
Master Thesis
January 27, 2015

Feedback Driven
Development

Bringing Runtime Metrics to the Developer

Christian Bosshard
of Zürich, Schweiz (07-914-948)

supervised by
Prof. Dr. Harald C. Gall

Jürgen Cito, Dr. Philipp Leitner

software evolution & architecture lab

Master Thesis

Feedback Driven
Development

Bringing Runtime Metrics to the Developer

Christian Bosshard

software evolution & architecture lab

Master Thesis

Author: Christian Bosshard, christian.bosshard@uzh.ch

Project period: 01.08.2014 - 29.01.2015

Software Evolution & Architecture Lab
Department of Informatics, University of Zurich

Acknowledgements

This Master Thesis is the final step on the way to my master’s degree. For this reason, I would
like to thank everybody who supported me in any modality during my studies over the past
years. My sincere thanks goes to my family, my parents Regula and Markus, as well as my sister
Eveline, for supporting me in so many ways throughout my whole life. I also want to thank my
fellow students and especially the guys from the ICU board and staff for making our collaborative
projects and exercises a pleasure and for many informative discussions and unforgotten moments
during our university life.

I want to thank Prof. Dr. Harald C. Gall for giving me the opportunity to write my Master’s
Thesis at the software evolution and architecture lab at the University of Zurich. Special thanks
go to the supervisors of this Thesis, Jürgen Cito and Dr. Philipp Leitner, for their valuable guid-
ance and feedback during the entire process. Furthermore, I thank Linda Rudin for linguistically
reviewing this thesis.

Abstract

Software Developers utilize various data sources to draw a more complete picture of the evolu-
tion of an application over its lifetime. What kind of data is being used by developers, and how
they use this data, is constantly evolving. Techniques derived from empirical software engineer-
ing mostly focus on static information (e.g., change requests in issue trackers, test coverage and
build information). However, as multifaceted as the development-time feedback discussed so far
may be, it still only covers one part of the application evolution. So far, it rarely bothers with
gathering data about the application at runtime while it is actually being used. This is the domain
of performance engineering, a relatively decoupled separate research domain, which is mostly
concerned with optimizing non-functional properties of applications without actually looking at
development-time artifacts, such as source code or change requests. However, with the advent of
Cloud Computing and DevOps, software development and operations activities are converging.
Hence, feedback for empirical software engineering needs to be extended with runtime informa-
tion. In the cloud, both development-time and runtime feedback are readily available. However,
developers currently lack awareness of the potential data and tools provided in the cloud. In
this thesis, an approach is developed that integrates feedback from operational data into the Inte-
grated Development Environment (IDE). A prototypical implementation called PerformanceHat,
which uses the gathered runtime data to automatically detect the two common software perfor-
mance problems “hotspot method” and “critical loop”, is contributed. The obtained feedback is
visualized in the existent Java editor inside the IDE. An exploratory study shows that the pre-
sented approach combines important characteristics to support the DevOps methodology that
has not been covered in its entirety in previous research.

Zusammenfassung

Software Entwickler verwenden verschiedene Datenquellen, um ein umfassendes Bild der zu en-
twickelnden Applikation zu erhalten. Diese Datenquellen, sowie auch die Art, wie Entwickler
die Daten verwenden, entwickeln sich stetig. Techniken aus der empirischen Software Entwick-
lung haben sich bisher stark auf die Bereitstellung von statischen Daten (z.B. Change Requests
aus Issue Trackern, Build-Informationen und Testabdeckung) konzentriert. Dynamische Infor-
mationen, welche Aufschluss darüber geben, wie sich die Applikation zur Laufzeit verhält, wer-
den bis anhin nur im Bereich Performance Engineering verwendet. Dieser Forschungsbereich ist
relativ stark von der Software Entwicklung losgekoppelt und untersucht hauptsächlich die Op-
timierung von nicht-funktionalen Anforderungen, ohne dabei statische Artefakte, wie Quellcode
oder Change Requests, einzubeziehen. Mit dem Aufkommen von Cloud Computing und De-
vOps konvergieren die Software Entwicklung und operative Tätigkeiten jedoch immer stärker.
Somit sollte die empirische Software Entwicklung operationale Daten stärker miteinbeziehen. In
der Cloud ist sowohl statisches als auch dynamisches Feedback leicht verfügbar. Die Bewusstheit
der Entwickler über die Verfügbarkeit dieser Tools und Daten ist jedoch noch nicht zufrieden-
stellend. In dieser Arbeit wird ein Ansatz entwickelt, welcher Feedback von operationalen Daten
in die Entwicklungsumgebung (IDE) integriert. Teil der Arbeit ist eine prototypische Implemen-
tierung namens PerformanceHat, welche operationale Daten verwendet, um die beiden gängigen
Software Performance-Probleme “hotspot method” und “critical loop” zu ermitteln. Eine quali-
tative Evaluation zeigt, dass der vorgestellte Ansatz, anders als vorangehende Forschungsarbeit,
die DevOps Methodologie in ihrer Gesamtheit unterstützt.

