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1 Introduction

Discrete-time, in�nite-horizon, general equilibrium models are routinely used in macroeconomics

and in public �nance for exploring the quantitative features of model economies and for counter-

factual policy analysis. With the development of powerful desktop computers, economists have

started to use modern numerical methods for integration, interpolation, and for solving nonlinear

systems of equations. Depending on the exact speci�cation of the model�for example, whether

there is one representative agent or several agents, whether agents are �nitely lived or in�nitely

lived, or whether there is uncertainty in the model or not�there are a variety of computational

methods for approximating equilibria numerically. This paper focuses on computational methods

for stochastic equilibrium models with heterogeneous agents and aggregate uncertainty where the

welfare theorems fail and the equilibrium allocation cannot be decentralized by a simple (convex)

social planner problem. These could be models with overlapping generations (as in, e.g., Krueger

and Kubler (2006), Favilukis et al. (2010), or Harenberg and Ludwig (2014)), models with hetero-

geneous producers (as in, e.g., Khan and Thomas (2013) or Bloom et al. (2012)), or models with

in�nitely lived heterogeneous consumers (as in, e.g, Bhandari et al. (2013), Brumm et al. (2015),

Chien et al. (2011), Krueger et al. (2015), or McKay and Reis (2013)).

There are many excellent surveys on the computation of equilibria in these models and we will

discuss the most popular methods brie�y below. Instead of comparing those methods in detail,

the main part of this paper focuses on a particular high-performance computing (HPC) approach

for solving models with large heterogeneity. This approach was �rst introduced in Brumm and

Scheidegger (2014) and we will expand it in this paper to tackle models with overlapping generations

and with idiosyncratic risk.

Our approach makes use of two recent developments in scienti�c computing. First, advances in

numerical analysis enable researchers to approximate very-high-dimensional functions. Employing

standard discretization methods for the domain of such functions is computationally infeasible, as

these approaches yield too many gridpoints at which the functions have to be evaluated. Starting

with a one-dimensional discretization scheme that employs N gridpoints, a straightforward exten-

sion to d dimensions by a tensor product construction would lead to Nd gridpoints, encountering the

so-called curse of dimensionality (see Bellman (1961)). The exponential dependence of the overall

computational e�ort on the number of dimensions is a prohibitive obstacle to the numerical treat-

ment of high-dimensional problems. Sparse grids, on the other hand, are able to alleviate this curse

of dimensionality by reducing the number of gridpoints by orders of magnitude with only slightly

deteriorated accuracy if the function to be interpolated is su�ciently smooth (see, e.g., Bungartz

and Griebel (2004) and references therein). The main reason why these methods can be successfully

applied to economic models is that for many economic applications the assumption of bounded

mixed derivatives of value and policy functions is naturally satis�ed�a prerequisite for the theory
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of sparse grids. However, there is also a wide range of economic applications where the functions

to be interpolated do not meet the regularity conditions mentioned above, but instead have steep

gradients or non-di�erentiabilities. In such cases, ordinary sparse grids may be very ine�cient in

providing a good approximation. One e�ective way of overcoming this problem is to adaptively re-

�ne the sparse grid in regions with high function variation and spend fewer points in regions of low

variation�thereby imposing a second layer of sparsity on top of the sparse grid (see, e.g., P�üger

(2010) or Ma and Zabaras (2009), and references therein). Brumm and Scheidegger (2014) show

how adaptive grids can be applied in models with occasionally binding constraints where policy

functions exhibit non-di�erentiabilities. In this paper we consider economies without occasionally

binding constraints and show that both standard and adaptive sparse grid methods allow researchers

to analyze models with up to 60 continuous state variables. We argue that projection methods can

be fruitfully employed both for models with �nitely many agents and for Bewley-style models with

a continuum of ex ante identical agents within each generation.

Second, we show that the classes of dynamic models mentioned above are ideal candidates to be

solved by high-performance computing�that is to say, by the e�cient use of modern supercomputers

(see, e.g., Dongarra and van der Steen (2012)), as they allow solution procedures that are naturally

parallelizable. Such systems are nowadays not restricted to their traditional user communities such

as nuclear physics; but are opening up to emerging domains like computational economics. It is

clear that not everyone needs to access such high-end systems. Nevertheless, the computational

economics community needs to start thinking more carefully about numerical parallelism. The

trends in hardware design are such that in the near future even ordinary desktops will host dozens

of general purpose processors (possibly combined with co-processors and/or GPUs) making the use

of parallelization techniques important even for standard users.

When it comes to stochastic equilibrium models, it turns out that in solving for the unknown

coe�cients of the approximating functions one can typically employ a time-iteration method that

naturally divides the (often intractably large) problem into small subproblems that can be solved

independently. In each iteration step one has to solve a medium-sized system of nonlinear equations

(around 60 equations in 60 unkowns) for each point in the grid. Fortunately, these tasks are

fully independent from each other and can thus be solved in parallel by distributing them via

the Message Passing Interface (MPI; see, e.g., Skjellum et al. (1999)) among di�erent compute

nodes and via thread building blocks (TBB; see, e.g., Reinders (2007)) within nodes. A non-trivial

complication comes from the fact that, when searching for the solution to the system of equations at

a given gridpoint, the algorithm has to frequently interpolate the function computed in the previous

iteration step. These interpolations take up 99 percent of the computation time needed to solve

the equation system. As they have a high arithmetic intensity�that is to say, many arithmetic

operations are performed for each byte of memory transfer and access�they are perfectly suited
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for graphics processor units (GPUs) (see Brumm et al. (2015) and references therein). We therefore

o�oad parts of the interpolation tasks to GPUs. This parallelization scheme enables us to make

e�cient use of modern hybrid HPC facilities, featuring CPU compute nodes with attached GPUs.

The performance of these machines nowadays reaches multiple peta�ops (see Dongarra and van der

Steen (2012) and http://www.top500.org/).1

To demonstrate the ability of the computational method presented in this paper we consider

several versions of a standard overlapping generations (OLG) model with neoclassical production.

Other stochastic models with in�nitely lived consumers or with �rms can often be analyzed using

similar methods but some of the statements we make are particular to the OLG model. In�nite-

horizon general equilibrium models with overlapping generations have many interesting implications

that are absent from the standard Arrow�Debreu model. Under certainty, there are well-established

methods for approximating equilibria numerically and the model has been fruitfully applied in

macroeconomics and public �nance (see, e.g., Auerbach and Kotliko� (1987)). Under uncertainty,

steady-state equilibria do not exist in these models, and even when the exogenous aggregate shock

can take only �nitely many values the equilibrium allocations do not in general have �nite support.

This feature makes it di�cult to approximate equilibria with many agents of di�erent ages and

with aggregate uncertainty. These models are therefore an ideal example for demonstrating the

advantages of our computational approach.

We consider the simplest possible version of an overlapping generations model with stochastic

production: there is a single agent per generation and the only asset available for trade is risky

capital. We show that with the help of adaptive sparse grids and high-performance computing

the simple collocation method from Krueger and Kubler (2004) can be extended to handle models

where agents live for 60 periods�that is to say, models that can be calibrated to yearly data. In the

presence of disaster shocks fairly large shifts in the intergenerational wealth distribution can occur

endogenously and can have large e�ects on aggregate variables. The possibility of large negative

shocks that occur with small probability has been made popular by Barro (2006), although in a

di�erent framework. Our sparse grid collocation method is ideally suited to be applied to this

problem. We also show how the problem scales nicely with the number of processors. Moreover,

we illustrate the performance of the method with respect to the re�nement criterion used in the

adaptation procedure.

We also examine an OLG model with a continuum of ex ante identical agents within each gener-

ation that features, in addition to aggregate shocks, idiosyncratic shocks. It is now well understood

that uninsurable idiosyncratic risk often plays an important role in macroeconomic dynamics (see,

1The Swiss National Supercomputer Centre's �Piz Daint� Cray XC30, which is used in the numerical experiments in

Section 6 below consists of Intel Xeon E5 processors with NVIDIA Tesla K20X GPUs attached; its peak performance

is 7.7 peta�ops. It can perform, in a single day, the same number of �oating point operations as an o�-the-shelf

laptop can carry out in a millennium.
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e.g., Krueger et al. (2015) for a survey). In the standard Bewley model there is a continuum of

in�nitely lived, ex ante identical agents that di�er ex post by the realization of their idiosyncratic

shocks. In this model, the wealth distribution is an in�nite-dimensional object and standard collo-

cation methods do not seem applicable. Krusell and Smith (1997, 1998) have the seminal insight

to focus on what we call �approximately self-con�rming equilibria�. They postulate that along the

equilibrium path agents' forecasts of future prices are simple functions of some key moments of the

wealth distribution. In fact, in the simple model they consider, the mean capital holding turns out

to be su�cient for achieving very accurate forecasts. Subsequently, Storesletten et al. (2007) and

Harenberg and Ludwig (2014), among others, have applied this method in a framework with over-

lapping generations. For many purposes (in particular for the original contribution in Krusell and

Smith (1998)) the method is well suited to approximate equilibrium numerically. However, for oth-

ers it does not. In particular, in a model with overlapping generations, shifts in the intergenerational

wealth distribution have large e�ects on aggregate outcomes, and if large shocks to fundamentals

lead to large shifts in asset holdings across generations, moments of the wealth distribution are

not well suited to describe the state of the economy. Moreover, there is no easy way of using this

method to investigate the e�ects of unanticipated policy changes: even if the method provides good

approximations for the (long-run) behavior in the two di�erent regimes, there is no straightforward

way of approximating the policies along the transition path. Using ideas from Reiter (2010) and

from Algan et al. (2014) we suggest that these challenges can be tackled with an �extended� pro-

jection method where the wealth distribution within each generation is approximated by a simple

low-dimensional scheme. However, the method can only be employed for models with a (relatively)

small number of generations. In order to tackle large-scale models, the adaptive sparse grid environ-

ment should be coupled with high-dimensional model representation techniques (HDMR; see, e.g.,

Rabitz and Alis (1999) and Ma and Zabaras (2010)). The combination of these two methods�a

linear combination of lower-dimensional (adaptive sparse grid) function approximations that focus

on the important dimensions�o�ers the promise of successfully addressing very-high-dimensional

economic problems. How to couple HDRM and adaptive sparse grids in an e�ective way to address

economic problems is the subject of our ongoing research.

