the same configuration had to be
run, in order to ensure, that the population mean lays within a confidence interval of size 5%
(also known as margin of error MOE) at a confidence level of 95% (i.e., 5% of the samples will
lay beyond the confidence interval) in column I and 99% in column II respectively. To calculate
this statistic, we used the common equation to estimate a population mean based on a confidence
interval of a fixed size (e.g., [Pat11]). The equation is given in Equation 6.1.
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N =

⌈(
z∗ · σ
T

)2
⌉

(6.1)

Where

N = required sample size

z∗ = z∗-value from the confidence level table

σ = standard deviation (as number)

T = the margin of error (as number)

For our experiments, we used a confidence interval of size 5% of the sample mean and therefore
we used for the calculations T = x · p, where x is the sample mean and p = 0.05. Moreover we
used Z = {1.96, 2.576} and z∗ ∈ Z.

Table 6.1 summarizes the results, if we consider the default sampling duration to be 120s and
the extraction algorithm is used to determine the relevant set of data, as described in Section 5.12.
Table 6.4 shows the same configurations, but with configuration optimal sampling durations in
combination with visual inspection to determine the relevant set of data. The optimal sampling
duration was found via a thorough visual inspection.

Configuration
Code # σ

95%CL
(z∗ = 1.96)

I
#−I

99%CL
(z∗ = 2.576)

II
#−II

A_b1m 24 63.69 10 14 17 7
A_b1s_1 26 47.03 7 19 12 14
A_b1s_2 16 72.27 12 4 21 -5
A_b2_1 11 254.08 69 -58 119 -108
A_b2_2 16 262.15 70 -54 121 -105
A_nb1m 18 2.67 2 16 3 15
A_nb1s 17 4.33 1 16 2 15
A_nb2 14 11.56 2 12 3 11
A_co2_1 35 147.19 19 16 33 2
A_co2_2 26 26.76 1 25 1 25
A_gp2_1 37 120.63 16 21 27 10
A_gp2_2 27 31.26 1 26 2 25
A_co4 19 138.88 7 12 12 7
A_gp4 23 119.89 7 16 11 12
G_b1 13 17.84 5 8 9 4
G_gp1 26 18.24 1 25 2 24
G_gp2 26 45.02 3 23 5 21
G_gp4 24 79.26 3 21 5 19
G_co2 18 37.06 2 16 4 14
G_co4 23 85.68 4 19 6 17

Table 6.1: Statistical Significance
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6.1.2 Relevance of the Database-instance Size
In order to be able to draw meaningful conclusions, we analyse whether the size of the instance
hosting the database has an impact on the performance of the web application, i.e., if the database
instance size constitutes a performance bottleneck and thus plays a relevant role. If we can proof
the database size to influence the performance of the web application, this would prohibit to
relate the performance of the web application to the performance of the instance hosting the web
application.

To compare the means of the configurations to each other, we use the Mann-Whitney U-test.
The Mann-Whitney U-test (also called Wilcoxon rank sum test, or Wilcoxon-Mann-Whitney test)
is used, when it is asked to compare the non-normally distributed means of two independent
samples. It is a non-parametrical test and it is the equivalent of the t-test but applied to indepen-
dent samples and with fewer preconditions [BCMS14]. The goal consists of comparing the central
tendencies of the two samples, in order to test whether the locations of the respective populations
are equal, thus the assumed null hypothesis H0 is that there is no difference in the underlying dis-
tribution. The alternative hypothesis H1 is consequently that of a relevant difference in the SRPS
between configurations (two-sided test), i.e.,

H0 : SRPSj
d
=SRPSk and H1 : SRPSj

d

6=SRPSk,∀j, k ∈ C, j 6= k (6.2)

Where the operator d
= indicates the equality in the underlying distribution and C is the set of all

benchmarked configurations.

6.1.3 Bursting Instance Types
We tested on a significance level of α = 0.01. The resulting p-values for all configurations are
listed in Table 6.2 and all statistically significant p-values (i.e., p-values < 0.01) are for readability
reasons coded as ∗. If the p-value of the observed test statistic is smaller than α, this leads to reject
the null hypothesis H0 in favour of the alternative hypothesis H1 and indicates, that the SRPS
statistically differ on a confidence level of 1− α = 0.99.

c1 c2 p-value

A_b1s_1 A_b1s_2 0.444826999
A_b1s_1 A_b2_1 *
A_b1s_1 A_b2_2 *
A_b1s_2 A_b2_1 *
A_b1s_2 A_b2_2 *
A_b2_1 A_b2_2 0.335921852

Table 6.2: Mann-Whitney-U for bursting instance types

In the case of the bursting instance types, we can summarize that similar configurations, which
only differ in the size of the instance hosting the database, cannot be shown to be statistically
different. Also, the visualization (Figure 6.1 and 6.2 ) of the SRPS looks as expected. In Figure
6.1, the upper error bars represent the 75th percentile and the lower error bars the 25th percentile.
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Figure 6.1: Deployment configurations for bursting instances, lineplot
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Figure 6.2: Deployment configurations for bursting instances, boxplot
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6.1.4 Non-Bursting Instance Types

We also compared the SRPS for the non bursting instance types. As for bursting instance types,
we also tested in the case of non-bursting instance types on significance level α = 0.01. The
resulting p-values for all configurations are listed in Table 6.3 and all statistically significant p-
values (i.e., p-values < 0.01) are for readability reasons coded as ∗.

c1 c2 p-Value

A_co2_1 A_co2_2 0.097864455
A_co2_1 A_gp2_1 *
A_co2_1 A_gp2_2 *
A_co2_2 A_gp2_1 *
A_co2_2 A_gp2_2 *
A_gp2_1 A_gp2_2 0.037534628

Table 6.3: Mann-Whitney-U for non bursting instance types

In the case of the non-bursting instance types, we can also conclude that similar configura-
tions, which only differ in the size of the instance hosting the database, cannot be shown to be
statistically different. Also the visualizations of the throughput point in the same direction 6.3
6.4. In Figure 6.3, the upper error bars represent the 75th percentile and the lower error bars 25th

percentile.
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Figure 6.3: Deployment configurations for non-bursting instances, lineplot
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6.2 Hypothesis Validation
The 15 hypothesis reported by Leitner and Cito [LC16] belong to four groups: Performance Pre-
dictability (H1), Variability Within Instances (H2), Temporal and Geographical Factors (H3), and
Instance Type Selection (H4). From group H1, we can only validate hypothesis H1.1. "Perfor-
mance Varies Between Instances" is treated in Section 6.2.1. H1.2 "CPU-Bound Applications" can-
not be validated, since our data does not reveal any insights about the underlying CPU model and
H1.3 "IO-Bound Applications" cannot be validated because our application is mainly CPU inten-
sive. This is equally true for H2.1 from group H2. H2.2 "Intra-Instance Stability of CPU-Bound
Applications" is approached in Section 6.2.2 and H2.3 "Intra-Instance Variability of Bursting In-
stance Types" in Section 6.2.4. Group H3 has to be excluded as a whole, since we did not collect
any data on time or location. Moreover, for each cloud provider we conducted all of our exper-
iments in the same region and in the same availability zone. From group H4, hypothesis H4.1:
"Diseconomies of Scale of Larger Instance Types" is validated in Section 6.2.5, H4.2: "Stability of
Larger Instance Types" in Section 6.2.3 and H4.3: "Price of Specialization" in Section 6.2.6.

6.2.1 Instance Size Performance Predictability
In order to answer the question about the predictability of the performance of an instance ex-
hibiting a certain instance size specification, we interpret the performance predictability as the
inverse of the intra instance-size performance variability: the lower the variability, the higher the
predictability. Relating to the intra instance-size variability, Leitner and Cito [LC16] construct the
following hypothesis: H1.1: Performance Varies Between Instances – the performance of cloud instances
using the same configuration tends to vary relevantly [LC16].

Leitner and Cito [LC16] provide in their work the required calculations, which are as described
in the following. In the context of intra instance-size variability, a configuration c ∈ C is as a triple
of cloud provider, web application instance size and db instance size, where C is the set of all
tested configurations. Every configuration has an associated set of instances Ic ⊆ I where Ic is
the set of instances with configuration c and I is the set of all instances.

For every instance i with a given configuration c, i.e., every i in Ic , we collected performance
measurements m(i) = {m1(i),m2(i), . . . ,mn(i)}1 where mk(i) is in R and all k in {1, . . . , n}. Leit-
ner and Cito [LC16] define Mc to be the union of all measurements of instances of configuration
c ∈ C, i.e.,

Mc =
⋃
i∈Ic

m(i) (6.3)

Note: To simplify the notation, we allow duplicates in the resulting set Mc.

Leitner and Cito [LC16] use in their work the relative standard deviation as a measure of
performance variability. Analogously, we calculate the relative standard deviation (cRSD) of the
measurements collected for each configuration with Mc referring to the arithmetic mean of Mc,
and σMc referring to the standard deviation of Mc.

∀c ∈ C : cRSD = 100 · σMc

Mc

(6.4)

1We look at a special the special case, where m(i) = {m1(i)} and m1(i) is the SRPS of an instance i.
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Additionally to the calculations, Leitner and Cito [LC16] assume that for most use cases a rel-
ative standard deviation of more than 5% constitutes a relevant variability in performance and
indicate, that specific applications may take higher or lower variability [LC16]. All resulting rel-
ative standard deviations cRSD of all configurations are shown in Table 6.4. The mean relative
standard deviation ((cRSD)) is already shown in the table but is only going to be used in the
Section 6.2.2.