Contents

1 Introduction 1
1.1 Contribution . 2
1.2 Thesis Outline . 3

2 Background 5
2.1 Introduction of Terminologies . 5

2.1.1 Cloud Computing . 5
2.1.2 DevOps Approach . 6
2.1.3 Continuous Delivery . 6
2.1.4 Performance Engineering . 7

2.2 Performance Anti Patterns . 8
2.2.1 God Class . 9
2.2.2 Excessive Dynamic Allocation . 10
2.2.3 Aggressive Loading of Entities . 11
2.2.4 Too Many Remote Calls . 11
2.2.5 Expensive (Nested) Loops . 12
2.2.6 One Lane Bridge . 13
2.2.7 Traffic Jam . 14
2.2.8 The Ramp . 14
2.2.9 Unbalanced Processing . 15
2.2.10 More is Less . 15
2.2.11 Unnecessary Work . 16

2.3 Statistical Methods . 16
2.3.1 Time Series Data . 16
2.3.2 Moving Average . 17
2.3.3 Change-Point Analysis . 17

3 Bringing Runtime Metrics to the Developer 21
3.1 Problem Analysis . 21
3.2 Feedback-Driven Development . 22

3.2.1 A Practical Scenario . 23
3.2.2 Goals . 24
3.2.3 Feedback-Driven Development (FDD) and Continuous Delivery 24

3.3 Introducing a Concept for FDD . 25
3.3.1 Characteristics of an FDD System . 25
3.3.2 From Runtime Data to Meaningful Feedback 26
3.3.3 Application of Statistical Methods . 30

viii Contents

3.3.4 Proposed Conceptual System Architecture 32
3.3.5 Summary of the Approach . 34

3.4 Implementing an FDD system . 35
3.4.1 Architecture . 35

3.5 Common Component . 36
3.5.1 Runtime Data Model . 37

3.6 Monitoring Component . 39
3.6.1 Requirements . 39
3.6.2 Instrumenting Java Applications . 39
3.6.3 Setting up the Target Application . 40
3.6.4 Monitoring Aspects . 41
3.6.5 Join Point Handlers . 41

3.7 Feedback Handler Component . 42
3.7.1 Handling incoming Data . 42
3.7.2 Data Storage . 43
3.7.3 Filtering and Aggregation Techniques . 43
3.7.4 REST API . 45

3.8 Eclipse Plug-in Component . 45
3.8.1 FDD Resources Extension . 46
3.8.2 Project Nature . 48
3.8.3 Builder Mechanism . 49
3.8.4 Static Source Code Analysis . 51
3.8.5 Markers and Hovers . 52

3.9 CloudWave Integration . 54

4 Evaluation 57
4.1 Qualitative Evaluation . 57

4.1.1 Dimensions . 57
4.1.2 Selected Tools . 58
4.1.3 Comparison . 59
4.1.4 Conclusion . 63

4.2 Quantitative Evaluation . 64
4.2.1 Monitoring Overhead Investigation . 64
4.2.2 IDE Plug-in Performance . 68

5 Related Work 71
5.1 Detection of Performance Problems . 71
5.2 Visualization of Runtime Information . 72
5.3 Integrating Runtime Information into the IDE . 73