Throughout all the examples, we consider a version of the model with a small �nite number

of shocks. We thus avoid the important additional computational challenge of high-dimensional

integration. How to optimally combine sparse grid interpolation with sparse grid integration is the

subject of further research; see Brumm and Scheidegger (2014) for some discussion on the issue. In

the papers surveyed in Kollmann et al. (2011) the issue of high-dimensional integration is discussed

in some detail.

The rest of this paper is organized as follows. In Section 2 we brie�y review some of the existing

literature. In Section 3 we introduce a general OLG model. In Section 4 we describe the basic
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idea behind collocation methods and explain how the method can be used both for models with a

continuum of agents and for models with �nitely many agents. In Section 5 we introduce sparse

grids. In Section 6 we explain in detail how the model without idiosyncratic shocks can be solved

and we present the computational and economic results obtained.

2 A brief literature review

There exist several survey papers that review the advantages and disadvantages of existing compu-

tational methods in detail. Judd et al. (2003) provide an in depth survey on the development of

computational methods in economics until the late 1990's. In particular they explain many methods

for the computation of equilibria in deterministic models and in stochastic models with a represen-

tative agent. For models with �nitely many agents, Maliar and Maliar (2014) and Kollmann et al.

(2011) provide excellent and very detailed overviews of recent advances in computational methods.

For models with a continuum of ex ante (but not ex post) identical agents, Den Haan (2010), Algan

et al. (2014), and�for the case of heterogeneous �rms�Terry (2014) provide excellent reviews of

existing algorithms.

Which computational strategy should be employed obviously depends on a variety of considera-

tions. A �rst important distinction to be made is whether one models a �distribution economy� with

a continuum of agents and hence with an in�nite-dimensional wealth distribution or an economy

with a �nite number of agents. In the latter case the choice of the �right� computational method

would depend on the number of economic agents and the dimension of the state space in the re-

cursive formulation of the model. Other considerations would be whether there are occasionally

binding constraints, whether there are large shocks to fundamentals, which can be expected to

generate large movements in the wealth distribution, and whether�in general�nonlinearities are

expected to play in important role in the economic model and for the assumed values of parameters.

Most importantly there is an important trade-o� between high-productivity computing with high

accuracy and high reliability of the solution on one side and high-productivity coding on the other.

For many purposes it might su�ce to employ linearization, or perturbation techniques to obtain a

relatively accurate solution at a very low cost. The software package DYNARE (see, e.g., Juillard

(2003)) provides the user with a simple and user-friendly framework for this. Several recent papers

use local techniques repeatedly to obtain solutions that are globally accurate (see, e.g., Evans (2015)

and Proehl (2015)).

For asset pricing models with a few heterogenous agents the method from Dumas and Lyaso�

(2012) proves very convenient and can be used for a variety of applications. Models with agents

who face trading constraints might be best solved with tessellation techiques (see, e.g., Brumm

and Grill (2014)); models with a moderate number of heterogeneous agents can be solved with a

Galerkin approach as in Pichler (2011), with a simulation-based approach as in Maliar et al. (2011),
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or with a collocation method as in Krueger and Kubler (2004). Maliar and Maliar (2014) provide an

excellent discussion of these methods, and MATLAB code for versions of the method from Maliar

et al. (2011). Hasanhodzic and Kotliko� (2013) apply the method to a model with overlapping

generations, similar to the one considered in this article.

The Smolyak method in Krueger and Kubler (2004) is embedded in a Bayesian estimation

framework by Winschel and Kraetzig (2010) and extended in Judd et al. (2014) by introducing

substantial speedups in interpolation and the evaluation of the Smolyak polynomials. These papers

are the most closely related to the basic approach used in this paper. The main di�erence is

that we use sparse grids with hierarchical basis functions, which makes it possible to use adaptive

sparse grids and has important advantages regarding the data structure for parallel computing.

These features allow us, in contrast to the abovementioned Smolyak methods, to obtain global

solutions that feature high local resolution where needed�for instance when functions exhibit non-

di�erentiabilities or steep gradients.

The computation of equilibria in models with a continuum of heterogeneous agents (distribu-

tion economies) and aggregate shocks is less well understood. The problem can often be tackled

following the seminal approach of Krusell and Smith (1997, 1998). In this approach it is postulated

that the future evolution of the wealth distribution can be approximated well by a function that

depends only on a few moments of the current wealth distribution. Agents forecast prices using

this approximation. In an approximately self-con�rming equilibrium the agents make only small

forecasting errors.

It turns out that a method that uses only the �rst moment of the wealth distribution provides

reasonable approximations in many models, both those with in�nitely lived agents and those with

overlapping generations. In asset pricing models without a physical state, it is useful to include

either prices (as in Storesletten et al. (2007)) or past aggregate shocks as variables that forecast

future prices. Using only past shocks (and no information about the wealth distribution) obviously

simpli�es the problem hugely since forecasts can be summarized in a �nite vector. This approach

has been fruitfully used by Chien and Lustig (2010) and Chien et al. (2011). While in these papers

the authors explain their method in the framework of a multiplier approach and forecast a crucial

moment of the cross-sectional distribution of multipliers by lagged shocks, it is easy to verify that

there is a one-to-one map between this moment and equilibrium prices.

Nevertheless, as Algan et al. (2014) point out, depending on the situation, more sophisticated�

yet also more complicated�computational methods might be more suitable. Young (2010) shows

that the basic idea of Krusell and Smith (1997, 1998) can be employed more e�ciently by replacing

the simulation step in their method by a non-stochastic algorithm. Algan et al. (2010) and Reiter

(2010) extend the basic ideas in Krusell and Smith (1997, 1998) and Young (2010) and allow for more

�exible functional forms for both the wealth distributions and the transition functions. Promising
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approaches have also been developed by Den Haan and Rendahl (2010), Reiter (2009), Mertens and

Judd (2013), and Sager (2014). These approaches are ideally suited for models with in�nitely lived

agents but it is less clear how to apply them to economies with overlapping generations.

There are many more interesting papers (many of them cited in the surveys we mention above)

that introduce useful methods for solving dynamic stochastic models with heterogeneous agents.

Rather than discuss them all, we will mention some in our explanation of our methods below and

make some comparisons.

3 Model

We consider an Aiyagari�Bewley-style overlapping generations model with incomplete �nancial mar-

kets. The model is a simple extension of the model in Krueger and Kubler (2006) to economies with

a continuum of heterogeneous agents.

3.1 The physical economy

Time is indexed by t ∈ N0. Aggregate shocks zt realize in a �nite set Z, and follow a �rst-order

Markov process with transition probability π(z′|z). A history of aggregate shocks up to some date t

is denoted by zt = (z0, z1, . . . , zt). At each date-event a continuum of ex ante identical agents enter

the economy and live for A periods. Within each cohort agents di�er ex post by the realization of

their idiosyncratic shocks. We assume that idiosyncratic shocks follow a Markov chain and have

support in a �nite set Y. We denote by η(y′|y) the conditional probability of y′ given y. For

simplicity we assume that at a = 1 all agents are assumed to be at an initial shock y1 and we use

η(ya) to denote the probability of a history ya of idiosyncratic shocks until age a. Note that in this

setup η(ya) is time invariant and does not depend on the aggregate shock.

At a given date-event zt we can uniquely identify agents who consume at that date-event by their

age and history of idiosyncratic shocks, (a, ya). For each (a, ya) there is a continuum of identical

agents, but we will refer to them as �one agent� since at zt they all take identical actions. We often

simply write ya since the age is implicit in the length of the history of shocks. We denote the set of

all these �agents� by A = {ya : 1 ≤ a ≤ A, ya ∈ Ya} and the set of all agents except for generation

i by A−i = A \ {ya : a = i, ya ∈ Ya}.

At each zt we denote the fraction of agents of type h that have an idiosyncratic shock history

ya by νya(zt). We assume that the joint distribution of idiosyncratic shocks within a type ensures

that at each history of aggregate shocks, zt, for any ya ∈ Ya the fraction of agents with history

ya = (y1, ..., ya) is νya(zt) = η(ya) (see, e.g., Feldman and Gilles (1985) for a simple construction

of such a process). This allows us to focus on equilibria where prices and aggregate quantities only

depend on the history of aggregate shocks, zt. In a slight abuse of language we will refer to these
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as nodes of the event tree.

At node zt an agent ya has a non-negative labor endowment lya(zt) = la(ya, zt), which depends

on his or her idiosyncratic shock, ya, and possibly on the aggregate shock, zt. The price of the

consumption good at each date-event is normalized to one and at each date-event zt the household

supplies its labor endowment inelastically for a market wage w(zt).

Individuals have preferences over consumption streams representable by a recursive utility func-

tion (see Kreps and Porteus (1978) and Epstein and Zin (1989)). At node zt all agents of shock

history ya have a value function

Uya(zt) =

[cya(zt)
]ρ

+ βa

∑
zt+1

π(zt+1|zt)
∑
ya+1

η(ya+1|ya)
(
Uya+1(zt+1)

)σ
ρ
σ


1
ρ

, (1)

where 1
1−ρ is the intertemporal elasticity of substitution and 1−σ measures the risk aversion of the

consumer with respect to atemporal wealth gambles. We allow the discount factor to depend on age

and denote it by βa > 0. We assume σ < 1 and ρ < 1, ρ 6= 0. Note that if ρ = σ, then households

have standard constant relative risk aversion (CRRA) expected utility, with a CRRA of 1−σ if the

�nal continuation utility function is given by UyA(zt) = cyA(zt), which we assume.

To make the notation and the model as simple as possible, we assume that agents can only trade

risky capital. There is a storage technology that uses one unit of the consumption good today to

produce one unit of the capital good for next period. We denote the investment of household ya in

this technology by kya(zt). At time t the household sells its capital goods accumulated from last

period, kya(zt−1), to the �rm for a market price 1 + r(zt) > 0.

The budget constraint of household ya at node zt therefore reads as

cya(zt) + kya(zt) = (1 + r(zt))kya−1(zt−1) + lya(zt)w(zt), (2)

where ky0 = kyA = 0.

To start o� the economy we assume that in period zero there are A − 1 households of ages

a = 1, . . . , A that enter the period with given capital holdings k−1(z0), . . . , k−A+1(z0). We sometimes

refer to this as the �initial conditions�. For simplicity we do not consider initial conditions where

there is a non-degenerate distribution of capital within some generation that is alive at t = 0. This

would just introduce some additional notation and add nothing to the economics.

