
A Decentralized Bitcoin Exchange

with Bitsquare — Attack Scenarios

and Countermeasures

Alexander Mülli

Zürich, Switzerland

Student ID: 07-603-301

Supervisor: Dr. Thomas Bocek, Daniel Dönni
Date of Submission: July 30, 2015

University of Zurich
Department of Informatics (IFI)
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland ifi

M
A

S
T

E
R

T
H

E
S

IS
–

C
om

m
un

ic
at

io
n

S
ys

te
m

s
G

ro
up

,P
ro

f.
D

r.
B

ur
kh

ar
d

S
til

le
r

Master Thesis
Communication Systems Group (CSG)
Department of Informatics (IFI)
University of Zurich
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland
URL: http://www.csg.uzh.ch/

Abstract

The recent demise of one of the major exchange markets for Bitcoin, a cryptographic
currency, has motivated the development of alternative Bitcoin exchanges that follow the
decentralized model of the Bitcoin network. This thesis analyses a proposed concept by
the name of Bitsquare that operates a decentralized o↵er book based on a distributed hash
table (DHT). After common attack vulnerabilities of the underlying DHT are identified,
a possible countermeasure in form of a registry service based on the Bitcoin blockchain
is proposed. The design uses the Bitcoin blockchain as an immutable registry and the
block nonce, an output of a proof of work function, as a source of randomness to secure
the assignment of peer identifiers in the DHT network. The concept was implemented as
part of the TomP2P library and an evaluation in regards of its impact on performance
was conducted. The evaluation showed that the created overhead might still lay in a
range acceptable for a DHT application with moderate data alteration. In the worst case
scenario where a data storage request is based on a previously unknown registration an
overhead by factor 6 was measured.

i

ii

Zusammenfassung

Der jüngste Vertrauensverlust in zentrale Bitcoin Börsen (engl. exchanges) durch wieder-
holte Insolvenzverfahren von grösseren Marktplätzen hat die Entwicklung von alternativen
Bitcoin Marktplätzen angetrieben, die nach einem, vom dezentralen Design des Bitcoin
Netzwerk inspirierten, Aufbau streben. Diese Masterarbeit untersucht eines solcher mögli-
chen Modellen, das Bitsquare Projekt, welches den Ansatz hat ein dezentrales Orderbuch
auf einer Verteilte Hash Tabellen (engl. Distributed Hash Tables, DHT) basiert umzu-
setzen. Nach einer Analyse bekannter Schwachstellen von DHTs für böswillige Angri↵e
und deren Bedeutung für Bitsquare, wurde eine mögliche Gegenmassnahme zur Unter-
bindung solcher Angri↵e vorgeschlagen. Die Massnahme basiert auf einer Verwendung
der Bitcoin Blockchain als unveränderbare Registrierungsdatenbank und benutzt die so-
genannte Block-Nonce als Zufallsgenerator zur Absicherung der Zuteilung von PeerIDs im
DHT Netzwerk. Das Konzept wurde als Teil der TomP2P Java-Library implementiert und
im Bezug auf dessen Auswirkungen auf die Performanz evaluiert. Die Evaluation konnte
aufzeigen, dass der Verlust an Performanz immer noch in einem Rahmen liegt, der ein
mögliche DHT-Anwendung mit moderater Datenmutationsfrequenz realistisch macht. Im
Worst-Case-Szenario, wo eine Speicheranfrage auf einer unbekannten Registration basiert,
wurde eine Erhöhung der Antwortzeit um Faktor 6 gemessen.

iii

iv

Acknowledgments

I would like to thank several people for their support in the realization of this master thesis.
First of all, I express my deepest gratitude to my supervisor, Dr. Thomas Bocek, for his
competent assistance, patience, enthusiasm and ever cooperative interaction. Special
appreciation also to Prof. Dr. Burkhard Stiller for the opportunity to write this thesis at
the Communication Systems Group. Last but not least, I am grateful to my family and
close friends for their ongoing encouragement and support throughout this work.

v

vi

Contents

Abstract i

Zusammenfassung iii

Acknowledgments v

1 Introduction 1

1.1 Motivation . 1

1.2 Description of Work . 1

1.3 Thesis Outline . 1

2 Background & Related Work 3

2.1 Bitcoin . 3

2.1.1 Transactions . 4

2.1.2 The Blockchain . 5

2.1.3 Simplified Payment Verification (SPV) 7

2.1.4 The Bitcoin Ecosystem . 7

2.2 Bitsquare . 8

2.2.1 The Client . 9

2.2.2 The Trading Protocol . 9

2.2.3 Registration . 11

2.3 Other decentralized exchanges . 11

2.3.1 LocalBitcoins.com . 11

vii

viii CONTENTS

2.3.2 OpenBazar . 12

2.3.3 Coin↵eine . 13

2.3.4 Mercury . 13

2.4 Distributed Hash Table . 14

2.4.1 TomP2P . 15

3 Attack Scenarios & Countermeasures 17

3.1 Trade Protocol related Attacks . 17

3.1.1 Bank Transfer Reversal . 17

3.2 DHT related Attacks . 18

3.2.1 The Sybil Attack . 19

3.2.2 The Eclipse Attack . 20

3.3 Assessment . 21

4 Design & Implementation 23

4.1 Design . 23

4.1.1 General Process . 24

4.1.2 Limitations . 24

4.2 Implementation . 25

4.2.1 Architecture . 25

4.2.2 Tools . 26

4.2.3 Registration . 27

4.2.4 Verification & Authentication . 28

5 Evaluation 31

5.1 Goal . 31

5.2 Method . 31

5.3 Results . 32

CONTENTS ix

6 Summary 35

6.1 Summary & Conclusion . 35

6.2 Future Work . 35

Abbreviations 41

List of Figures 41

List of Tables 43

List of Source Code 45

A Contents of the DVD 49

x CONTENTS

Chapter 1

Introduction

1.1 Motivation

Bitcoin has proven itself resilient now over a period of more than 5 years and might be
considered a viable solution to a decentralized payment transaction system. However to
enter the Bitcoin ecosystem one has still go through centralized exchanges that bear cer-
tain risks. Various projects are trying to come up with a solution to mitigate these risk by
applying Bitcoin’s philosophy of decentralization to marketplaces such as OpenBazaar [1]
and Bitsquare [2]. Specifically Bitsquare is relaying on a distributed hash table to de-
centralize the storage of exchange o↵ers. This opens up a wide array of possibilities for
attacks and manipulation.

1.2 Description of Work

To fully harness the benefits of a decentralized currency like Bitcoin it is vital that there
also exists a decentralized way to exchange national currencies for bitcoins. Bitsquare of-
fers one possible solution to this. However with the application of a distributed hash table
to decentralize the o↵er book the exchange is opened up to additional attack scenarios
that have to be analyzed. After assessing what kind of attacks are most critical and can
possibly be mitigated the goal of this thesis is also to propose possible countermeasures
against these attacks. From the beginning the focus is set on what kind of security issues
DHT face and what possibilities their are to restrict them in regards of the specific use
case of Bitsquare.

1.3 Thesis Outline

Chapter 2 will first explain the background of this thesis, introduce Bitsquare and similar
projects and give a short introduction into the relevant topics of bitcoin, cryptocurrency

1

2 CHAPTER 1. INTRODUCTION

exchanges and DHTs. Afterwards related work in regards of possible DHT attack coun-
termeasures is discussed and applied to the DHT use cas of Bitsquare in Chapter 3. After
describing the concept of the proposed countermeasure and how this was implemented as
part of the TomP2P library in Chapter 4. Chapter 5 will describe an evaluation where
the e↵ects of this implementation on the DHT performance regarding response times were
tested.

Chapter 2

Background & Related Work

This chapter discusses related work and gives background information on a related topics.

2.1 Bitcoin

Bitcoin is a peer-to-peer (P2P) payment system based on a paper published in 2009 by
Satoshi Nakamoto [3]. The design of Bitcoin builds on previously existing technologies
such as public-key cryptography and cryptographic hash functions. The combination
of those building blocks brought the first decentralized consensus system that has been
standing firm against any attacks over a period of more than 5 years. There doesn’t
exist a formal specification of the Bitcoin protocol, however Nakomoto also published the
Bitcoin Core client that still defines the protocol as the reference implementation and has
been under ongoing development since.

The units of account of this payment system are also called bitcoins. In this thesis the
expression Bitcoin, capitalized, is used to refer to the technology and network and bitcoin,
lowercase, to refer to the unit of account. Anybody can take part in this payment system
by creating a Bitcoin wallet and connecting to the network. A wallet is based on a
public private key-pair. From the private key a Bitcoin address can be generated where
bitcoins can be received to and/or sent from. The network gives anybody access to see
any payments that are occurring between any addresses. In contrast to other payment
systems it isn’t built on a big database of account records, where for example each address
has a certain balance. Instead bitcoins are recorded as transactions. For example, some
user Carol does not just hold 5 bitcoins in his address, but rather takes part in a publicly
verifiable transaction where Bob transfers 5 bitcoins to Carol. Carol was able to verify
that Bob is allowed to make that payment because there exists a publicly verified prior
transaction where Alice transferred 5 bitcoins to Bob.

3

4 CHAPTER 2. BACKGROUND & RELATED WORK

Figure 2.1: Simplified illustration of how Bitcoin transactions reference to each other.