6 Final Remarks 75
6.1 Conclusion . 75
6.2 Future Work . 76

6.2.1 Conceptual Improvements . 76
6.2.2 Technical Improvements . 77

A Acronyms 79

B Results of the Quantitative Evaluation 81

C PerformanceHat User Guide 85

Contents ix

List of Figures
2.1 The Continuous Delivery Pipeline [Che]. 7
2.2 A sample god class and how to refactor it [DDN02]. 9
2.3 The impacts of a god class on the number of messages (data from [SC93]). 10
2.4 Overhead of excessive dynamic allocation [SW00]. 11
2.5 Example of a redundant outer loop [PM04b]. 13
2.6 Impact of improving the service time of a one lane bridge [SW00]. 14
2.7 The ramp anti pattern [SW03]. 15
2.8 An example plot of a moving average with window size 5. 17
2.9 Execution times of a procedure. 18
2.10 The cumulative sum (CUSUM) plot of the time series in Figure 2.9. 19
2.11 Bootstrap samples of the CUSUM from Figure 2.10. 20

3.1 The principle of Feedback-Driven Development. 23
3.2 The Continuous Delivery Pipeline extended with FDD (adapted from [Che]). . . . 25
3.3 From raw data to Advices. 26
3.4 Taxonomy of advices for an object-oriented system. 27
3.5 Mockup visualizing a part of an Integrated Development Environment (IDE) dis-

playing informative advices. 28
3.6 Mockup visualizing a part of an IDE displaying warning advices. 29
3.7 The proposed architecture for an FDD system. 32
3.8 Architecture of the FDD system. 36
3.9 The domain model of the FDD system. 37
3.10 The layers of the domain model entities. 38
3.11 The mongoDB aggregation pipeline [Doca]. 43
3.12 A class diagram of the Eclipse resources extension layer. 47
3.13 The Feedback Nature. 48
3.14 The FDD project property page. 49
3.15 The Feedback Builder and builder participants. 50
3.16 FDD markers showing warning advices in the Java editor. 53
3.17 FDD hover displaying detailed information about a warning advice. 53
3.18 The proposed framework of the CloudWave project [BFKB+14]. 54
3.19 The metric converter. 55

4.1 Graphical illustration of the average values of the monitoring overhead measure-
ment in the Tudu application. 65

4.2 Graphical illustration of the average values of the monitoring overhead measure-
ment on the sample application. 67

4.3 Graphical illustration of the values of Table 4.5. 69

x Contents

List of Tables
2.1 Service models of cloud providers. 6
2.2 Results of the boorstrapping analysis. 20

4.1 Comparison of performance management tools along different dimensions. The
assignment of yes (dimension is fulfilled), partial (dimension is partially fulfilled),
and no (dimension is not fulfilled) is based on the available documentation and to
the best of the author’s knowledge . 60

4.2 Comparison of performance management tools along their monitoring capabilities.
The assignment of yes (supported), partial (partially supported), and no (not sup-
ported) is based on the available documentation and to the best of the author’s
knowledge . 62

4.3 Average values of the monitoring overhead measurement in the Tudu application. 65
4.4 Average values of the monitoring overhead scalability measurement. 66
4.5 Average values of the Eclipse builder execution times. 69

List of Listings
2.1 Simple example of too many remote calls (N+1 select problem). 11
2.2 Redundant computation in nested loops. 13
3.1 A simple loop example (Java). 31
3.2 The Java class defining the aspect that is used to monitor the target application

(JavaDoc comments are omitted). 41
3.3 The AbstractAroundJoinPointHandlerTemplate class specifying a template

for all procedure call join point handlers (JavaDoc comments are omitted). 42
3.4 An aggregation pipeline in the Feedback Handler code. 44
3.5 The corresponding aggregation query of Listing 3.4. 44
3.6 An example of a REST controller method. 45
3.7 The FeedbackBuilderParticipant interface defined by the FDD plug-in in

order to split the work of the Feedback Builder. 50
3.8 The method incrementalBuild from the FeedbackBuilder class. 51
3.9 The abstract syntax tree (AST) visitor in the HotspotsBuilderParticipant. . 51
3.10 Matching runtime feedback with AST nodes. 52
4.1 Eclipse debug configuration in the .options file for measuring the builder times. 68
6.1 A Java annotation defining thresholds for the method getItems(). 77

