
What Would Users Change in My App? Summarizing App
Reviews for Recommending Software Changes

Andrea Di Sorbo1, Sebastiano Panichella2, Carol V. Alexandru2,
Junji Shimagaki3, Corrado A. Visaggio1, Gerardo Canfora1, Harald C. Gall2

1University of Sannio, Department of Engineering, Italy
2University of Zurich, Department of Informatics, Switzerland

3Sony Mobile Communications, Japan
disorbo@unisannio.it, {panichella, alexandru}@ifi.uzh.ch,

Junji.Shimagaki@sonymobile.com,{visaggio,canfora}@unisannio.it, gall@ifi.uzh.ch

ABSTRACT
Mobile app developers constantly monitor feedback in user re-
views with the goal of improving their mobile apps and better
meeting user expectations. Thus, automated approaches have
been proposed in literature with the aim of reducing the effort
required for analyzing feedback contained in user reviews via
automatic classification/prioritization according to specific
topics. In this paper, we introduce SURF (Summarizer of
User Reviews Feedback), a novel approach to condense the
enormous amount of information that developers of popular
apps have to manage due to user feedback received on a
daily basis. SURF relies on a conceptual model for capturing
user needs useful for developers performing maintenance and
evolution tasks. Then it uses sophisticated summarisation
techniques for summarizing thousands of reviews and gen-
erating an interactive, structured and condensed agenda of
recommended software changes. We performed an end-to-end
evaluation of SURF on user reviews of 17 mobile apps (5 of
them developed by Sony Mobile), involving 23 developers
and researchers in total. Results demonstrate high accuracy
of SURF in summarizing reviews and the usefulness of the
recommended changes. In evaluating our approach we found
that SURF helps developers in better understanding user
needs, substantially reducing the time required by developers
compared to manually analyzing user (change) requests and
planning future software changes.

CCS Concepts
•Information systems→ Summarization; •Software and
its engineering → Software maintenance tools;

Keywords
Mobile Application; User Feedback; Text Summarization

1. INTRODUCTION
User feedback plays a paramount role in the development

and maintenance of mobile applications. The experience an
end-user has with the app is a key concern when creating and
maintaining a successful product. Consequently, developer

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

FSE’16, November 13-19, 2016, Seattle, WA, USA
c© 2016 ACM. ISBN 978-1-4503-4218-6/16/11. . . $15.00

DOI: http://dx.doi.org/10.1145/2950290.2950299

teams are interested in exploiting opinions and feedback of
end-users during the evolution of their software [21,45].

On distribution platforms such as the Apple Store and
Google Play, users can leave plain text reviews for the apps
they install and use. These reviews may not only contain
simple sentiments (e.g., “Great app!”), but they can pro-
vide valuable information regarding several topics that are
highly relevant to the development and maintenance of the
app [19,29]. In particular, user reviews may include (i) bugs
or issues that need to be fixed [29] (ii) summaries of the
user experience with certain features [12] (iii) requests for
enhancements [17], and (iv) ideas for new features [10, 29].
However, existing app distribution platforms provide limited
support for developers to systematically filter, aggregate and
classify user feedback to derive requirements [1]. Moreover,
manually reading each user review to gather useful feedback
is not feasible considering that popular apps receive hundreds
of reviews every day [22,29].

For this reason automated approaches have been proposed
in literature with the aim of reducing the effort required
to analyze feedback contained in user reviews [5, 9–13, 17,
18, 23, 28, 30, 46]. However, most of them only perform a
classification (or prioritization) of user reviews according to
specific topics (e.g., bugs, enhancements, etc.) [10, 12, 13,
17, 18, 23, 28, 33], without reducing the amount of reviews
and information developers have to deal with, which is very
large for popular apps. To the best of our knowledge, no
approach is able to, at the same time, (i) determine for a
large number of reviews the specific topic discussed in the
review (e.g., UI improvements, security/licensing issues, etc.),
(ii) identify the maintenance task to perform for addressing
the request stated in the review (e.g., bug fixing, feature
enhancement, etc.), and (iii) present such information in
the form of a condensed, interactive and structured agenda
of recommended software changes, which is actionable for
developers.

We argue that combining topic extraction, intention classi-
fication and the ability to synthesize well defined maintenance
tasks regarding specific aspects of an app will concretely help
developers in planning further software changes and meeting
market requirements.

Paper contribution. The contributions of our paper are
summarized as follows:

• we first define URM (User Reviews Model), a two-
level classification model which takes into account both
the users’ intentions (when giving feedback to develop-
ers) and the review topic, which is the specific aspect
of the app covered by the review;

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

FSE’16, November 13–18, 2016, Seattle, WA, USA
c© 2016 ACM. 978-1-4503-4218-6/16/11...

http://dx.doi.org/10.1145/2950290.2950299

499

http://dx.doi.org/10.1145/2950290.2950299

• we introduce SURF (Summarizer of User Review
Feedback), a novel approach, built on top of URM,
to automatically generate summaries of users feedback
with the aim of helping developers better understanding
user needs. SURF exploits summarization techniques
to summarize thousands of user reviews and generate
an interactive, structured and condensed agenda of
recommended software changes.

• we conduct an empirical study involving 12 develop-
ers/engineers from companies in Switzerland, Italy and
the Netherlands and 11 developers/engineers from the
development team of Sony Mobile in Japan, to investi-
gate the practical usefulness of summaries generated
by SURF in the developers’ “working context”;

• we make publicly available in a replication package12

with (i) material and working data sets of our study,
(ii) complete results of the survey, (iii) raw data (for
replication purposes and to support future studies),
and (iv) the prototypical implementation of SURF.

2. APPROACH
In this section, we detail URM and SURF, the model

and approach we use for synthetizing app reviews.

2.1 The User Reviews Model
URM aims to model informative paragraphs [33] contained

in app reviews from a software maintenance and evolution
perspective along two orthogonal dimensions:

1. User intention: modeling the user’s goals when writing
a review (e.g., Is the reviewer requesting a new feature or
reporting a bug?).

2. Review topic: capturing the specific topic covered by
the review (e.g., Is the writer discussing the user interface
or a pricing issue?).
Previous app review content classification attempts [13,20,

29] have seen limited adoption by researchers because they
consider just one of these two complimentary dimensions.
In recent work [33] we introduced a taxonomy that classi-
fies app review content into categories relevant for software
maintenance and evolution, namely feature request, prob-
lem discovery, information seeking, information giving and
other. However, this one dimensional classification results in
an insufficient leverage of the available review information,
because, for example, having a huge amount of reviews clas-
sified as feature requests is of limited use to developers trying
to distill actionable tasks.

For this reason, URM aims to enrich and complement the
preliminarily classification described in Table 1 by identifying
the specific topic of each review. In the rest of the paper
we refer to the aspects of an app targeted by a review as
the review topics. To determine a complete set of review
topics, we analyzed 1390 reviews present in the dataset of our
previous work [33]. Thus, we split the dataset in two parts:
(i) a training set Ttraining containing 438 randomly selected
reviews and (ii) a test set Ttest containing the remaining 952
reviews. Then, starting from an empty list of topics Ltopics,
two authors of the paper performed a manual labeling of
each sentence contained in Ttraining (we work at sentence
level since different sentences in the same review can contain
different kinds of feedback). During the labeling process,
when a sentence did not match any of the defined topics, a

1
http://www.ifi.uzh.ch/seal/people/panichella/tools/SURF.html

2
http://dx.doi.org/10.5281/zenodo.47323

Table 1: Intention Categories Definition
Information Giving Sentences that inform other

users or developers about some
aspect of the app.

Information Seeking Sentences describing attempts
to obtain information or help
from other users or developers.

Feature Request Sentences expressing ideas,
suggestions or needs for
enhancing the app.

Problem Discovery Sentences reporting unex-
pected behavior or issues.

