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Abstract

The demand for assets as prices and initial wealth vary identifies beliefs
and attitudes towards risk. We derive conditions that guarantee identification
with no knowledge either of the cardinal utility index (attitudes towards risk)
or of the distribution of future endowments or payoffs of assets; the argument
applies even if the asset market is incomplete and demand is observed only
locally.
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1 Introduction

We consider an individual who trades in financial assets to maximize his
stationary and time-separable (subjective) expected utility over two dates;
and we assume that we observe how his initial date demand for consumption
and assets varies with prices and wealth, while the investor’s beliefs over
stochastic asset payoffs and endowments, that are unobservable, remain fixed.
We investigate conditions under which one can identify the investor’s beliefs
and attitudes towards risk, the cardinal utility index, from his demand for
assets.

It is clear that beliefs cannot always be identified even when the support
of risky endowments and asset payoffs is known. For example, if the investor
has quadratic utility and no endowments in the second period, his demand
for assets only depends on the first and the second moment of asset payoffs
– higher moments are irrelevant, and, as a consequence, beliefs about higher
moments of the distribution cannot possibly be identified.

More interestingly, if the investor has log-utility, the entire distribution
matters for his utility; however, if the investor does not have (labor) endow-
ments beyond the initial date, and if there is a single, risky asset available
for trade, the demand for this asset only depends on the wealth of the in-
vestor and his discount factor; beliefs over the payoffs of the asset do not
matter and cannot be identified. When the support of stochastic endow-
ments is not known, the identification of beliefs may not be possible even
if financial markets are complete. Since the observation of the demand for
assets is equivalent to the observation of excess demand (but not necessarily
consumption), the identification of beliefs turns out to be impossible if the
cardinal utility exhibits constant absolute risk aversion.

We derive conditions on fundamentals that ensure that beliefs can be
identified. Cardinal utility can always be identified (locally) from demand
for date 0 consumption. Our main result is that identification is possible if
the indirect marginal utilities for assets, across realizations of uncertainty,
are linearly independent. We show that this condition is satisfied in a wide
variety of situations. Without any assumptions on the risky assets, in the
presence of a risk-free asset, beliefs over endowments and payoffs of assets
can be identified if, for any K > 1 and any distinct {ek}Kk=1, the functions
{u′(ek + x)}Kk=1 are linearly independent. We characterize classes of utility
functions with this property, and we provide an argument for generic identifi-
cation. If the payoffs of risky assets separate uncertainty in the sense that, for
any two states, some portfolio of assets has different payoffs across the two
states, beliefs can be identified if the individual’s endowments are known (for
example, because they are 0 across all states) or if no derivative of cardinal
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utility is the product of the exponential function and some periodic function.
Moreover, we show that, if cardinal utility is analytic, in the presence of

a risky asset that separates uncertainty, one can drop the assumption that
utility is stationary: identification is possible even when first and second
period cardinal utilities can be different. And we give an extension of the
argument that tackles models with more than two dates.

In conclusion, we argue that the analysis extends to the case in which
only aggregate demand or the equilibrium correspondence are observable.

The identification of fundamentals is of intrinsic theoretical interest; also,
it serves to formulate policy: here, imperfections, like market incompleteness,
are of interest, since these imperfections render interventions desirable. And,
it is essential in order to understand better paradoxes that arise in classical
consumption based asset pricing. In financial markets, prices are thought to
be determined by the joint probability distribution of payoffs and idiosyn-
cratic shocks to investors, as well as their risk-preferences. Deviations of the
prices of assets from these “fundamentals” are often attributed to the beliefs
of investors. Perhaps most famously in Shiller (2015), unusual run-ups in
asset prices are described as “irrational exuberance”. In order to investigate
the extent to which asset prices are determined by fundamentals or the be-
liefs of investors, it is necessary to identify these beliefs from market data. It
is an open question to what extent this is possible in general. We investigate
this question under the strong assumption that demand is observable, but
we make few assumptions on the beliefs of the investor over asset payoffs and
his endowments or the structure of the asset market.

One might wonder under which conditions the assumption of observable
demand is justified in practice. Our methods can potentially be applied to
data obtained from laboratory experiments, as, for example, in Choi, Fish-
man, Gale, and Kariv (2007) or Asparouhova, Bossaerts, Eguia, and Zame
(2015); or with modifications to market data obtain from auctions, as in
Hortaçsu and Kastl (2012). In all of these cases one obtains a finite number
of observations on prices, incomes and individual demands. With a finite
set of observations, Varian (1983) provided conditions necessary and suffi-
cient for portfolio choices to be generated by expected utility maximization
with a known distribution of payoffs; which extends the characterization of
Afriat (1967). For the case of complete financial markets, Kübler, Selden,
and Wei (2014) refined the argument to eliminate quantifiers and obtain an
operational characterization. In the same vane, Echenique and Saito (2015)
extended the argument to the case of subjective expected utility where beliefs
are unknown. As an extension to our main results, we show that identification
guarantees the convergence of preferences and beliefs constructed in Varian
(1983) or Echenique and Saito (2015) to a unique profile as the number of
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observations becomes dense.
The identification of fundamentals from observable data can be addressed,

most simply, in the context of certainty; there Mas-Colell (1977) showed that
the demand function identifies the preferences of the consumer, while Chi-
appori, Ekeland, Kubler, and Polemarchakis (2004) extended the argument
to show that aggregate demand or the equilibrium correspondence, as en-
dowments vary, also allow for identification. Importantly, the argument for
identification is local: if prices, in the case of demand, or endowments, in the
case of equilibrium, are restricted to an open neighborhood, they identify
fundamentals in an associated neighborhood. Evidently, the arguments ex-
tend to economies under uncertainty, but with a complete system of markets
in elementary securities.

Identification becomes problematic, and more interesting, when the set
of observations is restricted. Under uncertainty, this arises when the asset
market is incomplete and the payoffs to investors are restricted to a subspace
of possible payoffs. Nevertheless, Green, Lau, and Polemarchakis (1979), Dy-
bvig and Polemarchakis (1981) and Geanakoplos and Polemarchakis (1990)
demonstrated that identification is possible as long as the utility function has
an expected utility representation with a state-independent cardinal utility
index, and the distribution of asset payoffs is known. Polemarchakis (1983)
extended the argument to the joint identification of tastes and beliefs; but,
the argument relied crucially on the presence of a risk-free asset and, more
importantly, did not allow uncertainty due to future endowments.

It is interesting to note that the identification of preferences from the ex-
cess demand for commodities, that corresponds to the demand for elementary
securities in a complete asset market, is, in general, not possible, as shown in
Chiappori and Ekeland (2004) and Polemarchakis (1979). Here, restrictions
on preferences, additive separability and stationarity or state-independence,
allow for identification even in an asset market that is incomplete.

A strand of literature in finance, most recently Ross (2015) and earlier
work by He and Leland (1993), Wang (1993), Dybvig and Rogers (1997),
Cuoco and Zapatero (2000) and Carr and Yu (2012), focuses on supporting
prices and observations for a single realization of the path of endowments or,
equivalently, on equilibrium, in an economy with a representative investor.
In particular, Ross (2015) provides a simple framework where beliefs can
be identified from asset prices. However, to obtain the result he needs to
assume that there is a single (representative) agent, markets are complete
and, importantly, the economy is stationary in levels as Borovicka, Hansen,
and Scheinkman (2016) point out. In models with heterogeneous agents and
incomplete financial markets or heterogeneous beliefs across agents an indi-
vidual’s consumption will never be Markovian and therefore this approach
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cannot be extended to make any statements about individuals’ beliefs.