Instance Type c #
sampling

length
in seconds

I* II** Mc M̃c σMc
cRSD cRSD

bursting
A_b1m 18 1200 1 2 940.91 944.33 20.39 2.17 8.75
A_b1s 17 1800 2 2 929.16 931.88 25.08 2.70 9.56
A_b2 14 1800 3 5 1762.16 1765.39 72.68 4.12 14.79

baseline
A_nb1m 15 1500 7 12 95.62 94.57 6.25 6.54 15.42
A_nb1s 16 1500 26 45 191.52 184.63 24.87 12.99 19.27
A_nb2 13 900 3 4 393.06 393.31 15.00 3.82 13.64

general
purpose

A_gp2_1 26 300 1 1 1247.37 1251.63 24.16 1.94 8.70
A_gp2_2 26 300 1 1 1302.83 1306.67 24.74 1.90 9.00
A_gp4 23 480 2 3 1939.74 1944.35 63.76 3.29 14.31

compute
optimized

A_co2_1 29 300 2 2 1417.09 1424.81 36.16 2.55 11.00
A_co2_2 26 300 1 2 1472.01 1474.56 35.33 2.40 10.45
A_co4 19 480 2 3 2192.07 2200.71 70.80 3.23 11.40

bursting G_b1 13 420 8 13 321.73 319.58 22.29 6.93 23.05

general
purpose

G_gp1 26 420 2 3 722.21 721.31 22.68 3.14 14.33
G_gp2 26 420 2 4 1102.49 1098.69 38.66 3.51 16.67
G_gp4 24 420 3 5 1888.37 1888.63 77.19 4.09 18.85

compute
optimized

G_co2 18 420 2 4 1095.28 1096.91 38.23 3.49 13.38
G_co4 23 420 4 7 1791.98 1783.20 87.32 4.87 21.95

* 95 % CL (5% MOE) ** = 99 % CL (5% MOE)

Table 6.4: (cRSD) and (cRSD) for each configuration

Leitner and Cito [LC16] propose the relative stand deviation cRSD (defined in equation 6.4) to
compare the performance of instance exhibiting the same configuration. A variation of 5% and
more is considered to be a relevant.

The performance of instances exhibiting the same configuration varies only for instances of
bursting instance types relevantly. At Amazon EC2, these are instances of configuration A_nb1s
performing at baseline performance, with a relevant variation of 12.99% as well as instances of
configuration A_nb1m performing at baseline performance with a variation of 6.54%. At GCE,
the only bursting instance type is covered by configuration G_b1. G_b1 and varies relevantly by
6.93%. Table 6.4 summarizes the results.

If we compare the results with the results reported by Leitner and Cito [LC16], we observe
a clear pattern. In Amazon EC2’s Frankfurt and GCE’s europe-west1 regions, only bursting in-
stance types show a relevant performance variability between instances of the same configuration.

Figures 6.5 and 6.6 show both providers in comparison. As can be seen from these figures, are
instances from Amazon EC2 in general more predictable than instances from GCE. This general
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observation is also in line with the results of Leitner and Cito [LC16].
Therefore, based on our analysis, we conclude that general purpose and compute optimized

instances are predictable, at least in this regions.
Figure 6.7 shows the performance of the compute optimized instance type with 2 cores. As can

be seen from the figure, have all instance more or less the same SRPS i.e., all lines are clustered. In
contrast to this figure, Figure 6.8 shows some examples of the performance of bursting instances
at GCE. Clearly visible, the instances are not as predictable as in the case of non-bursting instance
types, i.e., the shown lines are not as clustered as for the non-bursting instance types in Figure
6.7.

Analogous for Amazon EC2: compute optimized instances with 2 cores are shown in Figure
6.9 and some bursting instances in Figure 6.10
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Figure 6.9: Predictability AWS
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6.2.2 Instance Performance Stability

In the context of intra-instance performance variability, we interpret the instance stability over
time as the inverse of the intra-instance performance variability over time. Thus, the higher the
instra-instance variability the lower the instance’s performance stability. In this regard, Leitner
and Cito [LC16] offer the following hypothesis: H2.2: Intra-Instance Stability of CPU-Bound Appli-
cations – the performance of CPU-bound applications tends not to vary relevantly within the same instance
for instances with a dedicated CPU [LC16].

In order to calculate the performance variability of a single instance, we again use the ap-
proach provided by Leitner and Cito [LC16]. As a measure of performance variability, we use
again the relative standard deviation cRSD, which was already defined in Equation 6.4, this time
of the variability within a single cloud instance, as follows:

∀c ∈ C∀i ∈ Ic : iRSD = 100 ·
σm(i)

m(i)
(6.5)

According to Leitner and Cito [LC16], the individual performance variabilities can be summa-
rized as the mean relative standard deviation (cRSD), namely as the arithmetic mean of all iRSD
values for a given configuration.

All resulting mean relative standard deviations (cRSD) of all configurations are shown in Table
6.4. Note: in Table 6.4 the (cRSD) is calculated for each configuration with an individual sampling
durations.

The results revealed in Table 6.4 can not confirm this hypothesis. In contrast to Leitner and
Cito, which observed a very low relative standard deviation for the same cloud instance for all
CPU-bound benchmarks on non-bursting instance types in all providers, in our study, all in-
stances of all configurations show for all providers a relevant intra-instance variability and are
therefore not considered to be stable.
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Figure 6.11: Visualization (cRSD) Amazon EC2
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Figures 6.11 and 6.12 visualize the results. From comparing the two figures to each other, it is
obvious that Amazon EC2 provides in general the better performance stability than GCE2. This
is also contrary to the results Leitner and Cito [LC16] offer in their work.

Our experiments differ in two major points from the experiments conducted by Leitner and
Cito [LC16]. Firstly, our application is composed of two distinct instances, whereas Leitner and
Cito run a CPU microbenchmark on a single instance. Secondly, do Leitner and Cito [LC16] not
provide any information about the resource consumption of their application benchmark and
how long such a CPU microbenchmark had to complete. The analysed data-set of our application
benchmark executions, is depending on the concrete configuration, between 300 seconds and
1800 seconds long. Figures 6.13 and 6.14 show the fluctuating performance for all non-bursting
instance types at Amazon EC2 as well as GCE.

0 50 100 150 200 250 300

duration in seconds

0

1000

2000

3000

4000

5000

6000

7000

su
cc

e
ss

fu
ll 

re
q
u
e
st

s 
p
e
r 

se
co

n
d

A_co2_2

A_co2_1

A_co4

A_gp2_2

A_gp2_1

A_gp4
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Figure 6.14: Stability of configurations at GCE

6.2.3 Stability of Larger Instance Sizes
H4.2: Stability of Larger Instance Types – the predictability of performance for any application tends to
increase with increasing instance type costs [LC16].

To approach this hypothesis, and to answer if instances of a larger size perform more stable
than smaller ones, we reconsider Table 6.4. Table 6.4 is ordered by instance size and the stability
of the individual configurations are indicated in the row labelled cRSD. Figures 6.11 and 6.12 are
also ordered by instance type first and instance size later. From the figures can be seen, that both
overall and for each instance type larger instances are less stable.

The data collected in this study shows, that the hypothesis cannot be supported, in contrary,
if we neglect the bursting instance types performing at baseline performance, we can generally
state that smaller instances sizes perform more stable than larger instance sizes. Leitner and
Cito [LC16] support this hypothesis in EC2 and GCE. Since our study did not primarily focus on
the intra-instance stability, we would like to postpone a definitive remark on this issue to future
work.
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A fact which is not covered by the hypothesis is, that smaller instance types perform more
predictable, i.e., show a smaller intra-configuration variability compared to larger instance sizes
(i.e., more expensive instance sizes).

6.2.4 Baseline vs. Bursting Performance Stability
Bursting instance types are able to boost performance if a peak load has to be processed. If there
is no load or only little load, they perform on a base level. Cloud providers such as Amazon EC2
apply a credit based system to decide, which instance is allowed to boost its performance, i.e.,
which instance can utilize a full CPU core. At Amazon EC2, for each minute the core utilization
is above a certain threshold, a credit is consumed [Ama16a]. In order to measure the SRPS, we
generated a workload sufficient to require the instance to burst. After a certain burst duration,
the instance runs out of credits and is throttled stepwise to baseline performance. This process is
depicted in Figure 6.15

Subsequently, we measured the performance of the instance during their bursting period, and
the consecutive baseline performance period. The resulting data is depicted in Table 6.6, where
SRPS is the mean of the successful requests per second and ˜SRPS is the median of the same,
both taken from Table 6.4.

Further details regarding the different execution times of the benchmarks are listed in Table
6.1. Table 6.4 summarizes the results in the rows bursting performance and baseline performance. For
the evaluation of the bursting and baseline performance variability, we considered the same set
of instances. While for the evaluation of the bursting performance all instances in the set could be
used, we had to exclude some instances from the evaluation of the baseline performance. This,
since they did not run out of credits and thus did not perform on baseline performance after the
execution run was stopped.

The concrete hypothesis of Leitner and Cito [LC16] regarding the intra-instance variability of
bursting instance types is H2.3: Intra-Instance Variability of Bursting Instance Types – the performance
of any application using a bursting instance type tends to vary relevantly within the same instance [LC16].

As already explained in the last section, varies the performance of all instances of all configura-
tions relevantly over time. In contrast to the common expectation, does the bursting performance
of Amazon EC2’s bursting instance types vary less than the performance of most non bursting
instances. A possible explanation could be, that a busting instance type at bursting performance
utilizes the full CPU core. This could mean that possible tenants are excluded from the utilization
and hence the "noisy neighbour" problem is mitigated.