Other Sentences not belonging to any
of the previous categories.

new topic was added to the topic list Ltopics, and the two
validators went through all the previously labeled sentences
to see whether it is more appropriate to tag some of them
with the newly defined topic. Vice versa, if a review sentence
matched an already defined topic in Ltopics, the sentence
was simply tagged with that topic. Since a review sentence
can refer to more than one topic (a user can ask to improve
the UI and in the same sentence request a bug fix related
to stability of the app), some sentences were tagged with
multiple labels. At the end of this process, a preliminary set
of 33 topics was defined3. Then, we merged (or clustered)
together review topics that are semantically related, and that
can generate redundancies and overlaps in the recommended
software changes. After this process, we obtained a set of 12
topic clusters, detailed in Table 2. However, a more accurate
process for investigating/removing possible overlaps in the
resulting clusters is part of our future agenda.

Table 2: Topic Clusters
Cluster Description
App sentences related to the entire app, e.g.,

generic crash reports, ratings, or general feed-
back

GUI sentences related to the Graphical User Inter-
face or the look and feel of the app

Contents sentences related to the content of the app
Pricing sentences related to app pricing
Feature or
Functionality

sentences related to specific features or func-
tionality of the app

Improvement sentences related to explicit enhancement re-
quests

Updates/
Versions

sentences related to specific versions or the up-
date process of the app

Resources sentences dealing with device resources such as
battery consumption, storage, etc.

Security sentences related to the security of the app or
to personal data privacy

Download sentences containing feedback about the app
download

Model sentences reporting feedback about specific de-
vices or OS versions

Company sentences containing feedback related to the
company/team which develops the app

URM assigns to each review sentence one of the intention
categories (detailed in Table 1) and one or more app topic
clusters (defined in Table 2). For instance, the example
sentence “I love this app but it crashes my whole iPad and it
has to restart itself.” will be classified as a Problem Discovery
involving the App and Model topics, since it reveals that the
user is experiencing an app crash while she is using a specific
device (i.e., iPad).

2.2 The SURF Approach
SURF automatically (i) extracts the topics treated in re-

views, (ii) classifies the intention of the writers, to suggest
the specific kinds of maintenance tasks developers have to
accomplish, and (iii) groups together sentences covering the
same topic. Figure 1 depicts an overview of the SURF process
activities, which we detail in the following sections.

3
http://www.ifi.uzh.ch/seal/people/panichella/tools/SURF/APPENDIX.

pdf

500

http://www.ifi.uzh.ch/seal/people/panichella/tools/SURF.html
http://dx.doi.org/10.5281/zenodo.47323
http://www.ifi.uzh.ch/seal/people/panichella/tools/SURF/APPENDIX.pdf
http://www.ifi.uzh.ch/seal/people/panichella/tools/SURF/APPENDIX.pdf

Figure 1: The SURF process

2.2.1 Data Collection
The most common app distribution platforms are heteroge-

neous with regard to how reviews are posted, and they collect
data in different kinds of data structures. For this reason we
designed a data exchange format for collecting information
that is potentially useful to developers and software analysts
for maintaining and evolving apps. Specifically, since XML
is particularly well suited for data where field lengths are
unknown and unpredictable and where field contents are
mainly text, we developed an XML data exchange schema
for representing review data from multiple sources. For each
user review, it stores: (i) the date on which the review
has been posted, (ii) the (star) rating given by the reviewer,
(iii) the handle of the user who posted the review, (iv) the
version of the app, (v) the title of the review, and (vi) the
review text itself. The output of the Data Collection phase
of SURF is a homogenized collection of reviews for each app
in a well defined XML format.

2.2.2 Intention Classification
SURF employs an approach we previously defined to au-

tomatically mine reviewer intentions [33]. Such an Intent

Classifier combines Natural Language Parsing (NLP), Sen-
timent Analysis (SA) and Text Analysis (TA) techniques
through a Machine Learning (ML) algorithm for detecting
sentences in user reviews that are important from a mainte-
nance perspective (see Table 1). To help other researchers
replicate the analysis performed in this step of SURF we make
available online4 the Java version of our Intent Classifier,
already used by some developers in Germany5.

2.2.3 Topics Classification
As discussed in Section 2.2, one of the aims of SURF is

to group sentences involving similar review topics (see Ta-
ble 2). In this step, SURF automatically associates one or
more concepts illustrated in Table 2 to each review sentence.

Definition of concept dictionaries. We argue that
discovering relevant keywords associated with the concepts
reported in Table 2 represents a crucial information for better
understanding relationships between concepts and informa-
tive user reviews. Thus, two authors of the paper (separately)
labeled each of the sentences in Ttraining (see Section 2.1)
with keywords that, in their opinion, led to the assignment
of a review topic to the sentence. E.g., the keywords “orienta-
tion” and “button” can indicate that the sentence deals with
the application’s GUI. We conjecture that on top of such

4
http://www.ifi.uzh.ch/seal/people/panichella/tools/ARdoc.html

5
http://bsautermeister.blogspot.ch/2015/12/

app-reviews-zu-powernapp-dienen-als.html

a labeled dataset it is possible to define an NLP classifier
able to determine the affiliation of a user review with specific
topics. Afterwards, the two raters discussed their keyword
assignments as well as possible discrepancies and finally cre-
ated, for each concept, a final collection of keywords (and
n-grams).

To make the dictionaries more exhaustive we used Word-
Net [25] to generate synonyms for all the keywords. However,
to obtain dictionaries having a good balance between ex-
haustiveness and coherency, we added the synonyms that
are, according to the Wu & Palmer semantic relatedness

(WUP) [47], at least 50% equal to the original set of keywords.
Among all the semantic relatedness metrics, we selected this
particular measure because it presents an upper limit (i.e.,
it is defined between 0 and 1) [47]. More formally, given an
ontology O (i.e., WordNet) made by a set of nodes C and
a root node R, establishing a threshold of 0.5 to the Wu
& Palmer metric means that the least common subsumer
(i.e., the nearest common node) between C1 and C2 (i.e., the
two nodes of the ontology for which we would compute the
semantic relatedness) must have a distance N from the root
node at least equal to a quarter of the sum of the distances
N1 and N2 (i.e., the distances between the root node R and
the nodes C1 and C2, respectively):

WUP =
2 ∗N

N1 + N2
≥ 0.5 =⇒ N ≥ N1 + N2

4
(1)

Oracle definition. Once the dictionaries were enriched
with WordNet synonyms, one of the authors and an external
validator (a software engineer with more than 6 years of
industrial experience) separately assigned each sentence in
Ttest (described in Section 2.1) to one or more of the 12
defined concepts. For 851 of these sentences, the two raters
assigned the same labels (i.e., inter-rater agreement 89.39%).
For the remaining 101 sentences the two raters assigned
different labels: 70% of them were sentences belonging to
multiple concepts and the raters decided to consider both
their respective suggested labels as correct; for 30% of these
sentences the raters were in disagreement. However, after a
separate discussion, they reached an agreement on the final
labeling. The manual labelling of each of the 952 sentences in
Ttest constitutes our oracle for evaluating the NLP classifier
described in the next paragraph.

Automatic concept identification. We built an NLP
classifier to automatically assign a sentence in a review to
one or more concepts (see Table 2). As first step we stemmed
each sentence using the Snowball Stemmer Algorithm [35] to
reduce words to their root form. Thus, we built the classifier
on top of the concept-related dictionaries (i.e., the concepts
dictionaries defined in the previous sub-steps) to assign to
each sentence in a review the probability to belong to one
or more concepts. More formally, let S and C be a sentence
and a concept respectively; let WC be the number of tokens
in S that also appear in the list of C-related keywords (i.e.,
the concepts dictionary of C defined in one of the previous
sub-steps); let WS be the total number of token in S, the
NLP classifier computes the probability that S falls in the
concept C as:

P(S,C) =
WC

WS
(2)

To avoid cases in which sentences are erroneously assigned
to a concept C because they contain just one word also
appearing in the C-related keyword list, the topic classifier
assigns to S all the concepts for which P(S,C) is greater

501

http://www.ifi.uzh.ch/seal/people/panichella/tools/ARdoc.html
http://bsautermeister.blogspot.ch/2015/12/app-reviews-zu-powernapp-dienen-als.html
http://bsautermeister.blogspot.ch/2015/12/app-reviews-zu-powernapp-dienen-als.html

than 0.05 (i.e., 5%). We evaluated the effectiveness of the
NLP classifier comparing the labels assigned by the classifier
with the labels assigned in the human oracle defined in the
previous sub-step (i.e., oracle definition). The effectiveness
of the classifier was evaluated relying on widely adopted
metrics in the information retrieval field [2]: precision, recall
and F-measure. The NLP classifier performed very well the
sentences assignment to topics achieving a global recall of
0.79, a global precision of 0.73, and a global F-measure of
0.76 (seeTable 3). Hence, we used such an NLP classifier in
this Topic Classification step of SURF.