Chapter 1

Introduction

Cloud computing has experienced a tremendously high growth over the last few years, an in-
creasing number of software providers offer their services in the cloud. There are a huge numbers
of companies which build up big data centers to provide infrastructure and platforms as a service.
Amazon EC21, Google App Engine2, and Heroku3 are some famous examples of such cloud ser-
vices. On top of those infrastructural services, software vendors, such as Google, Facebook, or
Dropbox, provide their services for end users as browser-based cloud applications. There is little
software which needs to be installed on the users machine, most of the applications run in the
cloud and are accessible over the web. This movement is not only recognizable in the area of pri-
vate customer software, vendors of big enterprise applications are also moving their applications
from on-premise usage models to the cloud in order to stay competitive by benefitting from the
advantages cloud computing entails. Examples are SAP with the SAP HANA Cloud Platform4,
Microsoft with its Dynamics CRM5, or Salesforce6.

The growth of mobile computing strengthened the importance of cloud computing even more.
There are different front-end devices (laptops, tablets, smartphones) that all connect with a rel-
atively small client application to the actual application which runs in the cloud. Traditional
desktop applications are disappearing more and more.

This new paradigm has raised various issues on how to design and implement the underlying
hardware (networks and data centers), which is frequently discussed in research [Pal10]. On
the other hand, there is a lot of impact on the lifecycle of software and thus on the discipline of
Software Engineering and the daily work of software developers.

Traditionally, software developers use a number of tools to collect, display, and use differ-
ent information during development. Issue trackers are used to fetch information about change
requests or bugs in the existing source code. From Continuous Integration servers information
about the build status, including testing results, is fetched and various analysis tools help to ex-
amine the static structure of source code artifacts (e.g., test coverage). Most of these tools are quite
closely integrated into the development environment and the data is therefore quickly accessible
for developers. Furthermore, there has been various research on improving the integration and
visualization of data in those different systems to allow the developer to get a complete picture of
the available information [BGG14a, BGG14b, Bir14, Hil14].

An aspect which is so far not covered by the above mentioned tooling, and, for that reason
is completely missing in the typical software development process, is information about how

1http://aws.amazon.com/ec2/?nc2=h_ls
2https://cloud.google.com/appengine/docs
3https://www.heroku.com
4http://hcp.sap.com/index.html
5http://www.microsoft.com/de-ch/dynamics/crm.aspx
6http://www.salesforce.com

2 Chapter 1. Introduction

the developed application actually behaves at runtime in the production environment. The do-
main of performance engineering deals with such kind of data investigating the non-functional
characteristics of an application, how it performs, and how users experience the system. There
exist various tools that provide functionality to monitor those aspects of a software system, well-
known examples in industry are New Relic7 and Datadog8. Performance engineering is a very
important area of the software evolution lifecycle, especially with the rise of cloud computing,
since various research has shown that users have high expectations regarding the load times of
web applications [Cit14, BKB00, Kin03].

Nevertheless, performance engineering has so far been an isolated domain relatively strictly
separated from the software development processes. Software companies often have different
teams for development and operations. These two teams have different tasks with different goals.
While developers typically do not care about runtime aspects (non-functional aspects), perfor-
mance engineers often do not look at the source-code or other development-time artifacts. This
separation explains why, also in research, the two areas of software development and perfor-
mance engineering are mostly treated in isolation.

But with the area of cloud computing, the DevOps approach has gained more and more trac-
tion. The overall goal of DevOps is to eliminate the described separation and instead closely
integrate development and operations. This includes aligning the goals of the two teams but also
building new tools that support this new process and allow a fast and automated exchange of
data and feedback between development and operations.

1.1 Contribution
The goal of this thesis is to tackle the dichotomy described above from the perspective of a de-
veloper working on a cloud application. Foregoing research has shown that developers clearly
observe that in cloud deployment there are more metrics available about the production envi-
ronment than in traditional setups [CLFG14]. Nevertheless, the results of the same study have
shown that developers are using their intuition before consulting any runtime data when work-
ing on typical software maintenance tasks (e.g., fixing an issue) [CLFG14]. Derived from the
assumption that this contrariness is caused by the runtime data not being available to developers
in an easy way [CLFG14], this thesis addresses the following two research questions:

• RQ1: “How can performance data from cloud infrastructures be integrated into software
development environments?”

• RQ2: “How can this data be used to predict performance problems in advance?”