A visual inspection of the SRPS evolution over time reveals, why the variability of the base
performance is fluctuating: Since bursting instances receive a certain amount of credits per hour,
the instance starts, as soon as a new credit is available, to burst. This results in an approximately
binary performance behaviour characterized by a temporary stable performance but a variable
performance over time. The behaviour can be seen in Figure 6.15.

Leitner and Cito [LC16] support the hypothesis only for Amazon EC2. This, since their results
show only a minor performance variability and hence a relatively stable performance for all GCE
intance types, including the bursting one.

Amazon provides in their user documentation [Ama16e] some information about the base-
line and the bursting performance. The values for each instance size are depicted in Table 6.5.
By comparing these values with the values from Table 6.6, we noticed that they fit for t2.micro
and t2.small instances, but diverge considerably for t2.medium instances. Amazon EC2 claims
a baseline performance of 40% of the bursting performance. Our experiments revealed a base-
line performance of only about 22% of the bursting performance. Further research in this issue is
therefore required.
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Figure 6.15: Bursting EC2 instance SRPS evolution

Instance type Initial CPU
credit

CPU credits
earned per hour

Base performance
(CPU utilization)

t2.micro 30 6 10%
t2.small 30 12 20%
t2.medium 60 24 40%

Table 6.5: Performance ratio according to Amazon EC2 [Ama16e]

c1 SRPSc1
˜SRPSc1 c2 SRPSc2

˜SRPSc2
SRPSc2

SRPSc1

˜SRPSc2
˜SRPSc1

A_b1m 940.91 944.33 A_nb1m 95.62 94.57 0.10 0.10
A_b1s 929.16 931.88 A_nb1s 191.52 184.63 0.21 0.20
A_b2 1762.16 1765.39 A_nb2 393.06 393.31 0.22 0.22

Table 6.6: Performance ratio baseline vs. bursting performance
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6.2.5 Diseconomies of Scale
In this section, to allow a comparison of bursting and non-bursting instance types, we first try to
find an appropriate way to estimate the performance of the bursting instance types for a whole
hour. After that, we address if there are diseconomies of scale for larger instance sizes.

Theoretical Mixed Instance Type

In order to be able to compare bursting instance types to non-bursting instance types, we propose
a mixed instance type. To this end, we take into account the amount of credits (ε) a certain instance
size receives per hour. At Amazon EC2, one credit corresponds to full CPU utilization for a whole
minute. Consequently, the instance can run ε

60 of an hour on bursting performance. Moreover, if
we allege that the instance does not receive any credits at start-up and the performance behaves in
a binary mode, such that an instance always performs either on baseline or bursting performance,
the performance Mc of the mixed instance type can then be calculated as follows:

∀c ∈ C :Mc =
ε

60
·Mch +

(
1− ε

60

)
·Mcl (6.6)

Where

Mcl is in our case the SRPS at baseline performance

Mch is in our case the SRPS at bursting performance

ε it the credits the web application instance types gets per hour

Based on this equation, we can compute for each bursting instance configuration a mixed
instance configuration. A_b1m : ε = 6, A_b1s : ε = 12, A_b2 : ε = 24. For the bursting instances
in this work, the resulting mixed instance types are depicted in Table 6.7.

Performance Type c Mc
pc
hour

bursting
A_b1m 940.91 $0.015
A_b1s 929.16 $0.030
A_b2 1762.16 $0.060

baseline
A_nb1m 95.62 $0.015
A_nb1s 191.52 $0.030
A_nb2 393.06 $0.060

mixed
A_x1m 180.15 $0.015
A_x1s 339.05 $0.030
A_x2 940.70 $0.060

Table 6.7: Mixed instance types for Amazon EC2

Diseconomies of Scale of Larger Instance Sizes

H4.1: Diseconomies of Scale of Larger Instance Types – the ratio of performance and costs for any applica-
tion tends to decrease with increasing instance type costs [LC16].
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H4.1 claims that larger (i.e., more expensive) instance sizes are generally less cost-efficient than
smaller instance sizes [LC16].

Leitner and Cito [LC16] used in their work the normalized cost-performance ratio. To this end,
they normalize the mean of the measurements for a configuration c ∈ C to the arithmetic mean
of the measurements for configuration n ∈ C, i.e.,

∀c ∈ C :M∗c =
Mc

Mc(n)
(6.7)

Where

Mc is the mean of the measurements for configuration c ∈ C

Mc(n) is the mean of the measurements for configuration n ∈ C

Analogously, they normalize all hourly prices to the price of the configuration n of the same
provider.

∀c ∈ C : p∗c =
pc
pn

(6.8)

Where

pc is the hourly price of configuration c ∈ C

pn is the hourly price for configuration n ∈ C

The normalized cost-performance ratio cpr can then be written as:

∀c ∈ C : cpr∗c =
M∗c
p∗c

(6.9)

For our work, we use for Amazon EC2 n = A_gp2_1 and for GCE n = G_gp1. The resulting
values for cpr∗c are depicted in tables 6.8 and 6.9.

While we can confirm this general statement for Amazon EC2, we cannot for GCE. Figures
6.16 and 6.17 visualize the cost-performance ratio cpr∗c for each configuration based on the data
from Tables 6.8 and 6.9. The different configurations are depicted in ascending ordered by the
price per hour. The results for Amazon EC2 (Figure 6.16) show apart from the mixed instance
type (derived from the t2.medium instance size; developed in Section 6.2.5), a steadily falling
cost-performance ratio. Hence, the hypothesis holds for Amazon EC2.

Although GCE (Figure 6.17) shows a similar trend, the general purpose instance with 2 cores
has a worse performance ratio than the more expensive but better performing compute optimized
instance with 4 cores. Hypothesis 4.1 can therefore not be supported in general. However, if we
consider each instance family separately, the hypothesis is true for both, general purpose and
compute optimized instances.

Leitner and Cito [LC16] do not confirm the hypothesis neither for EC2 nor for GCE, noting that
according to their results, all small general-purpose instances provide the worst cost-performance
ratio.
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c M∗c p∗c cpr∗c

A_x1m 0.13 0.11 1.14
A_x1s 0.24 0.22 1.07
A_x2 0.66 0.45 1.48
A_co2_1 1.00 1.00 1.00
A_co2_2 1.04 1.00 1.04
A_gp2_1 0.88 1.07 0.82
A_gp2_2 0.92 1.07 0.86
A_co4 1.55 1.99 0.78
A_gp4 1.37 2.13 0.64

Table 6.8: cpr∗c for Amazon EC2

c M∗c p∗c cpr∗c

G_b1 0.45 0.55 0.82
G_gp1 1.00 1.00 1.00
G_co2 1.52 1.53 0.99
G_gp2 1.53 2.00 0.76
G_co4 2.48 3.05 0.81
G_gp4 2.61 4.00 0.65

Table 6.9: cpr∗c for GCE
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Figure 6.16: cpr∗c trend for Amazon EC2
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Figure 6.17: cpr∗c trend for GCE

6.2.6 Thrift of Specialized Instances
The cost efficiency of specialized instances compared to general purpose instances for processing
tasks related to their specialization is still an unanswered question. The related hypothesis con-
structed by Leitner and Cito [LC16] is H4.3: Price of Specialization – specialized instance types tend to
have a better ratio of performance and cost for applications related to their specialization, and worse ratio
otherwise [LC16].

To compare the price of the compute optimized instance types to the prices of the general
purpose instance types, we again use the normalized cost-performance ratio cpr∗c (Equation 6.9).
This time, we use for n the configuration of the general purpose instance type we want to compare
against. For considerations regarding stability and predictability, which may also have an impact
on business decisions, we include also the values for the relative standard deviation cRSD and the
mean relative standard deviation cRSD from Section 6.2.1 and 6.2.2.

In regard to this hypothesis, our study results can only reveal insights about the first part of
the hypothesis, namely, if specialized instance types tend to have a better ratio of performance
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c Mc cRSD cRSD
pc
hour M∗c p∗c cpr∗c

A_co2_1 1417.09 2.55 11.00 $0.134 1.14 0.94 1.21
A_gp2_1 1247.37 1.94 8.70 $0.143 1.00 1.00 1.00

A_co2_2 1472.01 2.40 10.45 $0.134 1.13 0.94 1.20
A_gp2_2 1302.83 1.90 9.00 $0.143 1.00 1.00 1.00

A_co4 2192.07 3.23 11.40 $0.267 1.13 $0.94 1.21
A_gp4 1939.74 3.29 14.31 $0.285 1.00 1.00 1.00

Table 6.10: Price of Specialization at Amazon EC2

c Mc cRSD cRSD
pc
hour M∗c p∗c cpr∗c

G_co2 1095.28 3.49 13.38 $0.084 0.99 0.76 1.30
G_gp2 1102.49 3.51 16.67 $0.110 1.00 1.00 1.00

G_co4 1791.98 4.87 21.95 $0.168 0.95 0.76 1.24
G_gp4 1888.37 4.09 18.85 $0.220 1.00 1.00 1.00

Table 6.11: Price of Specialization at GCE

and cost for applications related to their specialization, and this only for computation optimized
instance types.

For Amazon EC2, Table 6.10 indicates, that compute optimized instance types provide a 20%
cost-performance bonus compared to general purpose instance types with the same number of
CPU cores. These findings are in line with the findings of Leitner and Cito [LC16].

At GCE, the compute optimized instance types provide an even higher bonus, namely 30%
for instances equipped with two vCPU cores and 24% for instances with four vCPUs (Table 6.11).

