
Choosing Requirements for Experimentation with
User Interfaces of Requirements Modeling Tools

Parisa Ghazi ∗, Zahra Shakeri Hossein Abad†, Martin Glinz∗
∗Department of Informatics, University of Zurich, Switzerland

{ghazi, glinz}@ifi.uzh.ch
†SEDS Lab, Department of Computer Science, University of Calgary, Canada

zshakeri@ucalgary.ca

Abstract—When designing a new presentation front-end called
FlexiView for requirements modeling tools, we encountered a
general problem: designing such an interface requires a lot of
experimentation which is costly when the code of the tool needs
to be adapted for every experiment. On the other hand, when
using simplified user interface (UI) tools, the results are difficult
to generalize. To improve this situation, we are developing an
UI experimentation tool which is based on so-called ImitGraphs.
ImitGraphs can act as a simple, but accurate substitute for a
modeling tool. In this paper, we define requirements for such an
UI experimentation tool based on an analysis of the features of
existing requirements modeling tools.

Index Terms—Graphical Models, Requirements Engineering,
Modeling Tools, User Interface

I. INTRODUCTION

Requirements engineers spend a lot of their time working
with modeling tools. Thus, the usability of their modeling tools
affects their productivity [1]. However, the User Interface (UI)
of this type of tools has not changed for a long time despite the
challenges that exist in working with artifacts [2]. Information
presentation is one of the aspects of the modeling tools that
can be improved. We are developing a new tool front-end
called FlexiView [3] for using the screen space efficiently by
presenting information in heterogeneous levels of detail. Like
every other new feature, it should go through multiple cycles of
usability experimentation and optimization in order to mature.

The high cost of usability experiments at the early stages
of software development is one of the reasons that the im-
provement of the UIs of modeling tools are neglected. We
have proposed ImitGraphs [4] to lower the cost of usability
experiments. ImitGraphs are an extended version of Graphs
that can substitute Requirements Engineering (RE) graph-
ical models (e.g., diagrams such as activity diagrams and
sequence diagrams) in usability experiments. The simplicity
of ImitGraphs enables usability testers to quickly develop
experimental tools instead of using the modeling tools as a
testing platform. We intend to design an experimental tool
based on ImitGraphs for testing and optimizing FlexiView.
Since FlexiView will be integrated into modeling tools, the
experimental tool that we design should have features similar
to the features of existing modeling tools. Our goal in this
paper is to study the basic features of the existing modeling
tools and define the requirements of a suitable experimental
tool by including the most frequent features.

To achieve this goal, we conducted a market study in which
we analyzed the UI features of a group of modeling tools.
Then, we selected the features with the highest frequency as
the UI requirements of the tool that we need for experimenting
on Flexiview. Our contributions are (i) a list of basic essential
manipulation actions in modeling tools, (ii) different methods
of performing those actions with their frequencies, and (iii) the
UI requirements of an experimental tool for testing UI features.

II. APPROACH

We performed our study of basic features of existing
modeling tools in three steps: selecting tools, defining basic
manipulation actions and finding the most frequent method
for each action. In step 1, we defined the criteria of selecting
tools for our study. Since FlexiView is designed to be used
in touch screen modeling tools, we searched Google Play
Store with the keywords “UML” and “diagram” and picked
apps with an average score of 3.6 and above. We ended
up with the following list of ten modeling tools: Flowdia
Lite (T1), Draw Express Lite (T2), FlexiSketch (T3), Droid-
dia (T4), Grapholite (T5), Draw.io (T6), Lekh Diagram (T7),
Diagrid (T8), ClickCharts Free (T9), and NodeScape (T10).
In step 2, we defined a set of basic manipulation actions
that are essential for a modeling tool by watching modeling
tutorials on YouTube. The videos were not related to the tools
under study and were intended for beginners. We extracted the
following list of eleven basic essential actions from the videos:
creating a new object, opening a context menu, scrolling,
deleting an existing object or an existing connection, selecting
multiple objects, duplicating an object, changing the color
of an object, changing the style of a connection, moving an
object, connecting objects, and adding/changing the text of an
object or a connection. In step 3, we inspected the tools and
identified the methods by which the actions can be performed.

III. RESULTS

The result of our observations is presented in Table I. The
columns contain essential actions, the methods of performing
those actions, the number of the tools that employ those
methods, and the corresponding tools. For example, creating
an object can be done differently, e.g., by dragging the object
from the menu and dropping it on the canvas, by selecting
the object from the menu, by freehand drawing the object,



TABLE I
BASIC ACTIONS AND HOW THEY CAN BE PERFORMED IN TOOLS

Action Method # Tool

Create an object

Drag and drop from the menu 5 T1-2, T6, T9-10
Select from the menu 5 T1-2, T5-7

Free draw 2 T3, T7
Long touch then select from the pop-up menu 1 T4

Select from the menu then single touch 3 T3, T8-9

Open the Context
menu

Same time as selecting the object 8 T1-5, T7-8, T10
Single touch on the selected object 1 T6

Not available 1 T9

Scrolling One finger 7 T1, T4-10
Two fingers 3 T2-3, T6

Delete object/connection Select from the context menu 8 T1, T3-8, T10
Select from the menu 2 T2, T9