2 Identification

Dates are t = 0, 1, and, at each date-event, there is a single perishable good.
At date 0, assets, a = 1, . . . , A, are traded and they pay off at t = 1.

An individual has subjective beliefs over the joint distribution of asset-
payoffs and his endowments at t = 1 that, we assume, has finite support,
{1, . . . , S}.

Consumption is x0 at date 0, and it is xs at state of the world s = 1, . . . , S
at date 1. The individual maximizes time-separable expected utility

U(x0, . . . , xs, . . .) = u(x0) + β
S∑
s=1

πsu(xs),

with the cardinal utility index, u : (0,∞) → R, continuously differentiable,
strictly concave and strictly monotonically increasing, β ∈ (0,∞) and π a
probability measure. Payoffs of an asset are ra = (ra,1, . . . , ra,s, . . . , ra,S)>,
and payoffs of assets at a state of the world are Rs = (r1,s, . . . , ra,s, . . . , rA,s).
Holdings of assets, portfolios, are y = (. . . , ya, . . .)

>. At date 0, the endow-
ment of the individual is e0, consumption is numéraire and prices of assets are
q = (. . . , qa, . . .); at state of the world s = 1, . . . , S, at date 1, consumption
is, again, numéraire, and the endowment is es; across states of the world,
e = (e1, . . . , eS).

The optimization problem of the individual is

maxx≥0,y u(x0) + β
∑S

s=1 πsu(xs)

s.t. x0 + qy ≤ e0,

xs −Rsy ≤ es, s = 1, ..., S.

The demand function for consumption and assets is (x0, y)(q, e0); it de-
fines the inverse demand function (q, e0)(x0, y). For a given (q̄, ē0), we sup-
pose that (x0, y)(q, e0) is observable and solves the individual’s maximization
problem, with (x0, . . . , xs, . . .)� 0 on an open neighborhood of (q̄, ē0) 1. We
assume that asset demand is continuous and invertible for the observed prices

1We assume, throughout, that, at observed prices and incomes, consumption is strictly
positive. This simplifies the analysis and can of course be ensured by assuming an Inada
condition on u(·). Many of our results extend to the case of consumption on the boundary.

4



and date 0 incomes. This implicitly imposes the restriction that the individ-
ual believes that the observed prices are arbitrage-free. We will make this
assumption throughout the paper without stating it again. With this as-
sumption the observed prices and incomes are associated with an open set
of observed asset holdings and date 0 consumption. We denote by Y ⊂ RA

the projection of this set on asset holdings and by X0 the projection on date
0 consumptions. Unobservable characteristics of an individual are the car-
dinal utility index, u : (0,∞) → R, the discount factor, β > 0 and beliefs
over the distribution of future endowments and payoffs of assets, S ∈ N,
(π,R, e) ∈ RS

+ × RAS × RS
+, with π = (. . . , πs, . . .) a probability measure.

Does the demand function identify the unobservable characteristics of the
individual? This is the question we address in this paper.

The following result establishes that the cardinal utility index can be
identified over the range of observable date 0 consumption.

Lemma 1. The demand function for consumption and assets identifies the
cardinal utility index u : X0 → R up to an affine transformation.

Proof. The demand for consumption and assets is defined by the the first
order conditions

β
S∑
s=1

πsu
′(es +Rsy) = u′(x0)q(x0, y).

Normalizing u′(x̄0) = 1, at some x̄0 ∈ X0, we obtain that

u′(x0)qa(x0, y)− qa(x̄0, y) = 0,

for any a = 1, . . . , A, and for all x0 ∈ X0, which identifies u′(x0), for qa(x0, y) 6=
0, since inverse demand is observable.

Remark 1. Note that if u(·) is assumed to be analytic on (0,∞), the obser-
vation of demand on any open X0 ⊂ (0,∞) identifies the cardinal utility on
all of (0,∞); for this case, we take X0 to be equal to (0,∞) in the results
that follow.

With u(·) given, the unknown characteristics are ξ = (S, β, π,R, e), and
the question of identification is whether, given some ξ that generates the
observed demand function, there is a distinct ξ̃ that would generate the same
demand for assets on the specified neighborhood of prices and wealth. While
we do not provide a complete answer to this question, we give conditions on
admissible characteristics that ensure identification. First, note that we must
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obviously assume that there is a portfolio of assets that has a positive payoff
in all subsequent nodes. Probabilities of nodes at which no asset pays off
cannot possibly be identified. Without loss of generality, we therefore assume
that r1s > 0, s = 1, ..., S. Moreover, two states for which endowments and
asset pay-offs are identical are taken to be the same state; that is, we assume
that there are no s, s′ with (es, Rs) = (es′ , Rs′). It is clear that beliefs just
depend on the distribution of endowments and asset payoffs and not on the
state in which the assets pay off. To avoid the ambiguity that this introduces
we assume that s < s′ if (es, Rs) < (es′ , Rs′) in the lexicographic order.

Identification is possible if any two distinct admissible characteristics gen-
erate different demand functions. Formally, we say that the observed demand
for date 0 consumption and for assets (on an open set of incomes and prices)
identifies beliefs (in a set of admissible characteristics Ξ) if there are no
distinct ξ1, ξ2 ∈ Ξ that, for the cardinal utility u(·) recovered in Lemma 1,
generate the same demand function on the observed set of prices and incomes.
Our main results states that ξ1 and ξ2 must generate different demand func-
tions if {u′(es+Rsy)} are linearly independent for all s for which (es, Rs) are
distinct.

To state the theorem formally, define the (n−1)-dimensional unit sphere,
Sn−1 = {x ∈ Rn :

∑n
i=1 x

2
i = 1}. Recall that functions, {fi}ni=1, with fi :

A ⊂ Rm → R, i = 1, .., n, are linearly independent on A if there is no
α = (α1, ..., αn) ∈ Sn−1, such that

∑n
i=1 αifi(x) = 0, for all x ∈ A.

If functions f1, . . . , fn are linearly independent on some set A there must
exist finitely many points x1, . . . , xm ∈ A such that there is no α ∈ Sn−1

for which
∑n

i=1 αif(xj) = 0 for all j = 1, ...,m. To see this note that in-
dependence implies that for any ᾱ ∈ Sn−1 there is some x̄ ∈ A such that∑n

i=1 ᾱif(x̄) 6= 0. Since the function
∑n

i=1 αif(x̄) is continuous in α there
must be some open neighborhood around ᾱ such that

∑n
i=1 αif(x̄) 6= 0 for

all α in that neighborhood. Compactness of Sn−1 then implies the result.
Defining a differential operator

∆k = (
∂

∂x1

)j1 . . . (
∂

∂xm
)jm , j1 + . . .+ jm ≤ k,

we say that f1, . . . , fn are differentiably linearly independent (on A) if there
is some k ≥ n − 1 and some x̄ ∈ A, such that each fi is at least Ck at x̄
and such that there are differential operators ∆k1 , ...,∆kn , with ki ≤ k, for
all i = 1, . . . , n, such that the matrix
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W̃ =



∆k1(f1) . . . ∆k1(fi) . . . ∆k1(fn)

...
...

...
...

...

∆kj(f1) . . . ∆kj(fi) . . . ∆kj(fn)

...
...

...
...

...