While the bonus in cpr∗c of compute optimized instances at Amazon EC2 is achieved through
a better performance, resulting from better hardware in combination with a slightly lower price
(6% lower), the cpr∗c bonus in GCE is realised by a 24% lower price. In GCE, compute optimized
instances are not "really" optimized and use the same hardware as general purpose instances, but
are due to the fewer allocated memory more cost efficient.
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Performance-Cost Index

All results above were discussed for each cloud provider individually, although research is aware
of the struggle of practitioners to find a relevant cloud provider for their custom application. In
order to support application benchmarking, we propose a generic application-benchmark which
can be used to determine the performance of a custom application, across a variety of cloud
providers, and in an efficient and repeatable manner. However, collecting the data is only the
first step towards a business relevant decision. In order to reach an informed decision regarding
cloud provider choice, practitioners need additionally an approach to compare heterogeneous of-
ferings of different cloud providers in an objective manner. In the following section, we apply a
performance-cost normalization (PCN), to show, which cloud service tested in our study offers
the most "bang for the buck". But not all applications are the same. We are further interested in
a general comparison of cloud service’s performance, independent of a benchmark. Hence, we
introduce another normalization strategy from the educational context, namely, the (exam) score
normalization which is common to ensure a fair grading practice. Score-normalization allows to
average the PCN-scores across several benchmarks and thus allows to establish an benchmark
independent performance-cost-index.

7.1 Performance-Cost Normalization

In order to compare the "bang for the buck" of one entity to another, Vedam and Vemulapati pro-
pose in [VV12] to use performance-cost normalization (PCN). The basic idea of PCN is to determine
the cost of running an application in the cloud (i.e., tracking the total cost for the cloud deploy-
ment), and then to normalize the performance with the costs.

The cost of executing any task on a cloud service is according to Vedam and Vemulpati [VV12]
calculated by summing up all incurring costs (for any kind of cloud resources), over a specified
period (Equation 7.1). Note, in Equation 7.1 we adopt the original labels from the authors, al-
though we have used them already in the chapters before.
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C = (ci · T ) + (cs · S · T ) + (cb ·D) (7.1)

Where

C = cost total per hour

ci = cost of the cloud instance per hour

cs = cost of the storage per Megabits per hour

cd = cost of the data transfer per Kilobits

T = Time taken for the task to run in hours

S = Storage consumed in Megabits

D = Data transferred in Kilobits

The performance parameter P can then be divided with the total cost C in order to get the
normalized value PCN , i.e.,

PCN = P
C

Once we have the normalized values of PCN for all cloud offerings in question, we can simply
compare the resulting values [VV12].

Although PCN is sufficient to compare the performance mathematically, a more intuitive
metric to select between instance types is performance per $ per hour [SSS+08]. If P is measured
in seconds and prices are in $, we can simply multiply PCN with 3600 in order to get this more
meaningful measure.

7.2 Score Normalization

In teaching, course instructors want to evaluate students in a manner that is based upon the
student’s representative performance [Win02]. While fair grading is a simple task in a single
assignment, it becomes a more difficult matter when multiple assignments have to be consid-
ered, and even more demanding when the assignment with the poorest performance has to be
dropped [Win02]. In order allow a fair comparison of individual assignments, the scores need to
be converted into a common currency. "Ideally, we would like the distribution of individual student
performance for all exams to be equal, despite differences in time, instructor, teaching assistant, and other
factors. Only then can evaluations be considered comparable." [Win02].

To achieve this, Cross [Cro95] proposes score normalization (SN). In score normalization, an
individual score is transformed into a context-free evaluation of relative performance. Concretely,
an individual score is converted into a standard score. A standard score is then the number of
standard deviations the absolute-score or percentage-score is above or below the average, and is
called z-score [Cro95]. Its equation is:
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z =
X − µ
σ

(7.2)

Where:

z := z-score

X := observed score

σ := standard deviation in the assignment

µ := the average score in the assignment

By transposing the scores from different assignments onto a common scale, all scores are con-
verted to the same underlying distribution, namely the distribution with µ = 0 and σ = 1 and
thus a reasonable comparison is rendered possible [Win02]. Although the z-score per se would
already suffice to compare the individual assignments, Cross [Cro95] proposes (for convenience
reasons) to transpose the z-score to a T -score. A T -score is a score with an dictated underlying
distribution i.e,

T = µ+ σ · z (7.3)

For a calculation example we refer to Winters [Win02].
To get a composite score from which the influence of the variability of the scores has been

eliminated, T -scores can according to Cross [Cro95] simply be averaged. Note, if more than two
scores are to be averaged, the resulting composite score is only an approximation since the inter-
correlations among the scores should be considered too. Nevertheless, Cross [Cro95] points out
that also averaging of more than two scores should produce a good approximation of the precise
result [Cro95].

Another important feature of T -scores is, that they, such as absolute scores for instance, may
be weighted differentially. If one out of two assignments should be weighted double, we can
simply multiply its T -score by two and divide the sum of the scores by three [Cro95].

7.3 Comparable Benchmark Score (CBS)
In the last paragraph, SN was introduced in the context of teaching. Nevertheless can SN also be
applied to enable an objective comparison of cloud services, namely to compare the performance-
scores a specific cloud service scored in different cloud assignments (i.e., benchmarks, of course).
In contrast to the geometric mean, which can be used to compare the performance of two in-
stances across several benchmarks [FW86], SN can be used to objectively compare the individual
performance a single instance delivered in each benchmark, for example to determine which is
the core-competency of the instance.

In order to compare different benchmark-scores with each other, we first apply PCN to the
performance results obtained from each benchmark, and then apply SN to receive a normalized
and thus benchmark independent score. We coin the term comparable benchmark score (CBS) to
refer to it. The cbs is defined analogous to SN’s T -score (Equation 7.3), i.e.,



72 Chapter 7. Performance-Cost Index

∀c ∈ C : cbsc =M + S · PCNc − PCN
σPCN

(7.4)

Where

cbsc is the Comparable Benchmark Score for configuration c ∈ C

PCNc is the PCN-value for c ∈ C

PCN is the set of PCN-values after PCN (Equation 7.1)

PCN is the arithmetic mean of all PCN-values for the benchmark

σPCN is the standard deviation of all PCN-values for the benchmark

M is the new mean of the underlying distribution

S is the new standard deviation for the underlying distribution

To show that the normalization process has no effect on the ranking, we added a comparison
to the appendix (Section 9.5).

7.4 Lot-size Problem

As Binnig et al. [BKKL09] point out, do cloud providers charge the services based on a certain
lot-size, namely a fixed minimum run time. For example at Amazon EC2, instances are billed in
"instance hours". At GCE, the smallest billing unit is a single minute, while 10 minutes are billed
also if they are not used (Equations are given in 2.1 and 2.2).

While it is important to take the lot-size into account for determining what instance size and
type has to be chosen to get a certain amount of work done, it can be neglected for a general
comparison of the performance of single instances. If a defined amount of work has to be done,
it is very likely that an instance will not use up a whole lot. Therefore, slightly more expensive
instances with same performance but a better lot-size may be more cost efficient.

7.5 Comparing the Overall cbs Across Benchmarks

In order to compare the performance of multiple instance sizes over several benchmarks, we
have to be thoughtful. Although the cbs-score represent the same ordering, as the real scores
do, they must not be averaged with the arithmetic mean, as Fleming and Wallace elucidate and
proof in their work [FW86]. The problem is the normalization, which skews the relations. In
order to compare different instance competing in several benchmarks to each other, Fleming and
Wallace [FW86] propose the geometric mean. The geometric mean has the advantage, that in
contrast to the arithmetic mean, it can also be applied to normalized values, such as the cbs-
score. Analogous to the arithmetic mean, the geometric mean also allows to weight the different
benchmarks individually.



7.6 Performance-Cost Index 73

7.6 Performance-Cost Index
To establish a performance-cost index, we calculated the cbs for all benchmarked configurations
with M = 0 and S = 1 (= z-score). Moreover, we also calculated the successful requests (sr) per
dollar count for each configuration ( sr$ ). By assigning each configuration a rank and ordering the
cbs-ranks in ascending order, we see immediately that both rankings are identical 7.1. While sr

$ is
benchmark specific, the cbs provides the same information but is benchmark independent. Table
7.1 depicts the performance-cost-index for all 20 configurations.

Note: the cost index is based on the instance prices per hour, and on the eu-central-1 region
for Amazon EC2 and the Europe prices for GCE. Also performance was measured only in these
regions.

c Mc
Pc

hour
mio. sr

$ cbsc
mio. sr

$ -rank cbsc-rank

A_x2 940.70 $0.060 56.442 2.317 1 1
G_gp1 722.21 $0.055 47.272 1.146 2 2
G_co2 1095.28 $0.084 46.940 1.104 3 3
A_x1m 180.15 $0.015 43.235 0.631 4 4
A_x1s 339.05 $0.030 40.686 0.305 5 5
A_co2_2 1472.01 $0.134 39.546 0.160 6 6
G_b1 321.73 $0.030 38.608 0.040 7 7
G_co4 1791.98 $0.168 38.399 0.013 8 8
A_co2_1 1417.09 $0.134 38.071 -0.029 9 9
G_gp2 1102.49 $0.110 36.081 -0.283 10 10
A_gp2_2 1302.83 $0.143 32.799 -0.702 11 11
A_gp2_1 1247.37 $0.143 31.402 -0.880 12 12
G_gp4 1888.37 $0.220 30.901 -0.944 13 13
A_co4 2192.07 $0.267 29.556 -1.116 14 14
A_gp4 1939.74 $0.285 24.502 -1.761 15 15

Table 7.1: Cost Performance Index

As indicated in Table 7.1, are GCE’s G_gp1 and G_co2 configurations, i.e., n1-standard-1 and
n1-highcpu-2 instance sizes most economical. Amazon EC2’s most economical configuration was
A_co2_1, i.e., the c4.large instance size, which is on rank 3.