2.2.4 Sentence Scoring and Extraction
SURF uses a sentence selection and scoring mechanism to

generate the summaries which is based on the following
observations:
(Obs1). Maintenance feedback first : user feedback discussing

bug reports and feature requests are more important
for developers than all others review types.

(Obs2). Review topics: developers need reasonably useful
sentences discussing a specific aspect of an app with
respect to other review sentences.

(Obs3). Review length: longer sentences are usually more
informative than shorter ones.

(Obs4). Popular features: reviews treating frequently dis-
cussed features may attract more attention of de-
velopers than reviews dealing with features or func-
tionalities rarely used or discussed by users.

The heuristics defined in this section are calibrated by using
reviews of the dataset described in Section 2.1 and validated
by two authors of the paper and an external validator (a
software engineer with more than 6 years of industrial expe-
rience).

Initial clustering and preprocessing. First, we needed
to filter out useless sentences and to cluster the remaining
ones according to their review topics. In particular, we dis-
carded all sentences with less than 3 tokens (e.g., “Good app”,

“Great feature”, etc.), which rarely provide useful information
for developers. Then, we cluster sentences belonging to the
same review topic and we remove duplicated in the summary
by applying the following process:
a. All the sentences are preprocessed applying the Snowball

Stemming algorithm [35] and stop-words removal.
b. For each pair of sentences (Si,Sj), we compute the dupli-

cate tokens rate (DTRi,j) through the formula:

DTRi,j =
DTi,j

TWj
(3)

where DTi,j is the number of duplicate tokens appearing
both in Si and Sj ; TWi and TWj are the total number
of tokens in Si and Sj respectively

Table 3: Concepts Classification Results

Table 4: Intention Relevance Scores
Problem
Discovery

Feature Re-
quest

Information
Seeking

Information
Giving

Other

3.0 3.0 1.0 1.5 0.5

c. In each pair of sentences (Si, Sj) that satisfies one of the
following condition:
(a) If TWj > 5 and DTRi,j > 0.75 =⇒

i. Si is removed, if TWj ≥ TWi

ii. Sj is removed, otherwise
(b) If TWj ≤ 5 and DTRi,j > 0.85 =⇒

i Si is removed, if TWj ≥ TWi

ii Sj is removed, otherwise

Scoring phase. We assign a global score GS(S,C) to each
sentence S with respect to a topic C using the equation:

GS(S,C) = IRSS ∗ P(S,C) ∗ [LS ∗ (1 + MFWR(S,C))] (4)

where, the partial scores IRSS , P(S,C), LS , and MFWR(S,C)

corresponds to our four observations, i.e, Obs1-Obs4. The
first partial score IRSS takes into account our Obs1: it
assigns to each sentence S an initial score on the basis of
its intention category assigned during the classification step.
Specifically, we statically provide different relevance scores to
each of the intention categories defined in Table 1, which are
reported for completeness in Table 4. Since different relevance
scores could be used, a systematic study on the impact of
different scores is part of our future agenda. However, we did
not observed any variation of the quality of the generated
summaries using different scores. The second partial score
P(S,C) is the probability of a sentence S to be relevant for
a given topic C, previously defined in section Section 2.2.3.
Thus, it is used to deal with Obs2. Indeed, if a sentence
S share many words with the list of C-related keywords,
then, S is highly related to C resulting in a higher score.
According to Obs3, longer sentences are more useful, thus,
the length has to be incorporated in GS(S,C). To this aim,
we use the third partial score LS , which denotes the total
number of characters constituting the sentence S. Finally,
for each sentence S belonging to the topic C, we compute
the most frequent words rate, i.e., MFWR(S,C), to take into
account our Obs4. In particular, MFWR(S,C) measures the
ratio of frequent words appearing in the sentence (MFR(S,C))
with respect of the number of total words in the sentence
(TWS):

MFWR(S,C) =
MFR(S,C)

TWS
(5)

Sentences belonging to each of the 12 topics reported in
Table 2 are ranked through the scoring function GS(S,C) in
equation 4. However, only sentences in the top positions of
the ranked list are selected. More formally, let NSC be the
number of total scored sentences for the topic C, the sentences
occupying the first 0.7 ∗ NSC positions in the ranked list
(i.e., about 2/3 of total sentences) are extracted for further
processing, while the remaining sentences, occupying the last
0.3 ∗NSC positions, are discarded.

2.2.5 Summary Generation
We needed to find a proper way to present the mined

review sentences to developers such that they can (i) easily
retrieve the necessary information, (ii) properly understand
the maintenance tasks to accomplish, and (iii) identify which
parts of the app to change. To handle this, we decided to
generate summaries as structured HTML since it represents
the right compromise between compactness, informativeness
and usability. Indeed, using this format the summaries can

502

Figure 2: An extract of summary for Stone Flood

be easily reported in a hierarchical way, giving to developers
control over paths of browsing the information that can be
progressively expanded at multiple levels of detail.

In this step, SURF summarizes the sentences collected
from user reviews (pre-processed and scored in the previous
steps) via clusterization, i.e., grouping them according to
their review topics and intention categories. In particular, it
performs a two-level clustering: first it groups the sentences
according to their topics (e.g., App, GUI, etc.) leveraging on
the GS(S,C) scores computed in the previous SURF step; then,
sentences in each topic are grouped by intention categories,
which were assigned during the intention classification step.
Finally, groups in the second level are ordered as follows:
we first show all the BUGS (i.e., the sentences classified as
Problem Discovery), then all the REQUESTS (i.e., Feature
Request), then all the QUESTIONS (i.e., Information Seek-
ing) and finally all the INFO (i.e., all the sentences classified
as Information Giving and Other).

Moreover, when clicking on each of the sentences reported
in the summary, a popup presents to developers the original
review from which the specific sentence has been extracted,
including app version, user handle, date, star rating, title
and the full text. SURF also uses labels to explicitly indi-
cate the belonging semantic category of each sentence (i.e.,
BUG, REQUEST, QUESTION, or INFO) with the aim at
helping developers in planning and accomplishing specific
maintenance task (e.g., implementation of new functionality).
Finally, in order to further increase the readability of the
summaries, SURF shows a maximum of ten sentences for the
INFO category, i.e., only the ten sentences most frequently
reported by users in the reviews (highest GS(S,C) score).

Figure 2 depicts an extract of the summary for the app
Stone Flood (the complete summary can be found online6).
In particular, Figure 2 reports two feedbacks (extracted
from app reviews) that could be beneficial for developers
interested in fixing bugs experienced by users (points 2 and
3 in Figure 2) in the UI (point 1 in Figure 2) of the app.

3. STUDY DESIGN
The goal of our study is to investigate to what extent

the summaries generated by SURF help developers in bet-
ter understanding user needs and planning future software
changes. Specifically, we measure usefulness in the context
of a working scenario in which 23 developers and researchers
analyzed user feedback contained in user reviews relying on
SURF with the goal of identifying feedback useful from a
software maintenance perspective (see Section 3.2). The
quality focus concerns the capability of developers to collect
useful user feedback when supported by summarization tools.
The perspective is that of researchers interested in evaluating
the effectiveness of automatic approaches for user feedback
summarization when applied in a real working context. We
therefore designed our study to answer the following research

6
http://www.ifi.uzh.ch/seal/people/panichella/tools/SURF/stoneFlood

summary.zip

Table 5: Dataset

questions (RQs):

• RQ1: Is URM a robust and suitable model for repre-
senting user needs in meaningful maintenance tasks for
developers? Our first goal is to verify whether devel-
opers consider URM an enough robust and suitable
framework to model users’ needs in terms of software
maintenance tasks.

