Not logged in.

Contribution Details

Type Conference or Workshop Paper
Scope Discipline-based scholarship
Published in Proceedings Yes
Title A Benchmark Comparison of Monocular Visual-Inertial Odometry Algorithms for Flying Robots
Organization Unit
Authors
  • Jeffrey Delmerico
  • Davide Scaramuzza
Presentation Type paper
Item Subtype Original Work
Refereed Yes
Status Published in final form
Language
  • English
Page Range 1 - 8
Event Title IEEE International Conference on Robotics and Automation (ICRA), 2018.
Event Type conference
Event Location Brisbane
Event Start Date May 21 - 2018
Event End Date May 25 - 2018
Place of Publication IEEE International Conference on Robotics and Automation (ICRA), 2018.
Publisher IEEE
Abstract Text Flying robots require a combination of accuracy and low latency in their state estimation in order to achieve stable and robust flight. However, due to the power and payload constraints of aerial platforms, state estimation algorithms must provide these qualities under the computational constraints of embedded hardware. Cameras and inertial measurement units (IMUs) satisfy these power and payload constraints, so visualinertial odometry (VIO) algorithms are popular choices for state estimation in these scenarios, in addition to their ability to operate without external localization from motion capture or global positioning systems. It is not clear from existing results in the literature, however, which VIO algorithms perform well under the accuracy, latency, and computational constraints of a flying robot with onboard state estimation. This paper evaluates an array of publicly-available VIO pipelines (MSCKF, OKVIS, ROVIO, VINS-Mono, SVO+MSF, and SVO+GTSAM) on different hardware configurations, including several singleboard computer systems that are typically found on flying robots. The evaluation considers the pose estimation accuracy, per-frame processing time, and CPU and memory load while processing the EuRoC datasets, which contain six degree of freedom (6DoF) trajectories typical of flying robots. We present our complete results as a benchmark for the research community. Narrated video presentation: https://youtu.be/ymI3FmwU9AY
Zusammenfassung Flying robots require a combination of accuracy and low latency in their state estimation in order to achieve stable and robust flight. However, due to the power and payload constraints of aerial platforms, state estimation algorithms must provide these qualities under the computational constraints of embedded hardware. Cameras and inertial measurement units (IMUs) satisfy these power and payload constraints, so visualinertial odometry (VIO) algorithms are popular choices for state estimation in these scenarios, in addition to their ability to operate without external localization from motion capture or global positioning systems. It is not clear from existing results in the literature, however, which VIO algorithms perform well under the accuracy, latency, and computational constraints of a flying robot with onboard state estimation. This paper evaluates an array of publicly-available VIO pipelines (MSCKF, OKVIS, ROVIO, VINS-Mono, SVO+MSF, and SVO+GTSAM) on different hardware configurations, including several singleboard computer systems that are typically found on flying robots. The evaluation considers the pose estimation accuracy, per-frame processing time, and CPU and memory load while processing the EuRoC datasets, which contain six degree of freedom (6DoF) trajectories typical of flying robots. We present our complete results as a benchmark for the research community. Narrated video presentation: https://youtu.be/ymI3FmwU9AY
Free access at Official URL
Official URL http://rpg.ifi.uzh.ch/docs/ICRA18_Delmerico.pdf
Digital Object Identifier 10.1109/ICRA.2018.8460664
Other Identification Number merlin-id:16269
PDF File Download from ZORA
Export BibTeX
EP3 XML (ZORA)