Select multiple objects:
Step 1-initiate selection

Long touch on the canvas 3 T5-6, T9
Select from the menu 5 T1-2, T7, T9-10

Not available 3 T3-4, T8
Select multiple objects:
Step 2-indicate objects

Free hand 1 T2
Rectangle 6 T1, T5-7, T9-10

Duplicate an object
Select from the context menu 6 T1, T4-7, T10

Gesture command 1 T2
Not available 3 T3, T8-9

Edit object color

Select from the context menu 5 T1, T4, T7-8, T10
Edit directly in the side menu 4 T2, T5-6, T9

Double click on the object 1 T8
Not available 1 T3

Change a
connection’s style

Select from the context menu 6 T1,T3-4,T7-8,T10
Edit directly in the side menu 4 T2, T5-6, T9

Double click on the connection 1 T8

Move an object: Step 1-initiate move
Move selected 7 T2, T3, T5-8, T10

Move unselected 3 T1, T6, T9
Long touch 1 T4

Move an object: Step 2-move Dragging the handle 2 T2, T10
Dragging the object 8 T1, T3-9

Connect two objects

Drag the handle 2 T5-6
Select from the menu 1 T6

Select from the menu then draw a free hand conn 2 T9-10
Select from context menu then select second obj 3 T1, T4, T8

Draw free hand connection 3 T2-3, T7

Change the text Double click on the object and connection 7 T2, T4-6, T8-10
Select from the context menu 4 T1, T3, T7, T8

by long touching a location on the canvas and selecting the
object from the pop-up menu, or by selecting the object from
the menu and then touching a location on the canvas.

Some actions can be performed in more than one way in
some tools. This is the reason why, for some actions, the sum
of the frequencies is more than the number of the studied
tools. Some actions can be performed in separate independent
steps. For example, for selecting multiple objects, first, the user
initiates the selection, then, indicates the objects. The first step
can be done by a long touch, or by selecting the corresponding
icon from the menu. The second step can be done by drawing
a freehand lasso around the objects, or by drawing a rectangle
around the objects. Considering such steps separately allowed
us to find the most frequent methods more accurately than
by analyzing actions only, since an action might be rather
infrequent while one of its constituent steps occurs frequently.

IV. CHOOSING THE REQUIREMENTS

Based on the frequency of the methods, we chose the
requirements for our experimental tool. During this process,
we encountered two special cases. First, when two methods
conflicted, and second when there was a tie. In the case of a
conflict, we chose the combination of methods with a higher
overall frequency. For example, we cannot have scrolling with
one finger and connecting objects by freehand drawing at the
same time. We had to choose between (i) one-finger scrolling
and using the context menu for connecting objects, or (ii) two-
finger scrolling and connecting objects by freehand drawing.
In this case, we chose the first combination based on the higher
overall frequency.

In case of a tie, if implementing both of the options was
possible, we chose both. For example, creating an object by
drag-and-dropping and selecting from the menu could co-exist
in a tool. Therefore, we chose both of them. If the methods
with equal frequencies could not co-exist in a tool, we used the
score of the tools to break the tie. Finally, our study resulted
in the following requirements for our experimental tool.

1. The tool should allow users to create an object by drag-
and-dropping it from the menu onto the canvas and also by
selecting the icon of an object from the menu. 2. A context
menu should appear when an object is selected. 3. The user
should be able to scroll using one finger. 4. An object can
be deleted by selecting the corresponding command from the
context menu. 5. To select multiple objects, the user should
first select the corresponding command from the menu and
then draw a rectangle around the desired objects. 6. In order
to duplicate an object, the corresponding command should
be selected from the context menu. 7. The user should be
able to change the color of the objects after selecting the
corresponding command from the context menu. 8. The user
should be able to change the color and type of the connections
after selecting the corresponding command from the context
menu. 9. The user should be able to move a selected object
by dragging. 10. In order to connect two objects, first the
corresponding command should be selected from the context
menu and then the second object should be selected. 11. The
user should be able to change the text of the objects and
connections after double-tapping on them.

V. CONCLUSION AND FUTURE WORK

When a feature such as FlexiView will be eventually in-
tegrated into other modeling tools, the generalizability of the
usability experiments is important. Therefore, the UI features
of the experimental tool should be as similar as possible to the
features of the target modeling tools. In order to design such
a tool, we studied available modeling tools and extracted the
most frequent methods of performing essential actions in those
tools. Based on the results, we defined the UI requirements of
an ImitGraphs-based, experimental tool that can be used for
experimentation with the UI of RE tools.

This work will be continued by actually implementing a tool
based on the defined requirements and conducting usability
experiments with the UI of FlexiView.

REFERENCES

[1] J. M. C. De Gea, J. Nicolás, J. L. F. Alemán, A. Toval, C. Ebert, and
A. Vizcaíno, “Requirements engineering tools: Capabilities, survey and
assessment,” Information and Software Technology, vol. 54, no. 10, pp.
1142–1157, 2012.

[2] P. Ghazi and M. Glinz, “An exploratory study on user interaction
challenges when handling interconnected requirements artifacts of various
sizes,” in 24th IEEE International Requirements Engineering Conference
(RE ’16). IEEE, 2016, pp. 76–85.

[3] P. Ghazi, N. Seyff, and M. Glinz, “FlexiView: A magnet-based approach
for visualizing requirements artifacts,” in 21st International Working Con-
ference on Requirements Engineering: Foundation for Software Quality
(REFSQ ’15). Springer, 2015, pp. 262–269.

[4] P. Ghazi and M. Glinz, “ImitGraphs: Towards faster usability tests of
graphical model manipulation techniques,” in 9th International Workshop
on Modeling in Software Engineering (MiSE@ICSE2017).