Tables 7.2 and 7.3 show the rankings split by provider. This time, also the overall ranking is
indicated for reference.
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c Mc
Pc

hour
mio. sr

$
cbsc

cbsc-rank
provider overall

A_x2 940.70 $0.060 56.442 2.317 1 1
A_x1m 180.15 $0.015 43.235 0.631 2 4
A_x1s 339.05 $0.030 40.686 0.305 3 5
A_co2_2 1472.01 $0.134 39.546 0.160 4 6
A_co2_1 1417.09 $0.134 38.071 -0.029 5 9
A_gp2_2 1302.83 $0.143 32.799 -0.702 6 11
A_gp2_1 1247.37 $0.143 31.402 -0.880 7 12
A_co4 2192.07 $0.267 29.556 -1.116 8 14
A_gp4 1939.74 $0.285 24.502 -1.761 9 15

Table 7.2: Index for Amazon EC2

c Mc
Pc

hour
mio. sr

$
cbsc

cbsc-rank
provider overall

G_gp1 722.21 $0.055 47.272 1.146 1 2
G_co2 1095.28 $0.084 46.940 1.104 2 3
G_b1 321.73 $0.030 38.608 0.040 3 7
G_co4 1791.98 $0.168 38.399 0.013 4 8
G_gp2 1102.49 $0.110 36.081 -0.283 5 10
G_gp4 1888.37 $0.220 30.901 -0.944 6 13

Table 7.3: Index for GCE
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Threats to Validity

As with any empirical research, there are threats and limitations to this study, which we would
like to outline in the following.

8.1 Construct Validity
During the development of the generic application benchmark as well as during the setup of the
experiments, design decisions had to be made. Most importantly, the choice of an application
benchmark to assess the performance of the individual instances. Our application benchmark
measures the performance of an individual VM instance by inferring it from the performance
of the benchmark web application. This bears two major threats. Firstly, the web application
could have been the performance bottleneck and thus the performance for larger instance sizes
be underrated. We tried to mitigate this threat by tracking resource consumption with vmstat
and VisualVm. Moreover, we tuned the Java heap space as good as possible. Secondy, the per-
formance of the database could have influenced the performance of the web application and thus
the performance of the instance hosting the web application in consequence be underrated. To
mitigate this risk, we deliberately benchmarked some instance configuration which only vary in
the size of the instance hosting the database. We compared the means of these configurations but
could not find any statistically significant performance deviation.

Another design decision is the choice of the benchmark metric (mean of the successful requests
per second, SRPS). We mitigated the risk to choose a problematic metric by choosing a metric,
which is already used in practice. Moreover, we normalize the resulting data as described in
Chapter 7.

Further design decisions were what benchmark application to choose and what workload to
use. After a thorough evaluation of the requirements to a state-of-the-art cloud benchmark, we
decided to use an application which fulfils these requirements and moreover has only recently
been developed. Additionally, also the original workload is used with only minor modifications.

In our experiments, we only tested instances acquired with the on-demand pricing plan. While
we cannot verify the equality of the performance of on-demand and other pricing-type instances,
we trust the indications in the user-guides of the tested providers which indicate that there is the
same underlying hardware used to run the instances.

For calculating the performance-cost ratio, we only use the hourly instance-prices, which are
assumed to be the major component of the costs for a cloud application. Although we have
researched the current body of knowledge, to our best knowledge there does not exist any study
covering this specific topic.

To compare the performance of non-bursting instance types to bursting instance types, we
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developed the construct of mixed instance types. A mixed-instance type is a theoretical instance
type its performance is composed partially of bursting performance and partially of baseline per-
formance. In practice, bursting instance types show a much higher bursting performance just
after startup than in their later bursting phases. For our calculations we used the bursting per-
formance just after start, which for our purpose is sufficient, but could be threat to the validity of
results in future studies.

8.2 Internal validity
Although we collected a relevant amount of data to validate our research questions, the duration
of the execution runs may not be sufficient to come to bullet-proof conclusions regarding the
intra-instance performance variability, also referred to as instance stability. In order to minimize
the effects of this threat, we identified the relevant part of the data by visual inspection instead of
using our extraction algorithm. Thus the quality of the data is as good as possible, although to
fully control this thread benchmarks with a longer sampling duration have to be run in a future
study.

8.3 External Validity
An external threat to validity is, of course, the selection of cloud providers and related the se-
lection of instance types, regions, and deployment options. However, our choice of providers
included one market leaders (Amazon EC2) and one up-coming provider, namely GCE. Hence,
we argue that for the purpose of this work, the coverage of cloud providers is sufficient. Never-
theless is the generalizability of the results further restricted by the chosen region. For Amazon
EC2, the chosen region is eu-central-1a Frankfurt and for GCE, the zone is europe-west1-b.
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Closing Remarks

9.1 Conclusion
Practitioner all over the world are challenged by the task to select the most relevant cloud service
for a given application. Due to a ever growing number of cloud offerings, performance variability
and missing cloud benchmarks, the selection of the best matching cloud offering is still an elabo-
rate endeavour and hence not straight forward. In order to support practitioners in their struggle,
we set out to develop a cloud-native and broadly applicable application benchmark.

In this work, we lay the foundation for cross-provider and application-aware benchmarking
of IaaS cloud services. We propose a generic application-benchmark which embraces the prin-
ciples of infrastructure as code, levering automation and repeatability by design. The proposed
benchmark treats the system under test as black-box, and thus can be used to benchmark any
IaaS based application out of the box. Authentic workload is a first order citizen. Hence, the
benchmark employs Apache JMeter as a load generator which not only provides flexible ways to
record and replay real-life workload traces, but also supports cookies, caching and the parallel
download of static files. The benchmark is cloud native. Based on Cloud Workbench, an au-
tomation framework which supports a vast selection of cloud providers, the benchmark allows
to benchmark instances from several cloud providers with only minimal effort.

We used our own benchmark to benchmark two cloud providers, namely Amazon EC2 and
Google Compute Engine (GCE). We conducted in total over 1000 benchmarks, thereof 372 bench-
mark runs we evaluated to answer our research questions, which are common questions regard-
ing performance variability and cost of on-demand IaaS instances. We acquired instances in 20
different configurations, 14 configurations at Amazon EC2 and 6 at GCE. We are now going to
answer our research questions based on the collected data.

Are there diseconomies of scale for larger instance sizes? Our results show, that at both
providers, larger instance sizes have a worse performance-cost ratio than smaller instances. At
Amazon EC2, there are diseconomies of scale over all instance families and types. At GCE, disec-
onomies of scale are restricted to instance types, where larger instances of the compute optimized
instance type have the better cost performance ration than smaller instances of the general pur-
pose type. Thus, the selection of smaller instance sizes is economically reasonable.

Is it economical to choose specialized instances for special tasks? In this regard, and as
already predictable from the observations of diseconomies of scale at GCE, specialized instance
types provide the better performance-cost ratio than performance wise comparable general pur-
pose instance types. Concretely, at Amazon EC2 offer compute optimized instances up to 20% and
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at GCE up to 30% more performance for the same costs. In consequence, we advice practitioners
to choose specialized instance types for their special purpose.

Is the performance of an instance of a certain size predictable? At both Amazon EC2 and
GCE it is in general possible to predict the performance of individual instances of non-bursting
instances types. Contrary, it is not possible to predict the performance of bursting instance types.
We consider a relevant performance variation to be 5%. At Amazon EC2, t2.small instances per-
forming at baseline performance yield a relevant variation of 12.99% and also t2.micro instance
performing at baseline performance vary by 6.54%. At GCE, g1.small instances yield a relevant
performance variation of 6.93%. In general, our results indicate that instance sizes acquired at
Amazon EC2 provide a more predictable performance than instances acquired at GCE.

Is the performance of a certain instance stable? Although we conducted a relevant amount
of experiments, the chosen benchmark duration may not suffice to answer this question with cer-
tainty. In our experiments, we used rather short benchmark execution durations. From the data,
the warm-up and the shut-down phase are cropped, resulting in sampling duration varying be-
tween 300 and 1800 seconds. In contrast to related research, our results indicate that all instances
of all configurations show for all providers a relevant intra-instance variability and are therefore
not considered to be stable. As a general pattern, we identified instance form Amazon EC2 to
perform more stable than instances from GCE.

Are larger instances more stable than smaller ones? In contrast to related research, our
results show that apart form some bursting instance sizes, smaller instance sizes yield a more
stable performance over time than instances of a larger size. As already mentioned, did we in our
experiments use a rather short benchmark execution durations, which may influence the gener-
alizability of these results.

Additionally, we also researched a more general question, namely how the performance and cost
relation of different instance types and different cloud providers can be objectively compared
across multiple benchmarks. To this end, we propose a novel normalization strategy yielding
comparable benchmark scores. Comparable benchmark scores indicate the relative performance-
cost ratio of an instance size compared to the entirety of benchmarked instances sizes. In order
to compare the performance across several instance sizes participating in several benchmarks,
we propose the geometric mean over the comparable benchmark scores. Our results show, the
following ranking: 1. GCE’s n1-standard-1, closely followed by GCE’s n1-highcpu-2 on rank 2.
The best performing Amazon instance is on rank 3, namely c4.large but provides 20% less perfor-
mance compared to the leaders.