• RQ2: To what extent does a summarization technique
developed on top of URM help mobile developers better un-
derstand the users’ needs? We want to assess whether
SURF facilitates the analysis of user feedback by devel-
opers. Thus, starting from the general RQ2 we derive
two further sub-questions that need to be answered to
qualitatively and quantitatively measure the practical
usefulness of SURF and the impact of its generated
summaries in the developers’ working context:

– RQ2-a: How do app review summaries generated
by SURF impact the time required by developers to
analyze user reviews?

– RQ2-b: How do developers perceive (or consider)
the app review summaries generated by SURF in
terms of correctness, content adequacy, concise-
ness, and expressiveness?

3.1 Context
As shown in Table 5 the context of our study consists of

3439 reviews from 17 different apps, belonging to 9 different
app categories and mined from 4 different online platforms.
The reviews are extracted, for each app, in a period of
between June 1st, 2015 and January 1st, 2016. In order
to evaluate SURF in a real working context, Sony Mobile
provided us with access to the Google+ beta test pages of 5
apps (i.e., Lifelog Beta, TrackID Beta, Sketch Beta, Movie
Creator Beta, Video Beta) used by developers to collect
feedback by beta testers about new functionalities. Table 5
reports the main information of all the apps considered
in our study: (i) the app name, (ii) the app category,
(iii) the platforms from which reviews have been gathered,

503

http://www.ifi.uzh.ch/seal/people/panichella/tools/SURF/stoneFlood_summary.zip
http://www.ifi.uzh.ch/seal/people/panichella/tools/SURF/stoneFlood_summary.zip

and (iv) the number of reviews. For each user review involved
in our study, we collected the title, comment and posting
date, the author’s nickname, the version of the app to which
the review is referring, and the star rating. It is important
to highlight that both SURF and URM have been defined
relying on app reviews contained in a different dataset from
the one used for answer our research questions. Specifically,
URM and SURF was defined and calibrated on reviews of
the dataset described in Section 2.1 while the evaluation of
both URM and SURF was performed considering reviews of
the dataset described in Table 5.

3.2 Analysis Method
To answer RQ1 and RQ2, we performed two experiments

involving developers, testers, managers and researchers from
the Netherlands, Switzerland, Italy and Japan (in total 23
participants) asking them to complete a survey7 to evaluate:
(i) the suitability and robustness of URM (RQ1), (ii) the
practical usefulness of SURF in a real working environment
and how it can speed up the process of collecting useful
review feedback (RQ2-a) and (iii) the quality of the sum-
maries generated by SURF according to 4 widely known
dimensions [26,34,43] (RQ2-b):

1. Correctness, which measures the accuracy of the au-
tomated classification made by SURF

2. Content adequacy, which assesses whether SURF gen-
erates summaries containing all important information
to understand user needs

3. Conciseness, which assesses whether SURF generates
summaries not containing any superfluous and un-
needed information

4. Expressiveness, which assesses whether SURF pro-
duces summaries that are easy to read and whether the
way they are presented facilitates the understanding of
the user needs

Table 6 summarizes the questions in our survey. We de-
signed two experiments: the first mainly aims at assessing
the quality of extracted feedback and the meaningfulness
thereof for developers, while the second aims to investigate
the practical usefulness of SURF’s summaries in a working
environment when compared to the analysis of app reviews
without the support of the summaries.

Experiment I. To evaluate SURF we first generated the
summaries of reviews on 15 apps: Picturex, PowernAPP,
CSTP, BLINQ, Doodle Pairs, Karaoke SingMe FreeLite,
Karaoke SingMe, Minesweeper Reloaded, Sheep-O-Block,
Stone Flood, Weight Track, Wifi File Transfer, Movie Creator
Beta, Video Beta, and TrackId Beta. Then we contacted all
the original developers of each of the selected apps and asked
them to complete the survey and evaluate the summaries
generated by SURF. Initially, all of the original developers
of such apps confirmed their availability to participate in
our study. However, in the end, only six of them were
actually able to participate. Consequently, for the remaining
apps, we asked other developers (or experts) to evaluate
the usefulness of SURF’s summaries. Thus, for this first
experiment we involved 16 participants in total. 6 of them
are the original developers of five applications considered
in our dataset (i.e., Picturex, PowernAPP, CSTP, Movie
Creator Beta, and Video Beta) while of the others, 4 are
researchers in the field of software engineering and 6 are

7
http://www.ifi.uzh.ch/seal/people/panichella/tools/SURF/Survey.pdf

Table 6: Survey Questions

software developers employed in Italian, Swiss, Dutch and
Japanese companies. We assigned to each participant an
app (except for the six original developers involved in our
study) and provided the corresponding summaries generated
by SURF. After that we explained to the participants the
tasks to be performed during the experiment (i.e., how to
browse the summaries and validate them) and asked them
to answer the questions of our survey.

Experiment II. The second is a controlled experiment
involving 7 participants, all employed at Sony Mobile. The
survey participants had the following profiles: (i) test en-
gineers who do not program but deal with bug db (e.g.,
Bugzilla), (ii) device driver engineers who have never worked
with applications, (iii) product project managers who care
about software requirements, deadlines, and people workload,
and (iv) team managers who evaluate technical performance.
The summaries enrolled in this experiment are regarding
the user reviews of two Sony Mobile’ apps (Lifelog Beta and
Sketch Beta). The data of the reviews was collected from
specific Google+ pages of Sony Mobile.

We first separated the participants in two groups: Group
1 (3 subjects) and Group 2 (4 subjects). Then we performed
two sub-experiments: Experiment II-A and Experiment II-B.
During the Experiment II-A, Group 1 analyzed the original
reviews contained in the Google+ page of Lifelog Beta try-
ing to manually extract useful feedback and to classify it
according to Tables 1 and 2. Meanwhile, Group 2 analyzed
the original reviews contained in the Google+ page of Sketch
Beta in the same fashion. Likewise, during Experiment II-B,
Group 1 analyzed the summary of Sketch Beta’s reviews gen-
erated by SURF, with the purpose of validating its content,
while Group 2 validated the Lifelog Beta’s summary. The
time for the entire Experiment II was of 30 minutes (depend-
ing on the availability of Sony Mobile’ participants): (i) 5
minutes for explaining the purpose of the study, sharing the
materials and grouping participants in Group 1 and Group 2,
(ii) 10 minutes for experiment II-A and experiment II-B, and
(iii) 15 minutes for answering the questionnaire. The short
time was necessary to remove the influence of confounding

504

http://www.ifi.uzh.ch/seal/people/panichella/tools/SURF/Survey.pdf

Table 7: Classification Accuracy

factors (e.g., collaboration with colleagues, access to the web)
and have high confidence in the (exclusive) impact of our
method on the task’s outcome. We plan to replicate our
experiments involving developers of further apps, performing
longer evaluation tasks.

For each task, the participants reported the number of
reviews they analyzed and classified during Experiments II-A
and II-B and answered the questions of our survey.

3.3 Research Method
In order to assess the suitability and the robustness of

URM and answer RQ1 we asked the survey participants to
rank the categories of reviews reported in the summaries (Q7
in Table 6) and to also suggest possibly missing categories
(Q7.1 in Table 6).

To answer RQ2-a we asked the survey participants to
report the time required for performing the validation of
summaries we provided (Q2 in Table 6) and to express their
opinion on the speed-up introduced by the summary in ana-
lyzing the user feedback (Q6 in Table 6). To qualitatively
complement this quantitative information we also asked re-
spondents to judge the usefulness and the comprehensibility
of the provided summaries (Q3 in Table 6), and to provide
their opinion on any difficulties when analyzing the user
feedback in the reviews WITH or WITHOUT the provided
summary (Q4 and Q5 in Table 6).