∆kn(f1) . . . ∆kn(fi) . . . ∆kn(fn)


(1)

is non-singular.
It is easy to see that, if f1, . . . , fn are differentiably linearly independent

on A, they are linearly independent since differentiable linear independence
implies that there cannot be an open neighborhood of x̄ and some α ∈ SN−1

such that
∑n

i=1 αif(xi) = 0 for all x in the neighborhood.
The converse is generally not true. But, Bostan and Dumas (2010) show

that, if the functions f1, ..., fn are analytic, then, they are linearly indepen-
dent if and only if they are differentiably linearly independent. In fact in
this case one can take ∆ki = ∆i−1 for all i = 1, ..., n and obtains the so
called Wronsikian matrix of f1, ..., fn. In the analytic case, this matrix is
non-singular if and only if the functions are independent.

Given characteristics ξ1 = (S1, β1, π1, R1, e1), ξ2 = (S2, β2, π2, R2, e2) ∈
Ξ, we define the joint support (S, ē, R̄) = Σ(ξ1, ξ2) as ēs = e1

s, R̄s = R1
s for

s ≤ S1 and ēs = e2
s−S1 , R̄s = R2

s−S1 for s > S1 as well as S = {1, . . . , S1} ∪
{s ∈ {S1 + 1, . . . , S1 + S2} : (ēs, R̄s) /∈ {(e1, R1), . . . , (eS1 , RS1)}. We also
define the open set Yē,R̄ = {y ∈ Y : (ēs + yR̄s) ∈ X0, for all s ∈ S} of
portfolios that ensure that consumption at any state of the world, s, at date
1 lies in X0.

It is now possible to give general necessary and sufficient conditions for
identification.

Theorem 1 (Identification). The demand function identifies the unobserv-
able characteristics, u(·), up to an affine transformation, and ξ ∈ Ξ if, for
any ξ1, ξ2 ∈ Ξ, the joint support (S, ē, R̄) = Σ(ξ1, ξ2) is such that the set Yē,R̄
is non-empty, and the functions {u′(ēs + R̄sy)}s∈S are linearly independent
on this set.

Conversely, if there are characteristics ξ = (S, β, π,R, e) ∈ Ξ for which
{u(es + Rsy)}Ss=1 are not linearly independent on Y , then identification is
impossible.

Proof. To prove sufficiency first note that Lemma 1 shows identification of
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the cardinal utility index, u(·). To show that ξ ∈ Ξ is identified, suppose
both characteristics ξ1 and ξ2 rationalize observed asset demand and consider
asset demand in a fictitious problem of an investor who faces states S (as
defined in the theorem) in the second date. Define fs(y) = u′(ēs+ R̄sy). The
first order condition with respect to the demand for asset a = 1 (that has
positive payoffs in all states) can be written as∑

s∈S

βπsr̄1sfs(y) = u′(x0)q1.

We first show that the fact that this first order condition holds on an open
neighborhood uniquely determines β, {πs}s∈S . We then argue that this im-
plies that the demand function identifies beliefs.

As pointed out above, if the fs are linearly independent, we can find
a positive integer N and points y1, . . . , yN ∈ Yē,R̄ such that the system of
equations ∑

s∈S

αsr̄1sfs(yi) = 0, i = 1, ..., N

has no solution with α 6= 0. Since the first order conditions hold on the open
set Yē,R̄, we can find {(x0i, q1i)}ni=1, such that∑

s∈S

βπsr̄1sfs(yi) = u′(x0i)q1i, i = 1, ..., N.

This is a linear system in {βπs}s∈S , and it must have a unique solution. By
the construction of the set of distinguishable states S, if ξ1 rationalizes the
observed demand, this solution must satisfy βπs = 0 for all s > S1. But
then, if ξ2 also rationalizes the observed demand we must have S1 = S2 and
(e1
s, R

1
s) = (e2

s, R
2
s), for all s = 1, ..., S1. Hence characteristics are uniquely

identified.
To prove necessity, note that linear dependence of {u(es +Rsy)} implies

that there exist α1, . . . , αS such that
∑S

s=1 αsrasu
′(es +Rsy) = 0, for all a =

1, ..., A. If asset demand is rationalized for some probabilities (π1, . . . , πS)�
0 then, for any ε, the first order conditions can be written as follows:

−qau′(x0) +
S∑
s=1

(πs + εαs)rasu
′(es +Rsy) = 0, for all a = 1, . . . , A.

For sufficiently small ε > 0 we have that πs + εαs > 0 for all s, and we can
define alternative probabilities π̃s = (πs + εαs)/(1 + ε

∑
k αk) and appropri-

ately adjusted β̃ = β(1 + ε
∑

k αk) that would rationalize the same demand
function.
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The identification theorem obviously raises the question whether there are
assumptions on fundamentals, either assumptions on utility or restrictions
on (es, Rs) that guarantee independence as required. Before addressing this
question in Section 3 below we first show that the Identification Theorem
can be applied to a revealed preference framework.

2.1 Afriat inequalities and revealed beliefs

Our theoretical result about the possibility of identification has implications
for revealed preference analysis. While with a finite number of observations
beliefs obviously cannot be identified, we show that as the number of obser-
vations goes to infinity and the observations become dense the underlying
characteristics can be uniquely recovered.

We assume that the number of states is fixed at some S, and one observes
a collection of pairs {((xi0, yi), (qi, ei0))}Ii=1, of choices of date 0 consumption
and holdings of assets, {xi0, yi}, at prices and incomes {qi, ei0}. We assume
throughout that xi0 + qiyi = ei0, and that xi0 > 0, for all i = 1, . . . I.

We define unobservable characteristics to be (u(·), ξ) = (u(·), (β, π,R, e)),
(we omit S, since it is fixed), and define demand, as a function of prices,
income and these characteristics, as

(x0, y)(q, e0;u(·), ξ) =

arg maxx≥0,y u(x0) + β
∑S

s=1 πsu(xs),

s.t. x0 + qy ≤ e0,

xs −Rsy ≤ es, s = 1, ..., S.

The following lemma gives necessary and sufficient conditions for the
observations to be consistent with expected utility maximization.

Lemma 2. The following two statements are equivalent:

1 There exists fundamentals (u(·), ξ), such that, for all i = 1, . . . I,

(xi0, y
i) ∈ (x0, y)(qi, ei0;u(·), ξ),

and such that es +Rsy
i > 0 for all s = 1, . . . , S.

2 There exists ({mi}Ii=1, ξ) = ({mi}Ii=1, (β, π, e, R)), with mi ∈ RS+1
++ , for

i = 1, . . . , I, such that
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– for all i = 1, . . . , I,

mi
0q
i = β

∑
s

πsRsm
i
s; (2)

– for all i, j = 1, . . . , I and all s, s′ = 0, . . . S,

(mi
s −m

j
s′)(c

i
s − c

j
s′) ≤ 0, and < 0, if cis 6= cjs′ , (3)

where cis = es +Rsy > 0, for s = 1, . . . S and ci0 = ei0 − qiy = xi0.

The proof follows directly from Varian (1983). Note that, since asset
demand has to satisfy the Strong Axiom of Revealed Preference, these con-
ditions are not vacuous: there exist observations of asset demands and date
0 consumption that cannot be rationalized by any characteristics.

We want to prove that when the number of observations goes to infinity,
the set of solutions to the Afriat inequalities from Lemma 2 converges to a
singleton which only contains the true underlying characteristic. In order to
do so we consider a nested sequence of sets of observations. We denote by
Dn a set of n observed prices and date 0 endowments. We denote by D an
open set of prices and date 0 endowments for which the demand function is
well defined and invertible, and as above, denote by X0 the projection of the
open set of observed choices on date 0 consumption.