To answer these questions, a concept has been developed that describes how runtime data
could be made better available for developers by combining it with the static code artifacts. The
solution shows how performance metrics can be made available directly in developers environ-
ment and what feedback the developer could gain out of those numbers. Based on that theoretical
concept, a prototypical application called PerformanceHat has been implemented as an extension
for the Eclipse IDE9. The application is capable of collecting runtime data, analysing and aggregat-
ing it, and displaying it in a reasonable way in the Integrated Development Environment (IDE).
In an exploratory study we compared our tool to other performance engineering tools and could
show that our tool supports the DevOps approach better by combining both static and dynamic
aspects of software systems.

7http://newrelic.com
8https://www.datadoghq.com
9http://www.eclipse.org

1.2 Thesis Outline 3

1.2 Thesis Outline
The remainder of this thesis is structured as follows:

• Chapter 2 discusses some basic terms and relevant topics. First, the terminologies Cloud
Computing, DevOps, Continuous Delivery, and Performance Engineering are summarized. Then,
an insight into common performance anti patterns is given. Finally, some statistical concepts
which are applied in the approach of the thesis are discussed.

• In Chapter 3, Feedback-Driven Development is introduced as a solution to the problem of
integrating runtime data into traditional development environments in order to support
the DevOps approach. A concept is developed that specifies what an appropriate system
should look like. In a second part, the architecture and implementation of PerformanceHat
are illustrated.

• The evaluation in Chapter 4 is divided into two distinct parts. First, an exploratory study
compares the implementation with other research prototypes as well as industrial tools from
the domain of performance engineering. Second, a quantitative evaluation investigates
some performance aspects of two different components of the implemented prototype.

• Chapter 5 summarizes a selection of preceding research work that is closely related to the
topic of this thesis.

• Finally, Chapter 6 concludes the work, recaps the research questions, and discusses some
possible future work to improve the presented concept as well as the implemented proto-
type.

Chapter 2

Background

The following chapter introduces basic terms and discusses important topics on which this thesis
is based on. First, the terms Cloud Computing, DevOps, Continuos Delivery, and Performance
Engineering are introduced and explained. Subsequently, important aspects of Peformance Engi-
neering are discussed in more detail.

2.1 Introduction of Terminologies

2.1.1 Cloud Computing
Cloud computing is an omnipresent buzzword that stands for a huge technological trend in the
landscape of information technology over the last years [Hil09]. However the topic has out-
stripped the scope of applications and technologies and various research is conducted investi-
gating business-related issues and prospects of cloud computing [SMG11, CBWDR10]. From a
technological point of view cloud computing is discussed very frequently in research [BYV+09,
AFG+10, VRMCL08, MG11, WTK+08, AFG+09] as well as in literature [AI10, BBG10], but still no
generally accepted definition has been established [VRMCL08, WTK+08]. The following section
provides a summary of the most important technology-related aspects of cloud computing dis-
cussed in the sources mentioned above. In [WTK+08] Wang et al. propose the following definition
of cloud computing:

“A computing Cloud is a set of network enabled services, providing scalable, QoS
guaranteed, normally personalized, inexpensive computing platforms on demand,
which could be accessed in a simple and pervasive way.” [WTK+08]

The definition given is supported by the National Institute of Standards and Technology1 of
the United States, which defines cloud computing as a model for enabling on-demand network access
to configurable computing resources [MG11]. This covers a very important characteristic of cloud
computing, which is elasticity: Resources have to be dynamically configurable and adjustable to
variable loads (rapidly provisioning and release [MG11]) without service provider interaction and
large manual effort for the consumer [VRMCL08]. Customized service level agreements (SLA)
determine the quality of services promised by an infrastructure provider [VRMCL08]. Typically
pay-as-you-go pricing models allow for the consumer to only pay the resources they actually
use [VRMCL08]. Cloud services can be classified into three different layers depending on the
level of abstraction they provide. Table 2.1 illustrates those layers:

1http://www.nist.gov

6 Chapter 2. Background

Layer Description Examples
Software as a Service (SaaS) The consumer uses an application de-

veloped and hosted by the provider
[MG11]. The consumer does not man-
age or control the underlying cloud in-
frastructure.

GMail2,
Salesforce3

Platform as a Service (PaaS) The provider offers a platform (oper-
ating system with additional software
components on top) tailored to a spe-
cific type of application that can be de-
ployed on top of the provided stack
[VRMCL08].