3.2 Firms

There is a single representative �rm, which in each period t uses labor and capital to produce the

consumption good according to a constant-returns-to-scale production function f(K,L; zt). Since

�rms make decisions on how much capital to buy and how much labor to hire after the realization
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of the shock zt they face no uncertainty and simply maximize current pro�ts.2

In our quantitative work below we will always use the following parametric form for the produc-

tion function:

f(K,L; zt) = ξ(zt)K
αL1−α +K(1− δ(zt)), (3)

where ξ(.) is the stochastic shock to productivity and where δ(.) can be interpreted as the (possibly)

stochastic depreciation rate.

Note that since �rms maximize pro�ts, the rate of return on capital, 1 + r(zt), will always equal

the marginal product of capital, fK(K,L, zt), and the wage, w(zt), will equal the marginal product

of labor.

3.3 Markets

In this simple economy the only markets are spot markets for consumption, labor, and capital, all

of which are assumed to be perfectly competitive. To simplify the exposition, we do not include a

bond market in our basic model. In Section 6.4 below we explain how the presence of a risk-free

bond can be handled using the same computational strategy.

For given initial conditions z0, (ki(z0))−1
i=−A+1 a competitive equilibrium is a collection of choices

for households (cya(zt), kya(zt))ya∈A, for the representative �rm {K(zt), L(zt)}, and for prices

{r(zt), w(zt)} such that households and the �rm maximize and markets clear: for all t, zt

L(zt) =
A∑
a=1

∑
ya∈Ya

ν(ya)lya(zt) (4)

K(zt) =
A∑
a=1

∑
ya∈Ya

ν(ya)kya(zt−1) (5)

By Walras's law, market clearing in the labor and capital markets imply market clearing in the

consumption goods market in general equilibrium.

Note that in our construction, there are strictly speaking only �nitely many di�erent agents

active at all nodes. As long as one considers a �nite number of idiosyncratic shocks this is naturally

the case in overlapping generation models (unless one assumes that agents enter the economy at age

a = 1 with a continuous wealth distribution). However, the number of agents will typically be so

large that it is useful to use methods from the case of in�nitely lived agents to perform computations.

We will clarify this below.

2We assume that households cannot convert capital goods back into consumption goods at the beginning of the

period. This assumption is necessary to prevent households from consuming the capital at the beginning of the period

instead of selling it to the �rm in states where the net return to capital is negative.
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4 Projection methods

Projection methods (most importantly collocation methods and Galerkin's method) are well-established

numerical methods for the solution of functional equations and they are now a standard method for

analyzing dynamic economies. Projection methods were introduced to economics by Judd (1992)

and a description of these methods can now be found in most textbooks on numerical methods in

economics (see, e.g., Judd (1998) or Heer and Maussner (2009)). As Krueger and Kubler (2004)

point out, these methods are ideally suited to approximating equilibria in overlapping generations

models with aggregate uncertainty and a �nite (moderate) number of agents. In this paper, we use

sparse grids and parallel computing in order to employ collocation methods to solve models with

up to 60 agents. We also argue that projection methods can be used to solve Bewley-style models

with a continuum of ex ante identical agents which di�er ex post by the realization of idiosyncratic

shocks (we refer to these models as �distribution economies�). Following an idea of Reiter (2010), we

develop a collocation method to approximate equilibria in distribution economies with overlapping

generations.

In this section we explain, in abstract terms, the basic methods and argue that, depending

on the circumstances, it is advantageous to use projection methods rather than simulation-based

approaches as developed in Krusell and Smith (1998) or in Maliar et al. (2011).

4.1 Economies with a �nite number of agents

We consider the basic model where A − 1 heterogeneous agents are active at each date-event.

Following Judd (1992) we use a projection method to approximate equilibria numerically. In order

to do so we �rst need to describe equilibrium as a system of operator equations.

4.1.1 Functional Rational Expectations Equilibrium

We assume in this subsection that there are no idiosyncratic shocks. Therefore we can identify

agents simply by his or her age, a. Our computational strategy searches for a recursive equilibrium

where the distribution of capital holdings across agents constitutes a su�cient endogenous state,

and where the endogenous state lies in a known compact set. Following Spear (1988) we call this

�functional rational expectations equilibrium� (FREE). In our speci�cation, we require the compact

endogenous state space to be a hyperrectangle, also simply called a box. A natural endogenous state

would be the vector of individual asset holdings. However, this turns out to be impractical in our

setting. The lower bound of individuals' equilibrium asset holdings is not guaranteed to be positive.

The sum of all lower bounds being negative results in a negative aggregate capital stock and, thus,

returns to capital and wages that are not well de�ned. Instead we choose as an endogenous state the

aggregate capital stock together with the �nancial wealth of all generations except the youngest and
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the oldest�the youngest have no �nancial wealth and the oldest simply consume all their �nancial

wealth. The precise de�nition of a functional rational expectations equilibrium is as follows:

Definition 1 A FREE consists of an A − 1-dimensional box B ⊂ RA−1, asset demand functions

ka : Z×B→ R, and value functions va : Z×B→ R, i = 1, ..., A− 1, such that for all shocks z ∈ Z

and all states s = (s1, ..., sA−1) ∈ B

c̄a(z, s)
ρ−1 + βa

[∑
z′

π(z′|z)
(
va+1(z′, s′)

)σ
ρ

] ρ
σ
−1

∑
z′

π(z′|z)(1 + r(z′, s′1))va+1(z′, s′)
σ
ρ
−1
c̄a+1(z′, s′)ρ−1 = 0, a = 1, ..., A− 1 (6)

and

va(z, s) = c̄a(z, s)
ρ + βa

[∑
z′

π(z′|z)
(
va+1(z′, s′)

)σ
ρ

] ρ
σ

, a = 1, ..., A− 1, (7)

where vA(z, s) = c̄A(z, s)ρ, s′1 =
∑A−1

i=1 ki(z, s),

s′ =
(
s′1, k1(z, s)(1 + r(z′, s′1)), . . . , k(A−2)(z, s)(1 + r(z′, s′1))

)
∈ B

is the state tomorrow, and

(1 + r(z, s1)) = fK(s1,

A∑
i=1

li(z), z)

w(z, s1) = fL(s1,
A∑
i=1

li(z), z)

c̄1(z, s) = l1(z)w(z, s1)− k1(z, s)

c̄i(z, s) = si + li(z)w(z, s1)− ki(z, s) for i = 2, ..., A− 1

c̄A(z, s) =

(
s1(1 + r(z, s1))−

A−1∑
i=2

si

)
+ lA(z)w(z, s1).

Note that in this de�nition the �nancial wealth of the oldest generation is given by aggregate

�nancial wealth minus the �nancial wealth of all other generations. Since all �rst order conditions

are necessary and su�cient it is clear that any FREE induces a competitive equilibrium in the sense

of De�nition 1.

Unfortunately, there are no guarantees that a FREE always exists. The existence of recursive

equilibria in stochastic models with overlapping generations can only be guaranteed under very

restrictive assumptions (see, e.g., Brumm and Kubler (2014)). Moreover, our computational strategy

below assumes the existence of a FREE with continuous asset-policies. It is clear that these will

not always exist. However, in the calibrations we use in the example below, there turn out to be

ε-FREE�that is to say, smooth policy-functions that solve (6) and (7) with a small error ε > 0.

Kubler and Schmedders (2005) give a simple interpretation of how to relate them to exact equilibria.
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4.1.2 Collocation

We approximate the unknown equilibrium asset-demand and value functions ki(z, .), vi(z, .) , i =

1, ..., A−1, z ∈ Z by piecewise multi-linear functions k̂i(z, .|αk), v̂i(z, .|αv) that are uniquely de�ned

by �nitely many coe�cients αk, αv. In order to solve for the unknown coe�cients, we require that

the functional equation (6)�(7) holds exactly at M collocation points s̃ ∈ H ⊂ B. We therefore

transform the in�nite-dimensional functional equation into the following �nite-dimensional (nonlin-

ear) system of equations in the 2 ·M · S · (A− 1) unknown coe�cients αk, αv.

We require that for all z ∈ Z and all s̃ ∈ H we have

ĉa(z, s̃|α)ρ−1 + βa

[∑
z′

π(z′|z)
(
v̂a+1(z′, s′|α)

)σ
ρ

] ρ
σ
−1

∑
z′

π(z′|z)(1 + r(z′, s′))v̂a+1(z′, s′|α)
σ
ρ
−1
ĉa+1(z′, s′|α)ρ−1 = 0, a = 1, ..., A− 1

and

v̂a(z, s̃|α) = ĉa(z, s̃|α)ρ + βa

[∑
z′

π(z′|z)
(
v̂a+1(z′, s′|α)

)σ
ρ

] ρ
σ

, a = 1, ..., A− 1, (8)

where v̂A(z, s|α) = ĉ(z, s|α)ρ, s′1 =
∑A−1

i=1 k̂i(z, s̃), and

s′ =
(
s′1, k̂1(z, s̃)(1 + r(z′, s′1)), . . . , k̂(A−2)(z, s̃)(1 + r(z′, s′1))

)
∈ B

ĉ1(z, s|α) = l1(z)w(z, s1)− k̂1(z, s;α)

ĉi(z, s;α) = si + li(z)w(z, s1)− k̂i(z, s;α) for i = 2, ..., N − 1

ĉN (z, s;α) =

(
s1(1 + r(z, s1))−

A−1∑
i=2

si

)
+ li(z)w(z, s1)

and where the prices 1 + r and w are as above in the de�nition of FREE.

The main computational challenges are caused by the fact that the endogenous state space has

dimension A− 1. In a model where a period corresponds to a year and agents live (or are active in

the economy) for 60 years, one therefore has to approximate 59-dimensional functions. In order to

do so with some accuracy one needs a large number of collocation points, which can result in a very

large nonlinear system in the unknown coe�cients, α. We will explain in Section 6 how we solve

this system after we have introduced sparse grid methods in Section 5. The sparse grid methods

allow us to approximate very-high-dimensional functions with a reasonable number of points.

Clearly, the resulting functions k̂, v̂ will not solve the functional equation (6)�(7) exactly at all

(s, z) ∈ B× Z. One could argue that a candidate solution is a good approximation if the maximal

error in these equations over all of B×Z is small. For high dimensions this is obviously impossible

to verify and one needs to �nd other ways to determine the quality of a candidate solution. We

return to this issue below when we present details of our computational strategy and a concrete

example.
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4.2 A collocation method for distribution economies

In order to use projection methods for solving the model with idiosyncratic shocks we follow ideas

from Reiter (2010) and Algan et al. (2010). The main di�erence between our approach and theirs is

that we consider an OLG economy and keep track of each generation separately and they consider

a model with in�nitely lived agents. Moreover, both their approaches rely on simulation techniques

in order to provide a link between the moments of the wealth distribution that are used as an

endogenous state and the actual wealth distribution. We use the same object as a state that we

later use to represent the wealth distribution, and hence do not need simulation at any point in the

method.