Theorem 2 (Revealed Preference). Let (Dn ⊂ D : n = 1, . . .) be an increas-
ing sequence of finite sets of observed prices and date 0 endowments with
. . . ,Dn ⊂ Dn+1, . . . , and with ∪nDn dense in an open set D ⊂ RA × R+.
Given some underlying characteristics (u∗, ξ∗) with u∗(1) = 0 and u∗

′
(1) = 1

that satisfy the sufficient conditions of the Identification Theorem, define

(xi,n0 , yi,n) = (x0, y)(qi,n, ei,n0 ;u∗(·), ξ∗), i = 1, . . . , n,

and suppose that there is a compact set K, such that (mi,n, ξn) ∈ K for
each i, n, and that for each n, ({mi,n}ni=1, ξ

n) satisfy (2) and (3) for the
observations {(xi,n0 , yi,n), (qi,n, ei,n0 )}ni=1. Then, ξn → ξ∗. Moreover, if un(·) is
the piece-wise linear function with slopes αmi,n

s at ci,ns for all (i, n), s, with
an α > 0 that ensures the normalization un(1) = 0 and un′(1) = 1, then
un(x)→ u∗(x), for all x ∈ X0.

Proof. Consider the sequence ((un(·), ξn) : n = 1, . . .), and note that, by
compactness, there exists an accumulation point (ū(·), ξ̄). Since ū must be
concave, it must be continuous on X0. Note that each (un(·), ξn) as well
as (ū(·), ξ̄) correspond to continuous, increasing and concave indirect utility
functions, V n(x0, y) and V̄ (x0, y), over date 0 consumption and assets.
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We first argue that the limit characteristics must generate the same de-
mand function as (u∗(·), ξ∗); that is, for all (q, e0) ∈ D,

(x0, y)(q, e0; ū(·), ξ̄) = (x0, y)(q, e0;u∗(·), ξ∗).

If not, there exists (q∗, e∗0) ∈ D and (x∗0, y
∗) = (x0, y)(q∗, e∗0, u

∗(·), ξ∗) as
well as (x̄0, ȳ) ∈ R+×RA such that V̄ (x̄0, ȳ) > V̄ (x∗0, y

∗) while x̄0 + q∗ȳ ≤ e∗0
and, by the continuity and concavity of ū, without loss of generality,

x̄0 + q∗ȳ < e∗0.

Since ∪nDn ⊂ D is dense, there exists a sequence (qn, en0 ) ∈ Dn : n =
1, . . .), such that (qn, en0 ) → (q∗, e∗0). By continuity of u∗(·) there is an asso-
ciated sequence of demands (xn0 , y

n)→ (x∗0, y
∗).

Since V̄ (·) is continuous there is an n sufficiently large such that

V̄ (xn0 , y
n) < V̄ (x̄0, ȳ)

and
x̄0 + qnȳ < en0 .

But since the sets Dn are nested, we must have that for all m ≥ n

V m(yn) > V m(ȳ),

which contradicts the fact that V m → V̄ point-wise.
To conclude the argument, observe that Lemma 1 implies that, whenever

ū(·) is differentiable, it must coincide with u(·); but since, ū(·) must be
differentiable almost everywhere, it must coincide with u(·) on all of X0. The
Identification Theorem then implies that beliefs must coincide with the true
beliefs, and that the accumulation point must be the unique limit of the
sequence ((un(·), ξn) : n = 1, . . .). 2

Note that, in principal, the result gives a method for the construction of
beliefs from observed data. However, it is beyond the scope of this paper to
investigate the existence of efficient algorithms for the determination of the
solution set to the Afriat inequalities.

2Mas-Colell (1978) makes the argument in a different setting.
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3 Assumptions on fundamentals

In this section, we use the abstract conditions in the Identification Theo-
rem to find conditions on fundamentals that ensure identification. First,
examples show that, even when the support of beliefs, (S,R, e), as well as
cardinal utility, u, and the discount factor, β, are known, identification may
not be possible. Note, that we are concerned with the seemingly much more
demanding case, where nothing is known about the beliefs of the individ-
ual; nevertheless, it shall turn out that understanding these simple examples
provides the key to our general identification results.

1. Suppose there is a single risky asset, second date endowments are 0,
e = 0, cardinal utility is logarithmic: u(x) = ln(x), and β = 1. A
simple computation shows that qy = e0/2 – the individual invests a
fixed fraction of his wealth in the risky asset, and the demand for the
asset is identical for all π; beliefs are not identified.

2. Suppose there is a single, risk-free asset, there is uncertainty about
second date endowments, e 6= 0, and utility exhibits constant absolute
risk aversion, it is CARA, with coefficient of absolute risk aversion equal
to 1, i.e. u(x) = − exp(−x), and β = 1. Direct computation shows
that the demand for the risk-free asset is

y =
1

1 + q

(
e0 − ln(q) + ln(

S∑
s=1

πs exp(−es)

)
;

beliefs are not identified.

There are two obvious ways to solve the problem. One can make assump-
tions on utility that rule out these cases; or, one can assume that there are
several assets available for trade; we shall consider both in detail.

It is useful to note that, with two risky assets and with log-utility identi-
fication might still be impossible.

3. Suppose there are two risky assets, there are no endowments, e = 0,
and u(x) = ln(x) and β = 1. Recall that ras is the payoff of asset a in
state s. If, for states s = 1, 2,

r11

r12

=
r21

r22

,
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then r21/r11 = r22/r12, and the first order conditions that characterise
asset demand can be written as

q1

β
u′(x0) = (π1 + π2)

1

θ1 + θ2
r21
r11

+
S∑
s=3

πsr1su
′(xs),

q2

β
u′(x0) = (π1 + π2)

1

θ1
r11
r21

+ θ2

+
S∑
s=3

πsr2su
′(xs);

for s = 1, 2, beliefs, πs, cannot be identified separately.

Motivated by this example, and to simplify the exposition, we will from
now on focus on the case where a risk-free asset is available for trade. Un-
fortunately, the following example shows that identification might still be
impossible, even if there is a risky and a risk-less asset.

4. Suppose there is a risk-free asset (asset 1) and a risky asset (asset 2).
Suppose e 6= 0, u(x) = − exp(−x) and

r21 = r22, e1 6= e2.

The first order conditions that characterize asset demand can be written
as

q1u
′(x0) = β

S∑
s=1

exp(−(θ1 + θ2r2s))πs exp(−es),

q2u
′(x0) = β

S∑
s=1

exp(−(θ1 + θ2r2s))r2sπs exp(−es);

for s = 1, 2, beliefs, es, πs, cannot be identified separately.

In fact, in this example, identification is impossible even if markets are
complete. As we mentioned earlier, existing results on the identification of
preferences from demand do not apply when only excess demand is observ-
able, which is the case here: since endowments are unknown, consumption is
not observable.

Building on these examples, we now consider two cases. First we assume
that there is only a risk-free asset, and we give conditions on cardinal utility
that ensure that beliefs can be identified. We then consider the case where
there is both a risky and a risk-free asset available for trade and we give con-
ditions on admissible beliefs and cardinal utility which ensure identification.

13



3.1 Restrictions on cardinal utility

In this section we give conditions on cardinal utility that guarantee the in-
dependence of marginal utilities as in the Identification Theorem and allow
identification of beliefs only from the observation of demand for the risk-free
asset. Note that, in addition to the risk-free asset, there could be risky assets
available for trade. Just considering the first order condition for the risk-free
asset identifies es + Rsy for all s, and varying y then identifies Rs indepen-
dently of es. To simplify the notation we assume in this subsection that there
is only a risk-free asset available for trade.

Analogously to the analysis above, given X0 and Y , define for each ξ1, ξ2

(S, ē) = Σ(ξ1, ξ2) and

Yē = {y ∈ Y : ēs + y ∈ X0 for all s ∈ S}.