Finally, to answer RQ2-b we asked survey participants
to manually validate the classification correctness of data
contained in the summaries (Q1 in Table 6) and provide their
opinion on (i) the content adequacy (Q9 of Table 6), (ii) the
conciseness (Q10 of Table 6), and (iii) the expressiveness
(Q12 of Table 6). We complement this data by asking survey
respondents for their opinion on the statement in Q8 of
Table 6 and for a general judgment on the usefulness of the
summarization approach in a real working context (Q13 in
Table 6).

4. RESULTS
In this section we summarize the results obtained in our

experiments.
4.1 RQ1 Results

To answer RQ1, we analyzed replies collected from survey
participants of both experiments.

78.26% (18 out of 23) of participants declared that URM is
not missing any relevant information and that the topics con-
sidered in URM are exhaustive, or maybe even too detailed
(i.e., just one participant complained about the number of
topics in the model:“. . . don’t need many categories, 3 - 5 cat-
egories are enough. . . ”). The remaining feedback comprised
proposals to (i) discriminate change requests between adap-

tive and corrective maintenance, (ii) add a raging customers
category, (iii) introduce an advertisement category, (iv) add
a topic dealing with “the connection to external devices”, and
(v) insert a topic treating the “comparison with other apps”.

Since the aim of our work is to facilitate the extraction
of useful feedback from a maintenance perspective, we be-
lieve that the raging customers and advertisement categories
would not add valuable information for developers, while the
other suggestions can be considered for future improvements
of the model.

From a software development perspective participants con-
sidered the most important topics highlighted by URM to
be: (i) the App (82.61% of participants ranked it in the
first three positions), (ii) the GUI (60.87% of participants
ranked it in the first three positions), and (iii) the Feature
or Functionality (34.78% of participants ranked it in the
first three positions). Vice versa, the topics considered least
important are (i) the Company (69.57% of participants
ranked it in the last three positions), (ii) the Model (65.22%
of participants ranked it in the last three positions), and
(iii) Download (52.17% of participants ranked it in the last
three positions). A possible explanation for these ranking re-
sults may be related to the fact that app developers are more
concerned with collecting functional requirements rather than
non-functional ones. Survey respondents also considered the
intention classification of sentences that URM provides to
be very interesting. For instance, some participants say that

“. . . I found the classification GUI-BUG, APP-BUG, etc very
useful. . . ”, “. . . in case I’m searching for BUGs, I can just
look for the category, instead of reading everything over and
over again. . . ”, “. . . categorization of reviews with a summary
is very helpful to me. Especially the categories/topics related
to bugs, crashes and security issues. . . ”. In summary, we can
conclude that:

RQ1 According to the developers’ judgment URM has
shown to be robust and suitable enough for representing user
needs in meaningful maintenance tasks and to be usable
in practical contexts. The most important topics modeled
in URM are the App, GUI and Feature or Functionality
categories.

4.2 RQ2 Results
4.2.1 RQ2-a Results

Experiment I results. Survey participants spent, on av-
erage, 28 minutes and 12 seconds for browsing and validating
the summaries. 93.75% (15 out of 16) of participants consid-
ered our approach time-saving: 75% (12 out of 16) of survey
respondents replied that SURF allows them to save at least
one third of the time that they would otherwise have spent

505

on manually collecting and analyzing user reviews. Among
these 12 participants, 9 subjects (75%) claim that, with the
summaries, the saved time ranges between 50% and 95%,
while 18.75% (3 out of 16) of participants affirmed that our
approach allows to save 10%-20% of time. Only one subject
stated that summaries do not allow to save any time. We
noticed that among the apps having less than 100 reviews,
67% (6 out of 9) of subjects declared that our approach
allows to save more than 50% of time, but among the apps
having more than 100 reviews we observe a degradation of
this result. Indeed, for such apps the subjects who claim
50% as the saved time are just 3 out of 7 (47%). A possible
explanation for this degradation could reside in the fact that,
for apps with more reviews, SURF generates longer summaries
which need more time to be read and analyzed and this could
influence the perception of the real gain of time enabled
through the approach.

These results are related to the time saving capability of
SURF perceived by developers. However, this measure is fairly
subjective and a more quantitative evaluation is required.
Thus, in order to avoid a biased estimation of these results,
we discuss the validation times declared by the subjects
in the survey (Q2 in Table 6) and compare them with the
execution times required by SURF to generate the summaries.
The execution times have been measured through a 32-bit
Intel Celeron Dual-Core CPU T3500 2.10 GHz machine with
2 GB DDR3 RAM running Windows 7. On average the tool
spent about 1.05 seconds per review. Indeed, for analyzing
each app, that in average has 220 reviews, SURF requires an
average execution time of 3 minutes and 51 seconds. The 15
summaries involved in Experiment I contain, in total, 1737
sentences and each summary contains, on average, around 116
sentences. Considering that the average number of sentences
is 116, survey participants spent an average validation time
of 14.59 seconds per sentence (since the average validation
time in the experiment is 28 minutes and 12 seconds). This
means that, when supported by SURF, a developer spent,
for extracting, analyzing and validating each user feedback
an average total time of 15.64 seconds (i.e., 14.59 seconds +
1.05 seconds). Guzman et al. [12] demonstrated that, for a
fine-grained manual analysis of 900 user reviews, in the best
case, developers spent 8 hours. We can infer that validators
in [12] spent an average time of 32 seconds for analyzing each
user review feedback. Thus, when supported by SURF, the
time required by developers for analyzing each user feedback
decreases by at least 51.12% (from 32 to 15.64 seconds).

From a qualitatively point of view, 87.50% of subjects
considered the provided summaries highly/enough useful and
comprehensible (see Q3 in Table 8) and 62.50% of partici-
pants affirmed that analyzing user feedback with the provided
summaries is easy (see Q4 in Table 8).

Experiment II results. The results of Experiment II
empirically confirm most of the results obtained in Exper-
iment I. However, contrary to Experiment I, only 3 out 7
participants (42.86%) declared that our approach allows to
save 30%-50% of time. In this case the time saving capability
of SURF perceived by developers is, again, subjective and a
more quantitative evaluation is needed. We notice that in Ex-
periment II-A, when analyzing user feedback using Google+
pages during a time slot of 5 minutes, each of the subjects
extracted, on average, 5.86 feedbacks useful for software
maintenance. Vice versa, in Experiment II-B, when ana-
lyzing user feedback using SURF’s summaries, in the same

Table 8: Aggregated answers from participants

Table 9: Raw data of the questionnaire concerning
the evaluation of SURF summaries.

Content adequacy

Response category
% of Ratings

Exp I Exp II
A) Is not missing any information. 43.75% 14.28%
B) Is missing some information but the miss-
ing information are not necessary to have an
overview of users’ needs

25% 28.57%

C) Is missing some very important information 25% 42.86%
D) Not sure 6.25% 14.29%

Conciseness

Response category
% of Ratings

Exp I Exp II
A) Has no unnecessary information. 87.50% 28.57%
B) Has some unnecessary information. 12.50% 57.14%
C) Has a lot of unnecessary information. 0% 0%
D) Not sure 0% 14.29%

Expressiveness

Response category
% of Ratings

Exp I Exp II
A) Is easy to read and understand. 68.75% 28.57%
B) Is somewhat readable and understandable. 18.75% 57.14%
C) Is hard to read and understand. 12.50% 14.29%

time, subjects extracted in average many more feedbacks,
i.e., 16.57 instead of 5.86. This means that for extracting
a single useful feedback without the summaries, the partici-
pants spent, on average, 51.19 seconds, while for analyzing
(and validating) a single feedback extracted through SURF,
the subjects spent, on average, 18.10 seconds. For the two
apps involved in the Experiment II (i.e., Lifelog Beta and
Sketch Beta) there were, in total, 259 user reviews and the
tool had a total execution time of 10 minutes and 58 seconds
for generating the two summaries. Thus, considering that, in
this experiment, the average execution time required by the
tool for each review is 2.54 seconds, we can conclude that
when supported by SURF the time required by participants
for extracting (and analyzing) each user feedback decreases
from 51.19 to 20.64 (18.10 + 2.54) seconds, i.e., 59.68%.