2.1.1 Transactions

Having a closer look at the building blocks of a transaction in the Bitcoin network reveals
that the Bitcoin protocol allows for more complex transactions than a simple payment
from Bob to Carol. All transactions consist of multiple inputs and outputs (see Figure 2.1).
Normally there is either one input from a larger previous transaction or multiple inputs
combining the amount of previous small transactions. In most cases there are not more
than two outputs: One with the amount of bitcoins transferred to the recipient and
another one with the change of the transaction back to the sender.

A transaction output consists of the amount of bitcoins and a locking-script that specifies
the conditions that must be met in order to be able to spend this output in another
transaction. An input includes a reference to a specific output of a specific transaction
together with an unlocking-script. A transaction can be verified by running a combination
of the locking-script and unlocking-script. This scripts are based on simple Bitcoin specific
scripting language that allows to introduce additional conditions for a transaction to be
valid and spendable. In the following sections a selection of Bitcoin’s standard transactions
that are relevant for this thesis’ scope will be introduced.

Pay-to-Public-Key-Hash Transaction

The Pay-to-Public-Key-Hash (P2PkH) transaction is the most common occurring trans-
action type in the Bitcoin network and corresponds to the previous example with Bob
and Carol. It contains an output with a locking-script that binds it to a double hash of
a public key, also called a Bitcoin address. The equivalent unlocking-script in the input
presents a signature based on this public key’s corresponding private key.

2.1. BITCOIN 5

Multi-Signature Transaction

With multi-signature scripts allow to set conditions where more than one party has to give
permission to unlock a transaction output. In the locking script a M-of-N-scheme can be
setup that specifies how many signatures (M) of a specified set of public keys (N) have to
provide there signature in the unlocking-script. For example with a 2-of-3 multi-signature
transaction the transferred amount of bitcoin would be locked in a transaction output
that can only be spent in another transaction when at least 2 out of 3 potential signers
that were defined in the locking-script give there signatures and herewith their consent.

Data Output (OP RETURN) Transaction

Adding a OP RETRUN statement has also the e↵ect that this output can not be used as
an input in another transaction. Any amount of bitcoin that is associated with this output
becomes therefore provably unspendable. However more importantly as the OP RETURN
statement stops the validation process and anything afterwards is ignored it is possible to
add any random 80 bytes of data to a transaction output. The ability of adding data to
a transaction and consequently to the blockchain can been utilized for di↵erent purposes.
For example there exists a service called ”proof of existence” that allows to anonymously
and securely store an online distributed proof of existence for any document

Time Locked Transaction

Actually technically not a type of transaction per se but an option for any kind of trans-
action is a time lock. The standard structure of a bitcoin transaction includes a Locktime

variable (see Table 2.1) that allows to specify the earliest time a transaction is valid and
can be relayed on the network. The time can be either defined as a Unix timestamp or
with a block number (also called block height) that references the earliest block it would
be allowed to be included. A transaction is not allowed to be confirmed by miners un-
til the lock time is reached. Since Bitcoin 0.8+ a transaction that did not end its lock
period (non final) is considered to be non standard and won’t be relayed or included in
the memory pool either. This means that a transaction with a lock time in the future is
not stored by the network to be included at a later point. One has to make sure that it is
published to the network when it has reached the specified time lock. In most use cases
such a transaction can be transmitted to the receiver of the bitcoin output and with this
hand over the responsibility to publish it on the network at the appropriate time.

2.1.2 The Blockchain

In the previous example with Carol and Bob it was stated that Carol is able to verify
that the payment of Bob was legit as it was based on a publicly verified prior transaction.
It was omitted how this transaction is publicly verified. With just the transaction from
Bob, Carol can not be sure that e.g. Bob is not also making a payment to Dan based

6 CHAPTER 2. BACKGROUND & RELATED WORK

Size Field Description
4 bytes Version Specifies which rules this transaction follows
1–9 bytes (VarInt) Input Counter How many inputs are included
Variable Inputs One or more transaction inputs
1–9 bytes (VarInt) Output Counter How many outputs are included
Variable Outputs One or more transaction outputs
4 byte Locktime A Unix timestamp or block number

Table 2.1: Structure of a Bitcoin transaction. [4]

on the same prior transaction. This is called the double spending problem and is solved
by the Bitcoin blockchain. Transactions that are broadcast to the bitcoin network are
picked up by so called miners that verify these transactions and consolidate them into
so called blocks. To create a valid block miners have to solve a computational costly
problem. Whoever succeeds first at solving that problem, also called mining a block, gets
rewarded with an additional transaction (also called coinbase transaction) in this block to
his own address with a defined amount of newly mined bitcoins. A block always includes a
reference to the previous block, therefore creating a chain of blocks and with this a verified
chronological order of occurred transactions. Table 2.2 shows the structure of such a block
in more detail [4]. A new block is mined roughly every 10 minutes and thereby adding
the included transactions to the blockchain. Transactions that are part of the blockchain
are considered ”confirmed” and the new owners of the bitcoins received in this transaction
can be spent in another transaction. So, as soon as Bob sees the transaction from Carol
included in the blockchain, confirmed by a su�cient amount of blocks, he can be sure that
he is now the owner of those bitcoins Carol transferred to him. One block confirmation
for Carol is enough to rule out that Bob is attempting a double spend, however there are
other possible attacks than a double spend that could be occurring on Bobs transaction
that can be ruled out after 6 confirmations.

Size Field Description
4 bytes Block Size The size of the block, in bytes, following this field
80 bytes Block Header Several fields form the block header
4 bytes Version A version number to track software/protocol upgrades
32 bytes Previous Block Hash A reference to the hash of the previous (parent) block

in the chain
32 bytes Merkel Root A hash of the root of the merkle tree of this block’s

transactions
4 byte Timestamp The approximate creation time of this block (seconds

from Unix Epoch)
4 byte Di�culty Target The proof-of-work algorithm di�culty target for this

block
4 byte Nonce A counter used for the proof-of-work algorithm
1-9 bytes Transaction Counter How many transactions follow
Variable Transactions The transactions recorded in this block

Table 2.2: Structure of a Bitcoin block. [4]

2.1. BITCOIN 7

Blocks are di�cult to forge as a high amount of computational resources have to be
invested to build one. This concept is called Proof-of-work. Bitcoin’s proof-of-work system
is largely based on Adam Back’s Hashcash [5]. Basically Miners search for a nonce that is
part of the block so that a SHA256 hash of the block header lies below a certain threshold.
In contrast to the amount of work that is needed to find a valid nonce, validating that the
block has been mined correctly is very easy and the matter of a simple hash operation.

2.1.3 Simplified Payment Verification (SPV)

The block chain is getting bigger with every new block that is added. Currently it is of
the size of 38.671 gigabytes [6]. To verify the correctness of each transaction a standard
bitcoin client needs to store the whole blockchain locally. For some use cases as for
example a mobile client this seems unpractical. Nakamoto already introduced in the
founding paper [3] an alternative mode called simplified payment verification that allows
the verification of transactions with a smaller storage footprint. Each block in the bitcoin
blockchain contains a summary of all the transactions in the block, using a merkle tree.
A merkle tree, also known as a binary hash tree, is a data structure used for e�ciently
summarizing and verifying the integrity of large sets of data. Merkle trees are binary trees
containing cryptographic hashes. Merkle trees are used extensively by SPV nodes. SPV
nodes don’t have all transactions and do not download full blocks, just block headers. In
order to verify that a transaction is included in a block, without having to download all
the transactions in the block, they use an authentication path, or merkle path [4].

2.1.4 The Bitcoin Ecosystem

One of Bitcoin’s distinct characteristics is its emphasis on decentralization. However with
the rise of Bitcoin an ecosystem has emerged that largely relies on a broad range of third-
party intermediaries such as currency exchanges, escrow services and online wallets [7].

As the mining di�culty has been continuously increasing over the last few years, bitcoin
mining has become unprofitable for normal users. Therefore the conventional way to
acquire bitcoins is to buy them through an exchange. Over the last few years there has
been a variety of Bitcoin exchanges that had risen in popularity and volume only to
disappear a short time after [8]. The most famous example of this is probably the case of
the Mt.Gox which in February 2014, at that time the biggest Bitcoin exchange, filed for
bankruptcy and many customers lost their funds they had with that company [9].

8 CHAPTER 2. BACKGROUND & RELATED WORK

2.2 Bitsquare

Bitsquare is an open source software project with the goal to build a decentralize P2P
Bitcoin exchange. It started in early 2014 as a proof of concept prototype by Manfred
Karrer. Since July 2014 the community around Bitsquare has steadily been growing with
other developers joining and also contributing to the code base. The currently released
version is still in alpha and is not being used for real trading for now. Eventually it will
provide a market for exchanges of national currencies such as dollars, euros or yen for
bitcoin. Also exchanges between a wide range of alternative crypto currencies for bitcoin
will be a possibility. The concept of Bitsquare distinguishes itself form centralized bitcoin
exchanges in these major characteristics:

• Decentralized: Bitsquare follows the mantra of decentralization in every aspect.
Both in a technical and conceptual sense there is no central instance needed to
conduct a single exchange. All trades are person-to-person, the matching happens
manually on one side of the two parties and no communication relies on central
server. In case of disputes between two exchange parties arbitration is done by a
third party that was agreed on before the trade was initiated.