Clearly, the Identification Theorem immediately implies that, if we re-
strict characteristics to ensure that for all ξ1, ξ2 ∈ Ξ, Yē is non-empty, beliefs
can be identified if the functions (u′(ēs+y))s∈S are linearly independent over
Yē . In this section we address the question whether one can find assumptions
on cardinal utility that ensure this.

In order to understand why it is difficult to find general necessary and
sufficient conditions it is useful to recall that a continuous complex valued
function on R is called mean periodic if it solves the integral equation∫

f(x+ e)dµ(e) = 0

for some (non-zero) measure with compact support, µ (see Schwartz (1947)).
Restricting ourselves to measures with finitely many points in their support
it is easy to see that

K∑
i=1

αkf(x+ ek) = 0 (4)

if f(x) = exp(λx) and λ is a (complex) root of
∑K

i=1 αk exp(λek) = 0. De-
noting all complex roots by λ1, ..., λn and denoting by mj the multiplicity of
λj it follows that f(x) =

∑n
j=1 pj(x) exp(λjx) solves (4) whenever each pj(.)

is a polynomial of degree less that mj. Therefore the real valued solutions
to (4) can be both the sum of products of polynomials and the exponential
function as well as trigonometric functions and a general characterization is
difficult; Remark (iii) in Laczkovich (1986) gives a concrete example.

The following proposition identifies classes of utility functions that allow
for identification together with restrictions on beliefs.
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Proposition 1. Beliefs can be identified under any of the following condi-
tions on characteristics.

(1) For all ξ1, ξ2 ∈ Ξ, Yē is non-empty and there exists an analytic function
f : (a, b)→ R with X0 ⊂ (a, b), that coincides with u′(·) on X0 and that
is unbounded in the sense that ‖f(x)‖ → ∞, as x→ a or as x→ b.

(2) Cardinal utility is Cm, m > 1, at all but finitely many ’critical points’
in X0, and for each ξ1, ξ2,∈ Ξ, one of the following two conditions
holds:

(a) There is a largest ‘critical point’, x̄ ∈ X0, at which u(·) is not Cm,
and we have

x̄− ēs ∈ Yē, for all s ∈ S.

(b) There are (at least) K critical x̄i at which u(·) is not Cm with

x̄i − ēs ∈ Yē, for all s ∈ S, i = 1, 2,

all critical points x̄j ∈ X0 satisfy

|x̄i − x̄j| 6= |x̄k − x̄l| for all i 6= j, {i, j} 6= {k, l}

and, for all ξ ∈ Ξ, 2S ≤ K.

(3) Cardinal utility is a polynomial of degree n, and for all ξ ∈ Ξ, S <
(1/2)(n+ 1).

Proof. To prove (1), recall that for analytic functions linear independence on
any open set and linear independence on the entire domain are equivalent.
Suppose ‖f(x)‖ → ∞ as x → a (the argument is analogous for x → b). We
show that f(e1+x), . . . , f(eK+x) must be linearly independent for all distinct
e1, ..., eK . If they were dependent there would exist e1 < e2 < . . . < eK and
α ∈ SK−1 such that

∑
k αkf(ek + x) = 0 for all x > −e1 + a. But, as

x → −e1 + a, f(e1 + x) → ∞, while all other f(ek + x), k > 1, remain
bounded above. There cannot be a linear combination that stays equal to 0
and puts positive weight on f(e1 + x) – the same argument applies for any
es.

To prove (2), suppose without loss of generality that e1 < ... < eS. For
(2.a), let x̄ denote the largest critical point in X0 and define ȳs ∈ Yē as
ȳs = x̄− es. If marginal utilities u′(es + y) were linearly dependent, without
loss of generality we would have

u′(eS + y) =
∑

s∈S\{S}

αsu
′(es + y),
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which is impossible since the left hand side is not Cm, at ȳs while the right
hand side is. For (2.b), suppose that

u′(ē1 + y) =
∑

s∈S\{1}

αsu
′(ēs + y).

Since there are at least K critical points with x̄i − e1 = ȳi ∈ Yē, i = 1, ...K
we must have that there is some state s with where ȳl and ȳk are also critical
points for some l, k = 1, ..., K, implying that there are critical es + ȳl and
es+ ȳk which have the same distance as x̄l and x̄k contradicting the condition
in the proposition.

To prove (3), recall that the Wronskian matrix of a function f : R→ Rn

is defined as

W =



f1 . . . fi . . . fn

...
...

...
...

...

f
(k)
1 . . . f

(k)
i . . . f

(k)
n

...
...

...
...

...

f
(n−1)
1 . . . f

(n−1)
i . . . f

(n−1)
n


;

If the utility function is polynomial,

u(x) = a0 + a1x+ . . . , alx
l + . . . anxn,

then

u(l)(x) = all! + . . . ak
k!

(k − l)!
xk−l + . . . an

n!

(n− l)!
xn−l, l = 0, . . . n,

and, in particular,
un(x) = ann!.
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To prove that W is non-singular, consider the matrix

An =



a1 . . . (1 + k)ak+1 . . . . . . . . . . . . nan

...
...

...
...

...
...

...
...

all! . . . al+k
(l+k)!
k!

. . . an
n!

(n−l)!x
n−l 0 . . . 0

...
...

...
...

...
...

...
...

ann! . . . 0 . . . 0 0 . . . 0


,

the submatrix

AS,n =


an−S+1(n− S + 1)! . . . an

n!
(S−1)!

x(S−1) 0 . . .

...
...

...
...

...

ann! . . . 0 0 . . .

 ,

and the matrix

BS
n =



. . . 1 . . .

...
...

...

. . . (es + x)k . . .

...
...

...

. . . (es + x)(S−1) . . .

...
...

...

. . . (es + x)n−1 . . .



.

The Wronskian of the family of functions {u(n−S+1)(es + x)}, that is, of
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the derivatives of order (n− S + 1) of the functions {u(es + x)}, is

W(n−S+1) = AS,nB
S
n =


an−S+1(n− S + 1)! . . . an

n!
(S−1)!

x(S−1)

...
...

...

ann! . . . 0





. . . 1 . . .

...
...

...

. . . (es + x)k . . .

...
...

...

. . . (es + x)(S−1) . . .


,

a square matrix of dimension S × S, that is invertible: it is the product of
two square matrices, of which the first term is upper-diagonal, with non-
vanishing terms on the diagonal, ann! = u(n)(x) 6= 0, while the second is the
Vandermonde matrix of the random variables {(es+x)}. Since the Wronskian
has full rank beliefs can be identified.

The result provides a large class of cardinal utility functions that ensure
that beliefs can be identified. The class of analytic functions that satisfy
an Inada condition is perhaps most relevant for many applications since it
subsumes all utility functions that exhibit constant relative risk aversion. If
cardinal utility is piecewise polynomial the proposition shows that beliefs can
be identified if demand is observed globally or if there are sufficiently many
distinct pieces in the observed range of date 0 consumption. If cardinal
utility is polynomial, beliefs can be identified if the degree of the polynomial
is sufficiently high relative to the maximal number of possible states.

The possibility of identification for polynomial cardinal utility raises the
question of what happens if we pass to the limit. That is, why can beliefs
not be identified for the function u′(x) = exp(−x) although this function can
be expressed as a power series. We give a (partial) answer to this question
in the appendix.