It’s important to highlight that 27 out of 41 (i.e., 66%) of
feedbacks manually extracted by subjects also appear in the
summaries automatically generated by SURF. In summary,
we can conclude that:

RQ2-a Developers consider the summaries generated by
SURF useful (manually extracted feedback appears also in
the automatic generated summaries) and comprehensible.
SURF helps to prevent more than half of the time required
by developers for analyzing users feedback and planning
software changes.

506

4.2.2 RQ2-b Results
Experiment I results. Table 7 shows for each app (each

row) and each app topic (each column) the amount of sen-
tences misclassified by SURF according to the judgment of
respondents as well as the total sentences appearing in the
summary. The validation task performed by the survey par-
ticipants highlights the very high classification accuracy of
SURF, which is 91%.

68.75% (11 out of 16) of subjects considered the summaries’
content to be adequate: 7 out of 11 participants affirmed that
summaries we provided have no loss of information, while 4
of them declared that, even if there were a possible informa-
tion loss, our summaries still provide a complete overview
of user needs (see Table 9). On the contrary, 4 subjects
out of 16 (25%) believed that some important information
does not appear in the summaries (e.g., pictures or videos
of the original reviews that could explain the context for
reproducing bugs).

About conciseness, 87.50% of subjects (14 out of 16) de-
clared that summaries do not contain unnecessary informa-
tion (see Table 9), while 2 subjects out of 16 (12.50%) said
that they contain just some unnecessary information (e.g.,
sentences that do not provide any useful information for
developers).

As shown in Table 9, 87.5% (14 out of 16) of subjects
consider the provided summaries readable and easy to un-
derstand (11 out of 14) or somewhat readable and under-
standable (3 out of 14). For example, participants say about
the summaries generated by SURF: “. . . it’s simple & use-
ful. . . ”, “. . . everything is very compact and we have a good
overview. . . ”, “. . . The summaries are very concise and easy
to read. . . ”, “. . . The information is more on less reorganized
and expressed in form of change requests which I find very use-
ful. . . ”, “. . . It is very clear and hierarchically organized. . . ”,

“. . . The summary is self explanatory. . . ”, “. . . the use of pop-
ups allows a developer to trace the entire user comment. . . ”).
2 subjects (12.50%) believed that the summaries are hard
to read and understand (e.g., “. . . It is presented in a very
old-fashioned HTML style”).

Moreover, 87.5% of subjects considered SURF useful in a
working context (see Q13 in Table 8): “. . . If we have more
huge feedbacks, I think this system is useful. I think this can
be used for not only reviewing details of each feedback but also
understanding statistical bug/request trends. . . ”, “. . . The tool
you propose is very useful to highlight the most useful reviews.
Without your tool reviews are just reviews, not requests. . . ”).

Experiment II results. 42.86% of participants (3 out
of 7) declared that the provided summaries are lacking some
important information (see Table 9), like screenshots posted
by beta-tester useful for reproducing certain bugs (i.e., 4
out of 7 participants complain about this issue). However,
screenshots are not allowed in the user reviews of the most
popular mobile distribution platforms and our approach was
originally conceived to collect data from these platforms, and
not from pages hosted on a general purpose social network
(i.e., Google+). As shown in Table 9, 28.57% of the sub-
jects (2 out of 7) affirmed that summaries do not contain
unnecessary information, while 4 participants (i.e., 57.14%)
said that they contain some unnecessary information (e.g.,
sentences not providing any useful information for developers
or duplicate data). Regarding the expressiveness, 85.71%
of the participants (6 out of 7) claimed the summaries are
readable and understandable (see Table 9). Furthermore, all

the subjects generally considered the summaries highly useful
for better understanding user needs (see Q13 in Table 8). In
summary, we can conclude that:

RQ2-b According to the survey participants, the summaries
generated by SURF are reasonably correct, adequate, con-
cise, and expressive. Moreover, they are also considered
useful in a real “working context”.

Feedback of survey participants. Some of the partici-
pants suggested to extend SURF’s functionality to make them
even more readable For instance: “. . . I would improve the
report design with a more readable interface and by includ-
ing extra information. . . ”, “. . . To make the summary more
immediate would need to enter a statistical graph for all top-
ics. . . ”, “. . . a better graphic: a graphic report of the amounts
of bugs, requests, info etc, a navigation bar or menu, hierar-
chically expandable categories/folders, some categories filters
and a more efficient visual classification of the distributions
and quality of the feedbacks. . . ”).

5. THREATS TO VALIDITY
This section outlines potential threats to the validity of

our study.
Internal validity. These threats concern confounding

factors that could influence our results. The main threat
to internal validity in our study is that the assessment is
performed on data provided by human subjects, hence it
could be biased. To counteract this issue, we selected 23 dif-
ferent subjects in our study who (i) meet different profiles in
the field of software development, (ii) have different cultural
backgrounds (i.e., they come from 4 different nations), and
(iii) 6 of them were the original developers of 5 apps in our
dataset (see Section 3.1). Moreover, in the Experiment I,
the validation times are manually reported by the subjects:
they could entail imprecisions. For alleviating this issue we
provided precise timing instructions to participants. Another
issue consists in the preventive assignment of some scores.
We statically assign some of the values on the basis of certain
observations. Further investigation is needed to establish
whether different distributions of these values enable better
results.

External validity. These kinds of threats relate to the
generalizability of our findings. Our experiments are small
in scale (i.e., 17 apps out of millions) and the chosen apps
may not be representative. To mitigate this issue we inves-
tigated user reviews of apps belonging to 9 different app
categories and mined 4 different online platforms (see Sec-
tion 3.1). Specifically, to assess the robustness of SURF in
classifying and summarizing user feedback, we considered
reviews that contain different vocabularies and were written
by different user audiences: users of these apps (i) interact
with devices and technologies in different ways, (ii) belong
to different age groups, and (iii) have different expectations.
In Experiment II, participants validated the summaries for a
total time of 10 minutes. Specifically, the availability of Sony
Mobile’ participants in performing Experiment II was only
30 minutes, of which (i) 5 minutes were spent explaining
the purpose of the study, sharing the materials and group-
ing participants in Group 1 and Group 2, (ii) 10 minutes
were used for conducting Experiment II-A and Experiment
II-B, and (iii) 15 minutes were available for answering the
questionnaire. Manually analyzing the user feedback for 10
minutes is not sufficient to generalize our findings. However,
in Experiment I, participants had all the time they needed
to validate recommended feedback and analyze reviews. It is

507

important to highlight that the gain times (RQ-a) obtained
when using SURF are almost identical in Experiment I and
Experiment II. In future work we are interested in replicating
the study involving additional developers of other companies
to consolidate our findings. Finally, only one of the apps
in our dataset is not free (Karaoke SingMe). Commercial
apps may have different review patterns. In the future, for
alleviating this threat, we plan to extend the investigation
to the user reviews of more commercial apps.

6. RELATED WORK
Several researchers have focused on mining and analyzing

app data with the goal of deriving important information
to help developers evolve their apps [9,15,29,30,33,40,41].
First of all, Harman et al. introduced the concept of app
store mining and identified important correlations between
the customer rating and the download rank of apps [15].
Pagano et al. investigated the correlation between reviews
and ratings [29] while Bavota et al. presented a study
revealing a direct relationship between the rating of an app
and the fault-proneness of the underlying API used by the
developers [3].

Recently, approaches have been proposed for automatically
mining requirements from app reviews [4, 10,12,17,23,31,33,
39]. For instance, Chandy et al. used a Latent Class graphical
model, clustering reviews to identify spam [4]. Gu et al. on
the other hand focused on identifying positive reviews using
a pattern-based parsing approach to extract opinions and
summarize reviews [11]. Guzman et al. performed sentiment
analysis to extract coherent features from reviews that relate
to requirements evolution tasks [12].