• No Funds: No third party has to be trusted with full control over any funds.

• Permission-free Access: There are no restrictions or any prerequisite for taking part
and conducting trades.

• Privacy: Personal information (e.g. bank details) are only shared with the coun-
terparty of a trade at the the point in time where it is relevant to complete the
exchange.

• Open Source: Every aspect of the project is transparent. The Software is open
source and the course of development is discussed openly on mailing lists and IRC.

What Bitsquare is not designed for is day trading. The matching is always done manu-
ally. There aren’t any tools like stop-loss orders available. However because the trade
always happens directly with another party the settlement might often be faster than
with centralized exchanges which often impose delays when cashing out or adding funds.

Bitsquare is currently alpha-quality software The project is implemented in Java and uses
libraries such as bitcoinj and TomP2P.

2.2. BITSQUARE 9

2.2.1 The Client

Unlike other popular Bitcoin exchanges Bitsquare is not web based but requires the user
to install a software client in order to take part in trading via this platform. The client
implements a Bitcoin wallet that is used for all transactions.

When launching the client it will connect to two networks: The Bitcoin network and
the Bitsquare network. By connecting to other peers in the Bitsquare network the client
receives the latest o↵ers for buying and selling Bitcoin for other currencies. This o↵ers
are displayed in the order book.

The user can either take up on an existing o↵er or create one herself (see Figure 2.2). To
prevent spam in the o↵er book and to align the incentives of both parties to go through
with a trade once it is setup every o↵er and take request requires a small deposit in BTC.

Figure 2.2: Screenshot of the Bitsquare client when creating a new o↵er.

2.2.2 The Trading Protocol

Bitsquares White Paper [10] demonstrates the Trading Protocol in detail. Buyer and
Seller commit themselves to carry out the trade with a deposit in bitcoins that is locked
together with the traded bitcoins in a multisig address until the exchange is completed.
Figure 2.3 illustrates an example how a trade between Alice and Bob would take place.
Alice is interested in buying bitcoins for US dollars. To find someone that is willing to
sell her bitcoins she creates an o↵er with the relevant information in regards to amount,
price and what kind of bank transfer she o↵ers. Form Alice’s Bitcoin Wallet a deposit
transaction is created and sent to an address Alice has control over. The o↵er detail and
the address of the deposit is stored in the o↵er book for everyone to see and verify.

10 CHAPTER 2. BACKGROUND & RELATED WORK

Figure 2.3: The Bitsquare trading protocol. [10]

Bob is interested in selling bitcoins. He has also created a deposit transaction from his
Wallet as collateral for a trade. To take Alice’s o↵er from the o↵er book a multisig-
transaction is created with the two deposits from Alice and Bob and the bitcoins Bob

2.3. OTHER DECENTRALIZED EXCHANGES 11

wants to sell as inputs. The multisig output is based on the public keys from Alice, Bob
and an agreed on Arbitrator. The inputs from Bob are already being signed and the
transaction is sent to Alice with a request to take her o↵er including Bob’s bank account
details. Alice then can sign her deposit input of the transaction and broadcast it to the
Bitcoin network. With the inclusion of the transaction into the blockchain the funds are
locked and can only be transferred when 2 out of the 3 signee agree. Alice can now wire
the agreed on amount of US dollar to Bob’s bank account and inform Bob when this
step was completed. She prepares a transaction that will transfer the deposits back to
Alice and Bob and the bitcoins she bought to an address of her choosing. Alice signs this
transaction and sends it to Bob with the request to also sign it and broadcast it to the
Bitcoin network. Bob will check his bank account and upon arrival of Alice’s wire transfer
sign and broadcast the transaction to the Bitcoin network.

2.2.3 Registration

In order to conduct such a Person-to-Person trade at some point privacy critical data
such as bank account details to wire the transaction have to be shared with the other
party. Bitsquare introduces an interesting concept for linking bank account information
with a trading account that supports a high level of privacy where bank account details
are only revealed to the buyer at the stage in the trade where they become relevant. An
OP RETURN transaction stores the blinded payments account data in the blockchain.
The owner can prove ownership as the transaction is veritably linked with his Bitcoin
address but cannot change or remove the associated data once stored in the block chain.
For every additional bank account the user has to make a new registration [10].

2.3 Other decentralized exchanges

There are many other Bitcoin exchanges that label themselves as peer-to-peer and/or
decentralized. In this section we describe a selection of exchanges that are similar to
Bitsquare and highlight the shared characteristics and distinctions.

2.3.1 LocalBitcoins.com

Localbitcoins.com is an online platform that facilitates person-to-person currency ex-
change [11]. Users can post the amount and exchange rate of BTC they are willing
to trade for various national currencies (see Figure 2.4). The transaction can be conduc-
ted face to face in cash or by any other means that allows remote payment such as online
banking. As there is no third party or market maker that guarantees that users don’t
take advantage of each other there needs to be a certain trust between the exchanging
parties. To mitigate the risk of being defrauded Localbitcoins.com o↵ers a escrow service
where the traded bitcoins are stored in a wallet that is controlled by Localbitcoins.com.
This makes sure that the funds are only released to the buyer when the bank wire (or

12 CHAPTER 2. BACKGROUND & RELATED WORK

whatever means of payment is used) has gone through successfully and is confirmed by
the seller. In addition to the escrow service there is also a rating and feedback system
that gives information about the trustworthiness of users based on their previous trades
with other users. The escrow service might mitigate the risk of fraud by the counter-party
but leaves the seller vulnerable towards Localbitcoins.com. By transferring bitcoins into
the escrow wallet he looses any control over these funds. The platform is also not fully
decentralized as it is run by a single company and the online platform can be assessed as
a single point of failure.

Figure 2.4: LocalBitcoins.com website with various, location specific bitcoin sell o↵ers.

2.3.2 OpenBazar

OpenBazaar is an open source project to create a decentralized network for peer to peer
commerce online using Bitcoin.[1] From its philosophy it is probably the project that is
most similar to Bitsquare. The main di↵erences is their focus on a general market place
for any kind of o↵ers and good and that isn’t just limited to currency exchange. As from
a technical view it is also built on an Kademlia DHT implementation, however developed
with a di↵erent technology stack, mostly in Python.

At the time of writing the OpenBazar’s implementation of the Network layer was in
the midst of a major overhaul and there are some ongoing e↵orts to introduce some
countermeasures against sybil attacks. One possible suggestion is that the peerID is a
proof-of-work mechanism that set computational costs for generating a valid peerID: ”we
generate the peerID using sha512(signed public key) where the first 20 bytes are the
peerID and the last 32 bytes are a ’proof of work’. The PoW must be below a certain
t[h]reshold for the peerID to be valid. The target threshold is set to require about 30
seconds of brute forcing, on average, to find a vaild peerID.” [12]

2.3. OTHER DECENTRALIZED EXCHANGES 13

2.3.3 Coin↵eine

Coin↵eine is another open source, peer-to-peer bitcoin exchange platform that has begun
in July 2015 to o�cially operate [13]. Similar to Bitsquare it is based on a software client
(see Figure 2.5) with an integrated bitcoin wallet that connects to other peers in order to
setup a peer-to-peer trades. In contrast to Bitsquare the underlying architecture however
is not completely decentralized as it relies on a brokerage server that manages bid and
ask orders and sets up the matching of two parties. An interesting aspect of this project
is the implemented exchange algorithm that uses a variant of bitcoin contract known as
Micropayment Channel to create deposits which force users to continue to cooperate in
the transaction if they want to recover the deposit money [14]. By setting up deposits
and executing the trade in small steps of minimal amounts (e.g. 0.01 BTC against 1€)
the incentives to complete the trade for both parties aligns and promises no need for an
arbitrator system as in Bitsquare. The perquisite for this to work is however that the
payment method for the exchanged currency supports this kind of micro transactions
with moderate fees. Coin↵eine currently only supports OKPay as a payment method.

Figure 2.5: Screenshot the Coin↵ein client [13]

2.3.4 Mercury

Mercury is a open source project of decentralized cryptocurrency exchange [15]. Similar
to Bitsquare the software client is only available in a alpha version (see Figure 2.6) and
it is also implemented in Java, based on a fork of the bitcoinJ library. Its main di↵erence
to Bitsquare is that it is limited to exchange between cryptocurrencies: Bitcoin and other
alternative cryptocurrencies like Litecoin. Users can submit their bid and ask orders
that are then automatically matched by a order matching service. The actual exchange
is guided by a atomic swap protocol where both parties create a deposit transaction of
the cryptocurrency coin they want to trade with. A cryptographic mechanism where
unlocking information is shared as part of the first transaction to redeem one of the

14 CHAPTER 2. BACKGROUND & RELATED WORK

deposits guarantees that either none or both deposits can be redeemed by the two counter
parties. This eliminates the need for any third party as both parties can be sure that the
agreed exchange will go through entirely or not at all. Unfortunately this still leaves open
the question how a similar exchange against national currencies could be implemented.
The concept also leaves a centralized entity which is the matching service that matches
bid and asks orders. Although no real trust is placed into that service as the funds always
reside with the traders it still embodies a single-point-of-failure. Bitsquare evades this
issue by not providing any order-matching service at all and leaves the selection of a
matching o↵er as a manual task to the user. This of course has also its downsides as it
might lead to a more time intensive setup process for each trade and might restrain the
trading volume.