Generic identification Since identification fails only for mean-periodic
functions, it should be possible to guarantee identification generically, at least
for a finite state space and given endowments. Let A be a finite dimensional
family of cardinal utility functions sufficiently rich in perturbations: if u(·) ∈
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A, then ũ(x) = u(x) +
∑n

k=0 akx
k ∈ A, for ak ∈ (−ε, ε), for some ε > 0, and

any finite n.
For simplicity of exposition, let S = 2 and consider the function F :

SS−1 × (−ε, ε)n → R2, for some n ≥ 3, defined by

F (θ1, θ2, . . . , ak, . . .) = (θ1, θ2)W = (θ1, θ2)AB,

where

A =

 a1 2a2 3a3 4a4 . . .

2a2 6a3 12a4 . . . . . .

 ,

and

B =



1 1

(e1 + x) (e2 + x)

(e1 + x)2 (e2 + x)2

...
...


.

By a direct computation,

Da1,a2,a3F =

 θ1 2θ2 + 2θ1(e1 + x) 6θ2(e1 + x) + 3θ1(e1 + x)2

θ1 2θ2 + 2θ1(e2 + x) 6θ2(e2 + x) + 3θ1(e2 + x)2

 .

Since (θ1, θ2) ∈ S1, while e1 6= e2, the matrix Da1,a2,a3F has full row rank,
which extends to the matrixDF. It follows that F t 0, and, by the transversal
density Theorem, Fu : S1 t 0, for u in an subset of A of full Lebesgue mea-
sure. Then, since dimS1 < 2, there is no (θ1, θ2) such that F (θ1, θ2, . . . , ak,
. . .) = (θ1, θ2)AB = 0. It follows that AB, the Wronskian, is of full rank,
which allows for identification.

The argument takes the endowment of the individual as given and known.
It extends to the case in which endowments lie in a finite set.

3.2 A risky asset separates all uncertainty

In this subsection, we assume that there are two assets available for trade, a
risk-free asset (a= 1) and a risky asset (a = 2). It is without loss of generality
to focus, as above, on the case of a single risky asset.

It is useful to first consider the situation where the risky asset defines all
uncertainty: that is, all admissible beliefs can be described as beliefs over
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asset payoffs, and there is a function from asset payoffs to individual endow-
ments. The case of individual endowments being 0 at all states s = 1, . . . , S
is obviously a special case. Another special case is the case of neoclassical
production, where shocks to total factor productivity determine both wages
(endowments) and returns to capital (payoff of a risky asset).

When the risky asset defines all uncertainty the beliefs over the asset pay-
offs can be identified if cardinal utility is smooth with non-vanishing deriva-
tives. We then relax this assumption, and merely require that the payoff of
the risky asset separates uncertainty: for all possible beliefs, Rs 6= Rs′ , if
s 6= s′. This assumption is strictly weaker since it could be the case that dif-
ferent fundamentals have the same asset payoffs, but different endowments.
Example 3 above implies that if the individual has CARA utility identi-
fication is no longer possible. It turns out that the condition needed for
identification is somewhat intricate. Only ruling out CARA utility does not
suffice to ensure that the result is restored.

Proposition 2. Suppose there exist a risk-free asset, r1(s) = 1, for all s,
and asset 2 separates all uncertainty; that is, for all possible beliefs,

r2(s) 6= r2(s′), for all s 6= s′.

Suppose that for all characteristics ξ1, ξ2 ∈ Ξ, S1, S2 ≤ S̄, for some S̄ ≤ ∞,
and that the joint support (S, R̄, ē) = Σ(ξ1, ξ2) is such that there exists a ȳ ∈
Yē,R̄, with u(es+Rsy) having 2S̄ non-vanishing derivatives on a neighborhood
around ȳ. Then, the demand function for consumption and assets identifies
the unobservable characteristics (u, ξ) if one of the two following assumptions
holds:

(1) There is some function f : R → R+, such that, for any possible indi-
vidual characteristics (S, β, π,R, e) ∈ Ξ,

e(s) = f(r2(s)) s = 1, ..., S.

(2) There is no 1 ≤ k ≤ 2S̄ such that the k’th derivative of cardinal utility
can be written as

u(k)(x) = p(x) exp(αx), (5)

for some periodic function p(·) and some α ∈ R.

Proof. As in the proof of the Identification Theorem, suppose that char-
acteristics ξ1 and ξ2 rationalize observed asset demand and let (S, R̄, ē) =
Σ(ξ1, ξ2). Without loss of generality let S = {1, . . . , K − 1, K} for some
K > S1. It suffices to prove that the functions {u′(ēs + y1 + y2r̄2s)}s∈S , are
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differentiably linearly independent. For this take the differential operators
that define W̃ in (1) to be

∆ij = (
∂

∂y1

)K−j(
∂

∂y2

)j−1.

We obtain

W̃ =

 u(K)(ē1 + y1 + y2r̄21) . . . u(K)(ēK + y1 + y2r̄2K)
...

...
...

u(K)(ē1 + y1 + y2r̄21)r̄K−1
21 . . . u(K)(ēK + y1 + y2r̄2k)r̄

K−1
2K

 .

Since the Vandermonde matrix
1 . . . 1
r̄21 . . . r̄2K
...

...
...

r̄K−1
21 . . . r̄K−1

2K


has full rank, the matrix W̃ has full rank and the Identification Theorem
implies that beliefs can be identified under (1).

Under (2), suppose linear independence fails and there is an α ∈ SK−1

such that
∑K

s=1 αsu
′(ēs + y1 + y2r̄2s) = 0 on a neighborhood around ȳ. Since

in both characteristics ξ1 and ξ2 the payoff of asset 2 separates uncertainty,
each r̄2s can be identical across at most two states. Theorem 1 in Laczkovich
(1986) implies that if for some α, e ∈ R a real valued (measurable) function
f : A ⊂ R → R satisfies f(x) = αf(x + e) for all x ∈ A it must be of the
form (5). Therefore condition (2) implies that for all s and s′ with r̄2s = r̄2s′

we have that for all 1 ≤ k ≤ K, αsu
(k)(ēs + y1 + y2r̄2s) + αs′u

(k)(ēs′ + y1 +
y2r̄2s′) 6= 0 whenever (αs, αs′) 6= 0. Taking L to be the number of distinct
asset payoffs in {r̄21, . . . , r̄2K}, and defining the L × L matrix W̃ by taking
the entry (αsu

(K)(ēs + y1 + y2r̄2s) + αs′u
(K)(ēs′ + y1 + y2r̄2s′))r̄

j
2s instead of

u(K)(ēs′ +y1 +y2r̄2s′))r̄
j
2s′ and u(K)(ēs +y1 +y2r̄2s))r̄

j
2s whenever r2s = r2s′ we

again obtain a matrix of full rank and therefore there cannot be α ∈ SK−1

such that
∑K

s=1 αsu
′(ēs + y1 + y2r̄2s) = 0 on a neighborhood around ȳ. The

functions {u′(ēs + y1 + y2r̄2s)} are linearly independent and beliefs can be
identified.

One might wonder why we assume that all derivatives of u′(·) are not of
the form (5) and why it is not enough to assume this only for u′(·) itself.
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A simple example illustrates the problem. Suppose u′(x) = exp(−x) + 1.
Clearly this function is not of the form (5) and in fact one can easily verify
that u′(x) and u′(a + x) are linearly independent for all a 6= 0. However,
beliefs cannot be identified with this utility function. The necessary and
sufficient first order conditions that define the asset demand function can be
written as

q1u
′(x0) = β

(
1 +

S∑
s=1

exp(−(θ1 + θ2r2s))πs exp(−es)

)
,

q2u
′(x0) = β

(
S∑
s=1

πsr2s +
S∑
s=1

exp(−(θ1 + θ2r2s))r2sπs exp(−es)

)
.