In conclusion, summing up the answers and their implications, we would advice practitioners
to always choose specialized instance types, while preferring smaller instance sizes over larger.
This, only due to economical reasons, since larger instance types are not able to make up the
higher costs with better stability or higher predictability. Our results indicate, that Amazon EC2
provides the better predictability and also more stable instances, nevertheless provides GCE the
better performance-cost ration. In consequence, the question "Who provides most bang for the
buck" can not be answered conclusively.
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9.2 Future Work
We see different possibilities for future work: obviously, and as already described in the threats
to validity, research has to re-evaluate the results regarding the stability of bursting and non-
bursting instance types. We propose to re-use our experimental setup and to conduct a relevant
amount of experiments, but with a much longer execution duration.

Also obvious and of course the logic next step is to repeat our experiments for a greater selec-
tion of cloud providers. We have in our study shown, that an additional cloud providers causes a
minimal change in the existing CWB benchmark definition. The crucial point will be to setup the
SUT at the new provider, since every provider applies another method to manage ip addresses.
As possible consequence, we also see the need to split the AcmeAir cookbook into sub-cookbooks,
which handle provider specific ip address resolutions but are wrapped by a wrapper cookbook
setting up all other AcmeAir related software and configurations.

To compare the performance of non-bursting instance types to bursting instance types, we
tried to estimate the performance of the non-bursting instance types by a mixed-instance type,
which is a theoretical instance type composed partially of bursting performance and baseline
performance. To increase the accuracy of this construct, the defined assumption of a binary per-
formance distribution has to be overworked. In practice, bursting instance types show a much
higher bursting performance just after startup than in their later live. For our calculations we
used the burst performance just after start. This could be improved for future studies.

Amazon EC2 provides the "Elastic Compute Unit" to describe the performance of their in-
stance sizes. Analogously, GCE uses the "Google Compute Units" for their instances. Future
work could try to find a correlation between measured performance and these provider specific
measurements, in order to infer the real performance of an instance size based on the provider
measure.

Further did our experiments regarding bursting and baseline performance of Amazon EC2
bursting instance types reveal, that the actual delivered baseline performance for t2.medium in-
stances (measured 20%) is not as specified in the user documentation (%40). We can currently not
provide any reasons, hence we propose to investigate this in future work.

We investigated common questions regarding cloud provider choice. Future work will also
need to investigate the reasons for the observed results, stating not only the "that" as in this work,
but also the "why".





Acronyms

AMI amazon machine image

CBS Comparable Benchmark Score

CWB Cloud Workbench

GCE Google Compute Engine

GUI graphical user interface

HPC high performance computing

IaaS Infrastructure as a Service

MSRPS mean successful requests per second

NIST The National Institute of Standards and Technology

OLTP online-transaction processing

PCR performance cost normalization

RSD relative standard deviation

SN score normalization

SRPS successful requests per second

SUT system under test

VM virtual vachine

VMs virtual machines





Appendix

9.3 MongoDB Statistics
In the following table shows the statistics of the MongoDB dump, which is used for the mongodb
cookbook. The stats can be display by entering > mongo acmeair; db.stats().

1 > mongo acmeair;
2 > db.stats()
3 {
4 "db":"acmeair",
5 "collections":6,
6 "objects":1047718,
7 "avgObjSize":495.88796985448374,
8 "dataSize":519550752,
9 "storageSize":667631616,

10 "numExtents":30,
11 "indexes":4,
12 "indexSize":44223984,
13 "fileSize":1006632960,
14 "nsSizeMB":16,
15 "dataFileVersion":{
16 "major":4,
17 "minor":5
18 },
19 "extentFreeList":{
20 "num":0,
21 "totalSize":0
22 },
23 "ok":1
24 }

Listing 9.1: MongoDB Database Statistics
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9.4 CWB Benchmark Definitions
The following subsections show complete examples of the CWB Benchmark definition, which
were used for the individual benchmark executions.

9.4.1 AWS without slaves
This is an example of a CWB benchmark definition used for benchmarking Amazon EC2 in-
stances. In this example, we used JMeter in its distributed mode.

1 IP_DB = "172.31.2.#{benchmark_id}"
2 IP_WEBAPP = "172.31.3.#{benchmark_id}"
3 PORT_WEBAPP = 9080
4
5 JMETER_SLAVES_NUM = 2
6 JMETER_NUM_THREADS = 2500
7 JMETER_RAMP_UP_TIME = 0
8 JMETER_DURATION = 1200
9

10 USER_IN_DB= 1000000
11 BENCHMARK_ITERATIONS = 1
12
13 INSTANCE_TYPE_WEBAPP = 'c4.large'
14 INSTANCE_TYPE_DB = 't2.medium'
15
16 ubuntu_ami = 'ami−d19e79be'
17 UBUNTU_USERNAME = 'ubuntu'
18 debian8_4 = 'ami−e05ab38f'
19 DEBIAN_USERNAME = 'admin' # sudo−i
20
21 IMAGE_WEBAPP = debian8_4
22 IMAGE_DB = debian8_4
23
24 JMETER_BASE_IP = '172.31.15.'
25 IP_JMETER_MASTER = "172.31.15."+(benchmark_id+100).

to_s
26 #JMETER_BASE_IP+(JMETER_SLAVES_NUM+1).to_s
27
28 AWS_REG = 'eu−central−1'
29 AWS_A_ZONE = 'eu−central−1a'
30 AWS_SEC_GROUPS = ['cwb−web']
31
32 def jmeter_remotes
33 remotes = ""
34 for i in 1..JMETER_SLAVES_NUM
35 remotes += (JMETER_BASE_IP+"#{i},")
36 end
37 return remotes
38 end
39
40 INSTANCE_TYPE_WEBAPP_sanitized =

INSTANCE_TYPE_WEBAPP.gsub(/[\W]+/,"_")
41 INSTANCE_TYPE_DB_sanitized = INSTANCE_TYPE_DB.

gsub(/[\W]+/,"_")
42
43 Vagrant.configure(VAGRANTFILE_API_VERSION) do

config
44 config.vm.define "mongodb" do mongodb
45 mongodb.ssh.username = DEBIAN_USERNAME

46 mongodb.vm.synced_folder '.', '/vagrant', disabled:
true

47 mongodb.vm.provider :aws do aws, override
48 aws.region = AWS_REG
49 aws.availability_zone = AWS_A_ZONE
50 aws.ami = IMAGE_DB
51 aws.instance_type = INSTANCE_TYPE_DB
52 aws.security_groups = AWS_SEC_GROUPS
53 aws.private_ip_address = IP_DB
54 aws.tags = {
55 'CWB_Function' => 'acmeair−mongodb'
56 }
57 end
58
59 mongodb.vm.provision 'cwb', type: 'chef_client' do

chef
60 chef.node_name = 'mongodb'+execution_id.to_s
61 chef.add_recipe 'acmeair_mongodb'
62 chef.json =
63 {
64 'benchmark' => {
65 'logging_enabled' =>true,
66 'owner' => DEBIAN_USERNAME,
67 'group' => DEBIAN_USERNAME
68 }
69 }
70 end
71 end
72
73 config.vm.define "webapp" do webapp
74 webapp.vm.synced_folder '.', '/vagrant', disabled: true
75 webapp.ssh.username = DEBIAN_USERNAME
76 webapp.vm.provider :aws do aws, override
77 aws.region = AWS_REG
78 aws.availability_zone = AWS_A_ZONE
79 aws.ami = IMAGE_WEBAPP
80 aws.instance_type = INSTANCE_TYPE_WEBAPP
81 aws.security_groups = AWS_SEC_GROUPS
82 aws.private_ip_address = IP_WEBAPP
83 aws.tags = {
84 'CWB_Function' => 'acmeair−morphia−webapp'
85 }
86 end
87
88 webapp.vm.provision 'cwb', type: 'chef_client' do chef
89 chef.node_name = 'webapp'+execution_id.to_s
90 chef.add_recipe 'acmeair_wlp_morphia_distributed'
91 chef.add_recipe 'cwb−tuning'
92 chef.add_recipe 'cwb−monitoring'
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93 chef.json =
94 {
95 'benchmark' => {
96 'logging_enabled' =>true,
97 'owner' => DEBIAN_USERNAME,
98 'group' => DEBIAN_USERNAME
99 },

100 'firewall' => {
101 'ports' => PORT_WEBAPP
102 },
103 'config' => {
104 'webapp' =>{
105 'port' => {
106 'http' => PORT_WEBAPP
107 }
108 },
109 'tuning' => {
110 'heap_xms' => '512m',
111 'heap_xmx' => '3g'
112 }
113 },
114 'mongodb' => {
115 'name' => 'acmeair',
116 'ip' => IP_DB,
117 'port' => 27017,
118 'user' => {
119 'name' => 'acmeairusr',
120 'password' => 'Login4Acme!'
121 }
122 }
123 }
124 end
125 end
126
127 config.vm.define "jmetermaster", primary: true do

jmetermaster
128 jmetermaster.ssh.username = UBUNTU_USERNAME
129 jmetermaster.vm.provider :aws do aws, override
130 aws.region = AWS_REG
131 aws.availability_zone = AWS_A_ZONE
132 aws.ami = 'ami−d19e79be'
133 aws.instance_type = 't2.medium'
134 aws.security_groups = AWS_SEC_GROUPS
135 aws.private_ip_address = IP_JMETER_MASTER
136 aws.tags = {
137 'CWB_Function' => 'jmetermaster'
138 }
139 end
140
141 jmetermaster.vm.provision 'cwb', type: 'chef_client' do

chef
142 chef.node_name = 'jmetermaster−'+execution_id.to_s
143 chef.add_recipe 'jm−acmeair−api'
144 chef.add_recipe 'jm−acmeair−default−assets'
145 chef.add_recipe 'acmeair−single'
146 chef.add_recipe 'cwb−tuning'
147 chef.add_recipe 'cwb−monitoring'
148 chef.json =
149 {
150 'benchmark' => {
151 'logging_enabled' =>true