Figure 2.6: Mercury client in its current alpha version. [15]

2.4 Distributed Hash Table

A distributed hash table is a peer-to-peer network that manages the storage and retrieval
of data in a distributed manner. All data is mapped to a key which is the data’s hash
and storing it on the peer whose identifier (peerID) is nearest to this key. So a DHT has
a common identifier space for both peers and keys for data. To find the nearest identifier
the distance between two identifiers is calculated. To attain an even distribution over the
identifier space it is considered continuous where the first identifier is again the neighbour
of the last one. Therefore a DHT’s identifier space is conceptually illustrated as a circle of
possible identifiers with distributed peers and the corresponding data they are responsible
for (see Figure 2.7).

2.4. DISTRIBUTED HASH TABLE 15

Figure 2.7: Simplified illustration of a DHT peerID/key storage concept

A routing mechanism creates a overlay network between the DHT peers. With a lookup(k)
operation a peer can find the peer responsible for data associated with a key k. In order
to locate the peer responsible for key k, a peer forwards the lookup request to another
peer whose identifier is closer to k according to a distance function. All peers maintain
links to a subset of the other peers, thus forming an overlay network. A lookup request
is forwarded by peers until no peer is found with an identifier closer to the requested
key [16].

There are many di↵erent concepts of DHTs. Some of the most populars are Kadem-
lia [17], Chord [18] and Pastry [19]. All of them have a wide range of derivatives and
implementations in several programming languages. In the case of Bitsquare the Java
library TomP2P is used which is an implementation of the Kademlia concept.

A fundamental component of Bitsquare’s decentralized design is the o↵er book that is
based on a distributed hash table (DHT).

2.4.1 TomP2P

TomP2P is an open-source, Java library that implements an advanced DHT, with an
iterative routing protocol that is based on Kademlia. As in Kademlia the peerIDs and
data keys are unique 160-bit identifiers and for routing the distance between ids is defined
as a bit-wise exclusive or (XOR).

16 CHAPTER 2. BACKGROUND & RELATED WORK

Chapter 3

Attack Scenarios & Countermeasures

In the Bitsquare Risk analysis document [20] various attack scenarios are discussed. Most
of them are focused on how the trade protocol holds up against various external factors
that come into play when it is combined with current payment methods. However, the
vulnerability of the underlying distributed hash table is not explored in depth. This
chapter gives an overview of possible attack scenarios, how they could be applied to
Bitsquare and discusses possible approaches to mitigate them. Based on these findings an
assessment is made on what possible countermeasure could be interesting to implement.

3.1 Trade Protocol related Attacks

Bitsquare Some of the described bitcoin exchanges in Section 2.3 rely on trusted third
party to maintain funds for exchanges. This is not the case with Bitsquare. Instead, the
implemented trade protocol allows the two trading parties to stay in control of the traded
Bitcoins the whole time. This section examines what other possible weaknesses might get
introduced with this trade protocol.

3.1.1 Bank Transfer Reversal

Most cases where buyer or seller deviate from the standard trade process (e.g. buyer
doesn’t respond or transfer the money) can be resolved through an arbitrator system.
However there are few scenarios that might happen outside of a completed trade pro-
cess that could be used to defraud the seller. A fundamental di↵erence between bitcoin
transactions and common electronic money transfers lies in its irreversibility. Whereas a
transaction on the blockchain with a few confirming blocks will be valid forever, in most
banking payment systems there exists the possibility to revoke a payment (e.g. due to
indications of fraudulent behaviour).

17

18 CHAPTER 3. ATTACK SCENARIOS & COUNTERMEASURES

Use-case

In a exchange where bitcoins are traded for a electronic money transfer this fact might
be exploited by the buyer of bitcoin. For instance by requesting a reversal of the bank
transaction with a convincing argument for fraudulent behaviour the buyer might be
able to regain the money he initially paid to the seller after he has already received
the bitcoins from the payout transaction. The bitcoin seller on the other hand doesn’t
have any possible response at his disposal to regain the transferred bitcoins without the
buyers cooperation. Also the arbitrator has no control over the transferred bitcoins as the
multisig-lock was already released with the payout transaction when the initial arrival of
payment was confirmed by the seller.

Severity and Impact

The severity of this scenario highly depends on the payment method that is used and
how request for transfer reversals are handled by the respective payment processor are
handled.

Di�culty to mitigate

As the risk for transfer reversal or charge backs mostly depends on the used payment
method, Bitsquare plans to only support a limited choice of payment methods that are
known to be less vulnerable to this kind of fraud. A technical possibility to decrease the
risk of charge back that has already partly been implemented is the introduction of time
locked payout transactions. As described in Section 2.1.1 transactions can be prevented
to be seen as valid for a certain amount of time. In this uses case the payout transaction
that unlocks the bitcoins from the multisig adddress can be time locked to a point of
time in the future where a transaction reversal of the payment is unfeasible or the risk
thereof much reduced. This assumes for instance that a reversal of a SEPA transaction
is very di�cult to accomplish for a malicious buyer. In case the payment is revoked
before the time lock it would still be possible to generate another payout transaction in
cooperation with the arbitrator to transfer the bitcoins back to the seller. As this payout
transaction without time lock would be included in the blockchain within a narrow time
frame it would invalidate the initial one. This precaution obviously has the downside that
it prolongs the processing time for the buyer. The length of such a time lock would have
to be determined by the seller depending on the payment mechanism.

3.2 DHT related Attacks

Urdaneta et al. published an extensive survey on various DHT attack scenarios and secur-
ity techniques [16]. The most common discussed attacks are the sybil and eclipse attacks
which exploit the fact that the assignment of the peerID in most DHT implementation

3.2. DHT RELATED ATTACKS 19

can be controlled haphazardly. In regard of Bitsquare’s use of a Kademlia-like DHT
implementation for the o↵er book especially Kademlia specific attacks are relevant.

Figure 3.1: The organization of a typical DHT, illustrating attacks on the core function-
ality. [16]

3.2.1 The Sybil Attack

Due to the decentralized nature of a Kademlia-like DHT there exist no verifiable link
between a participating entity (a user or machine) and its identity (peerID) there is noth-
ing holding a malicious user back from joining the network with multiple identities [21].
This characteristic is shared by many P2P systems and the attack procedure of introdu-
cing a lager number of bogus peers into a network was first described by Douceur and
named the Sybil attack [22].

Use-case

In the context of the Bitsquare o↵er book a sybil attack could be used to fill the DHT with
bogus o↵ers. Such a behaviour could be sourced in various motivations. For instance a
seller might want to fabricate higher buy o↵ers to put his selling o↵er in a better position.
Another thinkable motivation for a competitor would be to obstruct the trading process
on this platform in favour of competing markets.

20 CHAPTER 3. ATTACK SCENARIOS & COUNTERMEASURES

Severity and Impact

The o↵er book is a central part of the Bitsquare concept as any buy or sell decision is
based on information in the o↵er book. Any attack that undermines the integrity of this
information has negative implications on the e↵ective workings of the Bitsquare exchange.

Di�culty to mitigate

Bitsquare counters the use case of bogus o↵ers or spam in the o↵er book with the deposit
transaction. Clients can verify if a data entry in the DHT that represents an o↵er is
a earnest o↵er where the o↵erer has already locked a specific amount of bitcoins. This
however still doesn’t prevent the storage of other irrelevant data on the DHT which could
lead to performance issues when clients receive a large amount of bogus o↵er data that
they have to filter.

Since the Kademlia paper has been published in 2002, there has been a wide range of
proposals on how to make it more secure against sybil attacks. Castro et al. [23] propose
a trusted third party (TTP) certified identifier assignment that prevents the random
assignment of peerIDs. Also Maccari et al. [24] in their paper analyse possible counter
measure for sybil attacks in a DHT network and in their conclusion propose a centralized
certifications service. Caubet et al. [25] and [26] present an enhanced approach based
on implicit certificates that speeds up the registration and verification process. All this
approaches however rely on a central entity. Wang et al. [27] propose a peerID assignment
based on network coordinates and characteristics so to restrict the random assignment
of peerIDs. This however binds a peerID to a specific network location and e.g. is not
applicable to use cases with mobile clients. Yu et al. [28] in his proposed solution instead
uses social networks to bind peerIDs to users as real entities. Alternative solution that
follow the distributed design of the DHT are proposed by Borisov [29] who introduced a
proof of work (computational puzzle) mechanism to the generation of peerIDs. Similar
to the implementation of OpenBazaar this increases the costs for launching attacks with
many or specific peerIDs. If the underlying proof-of-work mechanism stays the same
over a long period specific peerIDs can still be generated with a brute-force attack. The
di�culty of the computational puzzle might also not be strong enough for attackers with
large resources and at the same time still manageable for honest users on a light client.

The Kademlia implementation of TomP2P currently doesn’t o↵er any kind of direct meas-
ures to counter sybil attacks.

3.2.2 The Eclipse Attack

With an eclipse attack the attacker tries to corrupt the routing tables of honest peers by
filling them with references to malicious peers [24].