We now assume that within each generation there is a continuum of agents that face idiosyncratic

shocks. For simplicity we assume that the idiosyncratic shocks are i.i.d. within each generation and

shocks are independent across di�erent cohorts. This simpli�cation is not strictly necessary for our

approach but it simpli�es notation and with persistence in the idiosyncratic shock our computational

methods become infeasible rather quickly.

Obviously, the number of di�erent agent types at each node, while �nite, is so large that pro-

jection methods as explained above can no longer be used (even in the simplest case where the

idiosyncratic shock can take just two di�erent values there are more than 2A agents). However,

within each generation agents only di�er by their asset holdings. We approximate this intragener-

ational wealth distribution by discretizing the inverse distribution function.

As above, we keep track of aggregate capital and describe the wealth distribution across in-

dividuals by their �nancial wealth. We allow for N di�erent wealth levels for each generation

a = 2, ..., A − 1.3 We denote by ωa1, . . . , ωaN the possible wealth levels used for the description of

the wealth distribution within generation a. For concreteness and simplicity, assume that each ωai,

a = 2, ..., A−1 is the average capital holding of all agents of age a that are richer than the (i−1)/N

percentile of the wealth distribution yet poorer than the i/N percentile. This choice for representing

the wealth distribution only works well in a model without borrowing constraints. Other methods

should be employed if it can be expected that a large fraction of the population holds zero wealth.

The endogenous aggregate state is then given by

s = (K, (ωa1, . . . , ωaN )a=2,A−1).

We denote by ka(z, s, θ) the savings function of an individual of age a given the aggregate state

(z, s), and the individual's cash-at-hand by θ. Since we assume that the individual is �atomless�,

there does not need to be any relation between s and θ.

3All agents of age a = 1 enter the economy with zero wealth and the distribution of wealth among agents of

age a = A is irrelevant. Moreover, since there are only Y possible wealth levels for agents of age a = 2 it is often

convenient to treat this separately but for simplicity we do not do so here
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As before we, postulate the existence of a box that always contains the endogenous state (s, θ) ∈

B ⊂ RN(A−2)+2. It is useful to denote by B̃ ⊂ RN(A−2)+1 the range of only the aggregate state, s.

We need to determine asset demand functions ka : Z×B→ R and value functions va : Z×B→ R,

a = 1, ..., A− 1, such that for all shocks z ∈ Z and all states (s, θ) ∈ B for each a = 1, ..., A− 1,

c̄(z, s, θ)ρ−1 + βa

∑
z′

π(z′|z)
∑
y′

η(y′)
(
va+1(z′, s′, θ′(y′, z′))

)σ
ρ


ρ
σ
−1

∑
z′

π(z′|z)
∑
y′

η(y′)(1 + r(z′, s′))va+1(z′, s′, θ′(y′, z′))
σ
ρ
−1
c̄a+1(z′, s′, θ′(y′, z′))ρ−1 = 0,

and

va(z, s, θ) = c̄a(z, s, θ)
ρ + βa

∑
z′

π(z′|z)
∑
y′

η(y′)
(
va+1(z′, s′, θ′(y′, z′))

)σ
ρ


ρ
σ

,

with θ′(y′, z′) = ka(z, s, θ)(1 + r(z′, s′)) + la+1(y′, z′)w(z′, s′).

Since we assume that all agents of age a = 1 are identical, we can write l1(y, z) = l1(z) as we

have the following consumption functions:

c̄1(z, s, θ) = l1(z)w(s, z)− k1(z, s, θ)

c̄i(z, s, θ) = θ − ki(z, s, θ) for i = 2, ..., A− 1

c̄A(z, s, θ) = θ.

As above, for a = A we set vA(z, s, θ) = cA(z, s, θ)ρ.

The aggregate state evolves as follows:

s′ =

A−1∑
i=1

N∑
n=1

1

N

∑
y∈Y

η(y)ki
(
z, s, ωn + w(z, s)li(y, z)

) , (ω′an)a=2...,A−1, n=1...N

 ∈ B̃,

where for each a = 2, ..., A− 1, ω′ai is the average over �nancial wealth,

ka−1 (z, s, ωa−1,n + w(z, s)la(y, z))
(
1 + r(z′, s′)

)
,

among agents of that generation that are richer than the (i− 1)/N percentile of the wealth distri-

bution yet poorer than the i/N percentile (for a=2 we only take one possible wealth level, ω1 = 0,

since agents are assumed to enter the economy with no wealth). Finally, we have

(1 + r(z, s)) = fK(s1,

A∑
i=1

∑
y∈Y

η(y)li(y, z), z)

w(z, s) = fL(s1,

A∑
i=1

∑
y∈Y

η(y)li(y, z), z).

Although slightly tedious to write out, this is a standard functional equation that can be solved

by a collocation method. Note that we have explicitly two stages of approximations. First we
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approximate the in�nite-dimensional problem by a �nite-dimensional one. Choosing su�ciently

large N is presumably crucial for this approximation to be viable. Some knowledge about the

actual intragenerational wealth distribution might be useful in making this approximation more

accurate. Algan et al. (2010) and Reiter (2010) develop some methods for this but as we argue

above they need to rely on simulations in order to do so. We present results for the simplest

possible approach to this problem. Second we need to use collocation methods to approximate the

solution to the functional equation. Here a large N (together with a large A) poses computational

problems since it leads to a high-dimensional endogenous state space.

In conducting error analysis to assess the quality of a candidate solution, one can either just

consider the error in the solution of the functional equation (which itself might only be a rough

approximation of the actual recursive equilibrium), or one can try to also determine the quality of

this �rst approximation.

Clearly this approach to solving Bewley-style models is much more demanding that the standard

simulation approach pioneered by Krusell and Smith (1998). As we already mentioned in the

introduction to this paper, it is often not a priori clear which method is superior. For many

applications, simulation-based methods obviously have the huge advantage that they are easy to

implement and not too costly to use. However, once one has a reliable suite of subroutines for a time-

iteration collocation method, it can be easily adapted to also handle distribution economies as long

as one is content with a rather rough approximation to the intragenerational wealth distribution.

5 Sparse Grids

In this section we review recent developments in numerical analysis on the approximation of high-

dimensional functions. Our description closely follows Brumm and Scheidegger (2014). After intro-

ducing some notation, this section proceeds in four main steps. First, we present piecewise linear

hierarchical basis functions in one dimension. Second, we extend such bases to multiple dimensions

via a tensor product construction. Third, we show how classical sparse grids alleviate the curse of

dimensionality to some extent (see, e.g., Bungartz and Griebel (2004); Garcke and Griebel (2012),

and references therein). Fourth, we explain how the hierarchical structure of the basis functions and

the associated sparse grid can be used to build an adaptation procedure that can better capture the

local behavior of the functions to be interpolated. Finally, we provide an example of a function with

steep gradients and non-di�erentiabilities where adaptive sparse grids outperform classical sparse

grids by far.
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5.1 Notation

We will focus on the domain Ω = [0, 1]d, where d is the dimensionality of the problem. Many, but

not all domains occurring in economics can be transformed into such a cube by proper rescaling.

Let ~l = (l1, ..., ld) ∈ Nd and~i = (i1, ..., id) ∈ Nd denote multi-indices representing the grid re�nement

level and the spatial position of a d-dimensional gridpoint ~x~l,~i. Using this notation, we can de�ne

the full grid Ω~l on Ω with mesh size

h~l := (hl1 , ..., hld) = 2−
~l :=

(
2−l1 , ..., 2−ld

)
, (9)

and generic gridpoint

~x~l,~i := (xl1,i1 , ..., xld,id) , (10)

where xlt,it := it · hlt = it · 2−lt , it ∈ {0, 1, ..., 2lt}, and t ∈ {1, . . . , d}.4 Along each dimension, the

grid is equidistant. However, the mesh sizes, hlt , may di�er across dimensions.

In addition, when dealing with d-dimensional multi-indices such as ~l, we use relational operators

component-wise,

~l ≤ ~k ⇔ lt ≤ kt,∀t ∈ {1, . . . , d}. (11)

Finally, we use the l1-norm, |~l|1, and the maximum norm, |~l|∞, given by

|~l|1 :=

d∑
t=1

lt, |~l|∞ := max
1≤t≤d

lt. (12)

5.2 Hierarchical Basis Functions in One Dimension

The sparse grid method introduced below is based on a hierarchical decomposition of the underlying

approximation space. Such a hierarchical structure is convenient both for local adaptivity (see Sec.

5.6) and for the use of parallel computing (see Sec. 6.2). We explain this hierarchical structure

starting with the one-dimensional case, Ω = [0, 1]. Afterwards, we extend it to the multivariate case

using tensor products.

Let us assume that a function f : Ω → R of interest is su�ciently smooth (see, e.g., Bungartz

and Griebel (2004)). For the time being we also assume that the function f vanishes at the boundary

(i.e. f |∂Ω = 0). 5 An interpolation formula is then given by

f (x) ≈ u (x) :=
∑
i

αiφi (x) (13)

with coe�cients αi and a set of appropriate piecewise linear basis functions φi (x). One standard

approach is to use hat functions

φ(x) =

 1− |x| if x ∈ [−1, 1]

0 else
(14)

4A concrete example for d = 3 is the following: let ~l = (2, 2, 3), ~i = (2, 1, 2). Then, ~x~l,~i =

(2 · 0.25, 1 · 0.25, 3 · 0.125) = (0.5, 0.25, 0.375).
5We delegate the treatment of non-zero boundaries to Sec. 5.5.
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Figure 1: Hierarchical basis functions of V3; level 1 (solid), level 2 (dashed), level 3 (dotted).

to generate a family of basis functions φl,i with support [xl,i − hl, xl,i + hl] by de�ning

φl,i(x) := φ

(
x− i · hl

hl

)
. (15)

This basis is called nodal basis, and the respective nodal function spaces are

Vl := span{φl,i : 1 ≤ i ≤ 2l − 1}. (16)

The hierarchical increment spaces Wl are de�ned by

Wl := span{φl,i : i ∈ Il}, (17)

using the index set

Il = {i ∈ N, 1 ≤ i ≤ 2l − 1, i odd}. (18)

The nodal spaces Vl are the direct sum of the hierarchical increment spaces Wl

Vl =
⊕
k≤l

Wk. (19)