152 },
153 'cwbjmeter' => {
154 'config' => {
155 'remotes' => jmeter_remotes,
156 'slave' => false,
157 'ssh_username' => UBUNTU_USERNAME,
158 'xms_heap_size' => '512m',
159 'xmx_heap_size' => '3g'
160 }
161 },
162 'acmeairapi' => {
163 'testplan' => {
164 'user_in_db' => USER_IN_DB,
165 'connection_timeout' => 30000,
166 'response_timeout' => 30000,
167 'target_host' => {
168 'port' => PORT_WEBAPP,
169 'name' => IP_WEBAPP
170 },
171 'threadgroup' => {
172 'num_threads' =>

JMETER_NUM_THREADS,
173 'ramp_up_time' =>

JMETER_RAMP_UP_TIME,
174 'duration' => JMETER_DURATION,
175 'delay' => 0
176 }
177 }
178 },
179 'acmeair−single' => {
180 'benchmark_iterations' =>

BENCHMARK_ITERATIONS,
181 'distributed_benchmark' => true,
182 'results_file_name' => "j_exid#{execution_id}−#{

benchmark_name}−#{
INSTANCE_TYPE_WEBAPP_sanitized}_#{
INSTANCE_TYPE_DB_sanitized}−j#{
JMETER_SLAVES_NUM}−thr#{
JMETER_NUM_THREADS}−dur#{
JMETER_DURATION}−rt#{
JMETER_RAMP_UP_TIME}",

183 'log_file_upload_enabled' => true,
184 'log_file_name' => "l_exid#{execution_id}−#{

benchmark_name}−#{
INSTANCE_TYPE_WEBAPP_sanitized}_#{
INSTANCE_TYPE_DB_sanitized}−j#{
JMETER_SLAVES_NUM}−thr#{
JMETER_NUM_THREADS}−dur#{
JMETER_DURATION}−rt#{
JMETER_RAMP_UP_TIME}",

185 'testplan_file_name' => "jmeter_testplan"
186 }
187 }
188 end
189 end
190
191 end

Listing 9.2: CWB Benchmark Definition,
AWS NoSlaves
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9.4.2 GCE without slaves
This is an example of a CWB benchmark definition used for benchmarking GCE instances. Note:
as special script has run before the provisioning of the webapp and the jmeter instances in order
to query and save the ip addresses of the mongodb instance and the web application instance
respectively. In GCE we did not test JMeter in its distributed mode, since the driver can generate
sufficient load to measure the maximum throughput. For enabling the distributed mode, the
getIP.py script has to be adapted, such that it appends the IP addresses to the same file and then
the script has to be run in a loop with the JMeter slave node names as arguments (not tested!).

1 PORT_WEBAPP = 9080
2
3 FILESERVER_IP = '52.59.112.61'
4
5 JMETER_SLAVES_NUM = 0
6 JMETER_NUM_THREADS = 5000
7 JMETER_RAMP_UP_TIME = 0
8 JMETER_DURATION = 600
9

10 USER_IN_DB= 1000000
11 BENCHMARK_ITERATIONS = 1
12
13 INSTANCE_TYPE_WEBAPP = 'n1−highcpu−4'
14 INSTANCE_TYPE_DB = 'n1−standard−1'
15 INSTANCE_TYPE_JMETER = 'n1−standard−1'
16
17 GCE_ZONE = "europe−west1−b"
18 GCE_SCOPES = ["cloud−platform"]
19
20 DEBIAN_USERNAME = 'admin'
21 DEBIAN_SSH_KEY_PATH = "~/.ssh/

google_compute_engine"
22 DEBIAN_IMAGE = 'debian−8−jessie−java'
23
24 INSTANCE_TYPE_WEBAPP_sanitized =

INSTANCE_TYPE_WEBAPP.gsub(/[\W]+/,"_")
25 INSTANCE_TYPE_DB_sanitized = INSTANCE_TYPE_DB.

gsub(/[\W]+/,"_")
26
27 Vagrant.configure(VAGRANTFILE_API_VERSION) do

config
28 config.vm.provider :google do google, override
29 google.google_project_id = "cwb−applicationbenchmark

"
30 google.google_client_email = "cwb−serviceaccount@cwb

−applicationbenchmark.iam.gserviceaccount.com
"

31 google.google_json_key_location = "/cwb−
applicationbenchmark−8b123a531802.json"

32 end
33
34 config.vm.define "mongodb" do mongodb
35 mongodb.ssh.username = DEBIAN_USERNAME
36 mongodb.vm.synced_folder '.', '/vagrant', disabled:

true
37 mongodb.vm.provider :google do google, override
38 google.name = "mongodb#{execution_id}"
39 google.zone = GCE_ZONE
40 google.machine_type = INSTANCE_TYPE_DB
41 google.image = DEBIAN_IMAGE

42 google.scopes = GCE_SCOPES
43 override.ssh.username = DEBIAN_USERNAME
44 override.ssh.private_key_path =

DEBIAN_SSH_KEY_PATH
45 end
46
47 mongodb.vm.provision 'cwb', type: 'chef_client' do

chef
48 chef.node_name = "mongodb#{execution_id}"
49 chef.add_recipe 'acmeair_mongodb'
50 chef.json =
51 {
52 'benchmark' => {
53 'logging_enabled' =>true,
54 'owner' => DEBIAN_USERNAME,
55 'group' => DEBIAN_USERNAME
56 }
57 }
58 end
59 end
60
61 config.vm.define "webapp" do webapp
62 webapp.vm.synced_folder '.', '/vagrant', disabled: true
63 webapp.ssh.username = DEBIAN_USERNAME
64 webapp.vm.provider :google do google, override
65 google.name = "webapp#{execution_id}"
66 google.zone = GCE_ZONE
67 google.machine_type = INSTANCE_TYPE_WEBAPP
68 google.image = DEBIAN_IMAGE
69 google.scopes = GCE_SCOPES
70 override.ssh.username = DEBIAN_USERNAME
71 override.ssh.private_key_path =

DEBIAN_SSH_KEY_PATH
72 end
73
74 #for GCE, we have to run another script that queries

the IP of the mongo db node before provisioning
the webapp

75 webapp.vm.provision "file", source: "~/getIP.py",
destination: "~/getIP.py"

76 webapp.vm.provision "shell", inline: "python getIP.py
mongodb#{execution_id} europe−west1−b"

77 webapp.vm.provision 'cwb', type: 'chef_client' do chef
78 chef.node_name = "webapp#{execution_id}"
79 chef.add_recipe 'acmeair_wlp_morphia_distributed'
80 chef.add_recipe 'cwb−tuning'
81 chef.add_recipe 'cwb−monitoring'
82 chef.json =
83 {
84 'benchmark' => {
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85 'logging_enabled' =>true,
86 'owner' => DEBIAN_USERNAME,
87 'group' => DEBIAN_USERNAME
88 },
89 'firewall' => {
90 'ports' => PORT_WEBAPP
91 },
92 'config' => {
93 'webapp' =>{
94 'port' => {
95 'http' => PORT_WEBAPP
96 }
97 },
98 'tuning' => {
99 'heap_xms' => '512m',

100 'heap_xmx' => '3g'
101 }
102 },
103 'mongodb' => {
104 'ip_from_file' => true,
105 'ip_file_path_name' => '/home/admin/ip.env',
106 'name' => 'acmeair',
107 'ip' => 'value should be overwritten!',
108 'port' => 27017,
109 'user' => {
110 'name' => 'acmeairusr',
111 'password' => 'Login4Acme!'
112 }
113 }
114 }
115 end
116 end
117
118 config.vm.define "jmetermaster", primary: true do

jmetermaster
119 jmetermaster.ssh.username = DEBIAN_USERNAME
120 jmetermaster.vm.synced_folder '.', '/vagrant', disabled:

true
121 jmetermaster.vm.provider :google do google, override
122 google.name = "jmetermaster#{execution_id}"
123 google.zone = GCE_ZONE
124 google.machine_type = INSTANCE_TYPE_JMETER
125 google.image = DEBIAN_IMAGE
126 google.scopes = GCE_SCOPES
127 override.ssh.username = DEBIAN_USERNAME
128 override.ssh.private_key_path =

DEBIAN_SSH_KEY_PATH
129 end
130
131 #for GCE, we have to run another script that queries the

IP of the webapp node before provisioning the
JMeter Test Plan

132 jmetermaster.vm.provision "file", source: "~/getIP.py",
destination: "~/getIP.py"

133 jmetermaster.vm.provision "shell", inline: "python getIP.
py webapp#{execution_id} europe−west1−b"

134 jmetermaster.vm.provision 'cwb', type: 'chef_client' do
chef

135 chef.node_name = "jmetermaster#{execution_id}"
136 chef.add_recipe 'jm−acmeair−api'
137 chef.add_recipe 'jm−acmeair−default−assets'
138 chef.add_recipe 'acmeair−single'
139 chef.add_recipe 'cwb−tuning'
140 chef.add_recipe 'cwb−monitoring'