Numerous researchers have also applied natural language
processing and text retrieval techniques towards automating
the extraction of useful content from app reviews. Specifi-
cally, Iacob et al. used Latent Dirichlet Allocation to extract
feature requests from user reviews [17] while Carreno et al.
use topic modeling to extract common topics in a corpus
of user reviews and summarize each topic with a few sen-
tences [10]. Chen et al. presented a computational framework
which automatically groups, prioritizes and visualizes infor-
mative reviews [5]. Likewise, Maalej et al. classified app
reviews into bug reports, feature requests, user experience
and ratings [23]. Panichella et al. [33] proposed an approach
that combines natural language parsing, sentiment analysis
and text analysis techniques, through a Machine Learning
(ML) algorithm in order to detect sentences in user reviews
that are important from a maintenance perspective. We rely
on this approach for performing the intention classification
described in Section 2.2.2. Most of the automated approaches
discussed above perform an automatic classification (or clus-
tering/prioritization) of user reviews according to specific
topics (e.g., bugs, features etc.) and, as pointed out by Gu
et al., they “are based on a bag-of-word assumption without
considering sentence structures and semantics” [11].

Our research represents a cross-section of the field of
issue categorization [16] and classification/summarization
of natural language corpora [7, 8, 32, 36–38, 44] or source
code [6, 14,24,26,27,42,43] in the specific context of mobile
app reviews. From an engineering point of view, our work
extends the line of research on mining requirements from
app reviews and it is novel for three main reasons. First
of all we present URM, a conceptual model that takes into
account both the users’ intentions (when giving feedback
to developers) and the aspect concerning the app, which is

the subject of the review, to model users’ needs in terms of
software maintenance and evolution tasks that are impor-
tant for developers. Moreover, we propose a novel approach,
namely SURF, which combines sophisticated summarization
techniques for generating (according to URM) summaries of
thousands of user reviews in form of an interactive, structured
and condensed agenda of future change tasks. Finally, we
evaluate the impact of the generated summaries in a real
scenario where developers analyzed feedback in user reviews
of real mobile apps with the support of SURF’s summaries.

To the best of our knowledge only the work by Gu et
al. [11] is closely related to ours. Indeed, Gu et al. proposed a
summarization framework, called SURMiner, which classifies
reviews into five categories and extracts aspects (or opinions)
in sentences. The approach by Gu et al. considers aspect
evaluation sentences, from which it extracts aspect-opinion
pairs, associates a sentiment value to each pair and provides
developers with positive and negative opinions about each
aspect. Our approach is based on URM, which models the
user feedback as explicit maintenance tasks considering a
broader set of review types (see Table I and II). Thus, it
does not only deal with feedback reporting user opinions
about aspects (that are modeled in the Information Giving
category). SURF’s summaries present to developers also
feature requests and bug reports related to specific parts of
an app.

7. CONCLUSION
SURF’s ability to summarize thousands of app reviews in

form of an interactive, structured and condensed agenda of
recommended software changes represents a significant step
forward on the cutting edge of app review mining. SURF
assists developers in effectively and quickly understanding
user needs and substantially reduces the time required for
both the manual analysis of user feedback and the planning
of software changes. Through SURF a developer can quickly
become aware of requests and issues reported by the users, for
instance to add a new option in the UI, to fix a stability issue
or to protect the privacy of the user, all without analyzing
hundreds of useless reviews. We assess the robustness and
suitability of URM (RQ1) as well as the usefulness of SURF
(RQ2) in a working context by conducting two experiments
involving 17 real-word apps and 23 subjects having different
profiles in the field of software development.

In future work, we plan on making the summarization in-
terface more interactive, using more effective visualizations of
feedback distributions. Moreover, we are interested in (i) im-
proving the classification capabilities of SURF by adding
new natural language heuristics, (ii) adding internationaliza-
tion (as currently only English reviews are supported) and
(iii) implementing, on top of SURF, a mechanism able to
recognize which part of the source code needs to be changed
in the app to perform the change tasks suggested by SURF.
We finally, plan to integrate a prioritization mechanism in
SURF to help developers focus on the most relevant tasks.

Acknowledgments
We thank Alessandro Di Sorbo for his help in the human
oracle building of our approach. We also thank all prac-
titioners from Italy, Switzerland, Netherlands and Japan,
and employees of Sony Mobile (Tokyo), who participated to
our study. Finally, Sebastiano Panichella gratefully acknowl-
edges the Swiss National Science foundation’s support for the
projects “Essentials” (SNF Project No. 200020−153129) and

“SURF-MobileAppsData” (SNF Project No. 200021−166275).

508

8. REFERENCES
[1] U. Abelein, H. Sharp, and B. Paech. Does involving

users in software development really influence system
success? IEEE Software, 30(6):17–23, 2013.

[2] R. A. Baeza-Yates and B. Ribeiro-Neto. Modern

Information Retrieval. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1999.

[3] G. Bavota, M. Linares-Vasquez, C. Bernal-Cardenas,
M. Di Penta, R. Oliveto, and D. Poshyvanyk. The
impact of api change- and fault-proneness on the user
ratings of android apps. Software Engineering, IEEE

Transactions on, 41(4):384–407, April 2015.

[4] R. Chandy and H. Gu. Identifying spam in the ios app
store. In Proceedings of the 2Nd Joint WICOW/AIRWeb

Workshop on Web Quality, WebQuality ’12, pages 56–59,
New York, NY, USA, 2012. ACM.

[5] N. Chen, J. Lin, S. C. H. Hoi, X. Xiao, and B. Zhang.
Ar-miner: Mining informative reviews for developers
from mobile app marketplace. In Proceedings of the 36th

International Conference on Software Engineering, ICSE
2014, pages 767–778, New York, NY, USA, 2014. ACM.

[6] A. De Lucia, M. Di Penta, R. Oliveto, A. Panichella,
and S. Panichella. Labeling source code with
information retrieval methods: an empirical study.
Empirical Software Engineering, 19(5):1383–1420, 2014.

[7] A. Di Sorbo, S. Panichella, C. A. Visaggio, M. Di
Penta, G. Canfora, and H. C. Gall. Development emails
content analyzer: Intention mining in developer
discussions (T). In 30th IEEE/ACM International

Conference on Automated Software Engineering, ASE 2015,

Lincoln, NE, USA, November 9-13, 2015, pages 12–23,
2015.

[8] A. Di Sorbo, S. Panichella, C. A. Visaggio, M. Di
Penta, G. Canfora, and H. C. Gall. DECA:
development emails content analyzer. In Proceedings of

the 38th International Conference on Software Engineering,

ICSE 2016, Austin, TX, USA, May 14-22, 2016 -

Companion Volume, pages 641–644, 2016.

[9] B. Fu, J. Lin, L. Li, C. Faloutsos, J. Hong, and
N. Sadeh. Why people hate your app: Making sense of
user feedback in a mobile app store. In Proceedings of

the 19th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, KDD ’13, pages
1276–1284, New York, NY, USA, 2013. ACM.

[10] L. V. Galvis Carreño and K. Winbladh. Analysis of
user comments: An approach for software requirements
evolution. In Proceedings of the 2013 International

Conference on Software Engineering, ICSE ’13, pages
582–591, Piscataway, NJ, USA, 2013. IEEE Press.

[11] X. Gu and S. Kim. What parts of your apps are loved
by users? (T). In 30th IEEE/ACM International

Conference on Automated Software Engineering, ASE 2015,

Lincoln, NE, USA, November 9-13, 2015, pages 760–770,
2015.

[12] E. Guzman and W. Maalej. How do users like this
feature? a fine grained sentiment analysis of app
reviews. In Requirements Engineering Conference (RE),

2014 IEEE 22nd International, pages 153–162, Aug 2014.

[13] E. Ha and D. Wagner. Do android users write about
electric sheep? examining consumer reviews in google
play. In Consumer Communications and Networking

Conference (CCNC), 2013 IEEE, pages 149–157, Jan

2013.

[14] S. Haiduc, J. Aponte, L. Moreno, and A. Marcus. On
the use of automated text summarization techniques
for summarizing source code. In Proceedings of the

International Working Conference on Reverse Engineering

(WCRE), pages 35–44. IEEE, 2010.

[15] M. Harman, Y. Jia, and Y. Zhang. App store mining
and analysis: Msr for app stores. In Mining Software

Repositories (MSR), 2012 9th IEEE Working Conference

on, pages 108–111, June 2012.