Google App
Engine4,
Heroku5

Infrastructure as a Service (IaaS) The provider offers a virtualized envi-
ronment (OS). The consumer has con-
trol over the operating system and de-
ploys its own software stack on top of
it [VRMCL08, MG11].

Amazon
EC26,
RackSpace7

Table 2.1: Service models of cloud providers.

2.1.2 DevOps Approach
With the upgrowth of cloud computing, the term DevOps has become very popular. It is used di-
versely to describe the closer integration of development- and operations aspects of the software
lifecycle in cloud setups. Similar to cloud computing, there is no clear definition of the term De-
vOps [Hü12]. Hüttermann explains the approach from the perspective of a developer as follows:
DevOps is a mix of patterns intended to improve collaboration between development (includes program-
mers, testers and quality assurance personnel) and operations (system- and database administrators as
well as network technicians). DevOps addresses shared goals and incentives as well as shared processes
and tools [Hü12]. He states that conflicts between different groups are natural and finding shared
goals and incentives is therefore often difficult or even impossible. The development team is typ-
ically interested in a frequent rollout of their changes to production (need for change), because
their responsibility is to deliver new features and bug fixes, while the operations team wants to
avoid making changes (fear of change) once the software is delivered, because their responsibil-
ity is to keep the performance stable [Hü12]. Hüttermann therefore suggests that the goals of
the team should at least be aligned with one another, if no shared goal can be found. How this
is achieved concretely by applying agile methodologies in both development and operations is
described in [Hü12]. The second important aspect that Hütterman defines as part of the DevOps
movement is the evolution of shared processes and tools: tools may no longer evolve indepen-
dently targeting only the needs of one team. They should be designed to improve the communica-
tion between developers and operations and provide the required automation to stream feedback
from production to development [Hü12]. According to Hüttermann DevOps enables an increase
in the quality of software and a better alignment to individual requirements while being able to
deliver the products in shorter time periods.

2.1.3 Continuous Delivery
Continuous Integration (CI) is a well-established principle in software engineering, targeting a
fast integration of changes into version control systems and the automatic build and verification of

2.1 Introduction of Terminologies 7

each integration such that errors, failing tests, or other violations are detected quickly [HF10]. The
goal is to reduce the amount of integration problems and to allow rapid application development
[HF10]. Continuous Delivery (CD) is an extension of Continuous Integration [HF10] that goes
one step further by allowing to roll out single changes to productive systems very fast:

"Continuous Delivery is a software development discipline where you build software
in such a way that the software can be released to production at any time." Martin
Fowler [Mar13a]

When applying Continuous Delivery it has to be ensured that every particular change is
releasable [HF10]. A new version of the software can be released by simply clicking a but-
ton [Mar13a]. To ensure that the software will work in production, a Continuous Delivery Pipeline8

as shown in Figure 2.1 is introduced.

Figure 2.1: The Continuous Delivery Pipeline [Che].

The first step in the pipeline is the version control system (VCS) which holds all the code ar-
tifacts. The whole process is triggered as soon as someone contributes code to the VCS [Che].
Continuous Integration is started, which includes building the code artifacts and testing as well
as verifying the built artifacts [Che]. If those steps are successful, further tests, like functional-
or performance tests, are executed (quality gates) [Che]. Each intermediate step in the pipeline
provides some form of feedback to the development team [Che, Mar13b]. Typically this is either
a sucess message or a list of specific problems (e.g., failing tests). If all intermediate steps in the
pipeline are passed successfully the software product is finally released to the productive environ-
ment [Che]. Making the whole pipeline work requires a close collaboration between development
and operations [Mar13a] as suggested by the DevOps approach (see Section 2.1.2).

2.1.4 Performance Engineering
Performance Engineering is a sub-discipline of systems engineering [GNJ] covering all activi-
ties throughout the whole software development life cycle that are related to ensuring the non-
functional (performance) requirements of a software system [WFP07]. It is a very complex do-
main, because the performance of an application is not only affected by the software itself, but
rather by all its underlying layers in the execution environment such as the operating system,
middleware, hardware, and the network connection [WFP07]. Performance is typically quanti-
fied by measuring the response time for the system’s end users or counting the executed business

8sometimes also called Deployment Pipeline [Mar13b]

8 Chapter 2. Background

transactions per second [Man]. Satisfying the high user expectations [Cit14, BKB00, Kin03] can
therefore be seen as the overall goal of all performance engineering activities.