Fig. 1 shows the �rst three levels of these hierarchical, piecewise linear basis functions. Using this

basis, a function f is approximated by a unique u ∈ Vl with coe�cients αk,i ∈ R:

f (x) ≈ u (x) =

l∑
k=1

∑
i∈Ik

αk,i · φk,i (x) . (20)

Note that the basis functions φk,i spanning Wk have mutually disjoined support, as can be seen in

Fig. 1. The coe�cients αk,i in Eq. 20 can easily be determined due to the nested structure of the
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Figure 2: Construction of u (x) interpolating f (x) = x2 · sin(π · x) with hierarchical linear basis

functions of levels 1, 2 and 3. The hierarchical surpluses αl,i associated with the respective basis

functions are indicated by arrows (cf. Eq. 21). They are simply the di�erence between the function

values at the current and the previous interpolation levels.

hierarchical grid: The set of points X l−1 at level l − 1 is contained in X l (i.e. X l−1 ⊂ X l). The

hierarchical coe�cients αl,i, l ≥ 1, i odd are given by:

αl,i = f (xl,i)−
f (xl,i − hl) + f (xl,i + hl)

2

= f (xl,i)−
f
(
xl−1,(i−1)/2

)
+ f

(
xl−1,(i+1)/2

)
2

. (21)

In operator form, Eq. 21 can conveniently be rewritten as

αl,i =

[
−1

2
1 − 1

2

]
l,i

f. (22)

Note that the coe�cients αl,i are called hierarchical surpluses (Bungartz and Griebel, 2004) since

they correct the interpolant of level l− 1 at the point xl,i to the actual value of f (xl,i), as displayed

in Fig. 2.

5.3 Hierarchical Basis Functions in Multiple Dimensions

The one-dimensional hierarchical basis from above can be extended to a d-dimensional basis on

the unit cube Ω = [0, 1]d by a tensor product construction. Our notation naturally extends to the

d-dimensional case as well.

For each gridpoint, ~x~l,~i, an associated piecewise d-linear basis function φ~l,~i (~x) is de�ned as the
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Figure 3: The one-dimensional basis functions of level 2 (left top panel) and level 1 (right top panel)

that form the two-dimensional basis function of the hierarchical increment spaceW(2,1) (lower panel)

via a tensor product construction (see Eq. 23).

product of the one-dimensional basis functions (see Eq. 14):

φ~l,~i (~x) :=
d∏
t=1

φlt,it (xt) . (23)

These basis functions are then used to de�ne the function spaces V~l consisting of piecewise linear

functions on Ω (with f |∂Ω = 0):

V~l := span{φ~l,~i : ~1 ≤~i ≤ 2
~l −~1}. (24)

The index set I~l is given by

I~l := {~i : 1 ≤ it ≤ 2lt − 1, it odd, 1 ≤ t ≤ d}. (25)
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and the hierarchical increment spaces are de�ned as

W~l
:= span{φ~l,~i :~i ∈ I~l}. (26)

An example of such an increment space is shown in Fig. 3. These hierarchical increment spaces now

allow us to de�ne a multilevel space decomposition. In line with the sparse grid literature (see, e.g.,

P�üger (2010); Garcke and Griebel (2012); Bungartz and Griebel (2004)), we de�ne Vn := V(n,...,n)

as a direct sum of spaces. Consequently, the hierarchical increment spaces W~l
are related to the

nodal spaces V~l of piecewise d-linear functions with mesh width hl in each dimension by

Vn :=

n⊕
l1=1

· · ·
n⊕

ld=1

W~l
=
⊕
|l|∞≤n

W~l
, (27)

leading to a full grid with (2n − 1)d gridpoints 6. The interpolant of f , namely u(~x) ∈ Vn, can

uniquely be represented by

f(~x) ≈ u(~x) =
∑
|l|∞≤n

∑
~i∈I~l

α~l,~i · φ~l,~i(~x) =
∑
|l|∞≤n

f~l(~x), (28)

with f~l ∈W~l
and α~l,~i ∈ R. The hierarchical surpluses are given by

α~l,~i =

(
d∏
t=1

[
−1

2
1 − 1

2

]
lt,it

)
f. (29)

For a su�ciently smooth function f (which we will state more precisely in Sec. 5.4) and its inter-

polant u ∈ Vn (Bungartz and Griebel, 2004), we obtain an asymptotic error decay of

‖f (~x)− u (~x) ‖L2 ∈ O
(
h2
n

)
= O

(
2−2n

)
, (30)

but at the cost of

O
(
h−dn

)
= O

(
2nd
)

(31)

gridpoints, encountering the so-called curse of dimensionality. The exponential dependence of the

overall computational e�ort on the number of dimensions is a prohibitive obstacle for the numerical

treatment of high-dimensional problems. The curse of dimensionality typically prohibits an accurate

solution of problems with more than 4 or 5 dimensions.

5.4 Classical Sparse Grids

To alleviate the curse of dimensionality (see Sec. 5.3) we need to construct approximation spaces

that are better than Vn in the sense that the same number of gridpoints leads to higher accuracy

(see, e.g., Zenger (1991); Bungartz and Griebel (2004)). The classical sparse grid construction

arises from a cost-bene�t analysis (see, e.g., Bungartz and Griebel (2004), and references therein)

6Note that Vn ⊂ Vn+1.
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in function approximation. In particular, we consider the Sobolev space of functions with bounded

second-order mixed derivatives

H2 (Ω) := {f : Ω→ R : D
~lf ∈ L2 (Ω) , |~l|∞ ≤ 2, f |∂Ω = 0}, (32)

where

D
~lf :=

∂
~|l|1

∂xl11 · · · ∂x
ld
d

f. (33)

For functions in H2 (Ω) the hierarchical coe�cients α~l,~i (see Bungartz and Griebel (2004) and Eq.

28) decay rapidly�namely,

|α~l,~i| = O
(

2−2|~l|1
)
. (34)

The strategy for constructing a sparse grid is to leave out those subspaces within the full grid space

Vn that only contribute little to the interpolant.

An optimization that minimizes the approximation error given a �xed number of gridpoints (or vice

versa) leads to the sparse grid space V S
0,n of level n, de�ned by

V S
0,n :=

⊕
|~l|1≤n+d−1

W~l
, (35)

where the index 0 in V S
0,n stands for f |∂Ω = 0 (see Fig. 4 and Bungartz and Griebel (2004), with

references therein). Note that the actual choice of subspaces depends on the norm in which we

measure the error. The result obtained in Eq. 35 is optimal for the L2-norm and the L∞-norm.

The number of gridpoints required by the space V S
0,n is given by (see, e.g. Bungartz and Griebel

(2004))

|V S
0,n| = 2n ·

(
nd−1

(d− 1)!
+O

(
nd−2

))
= O

(
h−1
n ·

(
log(h−1

n )
)d−1

)
= O

(
2n · nd−1

)
, (36)

which is a signi�cant reduction of the number of gridpoints, and thus of the computational and

storage requirements compared to O
(
2nd
)
for the full grid space Vn (see Tab. 1 below in Sec. 5.5).

In analogy to Eq. 28, a function f ∈ V S
0,n ⊂ Vn is now approximated by

fS0,n(~x) ≈ u(~x) =
∑

|l|1≤n+d−1

∑
~i∈I~l

α~l,~i · φ~l,~i(~x) =
∑

|l|1≤n+d−1

f~l(~x), (37)

where f~l ∈ W~l
. As in the one-dimensional case, a hierarchical surplus α~l,~i ∈ R is simply the

di�erence between the function value at the current and the previous interpolation level (cf. Sec.

5.2). Since the gridpoints are nested (i.e. X l−1 at level l − 1 is contained in X l) the extension of

the interpolation level from level l− 1 to l only requires the evaluation of the function at gridpoints

that are unique to X l�that is, at X l
∆ = X l\X l−1.

The asymptotic accuracy of the interpolant deteriorates only slightly from O
(
h2
n

)
in case of the

full grid (cf. Eq. 30) to

O
(
h2
n · log(h−1

n )d−1)
)
, (38)
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Figure 4: We show the two-dimensional subspaces W~l
up to l = 3 (h3 = 1/8) in each dimension.

The construction of the sparse grid space V S
0,3 in 2 dimensions according to Eq. 35 is indicated by

the red lines. This space is the direct sum of all hierarchical subspaces satisfying |~l|1 ≤ 4. Note that

it contains only 17 support nodes, whereas a full grid of the same level would consist of 49 points.

as shown in Bungartz and Griebel (2004). Taken together, Eqs. 36 and 38 demonstrate why sparse

grids are so well-suited to high-dimensional problems. In contrast to full grids, their size increases

a lot slower with dimensions, while they are only slightly less accurate than full grids.

Note that sparse grid methods are not restricted to piecewise linear basis functions; there are

several other basis functions possible, including piecewise polynomials (see Bungartz and Griebel

(2004); P�üger (2010), and references therein). However, we focus on linear hat functions, since

these are most convenient for adaptive re�nement procedures as presented below in Sec. 5.6.

5.5 Sparse Grids with Non-Zero Boundaries

So far, we have assumed that the functions under consideration vanish at the boundary of the

domain�that is, f |∂Ω = 0. To allow for non-zero values at the boundary, the procedure one usually

follows is to add additional gridpoints located directly on ∂Ω (see, e.g., P�üger (2010); Klimke and

Wohlmuth (2005)). Doing this naively, one needs at least 3d gridpoints, which makes the approach

inapplicable to high-dimensional problems. In what follows, we discuss one particular procedure

that mitigates this issue (see, e.g., Ma and Zabaras (2009); Klimke and Wohlmuth (2005)). The

crucial idea is to have only one gridpoint at the lowest level of approximation. Technically, the
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Figure 5: Hierarchical basis functions of theV S
NZ,n sparse grid in one dimension. Level 1 (solid),

level 2 (dashed), and level 3 (dotted).

di�erence to the sparse grid with zero (V S
0,n) and one with non-zero (V S

NZ,n) boundaries is that the

index set of the support nodes is not given by Eq. 25, but rather by

I~l :=


{~i : it = 1, 1 ≤ t ≤ d} if l = 1

{~i : 0 ≤ it ≤ 2, it even, 1 ≤ t ≤ d} if l = 2

{~i : 1 ≤ it ≤ 2lt−1 − 1, it odd, 1 ≤ t ≤ d} else,

(39)

and the one-dimensional basis functions for each dimension t are given by

φNZlt,it(xt) =



1 if l = 1 ∧ i = 1 1− 2 · xt if xt ∈
[
0, 1

2

]
0 else

 if l = 2 ∧ i = 0 2 · xt − 1 if xt ∈
[

1
2 , 1
]

0 else

 if l = 2 ∧ i = 2

φl,i(xt) else,

(40)

where φl,i(x) is given by Eq. 15. The �rst three levels of these basis functions are displayed in Fig.