141 chef.json =
142 {
143 'benchmark' => {
144 'logging_enabled' =>true,
145 'owner' => DEBIAN_USERNAME,
146 'group' => DEBIAN_USERNAME
147 },
148 'cwbjmeter' => {
149 'config' => {
150 'remotes_from_file' => false,
151 'remotes' => 'value should be overwritten!',
152 'remotes_file_path_name' => '/home/admin/ip.

env',
153 'slave' => false,
154 'ssh_username' => DEBIAN_USERNAME,
155 'xms_heap_size' => '512m',
156 'xmx_heap_size' => '3g'
157 }
158 },
159 'acmeairapi' => {
160 'testplan' => {
161 'user_in_db' => USER_IN_DB,
162 'connection_timeout' => 30000,
163 'response_timeout' => 30000,
164 'target_host' => {
165 'port' => PORT_WEBAPP,
166 'name' => 'value should be overwritten!',
167 'name_from_file' => true,
168 'file_path_name' => '/home/admin/ip.env'
169 },
170 'threadgroup' => {
171 'num_threads' =>

JMETER_NUM_THREADS,
172 'ramp_up_time' =>

JMETER_RAMP_UP_TIME,
173 'duration' => JMETER_DURATION,
174 'delay' => 0
175 }
176 }
177 },
178 'acmeair−single' => {
179 'benchmark_iterations' =>

BENCHMARK_ITERATIONS,
180 'distributed_benchmark' => false,
181 'results_file_name' => "j_exid#{execution_id}−#{

benchmark_name}−#{
INSTANCE_TYPE_WEBAPP_sanitized}_#{
INSTANCE_TYPE_DB_sanitized}−j#{
JMETER_SLAVES_NUM}−thr#{
JMETER_NUM_THREADS}−dur#{
JMETER_DURATION}−rt#{
JMETER_RAMP_UP_TIME}",

182 'log_file_upload_enabled' => true,
183 'log_file_name' => "l_exid#{execution_id}−#{

benchmark_name}−#{
INSTANCE_TYPE_WEBAPP_sanitized}_#{
INSTANCE_TYPE_DB_sanitized}−j#{
JMETER_SLAVES_NUM}−thr#{
JMETER_NUM_THREADS}−dur#{
JMETER_DURATION}−rt#{
JMETER_RAMP_UP_TIME}",

184 'testplan_file_name' => "jmeter_testplan",
185 'fileserver' => {
186 'ip' => FILESERVER_IP
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187 }
188 }
189 }
190 end
191 end

192 end

Listing 9.3: CWB Benchmark Definition,
GCE

9.4.3 JMeter
This is an example of the CWB benchmark definition, if the slaves are started separately.

1 SSH_USERNAME = 'ubuntu'
2 # after this time the slaves will terminate. actually not

needed, cwb has also a timeout option
3 TIMEOUT_IN_MINUTES = 110
4
5 JMETER_SLAVES_NUM = 20 # will start 20 slave instances!
6
7 # the ips are calculated, make sure in the other vagrant files

they are calculated the same!
8 JMETER_BASE_IP = '172.31.15.'
9 IP_JMETER_MASTER = JMETER_BASE_IP+(

JMETER_SLAVES_NUM+1).to_s
10
11 AWS_REG = 'eu−central−1'
12 AWS_A_ZONE = 'eu−central−1a'
13 AWS_SEC_GROUPS = ['cwb−web']
14
15 Vagrant.configure(VAGRANTFILE_API_VERSION) do

config
16 config.ssh.username = SSH_USERNAME
17
18 (1..JMETER_SLAVES_NUM).each do i
19 if i == 1
20 config.vm.define "jmeterslave#{i}", primary: true do

jmeterslave
21 jmeterslave.vm.synced_folder '.', '/vagrant', disabled

: true
22 jmeterslave.vm.provider :aws do aws, override
23 aws.region = AWS_REG
24 aws.availability_zone = AWS_A_ZONE
25 aws.ami = 'ami−d19e79be'
26 aws.instance_type = 't2.small'
27 aws.security_groups = AWS_SEC_GROUPS
28 aws.private_ip_address = JMETER_BASE_IP+"#{i}"
29 aws.tags = {
30 'CWB_Function' => "jmeterslave#{i}"
31 }
32 end
33
34 jmeterslave.vm.provision 'cwb', type: 'chef_client' do

chef
35 chef.node_name = "jmeterslave#{i}−"+

execution_id.to_s
36 chef.add_recipe 'cwb−jmeter'
37 chef.add_recipe 'jm−acmeair−default−assets'
38 chef.add_recipe 'cwb−timeout'
39 chef.add_recipe 'cwb−tuning'
40 chef.add_recipe 'cwb−monitoring'
41 chef.json =
42 {
43 'cwbjmeter' => {

44 'config' => {
45 'remotes' => '',
46 'slave' => true,
47 'ssh_username' => SSH_USERNAME,
48 'xms_heap_size' => '512m',
49 'xmx_heap_size' => '1024m'
50 }
51 },
52 'cwb−timeout' => {
53 'timeout_in_minutes' =>

TIMEOUT_IN_MINUTES
54 },
55 'cwb−monitoring' => {
56 'jstatd' => {
57 'rmi_port' => 2020
58 }
59 }
60 }
61 end
62 end
63 else
64 config.vm.define "jmeterslave#{i}" do jmeterslave
65 jmeterslave.vm.synced_folder '.', '/vagrant', disabled

: true
66 jmeterslave.vm.provider :aws do aws, override
67 aws.region = AWS_REG
68 aws.availability_zone = AWS_A_ZONE
69 aws.ami = 'ami−d19e79be'
70 aws.instance_type = 't2.small'
71 aws.security_groups = AWS_SEC_GROUPS
72 aws.private_ip_address = JMETER_BASE_IP+"#{i}"
73 aws.tags = {
74 'CWB_Function' => "jmeterslave#{i}"
75 }
76 end
77
78 jmeterslave.vm.provision 'cwb', type: 'chef_client' do

chef
79 chef.node_name = "jmeterslave#{i}−"+

execution_id.to_s
80 chef.add_recipe 'cwb−jmeter'
81 chef.add_recipe 'jm−acmeair−default−assets'
82 chef.add_recipe 'cwb−tuning'
83 chef.add_recipe 'cwb−monitoring'
84 chef.json =
85 {
86 'cwbjmeter' => {
87 'config' => {
88 'remotes' => '',
89 'slave' => true,
90 'ssh_username' => SSH_USERNAME,
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91 'xms_heap_size' => '512m',
92 'xmx_heap_size' => '1024m'
93 }
94 },
95 'cwb−monitoring' => {
96 'jstatd' => {
97 'rmi_port' => 2020
98 }
99 }

100 }

101 end
102 end
103 end
104 end
105 end

Listing 9.4: CWB Benchmark Definition,
JMeter SlavesOnly

9.5 Score Normalization Comparison

c Mc
Pc

hour

mio requests
$ rank PCN PCN -rank CBS-score CBS-rank

A_x2 940.70 $0.060 56.442 1 15678.309 1 2.317 1
G_gp1 722.21 $0.055 47.272 2 13131.071 2 1.146 2
G_co2 1095.276346 $0.084 46.940 3 13039.004 3 1.104 3
A_x1m 180.15 $0.015 43.235 4 12009.797 4 0.631 4
A_x1s 339.05 $0.030 40.686 5 11301.678 5 0.305 5
A_co2_2 1472.01 $0.134 39.546 6 10985.119 6 0.160 6
G_b1 321.73 $0.030 38.608 7 10724.473 7 0.040 7
G_co4 1791.975896 $0.168 38.399 8 10666.523 8 0.013 8
A_co2_1 1417.09 $0.134 38.071 9 10575.290 9 -0.029 9
G_gp2 1102.486953 $0.110 36.081 10 10022.609 10 -0.283 10
A_gp2_2 1302.83 $0.143 32.799 11 9110.705 11 -0.702 11
A_gp2_1 1247.37 $0.143 31.402 12 8722.864 12 -0.880 12
G_gp4 1888.366625 $0.220 30.901 13 8583.485 13 -0.944 13
A_co4 2192.07 $0.267 29.556 14 8210.008 14 -1.116 14
A_gp4 1939.74 $0.285 24.502 15 6806.105 15 -1.761 15

Table 9.1: Normalization Comparison

9.6 Creating Real-Workloads from Access Logs
There are some good sources, we would like to share. Last checked on: 2016/08/24

• https://lincolnloop.com/blog/load-testing-jmeter-part-3-replaying-apache-logs/

• https://pypi.python.org/pypi/createurls

• https://www.blazemeter.com/blog/stop-making-assumptions-learn-how-replay-your-production-
traffic-jmeter

• https://youtu.be/8kbfseBenSI

https://lincolnloop.com/blog/load-testing-jmeter-part-3-replaying-apache-logs/
https://pypi.python.org/pypi/createurls
https://www.blazemeter.com/blog/stop-making-assumptions-learn-how-replay-your-production-traffic-jmeter
https://www.blazemeter.com/blog/stop-making-assumptions-learn-how-replay-your-production-traffic-jmeter
https://youtu.be/8kbfseBenSI




DVD

Contents of the DVD
• Zusfsg.txt

• Abstract.txt

• Masterarbeit.pdf

• thesis-code.zip: snippets used in the thesis

• cookbooks.zip: Benchmark Cookbook Repository

• examples.zip: Examples of Vagrant Files

• benchmark-results.7z: Dump of Data used for the evaluation

• win-python.zip: Environment and scripts used for evaluation

• fileserver.zip: source code of the used fileserver

• cwb.sh: convenience shell script (Note: absolute paths!)
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