[16] K. Herzig, S. Just, and A. Zeller. It’s not a bug, it’s a
feature: How misclassification impacts bug prediction.
In Proceedings of the 2013 International Conference on

Software Engineering, ICSE ’13, pages 392–401,
Piscataway, NJ, USA, 2013. IEEE Press.

[17] C. Iacob and R. Harrison. Retrieving and analyzing
mobile apps feature requests from online reviews. In
Proceedings of the 10th Working Conference on Mining

Software Repositories, MSR ’13, pages 41–44, Piscataway,
NJ, USA, 2013. IEEE Press.

[18] C. Iacob, R. Harrison, and S. Faily. Online reviews as
first class artifacts in mobile app development. In
G. Memmi and U. Blanke, editors, Mobile Computing,

Applications, and Services, volume 130 of Lecture Notes of

the Institute for Computer Sciences, Social Informatics and

Telecommunications Engineering, pages 47–53. Springer
International Publishing, 2014.

[19] V. N. Inukollu, D. D. Keshamoni, T. Kang, and
M. Inukollu. Factors Influencing Quality of Mobile
Apps:Role of Mobile App Development Life Cycle.
ArXiv e-prints, Oct. 2014.

[20] H. Khalid, E. Shihab, M. Nagappan, and A. E. Hassan.
What do mobile app users complain about? IEEE

Software, 32(3):70–77, 2015.

[21] S. Krusche and B. Bruegge. User feedback in mobile
development. In Proceedings of the 2Nd International

Workshop on Mobile Development Lifecycle, MobileDeLi
’14, pages 25–26, New York, NY, USA, 2014. ACM.

[22] S. A. Licorish, A. Tehir, M. F. Bosu, and S. G.
MacDonell. On satisfying the android os community:
User feedback still central to developers’ portfolios. In
2015 24th Australasian Software Engineering Conference

(ASWEC, pages 78–87, 2015.

[23] W. Maalej and H. Nabil. Bug report, feature request,
or simply praise? on automatically classifying app
reviews. In Requirements Engineering Conference (RE),

2015 IEEE 23rd International, pages 116–125, Aug 2015.

[24] P. W. McBurney and C. McMillan. Automatic
documentation generation via source code
summarization of method context. In Proceedings of the

International Conference on Program Comprehension

(ICPC), pages 279–290. ACM, 2014.

[25] G. A. Miller. Wordnet: A lexical database for english.
Commun. ACM, 38(11):39–41, Nov. 1995.

[26] L. Moreno, J. Aponte, G. Sridhara, A. Marcus,
L. Pollock, and K. Vijay-Shanker. Automatic
generation of natural language summaries for java
classes. In Proceedings of the International Conference on

Program Comprehension (ICPC), pages 23–32. IEEE,
May 2013.

[27] G. C. Murphy. Lightweight Structural Summarization As

an Aid to Software Evolution. PhD thesis, 1996.

509

AAI9704521.

[28] J. Oh, D. Kim, U. Lee, J.-G. Lee, and J. Song.
Facilitating developer-user interactions with mobile app
review digests. In CHI ’13 Extended Abstracts on Human

Factors in Computing Systems, CHI EA ’13, pages
1809–1814, New York, NY, USA, 2013. ACM.

[29] D. Pagano and W. Maalej. User feedback in the
appstore: An empirical study. In In Proceedings of the

21st IEEE International Requirements Engineering

Conference (RE 2013), pages 125–134. IEEE Computer
Society, 2013.

[30] F. Palomba, M. Linares-Vasquez, G. Bavota, R. Oliveto,
M. Di Penta, D. Poshyvanyk, and A. De Lucia. User
reviews matter! tracking crowdsourced reviews to
support evolution of successful apps. In Software

Maintenance and Evolution (ICSME), 2015 IEEE

International Conference on, pages 291–300, Sept 2015.

[31] B. Pang, L. Lee, and S. Vaithyanathan. Thumbs up?:
Sentiment classification using machine learning
techniques. In Proceedings of the ACL-02 Conference on

Empirical Methods in Natural Language Processing -

Volume 10, EMNLP ’02, pages 79–86, Stroudsburg, PA,
USA, 2002. Association for Computational Linguistics.

[32] S. Panichella, J. Aponte, M. D. Penta, A. Marcus, and
G. Canfora. Mining source code descriptions from
developer communications. In Program Comprehension

(ICPC), 2012 IEEE 20th International Conference on,
pages 63–72, 2012.

[33] S. Panichella, A. Di Sorbo, E. Guzman, C. Visaggio,
G. Canfora, and H. Gall. How can I improve my app?
classifying user reviews for software maintenance and
evolution. In Software Maintenance and Evolution

(ICSME), 2015 IEEE International Conference on, pages
281–290, Sept 2015.

[34] S. Panichella, A. Panichella, M. Beller, A. Zaidman,
and H. Gall. The impact of test case summaries on bug
fixing performance: An empirical investigation. In
Proceedings of the International Conference on Software

Engineering (ICSE). IEEE, 2016.

[35] M. F. Porter. An algorithm for suffix stripping.
Program, 14(3):130–137, 1980.

[36] O. Rambow, L. Shrestha, J. Chen, and C. Lauridsen.
Summarizing email threads. In In Proceedings of the

Conference of the North American Chapter of the

Association for Computational Linguistics (NAACL) Short

Paper Section, 2004.

[37] S. Rastkar, G. C. Murphy, and G. Murray.
Summarizing software artifacts: A case study of bug
reports. In Proceedings of the 32Nd ACM/IEEE

International Conference on Software Engineering - Volume

1, ICSE ’10, pages 505–514, New York, NY, USA, 2010.
ACM.

[38] S. Rastkar, G. C. Murphy, and G. Murray. Automatic
summarization of bug reports. IEEE Trans. Softw. Eng.,
40(4):366–380, Apr. 2014.

[39] F. Sarro, A. Al-Subaihin, M. Harman, Y. Jia,
W. Martin, and Y. Zhang. Feature lifecycles as they
spread, migrate, remain, and die in app stores. In
Requirements Engineering Conference (RE), 2015 IEEE

23rd International, pages 76–85, 2015.

[40] N. Seyff, G. Ollmann, and M. Bortenschlager. Appecho:
A user-driven, in situ feedback approach for mobile
platforms and applications. In Proceedings of the 1st

International Conference on Mobile Software Engineering

and Systems, MOBILESoft 2014, pages 99–108. ACM,
2014.

[41] A. Sharma, Y. Tian, and D. Lo. Nirmal: Automatic
identification of software relevant tweets leveraging
language model. In Software Analysis, Evolution and

Reengineering (SANER), 2015 IEEE 22nd International

Conference on, pages 449–458, March 2015.

[42] G. Sridhara. Automatic Generation of Descriptive

Summary Comments for Methods in Object-oriented

Programs. PhD thesis, Newark, DE, USA, 2012.
AAI3499878.

[43] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and
K. Vijay-Shanker. Towards automatically generating
summary comments for java methods. In Proceedings of

the International Conference on Automated Software

Engineering (ASE), pages 43–52. ACM, 2010.

[44] C. Vassallo, S. Panichella, M. Di Penta, and
G. Canfora. Codes: Mining source code descriptions
from developers discussions. In Proceedings of the 22Nd

International Conference on Program Comprehension,
ICPC 2014, pages 106–109, New York, NY, USA, 2014.
ACM.

[45] T. Vithani. Modeling the mobile application
development lifecycle. In Proceedings of the International

MultiConference of Engineers and Computer Scientists

2014, Vol. I, IMECS 2014, pages 596–600, 2014.

[46] P. M. Vu, T. T. Nguyen, H. V. Pham, and T. T.
Nguyen. Mining user opinions in mobile app reviews: A
keyword-based approach. CoRR, abs/1505.04657, 2015.

[47] Z. Wu and M. Palmer. Verbs semantics and lexical
selection. In Proceedings of the 32Nd Annual Meeting on

Association for Computational Linguistics, ACL ’94, pages
133–138, Stroudsburg, PA, USA, 1994. Association for
Computational Linguistics.

510