5. Besides the choice of basis functions the same logic as stated in Eq. 35 applies for construction

of the sparse grid space V S
NZ,n. Examples for two- and three-dimensional sparse grids with non-zero

boundaries of level 4 are given in Fig. 6. It is also worth mentioning that the number of gridpoints

of the non-zero boundary sparse grid |V S
NZ,n| grows slightly slower than |V S

0,n| (cf. Tab. 1).
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Figure 6: Two-dimensional (left) and three-dimensional (right) sparse grids, V S
NZ,n, each of level

n = 4.

d |V4| |V S
0,4| |V S

NZ,4|

1 15 15 9

2 225 49 29

3 3,375 111 69

4 50,625 209 137

5 759,375 351 241

10 5.77 · 1011 2,001 1,581

20 3.33 · 1023 13,201 11,561

50 6.38 · 1058 182,001 171,901

100 >Googol 1,394,001 1,353,801

Table 1: Number of gridpoints for several di�erent grid types of level 4. First column�dimension;

second column�full grid; third column��classical� sparse grid with no points at the boundaries;

last column�non-zero boundary sparse grid.

5.6 Re�ning Sparse Grids Adaptively

Functions that do not meet the smoothness requirements or that show signi�cantly varying charac-

teristics across the domain of interest (see Brumm and Scheidegger (2014) for examples of economic

models with occasionally binding constraints) can still be tackled with sparse grids if adaptivity is

used. The sparse grid structure introduced in Eq. 35 de�nes an a priori selection of grid points that

is optimal for functions with bounded second-order mixed derivatives. An adaptive (a posteriori)

re�nement can additionally, based on local features of the function, select which grid points in the

sparse grid structure should be re�ned (see, e.g., P�üger (2012), Bungartz and Dirnstorfer (2003),

and Ma and Zabaras (2009)). The most common way of doing so is the following heuristics: When

approximating a function as a sum of piecewise linear basis functions, the main contributions to
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Figure 7: Evaluation of Eq. 42 at the gridpoints obtained by the adaptive sparse grid algorithm run

with re�nement threshold ε = 10−3 and basis functions for non-vanishing boundary conditions (cf.

Sec. 5.5) at re�nement level 15.

the interpolant (most likely) stem from comparatively few terms with big surpluses (cf. Eq. 37).

The logic of the re�nement strategies is therefore to monitor the size of the hierarchical surpluses.

The magnitude of the hierarchical surplus re�ects the local irregularity of the function and thus

serves as a natural error indicator. 2d children in the hierarchical structure are added locally to the

current grid for those hierarchical basis functions, φ~l,~j , that have a hierarchical surplus, α~l,~j , that

satis�es |α~l,~j | ≥ ε for a so-called re�nement threshold ε ≥ 0.7 Whenever this criterion is satis�ed,

the children of the current point are added to the sparse grid. If additional knowledge about the

problem at hand is available, it can be used in the criterion for adaptive re�nement, allowing to

better adapt the problem speci�c characteristics (see, e.g., Brumm and Scheidegger (2014)). For

more details regarding adaptive sparse grids, we refer the reader to Bungartz and Dirnstorfer (2003),

Ma and Zabaras (2009), Brumm and Scheidegger (2014), and P�üger (2012).
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basis functions for non-vanishing boundary conditions (cf. Sec. 5.5). Re�nement level 15, consisting

of 4087 points, is shown.
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was obtained by applying a threshold ε = 10−3.
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Analytical Example

We now demonstrate the ability of the adaptive sparse grid algorithm to e�ciently interpolate func-

tions that exhibit steep gradients and kinks. We present an analytical example in two dimensions.

This should foster an understanding of the adaptive sparse grid algorithm in use.

For the testing, we proceed as follows: We pick a (non-smooth) function f : [0, 1]2 → R, construct

the interpolant u (~x) of f (~x), then randomly generate 1, 000 test points from a uniform distribution

on [0, 1]d, and �nally compute the maximum error given by

e = max
i=1,...,1000

|f (~xi)− u (~xi) |. (41)

As example, we apply the adaptive sparse grid algorithm to a problem with non-vanishing

boundaries and a threshold of ε = 10−3 to the two-dimensional test function

f (x, y) =

√
max

[(
xy2 − 1

π

)
· π

π − 1
+ 0.4, 0

]
(42)

plotted in Fig. 7. We chose this function because this type of shape is typical for a policy function

in a model with an occasionally binding constraint (and two continuous state variables in this case).

Note that the line of non-di�erentiability is automatically detected by the adaptive sparse grid

algorithm (cf. Figs. 7 and 8). In Fig. 9, we provide the convergence rate of the adaptive sparse grid

method. The data points shown in Fig. 9 were obtained by computing the errors (cf. Eq. 41) at

levels 5, 8, 10, 12, and 15. These results are contrasted with the �classical� sparse grid counterparts

of the respective re�nement level.

Strikingly, the solution obtained by the adaptive sparse grid reaches the same accuracy as the

�classical� sparse grid, however with considerable fewer points. A re�nement level 15 adaptive

sparse grid requires 4, 087, opposed to 311, 297 points using the same level of re�nement in the

conventional sparse grid (or O
(
109
)
points in case of a Cartesian grid).

6 A time-iteration collocation method for models without idiosyn-

cratic risk

To illustrate the computational performance of time-iteration collocation we consider the version

of the model without idiosyncratic shocks. Except for the fact that we allow for recursive utility,

this is exactly the model considered in Krueger and Kubler (2004). We illustrate that the use of

adaptive sparse grids together with the use of parallel computing enables us to solve models with

60 generations, i.e. models that are calibrated to yearly data. We also use this simple setup to

demonstrate possible advantages of our method relative to simulation-based methods.

7However, depending on the application, more sophisticated criteria might need to be imposed for an e�cient

approximation. Thus, we have to replace the trivial re�nement criterion by some g
(
α~l,~i

)
≥ ε, where the re�nement

choice is governed by a function g : R→ R.
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6.1 Time-iteration collocation

As in Krueger and Kubler (2004) we use an iterative scheme to solve for the unknown coe�cients

of the piecewise multi-linear functions that are solutions to our collocation equations. For high-

dimensional problems, even when using sparse grids, there are so many coe�cients to solve for

that simple Newton methods quickly become infeasible.8 Moreover, there is no straightforward

way to combine such a direct collocation approach with adaptive sparse grids. Therefore we use a

time-iteration algorithm, which can be interpreted as solving �nite-horizon approximations to our

in�nite-horizon model. The main idea of our algorithm is similar to a basic policy function iteration

as proposed, for example, by Coleman (1990). The main innovation, yet also complication, of our

approach stems from the adaptive part of the sparse grid, which operates within each time iteration

step. The details of the algorithm are as follows:

1. Make an initial guess for next period's policy function:

p′ : Z×B→ R2(A−1), p′(z′, s′) =
(
k′1(z′, s′), . . . , k′A−1(z′, s′), v′1(z′, s′), . . . , v′A−1(z′, s′)

)
.

Choose an approximation accuracy η̄.

2. Make one time iteration step:

(a) For each z ∈ Z, start with a coarse grid Gzold ⊂ S (a �classical� sparse grid of a �low� level

L0), and generate Gz by adding for each x ∈ Gzold all 2d neighboring points. Choose a

re�nement threshold ε and a maximal level Lmax > L0 and set l = 1.

(b) For each z ∈ Z and each gridpoint

s ∈

G
z if l = 1

Gz \Gzold if l > 1

solve for the optimal policies

p(z, s) = (k1(z, s), . . . , kA−1(z, s), v1(z, s), . . . , vA−1(z, s))

at (z, s) by solving the system of equilibrium conditions given next period's policy

p′(z′, s′) =
(
k′1(z′, s′), . . . , k′A−1(z′, s′), v′1(z′, s′), . . . , v′A−1(z′, s′)

)
.

8When agents live for 60 periods, even when there are only 4 exogenous shocks and a �classical� sparse grid of

only level 3 is used, a nonlinear equation system with 59 · 4 · 7, 081 · 2 = 3, 342, 232 unknown coe�cients has to be

solved�for each of the 59 (active) agents and each of the 4 shocks, we have 7, 081 coe�cients both for the capital

policy function and the value function.
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More precisely, the system of equilibrium conditions can be written as

ĉa(z, s̃|α)ρ−1 + βa

[∑
z′

π(z′|z)
(
v̂′a+1(z′, s′|α)

)σ
ρ

] ρ
σ
−1

∑
z′

π(z′|z)(1 + r(z′, s′))v̂′a+1(z′, s′|α)
σ
ρ
−1
ĉ′a+1(z′, s′|α)ρ−1 = 0, a = 1, ..., A− 1

and

v̂a(z, s̃|α) = ĉa(z, s̃|α)ρ + βa

[∑
z′

π(z′|z)
(
v̂′a+1(z′, s′|α)

)σ
ρ

] ρ
σ

, a = 1, ..., A− 1. (43)

where v̂A(z, s|α) = ĉ(z, s|α)ρ, s′1 =
∑A−1

i=1 k̂i(z, s̃), and

s′ =
(
s′1, k̂1(z, s̃)(1 + r(z′, s′1)), . . . , k̂(A−2)(z, s̃)(1 + r(z′, s′1))

)
∈ B

ĉ1(z, s|α) = l1(z)w(z, s1)− k̂1(z, s)

ĉi(z, s;α) = si + li(z)w(z, s1)− k̂i(z, s;α) for i = 2, ..., N − 1

ĉN (z, s;α) =

(
s1(1 + r(z, s1))−

A−1∑
i=2

si

)
+ li(z)w(z, s1)

and where ĉ′1, . . . , ĉ
′
N are given analogously to ĉ1, . . . , ĉN and the prices 1 + r and w are

as above in the de�nition of FREE.

(c) For each z, generate Gznew from Gz by adding for each s ∈ Gz \ Gzold its 2d neighboring

points if

g (p(z, s)− p̃(z, s)) > ε,

where the policy p̃(z, s) is given by interpolating between {p(z, s)}s∈Gzold (thus p(z, s)−

p̃(z, s) is the hierarchical surplus at s), and g : R2(A−1) → R is chosen to be g(x) =∑A−1
i=1 |xi| or g(x) = max1≤i≤A−1 |xi|.

