Not logged in.

Contribution Details

Type Book Chapter
Scope Discipline-based scholarship
Title Reconstructing Topological Properties of Complex Networks Using the Fitness Model
Organization Unit
Authors
  • Giulio Cimini
  • Tiziano Squartini
  • Nicolo Musmeci
  • Michelangelo Puliga
  • Andrea Gabrielli
  • Diego Garlaschelli
  • Stefano Battiston
  • Guido Caldarelli
Editors
  • Luca Maria Aiello
  • Daniel McFarland
Item Subtype Original Work
Refereed Yes
Status Published in final form
Language
  • English
Booktitle Social Informatics
ISBN 978-3-319-15167-0
Number 8852
Place of Publication Cham
Publisher Springer
Page Range 323 - 333
Date 2014
Abstract Text A major problem in the study of complex socioeconomic systems is represented by privacy issues—that can put severe limitations on the amount of accessible information, forcing to build models on the basis of incomplete knowledge. In this paper we investigate a novel method to reconstruct global topological properties of a complex network starting from limited information. This method uses the knowledge of an intrinsic property of the nodes (indicated as fitness), and the number of connections of only a limited subset of nodes, in order to generate an ensemble of exponential random graphs that are representative of the real systems and that can be used to estimate its topological properties. Here we focus in particular on reconstructing the most basic properties that are commonly used to describe a network: density of links, assortativity, clustering. We test the method on both benchmark synthetic networks and real economic and financial systems, finding a remarkable robustness with respect to the number of nodes used for calibration. The method thus represents a valuable tool for gaining insights on privacy-protected systems.
Official URL https://link.springer.com/chapter/10.1007/978-3-319-15168-7_41
Digital Object Identifier 10.1007/978-3-319-15168-7_41
Other Identification Number merlin-id:13263
Export BibTeX
EP3 XML (ZORA)