Suppose for two characteristics ξ1, ξ2 we have S1 = S2 = 3 , R1 = R2 and
e1 6= e2. As long as β1 = β2 and π1, π2 satisfy

3∑
s=1

π1
sr2s =

3∑
s=1

π2
sr2s and π1

se
1
s = π2

se
2
2 for all s = 1, . . . , S;

the two characteristics generate identical asset demand.

4 Extensions

We show that part of the analysis remains valid if utility is not stationary,
and cardinal utility at date 1 may differ from utility at date 0. And we
consider a multi-period model, where cardinal utility is stationary but only
demand at date 0 is observable.

4.1 Non-stationary utility

We now assume that the utility function need not be stationary and cardinal
utility at date 1 could be distinct from the utility at date 0; that is,

U(x0, . . . , xs, . . .) = u(x0) +
S∑
s=1

πsv(xs),

While Lemma 1 still holds and one can recover u(·), this does not provide
us with any information about the function v(·). Nevertheless, it is straight-
forward to extend the Identification Theorem to cover this case. A character-
istics, now, include the date 1 cardinal utility v(·). Given two such (extended)
characteristics ξ1 = (v1(·), S1, π1, R1, e1) and ξ2 = (v2(.), S2, π2, R2, e2) with
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v1(·) 6= v2(·) on some subset of the range of possible consumption identifi-
cation is possible if the functions {v1′(e1

s +R1
sy)}S1

s=1 together with {v2′(e2
s +

R2
sy)}S2

s=1 are linearly independent. If this is the case the argument from the
proof of the Identification Theorem can be applied analogously and beliefs
can be identified.

However, with unknown labor endowments the functions will generally
be linearly dependent. Suppose, as an example, that S1 = 1 and S2 = 2,
and there is only one, risk-free asset. It is then clear that if v1(x + e1

1) =
π2

1v
2(x + e2

1 − e1
1) + π2

2v
2(x + e2

2 − e1
1) the two characteristics will generate

identical demand. As in Example 3 above, it is clear that the presence of a
risky asset will not help as long as the risky asset does not define uncertainty
as in Proposition 2(1).

Moreover, if v(·) is not analytic, it is difficult to rule out the case of
linear dependence simply because given v1(·) one can always define another
cardinal utility, v2(·), by

v1′(es + yRs) = γsv
2′(es + yRs), s = 1, . . . S,

for some (γs)
S
s=1 that ensure that

∑
s γsπ

2
s = 1. If one only observes asset

demand locally, as in the Identification Theorem, it is not possible to identify
beliefs separately from γ1, . . . , γS.

When utility is assumed to be analytic and the risky asset defines the
uncertainty beliefs can be identified.

Proposition 3. Suppose v(·) is analytic and has non-vanishing derivatives
of all orders. Suppose there exist a risk-free asset, r1s = 1, for all s, and
asset 2 separates all uncertainty; that is, for all possible beliefs,

r2s 6= r2s′ for all s 6= s′,

and there is some function f : R→ R+, such that, for any possible individual
characteristics ξ = (v(·), S, π, e, R) ∈ Ξ,

es = f(r2s) s = 1, ..., S.

Then the demand function for consumption and assets identifies the un-
observable characteristics.

Proof. Analogously to the proof of the Identification Theorem, suppose that
characteristics ξ1 = (v1(·), S1, π1, R1, e1) and ξ2 = (v2(·), S2, π2, R2, e2) ratio-
nalize observed asset demand. As above, define ēs = e1

s, R̄s = R1
s, v̄s(·) =

v1(·) for s = 1, . . . , S1 and ēs+S1 = e2
s, R̄s+S1 = R2

s, v̄s+S1(·) = v2(·) for
s = 1, . . . , S2. Let K = S1 + S2. First assume that the K’th derivatives of
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v1 and v2 are independent, i.e. there is no γ such that v1(K)(c) = γv2(K)(c)
for all c in an open neighborhood. To show identification, it suffices to show
that there is no α ∈ SK−1 with

∑K
s=1 αsv̄

′
s(ēs + yR̄s) = 0. As in the proof

of Proposition 2, define the differential operators in the matrix W̃ in (1) to
be ∆ij = ( ∂

∂y1
)K−j( ∂

∂y2
)j−1. As in the proof of Proposition 2(2), combine the

derivatives of v̄s(ēs + yR̄s) and v̄s′(ēs′ + yR̄s′) into a single element of the
matrix whenever R̄s = R̄s′ . The non-singularity of the Vandemonde matrix
implies that whenever αsv̄

(K)
s (es + yR̄s) 6= αs′ v̄

(K)
s′ (es′ + yR̄s′) we must have∑K

s=1 αsv̄
′
s(ēs + yR̄s) 6= 0 and hence identification is possible.

If there is a γ such that v1(K)(·) = γv2(K)(·), the derivative of order (K−1)
of the first order condition with respect to the demand for the risk-free asset
for a fictitious investor who faces states s = 1, . . . , K and has state dependent
utility v̂s(·) defined as

v̂s(x) =


v1(x) if s ≤ S1 and Rs /∈ {R2

1, . . . , R
2
S2},

v1(x) + v2(x) if s ≤ S1 and Rs ∈ {R2
1, . . . , R

2
S2},

v2(x) otherwise,

is given by

β
∑
s∈S

πsv̂
(K)
s (ēs + yR̄s) =

∂(K−1)[qu′(x0)]

∂y
(K−1)
1

,

where S is defined as in Proposition 2. By the same argument as in the proof
of Proposition 2, beliefs for this fictitious investor are uniquely identified. But
since v1(i)(x) = γv2(i)(x) for all i ≥ K only one of the characteristics ξ1, ξ2

is consistent with these beliefs. Hence only one of these characteristics can
generate the observed demand function.

4.2 Multiple periods

Another obvious question is how our results extend to a multi-period setting.
Suppose the individual maximizes a time-separable subjective expected util-
ity over T + 1 periods,

U(x) = u(x(0)) +
T∑
t=1

βt
∑
st∈Σ

π(st)u(x(st)), x ≥ 0,

where st = (s1, . . . , st) is a sequence of realizations of shocks, st up to date t.
Assets, a = 1, . . . , A, of one period maturity are traded in dates t = 0, . . . (T−
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1). Pay-offs of an asset traded at st−1 are ra(s
t) and payoffs across assets

are R(st) = (r1(st), . . . , ra(s
t), . . . , rA(st)). Holdings of assets are y(st) =

(. . . , ya(s
t), . . .)>.

To use our insights from the two date problem, it is useful to write the
agent’s problem recursively. We write st+1 � st for an immediate successor
of st at t+ 1, and we define

vsT (y) = u(e(sT ) +R(St)y) and dsT = e(sT ),

and recursively for up to t = 1,

vst(y) = maxy′ u(e(st) +R(st)y − q(st)y′) + β
∑

st+1�st
π(st+1)
π(st)

vst+1(y′),

s.t. R(st+1)y′ + dst+1 ≥ 0 st+1 � st,

and

dst = max
y′

e(st) + q(st)y′ s.t. R(st+1)y′ + dst+1 ≥ 0 st+1 � st.