(d) Set Gzold = Gz and Gz = Gznew.

(e) If Gz = Gzold or L0 + l = Lmax, then go to (f), otherwise set l = l + 1 and go to (b).

(f) De�ne the policy function p(z, ·) as the (adaptive sparse grid) interpolation of {p(z, s)}s∈Gz .

(g) Calculate (an approximation for) the error, for example,

η = ‖p− p′‖∞.

If η > η̄, set p′ = p and go to step 2, otherwise go to step 3.

3. The (approximate) equilibrium policy function is given by p.

Note that in step 2.(b) of the method we solve all Euler equations simultaneously. For this

particular, simple model one can often use the previous period's policy function to solve for today's

policy much more e�ciently. However, for a model with assets in �xed supply (e.g. in the presence

of a risk-free asset) there is no simple short-cut and all Euler equations have to be solved as one

system � we explain this brie�y in Section 6.4 below.
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6.2 Using high-performance computing

In macroeconomics�as in other sciences�the quest for scienti�c discovery often has to rely on

in-silico experiments: real experiments are often infeasible. Moreover, the theoretical models are

hideously di�cult and most of the time lack an analytical solution. In order to obtain a (timely)

answer to the research question imposed, a way out is to use HPC systems. In many �elds of science,

computational research�and in particular HPC�has already become a strong, well-established

�third pillar�, alongside theory and experimentation.9

HPC systems can probably be considered as the most powerful and �exible research instruments

available today (Dongarra and van der Steen (2012)), and allow us to ask questions that would

otherwise be impossible to address. Their computational power nowadays often reaches multiple

peta�ops, with an eleven-year cycle of achieving a three-orders-of-magnitude increase in performance

(see http://www.top500.org). Their predominant design currently is�according to the taxonomy

of Flynn (1972)� �distributed memory multiple instruction, multiple data (DM-MIMD)�, better

known as so-called �clusters�. A schematic diagram is given in Fig. 10, displaying a number of

processors (eight in this case) drawing on the same local memory, the nodes being connected by

some (low latency) network. Thus, when a processor in node A needs data present in node B, this

has to be accessed through the network; hence the characterization of the system. In addition, one or

multiple general-purpose graphics processing units (GPGPUs�GPUs for short) are often attached

to the nodes, forming so-called hybrid compute nodes (see http://www.top500.org for a detailed

description of the architecture of the world's most advanced systems). Such systems are di�cult

to deal with. To use them e�ciently, one has to design the software carefully, taking into account

the individual advantages that the various (o�-the-shelf) hardware components of such machines

o�er. To do so, distributed memory, shared memory, and very recently even GPU programming

paradigms have to be combined. Despite the promise of HPC facilities to solve complex models,

the latter point is probably the reason why economists have, in the past, have not used them to the

full degree possible.

Single GPUs attached to a single node were used in several applications in order to accelerate

computations (see, e.g., Aldrich (2014) and Aldrich et al. (2011)). However, GPUs are still special-

purpose processors�that is to say, accelerators. One has to realize that they are good at some

specialized computations, but totally unable to perform others. Therefore, not all applications

can bene�t from them, and of those that can not all can bene�t to the same degree. Cai et al.

(2013) have used the high latency �Condor� paradigm to solve dynamic programming problems in

parallel. Their approach is scalable�however, since it operates within high latency, their paradigm

is probably best used in situations where there are multiple, totally independent problems that need

to be solved and that do not require any sort of synchronization.

9For an in-depth description of machines that can be called �high-performance�, see Culler et al. (1997).
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Figure 10: Diagram of a generic DM-MIMD machine.

However, apart from Cai et al. (2015)10 and Brumm and Scheidegger (2014); Brumm et al.

(2015), who recently exploited highly parallel, low-latency systems, no one in computational eco-

nomics has so far attempted to make e�cient use of the most advanced contemporary HPC systems.

In order to solve �large� problems in a reasonable amount of time, we outline in the following the

state-of-the art parallelization that Brumm and Scheidegger (2014); Brumm et al. (2015) introduced

and how it extends to the OLG model discussed in this paper.

In each step of the above time iteration procedure the updated policy function is determined

using a hybrid MPI/threads parallel algorithm, as illustrated in Fig. 11. Within each re�nement

step, we �rst distribute the di�erent, independent discrete states of the problem to di�erent MPI

groups (see, e.g, Skjellum et al. (1999)). Then, within each individual MPI group, the newly

generated gridpoints are split among multiple (multi-threaded) processes by MPI. The points that

are sent to one particular compute node are further distributed among di�erent threads. Each

thread then solves a set of nonlinear equations for every single gridpoint assigned to it.11 On top

of this, we add an additional level of parallelism. When searching for the solution to the equation

system at a given point, the algorithm has to frequently interpolate the function computed in the

previous iteration step. These interpolations take up 99 percent of the computation time needed

to solve the equation system. As they have a high arithmetic intensity they are perfectly suited for

GPUs (see, e.g., Murarasu et al. (2011) and Heinecke and P�ueger (2013)). We therefore o�oad

10Cai et al. (2015) use an MPI-based implementation of a dynamic programming code.
11The set of nonlinear equations in this example is solved with Ipopt (Waechter and Biegler (2006))

(http://www.coin-or.org/Ipopt/). Note, however, that the code framework is designed such that any solver could

be added.
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Figure 11: Schematic representation of the hybrid parallelization of a time iteration step. Each MPI

process is using TBB and a CUDA/Thrust kernel for the function evaluation.

parts of the interpolation from the compute nodes to their attached accelerators. When comparing

a single-threaded CPU with the case in which a GPU is also employed, we observe a speedup of

up to one order of magnitude for the interpolation. In the case where we use the entire node, the

multi-threading is implemented with thread building blocks (TBB; see Reinders (2007)). One of the

TBB-managed threads exclusively uses the GPU, reducing the overall computation time by roughly

50 percent. Moreover, CPU and GPU threads leverage TBBs' automatic workload balancing based

on stealing tasks from slower threads, as shown in Fig. 12. More details regarding the parallel

implementation and optimization of our code can be found in Brumm et al. (2015).
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Figure 12: Hybrid multi-threading with Intel TBB: (N − 1) threads on the CPU, 1 thread for the

GPU; TBB balances workloads automatically using �work stealing�, as schematically indicated by

the third thread from the right.
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6.3 Results

We now present results for the model with a single (type of) agent per generation and a yearly, as

well as a 5-yearly, calibration.

6.3.1 Parameters

To focus on the computational method instead of the calibration exercise, we take a simple parame-

terization that is, nevertheless, not too far away from standard calibrations. The chosen parameters

for the yearly calibration are summarized in Tab. 2. Agents have a model lifetime of 60 periods,

each corresponding to one year of life after the age of 20. We assume a very stylized, piecewise

linear lifetime labor endowment pro�le, which is displayed in Fig. 13. Labor income doubles from

age 20 to 40, stays constant from 40 to 60, then declines, and �nally stays at a replacement rate of

30 percent of average working-age income until agents die at the age of 80. Concerning preferences,

risk aversion is 3, the IES is 1/2, and the discount factor is 0.96 resulting in a yearly equilibrium

return to capital of about 4 percent. The capital share is set to 0.3. Depreciation is 8 percent in

normal times, yet with 2 percent probability a disaster occurs that causes another 40 percent of the

capital stock to depreciate. We assume that disaster events are i.i.d. and are also not correlated

with the TFP shocks. The average TFP is set such that the equilibrium aggregate capital stock is

about equal to the number of generations (given that the same is true for aggregate labor supply as

implied by the above labor pro�le). The coe�cient of variation of TFP equals 3 percent, resulting

from two symmetric realizations around the mean. In contrast to the depreciation shock, TFP is

persistent, the probability of staying in the good/bad regime from one year to the next being 80

percent.

To illustrate the scaling properties of our computational method below we also consider a version

of the model with 12-period-lived agents. For this case, we scale all parameters to �t the 5-yearly

calibration�in case of the disaster shock we keep the size as in the yearly calibration but increase

the probability �vefold. As we explain below, it is important for the scaling exercise to be able to

compute the solution on a single node in reasonable time, which is possible for the 12-generation

model, but not for the 60-generation model.

6.3.2 Computational Performance

For the base case of 60-period-lived agents, the main computational challenge lies in the approx-

imation of the policy functions that are de�ned on the 59-dimensional continuous state space of

beginning of period asset holdings. As explained above, using adaptive sparse grids and high-

performance computing facilities allows us to solve the basic projection problem. One annoyance

known from lower-dimensional problems that becomes even more tedious in such high dimensions

is the choice of the right box size, in this case for aggregate capital and the asset holdings of all
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Parameter Symbol Value

Adult lifetime of agents A 60

Discount factor β 0.96

IES 1/(1− ρ) 0.5

Risk aversion 1− σ 3

Capital share α 0.3

Disaster probability Pt (zt+1 = 3, 4) 0.02

Normal depreciation δ(z = 1, 2) 0.08

Disaster depreciation δ(z = 3, 4) 0.48

Average depreciation δ̄ 0.088

Persistence of disaster Pt (zt+1 = 3, 4|zt = 3, 4) 0.02

Average aggregate productivity ξ̄
(
1− β(1− δ̄)

)
/αβ

Std. of productivity shocks STD(ξ(z))/ξ̄ 0.03

Pt (z = 1, 3) = Pt (z = 2, 4) 0.5

ξ(z = 1, 3) 1.03 ξ̄

ξ(z = 2, 4) 0.97 ξ̄

Persistence of productivity Pt (ξ(zt+1) = ξ(zt)) 0.8

Labor endowments la(zt) see Fig. 13

Table 2: Choice of parameters for the OLG model with a yearly calibration, i.e., 60 generations.
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Figure 13: Life cycle labor endowment pro�le.
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Number of gridpoints Average Euler error

119 -1.79

1,457 -1.84

4,379 -1.88

7,081 -2.18

7,494 -2.20

10,345 -2.21

Table 3: Average Euler error as a function of the number of gridpoints (in log 10 scale) and decreasing

ε, ranging from 1.25 down to 0.02.

generations. We choose a rather large range for the endogenous state, to ensure that in simulations

the state always lies in the prescribed boxes. Unfortunately, given the size of the problem, we were

unable to determine bounds that ensure that the state remains in the boxes with probability 1. In

models with more than 20�30 endogenous continuous states it is also true that the accuracy of the

solution can almost only be assessed along a simulated path, as sampling from the entire state space

is either too costly or too coarse in such high-dimensional spaces.