This attack tries to place adversarial peers in the network in a way that one or more peers
are cut o↵ from it, i.e. all messages are routed over at least one adversarial peer. This

3.3. ASSESSMENT 21

gives the attacker the control over a part of the overlay network. Thus the Eclipse attack
can “hide” some peers from the overlay network

When the eclipse attack is targeted against the stored contents on DHT, making them
inaccessible to lookups, then it is known as peer insertion attack: a vast number of peers
marked with identifiers numerically close to the key k of the target content are initiated,
receiving the most lookup requests for k and answering with bogus contents or ignoring
them completely, e↵ectively hiding the content.

Use-case

A malicious user could try to prevent competing o↵ers to be communicated to other users
in the o↵er book. He would have to identify the peer where a specific, competing o↵er
is stored. Executing an eclipse attack by inserting a few malicious peers enclosing this
target requests for o↵ers stored in this key space could be ignored. Thus it would appear
to other users as this o↵er would not exist and might persuade them to accept his o↵er
with a higher asking price.

Severity and Impact

If the data the o↵er book consist of can be withheld or tampered with it violates one of
the core requirements of an o↵er book: data integrity. This vulnerability could be used
for market manipulation and when detected by other users lead to a loss of confidence in
the o↵er book and the Bitsquare market in general.

Di�culty to mitigate

Singh et al. propose an anonymous auditing technique [30] that would prevent bogus
entries in the routing table. It however does not protect from attacks where the goal is to
block access to data stored on certain peers. Similar to the Sybil attack the eclipse attacks
can e↵ectively take place only when attacker peers are able to assign their own peerIDs
without restrictions. Therefore the discussed countermeasures for the Sybil attack that
focus on restrictions for the peerID assignment would also be valid for the eclipse attack.

3.3 Assessment

Protocol related weaknesses might become apparent when the Bitsquare network will be
actually used and certain payment options might have to be prohibited as there is a high
risk of transfer reversal.

The two given use cases demonstrate that the o↵er book that relies on a DHT is very
open to sybil and eclipse attacks. The o↵er book signifies a vital part of Bitsquare and
any manipulation of the availability of o↵er entries could lead to distortions of the market
price. A total breakdown of the DHT would render the Bitsquare client useless.

22 CHAPTER 3. ATTACK SCENARIOS & COUNTERMEASURES

Chapter 4

Design & Implementation

As the previous analysis showed that DHT vulnerabilities could harm the vital integrity
of the Bitsquare o↵er book, the focus on possible countermeasures was laid on the under-
lying DHT implementation. The fundamental problem, as various studies seem to agree
on [16] [31] [32], lies in the insecure assignment of peer identifiers (peerIDs). Proposed
countermeasures entailing the introduction of a central registration services or a new trus-
ted third party don’t seem to be appropriate options for the use case of Bitsquare as they
introduce another trusted third party and hence invalidate its other e↵orts towards de-
centralisation. A possible solution is to implement a decentralized peerID registration
service by reusing key mechanisms the Bitsquare project already relies on: the Bitcoin
blockchain.

The first part of this chapter introduces an alternative mechanism for a secure peerID
assignment that relies on a registration services based on the Bitcoin blockchain. While
the second part documents an implementation of this peerID registration and verification
mechanism as an additional package of the TomP2P library.

4.1 Design

Inspired by the bank account registration process (see Section 2.2.3) where the Bitsquare
project made use of the blockchain as a public registry where everyone an can publish
small data entries, it was standing to reason to try applying this idea also to a registration
service for the underlying DHT network. The concept for this registration system has been
described in the Bitsquare white paper. Parts of it have been implemented in the current
version of Bitsquare.

For the purpose of registering a peerID in the blockchain, additional mechanisms were
needed. Previous analysis on how to prevent sybil and eclipse attacks showed that a
viable solution for a decentralized peerID registration not only had to be reliant in the
sense of data integrity but a more critical factor is that it should not allow a user to
influence the resulting peerID that would be registered in any way. In other words the
resulting peerID would have to be random.

23

24 CHAPTER 4. DESIGN & IMPLEMENTATION

It is convenient that the blockchain can also be used as a source or randomness. Approx-
imately every 10 minutes a new block is generated and with it also a block nonce. The
mining process that generates this nonce was made unpredictable by design so that a huge
amount of computational resources have to put into this process to find a correct nonce
according to the set restrictions. It can therefore be argued that the resulting nonce inside
this restriction is random. If it weren’t, there would be a shortcut for mining a block that
would be exploited by miners immediately.

4.1.1 General Process

The resulting registration and request verification process look as follows:

• For a joining peer a private/public keypair is generated locally. This keypair is the
basis of a peerID and also reference to a registration. Among other things it will be
used to sign outgoing request as a way to proof the peer’s identity.

• to register the public key a valid bitcoin transaction with an output that contains the
public key with a OP RETURN statement is created and published to the Bitcoin
network.

• After the transaction is included in a block the peerID can be generated as a hash,
based on the public key and as a seed for randomness the nonce of the block the
transaction was included in.

• When connecting to other peers with a signed request they also are informed of the
block and transaction id that the peerID is based on so they can verify that the
peerID is valid by looking up the respective nonce and the transaction containing
the public key in the blockchain. (They wouldn’t have to download the whole
blockchain. Asking for the specific block and verifying it as a SPV client should be
enough.)

4.1.2 Limitations

As a consequence of introducing the bitcoin blockchain as a dependency we might also
introduce security vulnerabilities thereof. This solution bypasses the necessity of trusting
a third party as a registration service but instead trusts in the correctness of the bitcoin
network. Theoretically miners could be bribed to hold back blocks with undesirable nonce.
This would however mean that they loose out on the mining rewards of currently 25 BTC
and additional fees. A bribe that would compensate these losses would therefore be costly.

Another concern might be that it is possible that several registrations are based on the
same block nonce when their transactions end up in the same block. This can increase the
probability of generating a specific peerID when a large amount of registration is created
that are included in the same block. The Block size however is currently limited to 1MB
which would make such an attack infeasible. A general disadvantage of the registration

4.2. IMPLEMENTATION 25

process is that it takes some time for the registration transaction to be included in the
blockchain. The initial joining of the DHT network is therefore put o↵ by at least 10 to 20
minutes. Compared to solutions where an application request a certificate from a central
authority, this might still be acceptable. This waiting period will only be noticeable to
the user before first usage. Identical to an implementation with a central registry the
registration process has to be completed only once and might even be reused for several
applications.

As the validity of a registration has to be checked for every incoming message a certain
overhead to the current DHT implementation is created. The e↵ect this will have on the
performance of certain requests has to be determined.

Another interesting aspect of this mechanism is that the costs could even be increased
additionally by setting other requirements on the bitcoin transaction for being the basis
of a valid registration. E.g. one could ask for another output with a minimal amount of
bitcoins to a certain address. This could be used as a registration fee that for example
would fund the further development of a project such as Bitsquare.

4.2 Implementation

As a proof-of-concept this mechanism was implemented as part of the TomP2P library.
This section describes the architecture of the integration in the TomP2P and explains the
implementation of the registration and verification process in detail.

4.2.1 Architecture

The overall goal was to keep the implementation of a registration service independent of
the core package without having to make too many adaptations in the core and other
packages. To encapsulate the dependency on other libraries a new package bitcoin was
introduced. Figure 4.1 gives an overview of its contained classes. The processes of regis-
tration and verification is abstracted with a Registration Interface, which allowed to keep
the modifications in the core package general and support also other implementation of re-
gistration service (e.g. central registration server). To make it possible for peers to verify
that incoming requests are from a registered peer, the Message class had to be extended
with an optional header extension. This extension allows to add additional registration
reference data to any message. Not only messages should be able to be verified but also
the list of neighbour peers should only consist of registered peers. For this purpose the
PeerAddress class was also adapted to hold extra information about the registration of
that peer.

26 CHAPTER 4. DESIGN & IMPLEMENTATION

Figure 4.1: UML class diagram of the TomP2P bitcon package

To implement the behaviour of only accepting incoming request that originate from a
registered peer a MessageF ilter interface was introduced to the core package. The class
MessageF ilteredRegistered implements this interface and only allows request from peers
that were checked successfully for a valid registration. The same concept was also applied
to filter instances of PeerAddresse that are added to the PeerMap. In this case the
interface PeerMapF lter already existed in the core package.

4.2.2 Tools

To communicate with the Bitcoin network and to provide an easy way to create and
manage a bitcoin wallet the bitcoinJ library is included as a dependency in the TomP2P
bitcoin package. The bitcoinJ library o↵ers a easy solution for setting up a SPV wallet and
connect it to the bitcoin network. It implements all of the protocol commands that were
relevant for the purpose of this project. For instance it simplified the process of setting
up a lean SPV wallet based only on the blocks headers (see Section 2.1.3). At the same
time it also supported download requests to the Bitcoin network for specific blocks in full
detail. During the development a variety of JUnit tests were used to test and simulate the
registration and verification process of a set of peers. A simple OP RETURN transaction
usually doesn’t inculde a high amount of bitcoins. However when testing in a larger scale
the transaction fees needed to generate hundreds of peerIDs can accumulate to a some
amount. For this reason a test version of the bitcoin network was used, the TestNet. The
bitcoinJ library also made this easy. A simple setting would change the mode it operated
in from MainNet to TestNet. RegTest, a mode where the network is run locally and block
mining can be simulated, also helped speeding up the development process by allowing
faster testing as it doesn’t depend on the standard block confirmation time.