While in a two date setting it is natural to assume that only asset demand
in the first date is observable, in this multiple date setting one can consider
various different cases. We assume that one only observes how the demand
for assets at date 0 changes as prices and incomes change at date 0. Of course,
in an equilibrium setting, price changes in one period most likely lead to an
agent revising his expectations on prices in subsequent periods. However,
as we pointed out in the introduction, we focus on a ‘partial equilibrium’
situation where prices and incomes change today and this has no effect on an
agent’s belief over future outcomes. As in the rest of the paper we assume
that the demand function at date 0 is observed in an open neighborhood of
prices and endowments. Consistent with our earlier notation we define vs(y),
for s = 1, ..., S, to be the possible value functions at t = 1.

For simplicity we assume that cardinal utility, u(·), is analytic. Lemma
1 then directly implies that u(·) can be identified on (0,∞). It is useful to
write the unknown fundamentals as ξ = (β, ξ1, ..., ξS) ∈ Ξ where ξs specifies
all subsequent endowments, payoffs of assets and probabilities. With this
we can write vs(y) = v(y|ξs) for some state invariant function v(.) which is
known once u(·) is known. We denote by v′(y) = ∂v(y|ξ)/∂y1, where it is
assumed, as before, that asset 1 is a risk-free bond, paying 1 in all states.

We now redefine (S, ξ̄) = Σ(ξ1, ξ2) as ξ̄s = ξ1
s for s ≤ S and ξ̄s = ξ2

s−S,
R̄s = R2

s−S for s > S, as well as

S = {1, . . . , S} ∪
{
s ∈ {S, . . . , 2S} : ξ̄s /∈ {ξ1, . . . , ξS}

}
.

The Identification Theorem, then, translates to the following result:

25



Proposition 4. The demand function identifies the unobservable character-
istics ξ ∈ Ξ if, for any ξ1, ξ2 ∈ Ξ, the joint support (S, ξ̄) = Σ(ξ1, ξ2) is such
that the functions {v′(y|ξ̄s)} are linearly independent on Y(ē,R̄).

Conversely, if there are characteristics ξ ∈ Ξ for which {v(y|ξs)} are not
linearly independent on Y , then identification is impossible.

Under stationarity assumptions it might be possible to derive conditions
that ensure the required independence. This is subject to further research.

5 Concluding remarks

Here, identification proceeds from an observable demand function. Though
common practice, this is problematic. It is an obvious question whether our
approach has any implications on equilibrium prices. While it is beyond the
scope of this paper to provide a detailed answer to this, it is useful to point
out that the arguments in Chiappori, Ekeland, Kubler, and Polemarchakis
(2004) can be applied here and it can be shown that, under appropriate
conditions on cardinal utilities, the map from profiles of individual endow-
ments in assets and period 0 commodity to equilibrium asset prices identifies
beliefs. In this formulation assets are productive (trees), and the, ra,s are out-
put, wealth or consumption; and, individuals are endowed with assets, f i0.
Equilibrium prices, then, satisfy

∑
i(x

1
0(q, ei0, f

i
0), yi(q, ei0, f

i
0)) =

∑
i(e

i
0, f

i
0),

and the set equilibria of equilibria as endowments vary isW = {(q,
−−−−−→
(ei0, f

i
0)) :∑

i(x
i
0(q, ei0, f

i
0), yi(q, ei0, f

i
0)) =

∑
i(e

i
0, f

i
0)}. Under smoothness assumptions,

the equilibrium set has a differentiable manifold structure, and it identifies
aggregate demand locally. The argument in Chiappori, Ekeland, Kubler, and
Polemarchakis (2004), in an abstract context that applies here, is that the
aggregate demand identifies individual demand as long as the latter satisfies
a rank condition on wealth effects following Lewbel (1991).
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Appendix: Wronskians and power series

For power series, it is instructive to consider the case of CARA cardinal
utility,

u(x) = −e−x = −1 + x+ . . .+ (−1)(k+1) 1

k!
xk + . . . (−1)(n+1) 1

n!
xn, . . . ;
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In order to simplify the exposition, we restrict attention to the case S = 2.
The polynomial approximation of u(x) of order n is

un(x) = −1 + x+ . . .+ (−1)(k+1) 1

k!
xk + . . . (−1)(n+1) 1

n!
xn;

evidently,

u(1)
n (x) = 1− x+ . . .+ (−1)(k+1) 1

(k − 1)!
x(k−1) + . . . (−1)(n+1) 1

(n− 1)!
x(n−1),

and

u(2)
n (x) = −1+x+ . . .+(−1)(k+1) 1

(k − 2)!
x(k−2) + . . . (−1)(n+1) 1

(n− 2)!
x(n−2).

It follows that, if

A2,n =

 1 −1 . . . (−1)k+1 1
(k−1)!

. . . . . . (−1)(n+1) 1
(n−1)!

−1 1 . . . (−1)k+2 1
(k−1)!

. . . (−1)n+1 1
(n−2)!

0

 ,

and

B2
n =



1 1

(e1 + x) (e2 + x)

...
...

(e1 + x)k (e2 + x)k

...
...

(e1 + x)(n−1) (e2 + x)(n−1)



,

the Wronskian of the family of functions {u(n−S+1)(es + x)}, that is, of the
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derivatives of order (n− S + 1) of the functions {u(es + x)}, is

W2,n = A2
nB

2
n =

 1 −1 . . . . . . (−1)(n+1) 1
(n−1)!

−1 1 . . . (−1)n+1 1
(n−2)!

0





1 1

(e1 + x) (e2 + x)

...
...

(e1 + x)k (e2 + x)k

...
...

(e1 + x)(n−1) (e2 + x)(n−1)



.

For finite n, Proposition 1(3) implies that the rank of W2,n = A2
nB

2
n is

full, even if this is not clear from the expressions above. But, as n → ∞,
the matrix A2

n converges to a matrix of row rank 1, which implies that the
Wronskian is singular; this accounts for the failure of identification of CARA
cardinal utility.

Alternatively, for CRRA cardinal utility, and, in particular,

u(x) = ln x,

the power series expansion at x̄ = 1 is

u(x) = ln x = 0+(x−1)+. . .+(−1)(k−1) 1

k
(x−1)k+. . . (−1)(n−1) 1

n
(x−1)n, . . . ;

In order to simplify the exposition, we restrict attention to the case S = 2.
The polynomial approximation of u(x) of order n is

un(x) = 0 + (x− 1) + . . .+ (−1)(k−1) 1

k
(x− 1)k + . . . (−1)(n−1) 1

n
(x− 1)n;

evidently,

u(1)
n (x) = 1− x+ . . .+ (−1)k(x− 1)k + . . .+ (−1)(n−1)x(n−1),

and

u(2)
n (x) = −1+x+ . . .+(−1)(k+1)(k+1)(x−1)k+ . . .+(−1)(n−1)(n−1)x(n−2).
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It follows that

A2
n =

 1 −1 . . . (−1)k . . . . . . (−1)(n−1)

−1 2 . . . (−1)k+1(k + 1) . . . (−1)n−1 0

 ,

B2
n =



1 1

(e1 + x− 1) (e2 + x− 1)

...
...

(e1 + x− 1)k (e2 + x− 1)k

...
...

(e1 + x− 1)(n−1) (e2 + x− 1)(n−1)



,

and the Wronskian of the family of functions {u(n−S+1)(es + x)} is

W2,n = A2
nB

2
n =

 1 −1 . . . . . . (−1)(n+1) 1
(n−1)!

−1 2 . . . (−1)n+1 1
(n−2)!

0





1 1

(e1 + x− 1) (e2 + x− 1)

...
...

(e1 + x− 1)k (e2 + x− 1)k

...
...

(e1 + x− 1)(n−1) (e2 + x− 1)(n−1)



.

For all n, and as n → ∞, the matrix A2
n remains of rank 2; this is in

contrast to the CARA case.
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