As is to be expected, the accuracy of the solution depends crucially on the number of gridpoints

used in the approximation scheme. In Tab. 3, we report the average Euler error (over a long

simulation) as a function of the number of gridpoints (in log 10 scale) for a decreasing ε. The error

decays as we increase the number of gridpoints used, with the lowest average error of around 0.61

percent obtained if one employs 10,345 points in each grid. With ten thousand points one therefore

reaches acceptable error levels, but more points would be needed to achieve an error size that one

would aim for with simpler models.

In the table, we are mixing the results from adaptive sparse grids and classical sparse grids.12 A

classical grid of level 3 has 7,081 points and achieves an error of 0.67 percent. This is not signi�cantly

lower than the minimal error achieved with the adaptive grids used. One important reason for this

lies in the fact that we work with the same grid for each generation (but di�erent grids across the 4

endogenous shocks). If points were added di�erently for di�erent generations, adaptive sparse grids

would have a stronger comparative advantage in this example.

To achieve the accuracy of a level 3 grid, running times on a single-core machine would be

hundreds of days. It is therefore crucial for our approach that the basic time-iteration method can

make use of high-performance computing. As it turns out, in our implementation the performance

scales strongly with the number of dimensions. To illustrate this we take as a test problem the

computation of a single discrete state within one timestep of an OLG model with 12 generations.

12As the size of the classical sparse grid grows very fast when the level increases�from 119 (L=2) to 7, 081 (L=3)

and then already 281, 077 (L=4) points�the sparse grid allows us to look at intermediate numbers of gridpoints.
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We have chosen this particular test case such that it can be comfortably run on a single node.

For the large-scale OLG model with 60 generations, this was no longer feasible anymore. In order

to provide a consistent benchmark, we used a nonadaptive (�classical�) sparse grid with non-zero

boundary conditions (see Sec. 5.5) and re�nement level 6. This instance has a total of 3,080,187

variables and constraints per discrete state. For our scaling experiments, we deploy the OLG model

on the 5,272-node Cray XC30 �Piz Daint� system installed at the Swiss National Supercomput-

ing Centre (CSCS). Cray XC30 compute nodes combine 8-core Intel Xeon E5-2670 (SandyBridge)

CPUs with 1× NVIDIA Tesla K20X GPU. The OLG model is compiled with GNU compilers and

CUDA Toolkit 5.0. The economic test case was solved with increasingly larger numbers of nodes

(from 1 to 1,024 nodes). Fig. 14 shows the execution times and scaling on di�erent levels and their

ideal speedups. We used one MPI process per multi-threaded Intel SandyBridge node, of which

each o�oads part of the function evaluation to the K20x GPU. For this benchmark, the code scales

nicely up to the order of 1,024 nodes, implying that the code will scale up to at least 4,096 nodes, as

all four discrete states are independent (see Fig. 10). The dominant limitation to the strong scaling

stems from the fact that with increasing node numbers the ratio of �points to be evaluated to MPI

processes� is often smaller than one in the �rst few re�nement levels. Moreover, the workload may

be unbalanced in the case of large node numbers�for example, one MPI process gets two points to

work on, while a second one obtains only one point to work on. The better parallel e�ciency on the

higher re�nement levels is due to the fact that we have many more points available on such levels, so

the workload is somewhat more fairly distributed among the di�erent MPI processes. Thus, strong

scaling e�ciencies will be more evident in higher-dimensional models (d > 11), as the number of

newly generated gridpoints grows faster with increasing re�nement levels.

Note that our code framework, while enabling us to push the frontiers, required substantial devel-

opment time. However, the trends in hardware design are moving in such a direction that even

ordinary desktops will soon host combinations of dozens of general-purpose processors (possibly

combined with co-processors and/or GPUs�see, e.g., Intel's Xeon Phi13). Thus, in order to ex-

ploit these massive emerging resources, economists should start to think �parallel� more seriously.

When porting applications to such hardware platforms, the entry points are still somewhat more

cumbersome than using plain vanilla MATLAB. Nevertheless, the computer science community has

started to make considerable e�orts to faciliate this step. Two such projects, among others, are

Julia http://julialang.org and Swift http://swift-lang.org.

6.3.3 The intergenerational wealth distribution

It is obviously computationally di�cult to approximate equilibria for models where the endogenous

state space is 59-dimensional. As we know from the work of Krusell and Smith (1997) it is often

13http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-detail.html.
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Figure 14: Strong scaling on "Piz Daint" for an OLG model with 12 generations and 4 discrete

states using 6 levels of grid re�nement (=7 levels) and in total 280,016 points. �Entire Grid� shows

the entire computation time for the parallel solution of the nonlinear equations for up to 1,024

nodes. We also show the corresponding execution times for the computational subcomponents on

di�erent levels, e.g, for level 7 using 216,920 points, level 6 using 50,600 points, and level 5 using

10,428 points. Dashed lines show ideal speedups.

the case that a high-dimensional (or even in�nite-dimensional) state can be reduced to a very-

low-dimensional �pseudo-state�, which (approximately) provides a su�cient statistic for the future

evolution of the economy.

At this point, it is useful to note�however�that, unlike in Krusell and Smith (1997) the mean of

capital alone does not provide a good approximation to the high-dimensional state. It is important

to understand that movements in the intergenerational wealth distribution will generally have a

large e�ect on prices�the only question is what kind of exogenous shocks lead to large movements

of this distribution. Our calibration is obviously chosen in such a way that large movements are

potentially possible: a large negative shock to capital reduces the savings of the old and middle-

aged but has a relatively small e�ect on the young. Krueger and Kubler (2004) show that in models

where agents live 10�20 periods, disentangling returns to capital and returns to labor in this manner

leads to large movements in the intergenerational wealth distribution, which in turn implies that a

very-low-dimensional su�cient statistic does not exist.

In our calibration agents live for 60 periods and, despite the fact that the shocks are large, the

e�ect on the intergenerational wealth distribution is modest. Fig. 15 shows the impact of a disaster
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Figure 15: Change in wealth shares through the disaster shock (shock 4). The solid line repre-

sents the wealth distribution one period before the shock while the dotted line is the the wealth

distribution two periods after the shock.

shock on the wealth distribution.14 As can be seen in the �gure, a disaster shock does shift the

wealth distribution, with the relatively old (above 70) losing signi�cantly and the young gaining.

However, since the negative shock also leads to high returns to capital, the middle-aged recover

quickly and the overall e�ect is small.

It is for this reason that an approach as in Krusell and Smith (1997) that uses only the aggregate

capital to forecast future prices does not perform too bad in this framework. The results are,

however, signi�cantly worse than in the original setup of Krusell and Smith (1997). If one runs

a linear regression (for each state) to forecast tomorrow's aggregate capital stock and the return

from today's aggregate capital stock, the R2 for the four states are 0.998, 0.998, 0.996, and 0.995,

respectively15. These numbers might seem high, yet it has been shown that even numbers much

closer to one may be associated with large deviations from more accurate solutions (see Algan et al.

(2014), who provide an excellent overview of the topic and explain di�erent error criteria).

For our purposes it su�ces to ask how large the forecasting errors are if one actually only uses

aggregate capital for the forecast. In Fig. 16, we plot the forecasting error when the economy is

in state 1 today as a function of the current capital stock. The forecasting error is highest when

capital is low, which is the result of disaster shocks in the recent past. As can be seen in the �gure,

the errors are not huge, but certainly signi�cant. One would generally think that a forecasting error

of 10-20 basis points is di�cult to incorporate into a rational expectations framework.

14Note that we plot the wealth shares, while the impact of a diaster on wealth levels is of course much bigger.
15Results are very similar (in fact, slightly worse) if one regresses log capital on lagged log capital.
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Figure 16: Error that agents make in forecasting the return to capital when they are in state 1.

The error is reported in basis points.

6.4 Extensions: Several assets and occassionally binding constraints

For simplicity we focus on the case where agents trade only risky capital. In principal it is easy to

extend the algorithm to allow for markets in �nancial assets, in particular for a bond market. For

example, it is natural to assume that households can buy and sell one-period bonds bya(zt) at price

q(zt) today that pay one unit of consumption at each shock tomorrow. The main complication from

the introduction of a bond arises from the fact that in most standard calibrations agents will hold

unrealistically large asset positions. The Euler equations that pin down agents' portfolio choices

tend to be numerically ill-conditioned and the time-iteration method becomes more computationally

intensive. Alternatively it might be natural to assume that households cannot short capital, and

face collateral constraints for shorting the bond: they can only short the bond if they hold capital

as collateral. For simplicity we take the loan-to-value ratio as exogenous and �xed and denote it by

LTV . The budget constraint of household ya at node zt therefore reads

cya(zt) + kya(zt) + q(zt)bya(zt) = (1 + r(zt))kya−1(zt−1) + bya−1(zt−1) + lya(zt)w(zt) (44)

min(0, bya(zt))q(zt) + LTV · kya(zt) ≥ 0, (45)

where ky0 = by0 = kyA = byA = 0. Note that the no-short-sale constraint for capital is implicit in

(45).

A competitive equilibrium now also consists of bond prices q(zt) and bond holdings (bya(zt))

41



that ensure that agents optimize and the bond markets clear

A∑
a=1

∑
ya∈Ya

ν(ya)bya(zt−1) = 0.

A FREE is de�ned analogously to the de�nition above; the Euler equations for the bond choice

and market clearing for the bond market are included as additional equations. Time-iteration

collocation methods can be used to approximate the FREE numerically. The algorithm is almost

identical to the one outlined above, except that the policy functions now also include the bond policy

and the bond price. Since we solve the �rst order conditions simultaneously, adding a bond simply

doubles the number of equations at this point�the extra computational burden, while signi�cant,

is not prohibitive.

The collateral constraint (45) will occasionally be binding in equilibrium, leading to non-di�erentiabilities

in policy functions. Brumm and Scheidegger (2014) address the consequences of this fact in detail.

It seems reasonable to assert that for this case adaptive sparse grids are much more powerful than

ordinary sparse grids. Nevertheless, for models where the state space is more than 20-dimensional,

Brumm and Scheidegger (2014) �nd that even if one uses adaptive sparse grids, one would need

very large numbers of gridpoints to properly identify all non-di�erentiabilities in policy and pric-

ing functions. It is a subject of further research how to handle models, with occasionally binding

constraints, that have a very-high-dimensional state space (e.g., OLG models with 60 generations).
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