4.2. IMPLEMENTATION 27

4.2.3 Registration

The registration process is initiated with the RegistrationBitcoinBuilder. The main
part is however implemented in the registerPeer method of the RegistrationService (see
Listing 4.1 at the end of this Chapter).

The builder abstracts the process for generating the registration object that then can
be used to setup a Peer with a slightly adapted implementation of the PeerBuilder.
This builder pattern is also used in many other occasions in the TomP2P library. The
registerPeer method takes a generated private/public keypair and then creates a data
output (OP RETURN) Bitcoin transaction with the public key as the payload. The
transaction is then sent to the bitcoin network and a listener is set for the successful
confirmation in the blockchain. Once the transaction has been included in a block the
bitcoin client request the download of this full block to learn the block nonce. The actual
generation of the peerID is implemented in a separate method as it is also used in the
verification process. The current implementation bases the peerID on the public key
and the block nonce from the block the registration transaction was included in. As a
first step the public key is hashed, identical to the previous standard implementation in
TomP2P. As a second step, to prevent the generation of arbitrary peerIDs, the block
nonce is appended and the whole expression hashed again to 160 bits.

/**

* Generates peerId by hashing the public key first, then appending the block nonce and hash it again.

*

* @return generated peerId as Number160

*/

@Override

public Number160 generatePeerId(PublicKey publicKey, Long blockNonce) {

// initialize peerId with SHAHash of public key

Number160 peerId = Utils.makeSHAHash(publicKey.getEncoded());

byte[] peerIdBytes = peerId.toByteArray();

byte[] blockNonceBytes = ByteBuffer.allocate(8).putLong(blockNonce).array();

// for the seed create a new array that is the size of the two arrays

byte[] seed = new byte[peerIdBytes.length + blockNonceBytes.length];

// copy pub key into the seed array (from pos 0, copy pubKeyEnc.length bytes)

System.arraycopy(peerIdBytes, 0, seed, 0, peerIdBytes.length);

// copy block nonce into end of seed array (from pos pubKeyEnc.length, copy blockNonceBytes.length bytes)

System.arraycopy(blockNonceBytes, 0, seed, peerIdBytes.length, blockNonceBytes.length);

// generate final peerId by hashing the combined byte array

peerId = Utils.makeSHAHash(seed);

return peerId;

}

Listing 4.2: generatePeerId method in RegistrationBitcoinService

When the peerID has been generated the registration object is completed with the ref-
erence to the block and the transaction (see Listing 4.2). By adding this information in
a header extension of every outgoing message, other peers are able to verify that this
message originates from a registered peer. The same information is also added to the
PeerAddress object that captures how to contact a specific neighbouring peer.

28 CHAPTER 4. DESIGN & IMPLEMENTATION

4.2.4 Verification & Authentication

In order to enforce that all peers generate their peerID randomly based on a block nonce
all incoming messages have to be checked that they originate from a complying peer.
Messages that don’t correspond to an existing registration are ignored.

/**

* Validates if the supplied peerId is based on public key in the transaction and the block nonce

* @return true if verification was successful

*/

@Override

public boolean verify(RegistrationBitcoin registration) {

//check local registration storage if registration was already verified

if(storage.lookup(registration)) {

return true;

}

//else verify registration on blockchain

Number160 peerId = registration.getPeerId();

Sha256Hash blockHash = registration.getBlockId();

Sha256Hash transactionHash = registration.getTransactionId();

Block b = null;

// asking bitcoin peer for block

Peer peer = kit.peerGroup().getConnectedPeers().get(0);

b = getBlockAndVerify(blockHash);

for(Transaction tx : b.getTransactions()) {

if (tx.getHash().equals(transactionHash)) {

for(TransactionOutput output : tx.getOutputs()) {

if (output.getScriptPubKey().isOpReturn()) {

byte[] pubKeyEncoded = output.getScriptPubKey().getChunks().get(1).data;

X509EncodedKeySpec pubKeySpec = new X509EncodedKeySpec(pubKeyEncoded);

KeyFactory keyFactory = null;

try {

keyFactory = KeyFactory.getInstance("DSA");

PublicKey pubKey = keyFactory.generatePublic(pubKeySpec);

//check if peerId is based on block nonce and public key

if (generatePeerId(pubKey, b.getNonce()).equals(peerId)) {

//set public key from transaction data and store registration for later reference

registration.setPublicKey(pubKey);

storage.store(registration);

return true;

}

} catch (Exception e) {

e.printStackTrace();

return false;

}

}

}

break;

}

}

return false;

}

Listing 4.3: verify method in RegistrationBitcoinService

4.2. IMPLEMENTATION 29

This behaviour had to be integrated in the core implementation of TomP2P. To do this
a new interface for message filtering was introduced. These filters can be added to the
message dispatcher when setting up the TomP2P configuration. For the application of
only allowing messages from registered peers the MessageF ilterRegistered class relies
on the verify method of the RegistrationService (see Listing 4.3).

With the current implementation all incoming messages except those of the type Ping
and Neighbor are checked for a verified registration. The reason for this exception is that
those two types of messages do currently not support signatures and could therefore be
spoofed. As they do not pose a critical risk for manipulating data entries this checks
can be disregarded. The verify method will first check if the referenced registration has
been verified before and is still stored locally. If this is not the case it will download
the referenced block from the blockchain and check if there exists a transaction with a
registered public key. Based on the information from the blockchain the peerID generation
will be executed again and the full registration information is stored locally for later
reference.

After the registration object has been retrieved successfully, either from the blockchain or
in the local storage form previous lookups, the next step is to authenticate the message
with that registration. A simple method (see Listing 4.4) check if the message was signed
correctly and if the signature corresponds to the public key of the registration.

This step is important, leaving it out would allow malicious peers to hijack the registration
and the peerID from other users for their own messages. The signature of the message
assures that only the user who had access to the registration’s corresponding private key
was able to create this message.

/**

* authenticates if registration corresponds to public key in message

* @return true if authentic

*/

@Override

public boolean authenticate(RegistrationBitcoin registration, Message message) {

PublicKey publicKey = registration.getPublicKey();

//check if public key exists, message signature was verified and public key corresponds to registration

return publicKey != null && message.verified() && publicKey.equals(message.publicKey(0));

}

Listing 4.4: authenticate method in RegistrationBitcoinService

30 CHAPTER 4. DESIGN & IMPLEMENTATION

/**

* Registers public key with a transaction in the blockchain.

* @param keyPair keyPair with public key for peer registration

*/

@Override

public FutureDone<Registration> registerPeer(final KeyPair keyPair) {

final FutureDone<Registration> registrationFuture = new FutureDone<Registration>();

Number160 peerId = null;

final RegistrationBitcoin registration = new RegistrationBitcoin();

registration.setKeyPair(keyPair);

Coin value = Coin.parseCoin("0.00001");

//check for sufficient funds in wallet

if(kit.wallet().getBalance().isLessThan(value)) {

ListenableFuture<Coin> balanceFuture = kit.wallet().getBalanceFuture(value, Wallet.BalanceType.AVAILABLE);

FutureCallback<Coin> callback = new FutureCallback<Coin>() {

public void onSuccess(Coin balance) {

}

public void onFailure(Throwable t) {

}

};

Futures.addCallback(balanceFuture, callback);

try {

balanceFuture.get(); // blocks until funds are sufficient

} catch (InterruptedException e) {

e.printStackTrace();

} catch (ExecutionException e) {

e.printStackTrace();

}

}

//create transaction with public key in output script

Transaction tx = new Transaction(TestNet3Params.get());

Number160 pubKeyHash = net.tomp2p.utils.Utils.makeSHAHash(keyPair.getPublic().getEncoded());

Script script = new ScriptBuilder().op(OP_RETURN).data(keyPair.getPublic().getEncoded()).build();

tx.addOutput(Coin.ZERO, script);

//broadcast transaction

Wallet.SendRequest sendRequest = Wallet.SendRequest.forTx(tx);

try {

kit.wallet().sendCoins(sendRequest);

} catch (InsufficientMoneyException e) {

}

registration.setTransactionId(tx.getHash());

//add Listener for when transaction is included in blockchain

tx.getConfidence().addEventListener(new TransactionConfidence.Listener() {

@Override

public void onConfidenceChanged(Transaction tx, ChangeReason reason) {

TransactionConfidence confidence = tx.getConfidence();

if (reason.equals(ChangeReason.TYPE) && confidence.getConfidenceType().equals(TransactionConfidence.ConfidenceType.BUILDING)) {

Peer peer = kit.peerGroup().getConnectedPeers().get(0);

List<Peer> peers = kit.peerGroup().getPendingPeers();

Sha256Hash blockHash = null;

for (Sha256Hash hash : tx.getAppearsInHashes().keySet()) blockHash = hash;

registration.setBlockId(blockHash);

try {

//download the full block where transaction was included

Block block = getBlockAndVerify(blockHash);

//generate peerId

Number160 peerId = generatePeerId(keyPair.getPublic(), block.getNonce());

registration.setPeerId(peerId);

registrationFuture.done(registration);

} catch (Exception e) {

e.printStackTrace();

}

}

}

});

return registrationFuture;

}

Listing 4.1: registerPeer method in RegistrationBitcoinService

Chapter 5

Evaluation

This chapter describes the evaluation of the implemented peerID registration mechanism.

5.1 Goal

The presented proof-of-concept introduces an additional communication layer with the
Bitcoin network for generating and verifying peerID registrations. As one of the short-
comings of a DHT compared to centralized solutions can be inferior performance, the
repercussions of this introduced overhead are of importance. The goal of this evaluation
therefore is to analyze the performance impact of verifying every incoming message for
the validity of the originating peer’s registration.

5.2 Method

To measure the performance of various operations the Java Microbenchmark Harness
(JMH) [33], a benchmarking tool that is part of the OpenJDK code tools project, was
used. It allowed to define several use cases and partial procedures of the verification
process as methods that then were executed repeatedly to estimate its average execution
time.

Starting with a test case of a simple put operation, a DHT with 100 nodes was simulated
locally. A put operation in this case consists of a random node that requests to store some
data in the DHT. Based on the hash of the data through a routing process the responsible
node for storing the data is identified and the formal message with the request to store
the data is sent to this node.

Two implementations were compared: a standard TomP2P implementation (testPutStandard)
and an extended one where the registration and verification mechanism from the bitcoin
package is used (testPutRegistered). For the extended implementation this means that

31

32 CHAPTER 5. EVALUATION

the node that is responsible for the storage of this data will also have to verify the regis-
tration of the requesting node.

To setup a DHT with 100 registered nodes, registrations were generated on the Bitcoin
TestNet in advanced and stored in a file locally. The caching mechanism that would
prevent downloading blocks again for previously verified registrations was disabled for
this test to simulated the worst case where for every request a new registration has to be
verified.

To visualize how the total performance overhead for a put operation is distributed among
the di↵erent steps, the average time for the verification (testV erify) and also the down-
load of a block (testBlockDownload) were also measured separately.

This scenarios where defined as methods which then were repeatedly executed by the JMH
framework in an uninterrupted sequence of 1000 milliseconds. The average was calculated
based on a sample of 100 testing iterations with a previous warmup iteration.

5.3 Results

The results make apparent that the verification of the registration creates an overhead on
a put operation by factor 6. Table 5.3 lists the average measured operation times of the
four tested execution scenarios. Figure 5.1 visualizes that the major performance decrease
is due to the block downloading process. The testPutRegistered method can be seen as
a combination of testBlockDownload and testV erify.

Benchmark Mode Samples Score Error (99.9%) Unit
testPutNormal avgt 100 48.792974 19.756872 ms/op
testPutRegistered avgt 100 317.000443 96.398636 ms/op
testBlockDownload avgt 100 210.654112 6.555298 ms/op
testVerify avgt 100 106.256647 8.550205 ms/op

Table 5.1: Benchmark results

Figure 5.1: Benchmark results

5.3. RESULTS 33

The distributed nature of the verification process attributes to some factors that could not
be controlled completely when measuring the performance: For one the download process
can be a↵ected by possible latency of the Internet connection or the current workload on
the bitcoin network.

The uninterrupted continuous execution of the put operation in some cases seemed to have
caused some ”Channel timeout for channel Sender” warnings and premature termination
of the execution. This might partly explain the noticeable variance in the results for the
two variants of the put operation.

The results show that a realistic application of the mechanism highly depends on the
performance of the block download. The simulated scenario represents the worst-case
scenario. In an usual setting with a repeated request from a previously verified peer, the
response time would shrink to the equivalent of the testV erify method.

34 CHAPTER 5. EVALUATION

Chapter 6

Summary

This final chapter summarizes the approach and findings of this thesis. Finally an out-
look on future developments in the bitcoin system and its ramifications for the proposed
solution are given.

6.1 Summary & Conclusion

This thesis introduced the decentralized bitcoin exchange project Bitsquare. Understand-
ing its inner workings, the Bitcoin protocol and the DHT it depends on, allowed to
analyze potential vulnerabilities to malicious actors. After recognizing the vital role of
the DHT based o↵er book and the potential attack scenarios this allows the focus was
laid on proposing a possible countermeasure in the underlying DHT implementation. It
was explained how a peerID registration service would mitigate the identified sybil and
eclipse attack on the DHT. With the design of a decentralized registry service based on
the Bitcoin blockchain a viable solution was proposed that doesn’t contravene Bitsquare’s
e↵orts at decentralization. An evaluation of the e↵ects on performance when introducing
registration verification on every received message in the DHT network was made. The
benchmarking results showed that the created overhead might still lay in a range accept-
able for a DHT application with moderate data alteration. In the worst case scenario
where a data storage request is based on an previously unknown registration an overhead
by factor 6 was measured.

6.2 Future Work

The proposed countermeasure implementation relies on the Bitcoin protocol. The direc-
tions the development of the Bitcoin protocol will take are unpredictable and with that
also its application for this purpose. The performance of the registration verification
mostly depends on the response time of the Bitcoin network for block download requests.

35

36 CHAPTER 6. SUMMARY

With a growing adaption of the Bitcoin network its current limited block size has been
questioned for the gain of higher transaction bandwidth [34]. A bigger block size would
intensify the performance bottle neck of downloading blocks to verify registrations ad-
ditionally. A possible remedy could be a more e�cient handling of download requests
that ask for filtered blocks, only consisting of the most relevant transactions. The Bitcoin
Improvement Protocol 037 (BIP 0037) [35] introduced connection Bloom filtering and is
partly implemented in the bitcoinJ library. The abstraction in the architecture of the
library however favours the use case for supporting fast synchronisation of SPV wallets.
For the implementation of an accelerated lookup of a single transaction’s content the
implementation would need some profound modifications to adapt it to this use case at
hand.

The current implementation also doesn’t take in account all special cases connected to the
blockchain behaviour. The nature of the blockchain allows of certain situations where an
initial confirmation in one block is invalidated by an alternative branch of the blockchain
that outgrows the initial version. This would also invalidate an initial registration as
the relevant block nonce would be changed. The current implementation for simplicity
only waits for one block confirmation. A more robust implementation would have to
wait for more block confirmation before determining the peerID or track the blockchain
development and change the assigned peerID if necessary.

The future development of the Bitcoin protocol might not continue supporting its use for
registry lookups. There are many alternative modifications of the Bitcoin protocol that
might be better suited for this purpose. One of the firs forks of the Bitcoin project, called
NameCoin follows the idea of a decentralized registry that could potentially substitute the
DNS system. Projects like NameCoin might with their focus on the registry application
might be more e�cient for a use case such as Bitsquare. As the Bitsquare project already
made use of the bitcoinJ library and currently no equivalent Java library for NameCoin
is available, an implementation based on NameCoin was not pursued. Depending on the
evolution of the Bitcoin protocol this decisions might have to be reevaluated in the future.

The combination of a P2P system such as a DHT with a frictionless payment network
like Bitcoin also could potentially open up new models of funding independent, non-
hierarchical development of P2P projects. As mentioned in Section 4.1.2 additional checks
on the registration transaction could be implemented easily to enforce a registration fee
as a source of funding.

Bibliography

[1] OpenBazaar Website. url: https://openbazaar.org (visited on 10/07/2015).

[2] Bitsquare Website. url: http://bitsquare.io (visited on 10/07/2015).

[3] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2009. url: https:
//bitcoin.org/bitcoin.pdf.

[4] Andreas M. Antonopoulos. Mastering Bitcoin: Unlocking Digital Cryptocurrencies.
English. Cambridge, MA: O’Reilly Media, 2014.

[5] Adam Back. Hashcash - A Denial of Service Counter-Measure. 2002. url: http:
//hashcash.org/papers/hashcash.pdf.

[6] blockchain.info: Blockchain Size. url: https://blockchain.info/charts/blocks-
size (visited on 29/07/2015).

[7] Rainer Böhme et al. ‘Bitcoin Design Principles Enabling Technologies and Pro-
cesses’. In: Journal of Economic Perspectives 29.2 (2015), pp. 213–238.

[8] Tyler Moore and Nicolas Christin. ‘Beware the middleman: Empirical analysis of
Bitcoin-exchange risk’. In: Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 7859
LNCS.June 2011 (2013), pp. 25–33.

[9] Rachel Abrams, Matthew Goldstein and Hiroko Tabuchi. Erosion of Faith Was
Death Knell for Mt. Gox. Feb. 2014. url: http://dealbook.nytimes.com/2014/
02/28/mt-gox-files-for-bankruptcy/.

[10] Bitsquare White Paper Version 1.0. url: https://bitsquare.io/bitsquare.pdf.

[11] localBitcoins.com Website. url: https://localbitcoins.com (visited on 10/07/2015).

[12] Chris Pacia.OpenBazar GitHub repository commit comment. url: https://github.
com/OpenBazaar/Network/commit/ece23e2853c1ddb771b6afe9d54ef9d1a1086609

(visited on 10/07/2015).

[13] Coin↵eine Website. url: http://coinffeine.com/ (visited on 10/07/2015).

[14] Coin↵eine Exchange Algorithm. url: https://github.com/Coinffeine/coinffeine/
wiki/Exchange-algorithm\#protocol-overview (visited on 10/07/2015).

37

https://openbazaar.org
http://bitsquare.io
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
http://hashcash.org/papers/hashcash.pdf
http://hashcash.org/papers/hashcash.pdf
https://blockchain.info/charts/blocks-size
https://blockchain.info/charts/blocks-size
http://dealbook.nytimes.com/2014/02/28/mt-gox-files-for-bankruptcy/
http://dealbook.nytimes.com/2014/02/28/mt-gox-files-for-bankruptcy/
https://bitsquare.io/bitsquare.pdf
https://localbitcoins.com
https://github.com/OpenBazaar/Network/commit/ece23e2853c1ddb771b6afe9d54ef9d1a1086609
https://github.com/OpenBazaar/Network/commit/ece23e2853c1ddb771b6afe9d54ef9d1a1086609
http://coinffeine.com/

38 BIBLIOGRAPHY

[15] Mercury, the decentralized cryptocurrency exchange. url: http://mercuryex.com/
(visited on 10/07/2015).

[16] Guido Urdaneta, Guillaume Pierre and Maarten Van Steen. ‘A survey of DHT
security techniques’. In: ACM Computing Surveys 43.2 (2011), pp. 1–49.

[17] Petar Maymounkov and D Mazieres. ‘Kademlia: A peer-to-peer information system
based on the xor metric’. In: First International Workshop on Peer-to-Peer Systems
(2002), pp. 53–65. url: http://link.springer.com/chapter/10.1007/3-540-
45748-8_5.

[18] Ion Stoica et al. ‘Chord: A scalable peer-to-peer lookup service for internet ap-
plications’. In: Proceedings of the 2001 conference on Applications, technologies,
architectures, and protocols for computer communications - SIGCOMM ’01 (2001),
pp. 149–160. url: http://portal.acm.org/citation.cfm?doid=383059.383071.

[19] Antony Rowstron and Peter Druschel. ‘Pastry: Scalable, Decentralized Object Loc-
ation, and Routing for Large-Scale Peer-to-Peer Systems’. In: Middleware 2001. Ed.
by Rachid Guerraoui. Vol. 2218. Lecture Notes in Computer Science. Springer Ber-
lin Heidelberg, 2001, pp. 329–350. url: http://www.springerlink.com/index/
10.1007/3-540-45518-3.

[20] Bitsquare Risk analysis. url: https://bitsquare.io/risk_analysis.pdf (visited
on 10/07/2015).

[21] Luca Maria Aiello et al. ‘Tempering kademlia with a robust identity based system’.
In: Proceedings - P2P’08, 8th International Conference on Peer-to-Peer Computing
(2008), pp. 30–39.

[22] JR Douceur. ‘The sybil attack’. In: Peer-to-peer Systems (2002), pp. 1–6. url:
http://link.springer.com/chapter/10.1007/3-540-45748-8_24.

[23] M Castro et al. ‘Secure routing for structured peer-to-peer overlay networks’. In:
Proc. OSDI 2002, Boston, MA, December (2002), pp. 299–314.

[24] Leonardo Maccari et al. ‘Avoiding Eclipse attacks on Kad / Kademlia : an iden-
tity based approach’. In: ICC ’09: Proceedings of Communication and Information
Systems Security Symposium (2006).

[25] Juan Caubet et al. ‘Securing identity assignment using implicit certificates in P2P
overlays’. In: Trust Management VII. 2013, pp. 151–165.

[26] Juan Caubet et al. ‘RIAPPA: a Robust Identity Assignment Protocol for P2P over-
lays’. In: Security and Communication Networks 7.12 (2014), pp. 2743–2760. url:
http://dx.doi.org/10.1002/sec.956.

[27] Peng Wang et al. ‘Attacking the Kad network’. In: Proceedings of the 4th interna-
tional conference on Security and privacy in communication netowrks - SecureComm
’08 (2008), p. 1. url: http://portal.acm.org/citation.cfm?id=1460877.
1460907.

http://mercuryex.com/
http://link.springer.com/chapter/10.1007/3-540-45748-8_5
http://link.springer.com/chapter/10.1007/3-540-45748-8_5
http://portal.acm.org/citation.cfm?doid=383059.383071
http://www.springerlink.com/index/10.1007/3-540-45518-3
http://www.springerlink.com/index/10.1007/3-540-45518-3
https://bitsquare.io/risk_analysis.pdf
http://link.springer.com/chapter/10.1007/3-540-45748-8_24
http://dx.doi.org/10.1002/sec.956
http://portal.acm.org/citation.cfm?id=1460877.1460907
http://portal.acm.org/citation.cfm?id=1460877.1460907

BIBLIOGRAPHY 39

[28] Haifeng Yu and Michael Kaminsky. ‘SybilGuard: Defending against Sybil Attack via
Social Networks’. In: IEEE/CM Transactions on Networking 16 (2008), pp. 576–
589. url: http://dl.acm.org/citation.cfm?id=1159945.

[29] N. Borisov. ‘Computational Puzzles as Sybil Defenses’. In: Sixth IEEE International
Conference on Peer-to-Peer Computing (P2P’06) (2006).

[30] Atui Singh et al. ‘Eclipse attacks on overlay networks: Threats and defenses’. In:
Proceedings - IEEE INFOCOM. 2006.

[31] Ingmar Baumgart and Sebastian Mies. ‘S/Kademlia: A practicable approach to-
wards secure key-based routing’. In: Proceedings of the International Conference on
Parallel and Distributed Systems - ICPADS 2 (2007).

[32] Davide Cerri et al. ‘ID mapping attacks in P2P networks’. In: GLOBECOM - IEEE
Global Telecommunications Conference 3 (2005), pp. 1785–1790.

[33] OpenJDK JMH Website. url: http://openjdk.java.net/projects/code-
tools/jmh/ (visited on 10/07/2015).

[34] Implementation of BIP 101 : maximum block size increase. url: https://github.
com/bitcoin/bitcoin/pull/6341 (visited on 29/07/2015).

[35] Bitcoin Wiki: BIP 0037. url: https://en.bitcoin.it/wiki/BIP_0037 (visited
on 29/07/2015).

http://dl.acm.org/citation.cfm?id=1159945
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
https://github.com/bitcoin/bitcoin/pull/6341
https://github.com/bitcoin/bitcoin/pull/6341
https://en.bitcoin.it/wiki/BIP_0037

40 BIBLIOGRAPHY

Abbreviations

BTC Denomination of bitcoin, the unit of account of the Bitcoin p2p payment network
DHT Distributed Hash Table
P2P Peer-to-peer
TTP Trusted Third Party
SEPA Single Euro Payments Area
SPV Simplified Payment Verification

41

42 ABBREVIATONS

List of Figures

2.1 Simplified illustration of how Bitcoin transactions reference to each other. . 4

2.2 Screenshot of the Bitsquare client when creating a new o↵er. 9

2.3 The Bitsquare trading protocol. [10] . 10

2.4 LocalBitcoins.com website with various, location specific bitcoin sell o↵ers. 12

2.5 Screenshot the Coin↵ein client [13] . 13

2.6 Mercury client in its current alpha version. [15] 14

2.7 Simplified illustration of a DHT peerID/key storage concept 15

3.1 The organization of a typical DHT, illustrating attacks on the core func-
tionality. [16] . 19

4.1 UML class diagram of the TomP2P bitcon package 26

5.1 Benchmark results . 32

43

44 LIST OF FIGURES

List of Tables

2.1 Structure of a Bitcoin transaction. [4] . 6

2.2 Structure of a Bitcoin block. [4] . 6

5.1 Benchmark results . 32

45

46 LIST OF TABLES

List of Source Codes

4.2 generatePeerId method in RegistrationBitcoinService 27
4.3 verify method in RegistrationBitcoinService 28
4.4 authenticate method in RegistrationBitcoinService 29
4.1 registerPeer method in RegistrationBitcoinService 30

47

48 LIST OF SOURCE CODES

Appendix A

Contents of the DVD

• MasterThesis.pdf

• Abstract.txt

• Zusfsg.txt

• Data of evaluation in evaluation directory

• Source Code of implementation in code directory

• Latex source of thesis in latex directory

49

	Abstract
	Zusammenfassung
	Acknowledgments
	Introduction
	Motivation
	Description of Work
	Thesis Outline

	Background & Related Work
	Bitcoin
	Transactions
	The Blockchain
	Simplified Payment Verification (SPV)
	The Bitcoin Ecosystem

	Bitsquare
	The Client
	The Trading Protocol
	Registration

	Other decentralized exchanges
	LocalBitcoins.com
	OpenBazar
	Coinffeine
	Mercury

	Distributed Hash Table
	TomP2P

	Attack Scenarios & Countermeasures
	Trade Protocol related Attacks
	Bank Transfer Reversal

	DHT related Attacks
	The Sybil Attack
	The Eclipse Attack

	Assessment

	Design & Implementation
	Design
	General Process
	Limitations

	Implementation
	Architecture
	Tools
	Registration
	Verification & Authentication

	Evaluation
	Goal
	Method
	Results

	Summary
	Summary & Conclusion
	Future Work

	Abbreviations
	List of Figures
	List of Tables
	List of Source Code
	Contents of the DVD