Recapping the characteristics of cloud computing one could argue that application perfor-
mance doesn’t matter in cloud setups, because infinite resources and the ability to scale are avail-
able. This assumption has been proved to be completely wrong [Mur11]. In fact, performance
engineering plays an absolutely crucial role in cloud computing [Mur11] and has even brought
new challenges for performance engineers due to the heterogenous influence factors [ST13].

Although performance engineering is often recognized as an exclusively operational task, it
is important that its activities start early in the software development lifecycle [GNJ]. In the
requirements analysis phase of the system the non-functional requirements should be defined
[WFP07]. Typical non-functional requirements are usability, maintainability, extensibility, scala-
bility, reusability, security, and transportability [GNJ]. The defined requirements should then be
considered during the design and implementation phases each time a decision is made: every
aspect of the design and code can influence the performance of the system at runtime [WFP07].
During implementation performance tests are an important instrument to verify that the applica-
tion is actually able to meet the defined non-functional requirements [WFP07]. Performance tests
should be conducted on parts of the system as well as on the whole system. Additional load tests
should inject artificial load onto the system to verify the system’s performance in certain stress
situations [GNJ]. As soon as a system goes live, the monitoring and instrumentation activities of
performance engineering begins [GNJ]. The system is instrumented, measurements are collected,
and as soon as performance issues are found, the root causes have to be identified and fixed.
Often the source code of the application is optimized reactively [Man].

Summarizing the topic of performance engineering, we can state that the discipline deals with
the application itself as well as with the underlying infrastructure (software stack and hardware).
In cloud computing, the stack of hardware and virtualization layers is very complex and therefore
the importance of an appropriate performance management increases even more [ST13]. The
aspects of performance engineering that can be directly mapped to source code artifacts are of
most interest for this thesis and therefore discussed in detail in the subsequent section.

2.2 Performance Anti Patterns
Section 2.1.4 briefly mentioned the importance of considering performance aspects while design-
ing and implementing a software system. Those aspects have gained importance - especially in
cloud computing [ST13]. Each architectural or technological decision potentially influences the
performance of the application at runtime. The same applies to code-level decisions during im-
plementation.

Various research has been conducted on examining big enterprise applications to find com-
mon patterns in source code that potentially result in performance problems at runtime. The
architectural concept of patterns was introduced in 1977 by Alexander [AIS+77]. The book Design
patterns: elements of reusable object-oriented software by Gamma et al. [GHJV94] made (design) pat-
terns a famous concept in computer science and especially in software engineering. A design pat-
tern is defined as a template that describes how to solve a commonly occurring problem [Mar00a].
It therefore provides a reusable solution that is applicable to many different situations [Mar00a].
As the counterpart of a pattern an anti pattern can be defined as a bad approach to solve a cer-
tain problem [CC]. More precisely an anti pattern typically describes a solution that looks like a
good idea, but has potential negative consequences when being applied [CC]. Performance anti
patterns finally comprise those software development anti patterns that potentially cause perfor-
mance problems at runtime. The following Subsections describe well-known performance anti
patterns described in previous research.

2.2 Performance Anti Patterns 9

2.2.1 God Class

The God Class is one of the most familiar anti patterns in object oriented systems [Rie96]. Some-
times it is also referred to as blob [Bro98]. A god class has the main characteristic that it performs
a lot of work and clearly violates the Single Responsibility Principle [Mar00b]. The work it does is
often completely independent and therefore the cohesion of the class is very low. It interacts with
many small classes that do not implement any logic but typically only hold data and provide
accessor methods (i.e., getters and setters) to this data [SW00]. The god class operates on that
data and pushes updates to the other classes. Class names containing Controller or Manager
sometimes indicate god classes [SW00].

The example in Figure 2.2 shows a simplified class diagram of a typical god class: there is one
big class (GodClass) taking over all the responsibilities while the other classes (DataOne and
DataTwo) only hold the data. Furthermore, the Figure shows how the god class anti pattern can
be eliminated by incrementally refactoring the system and moving the behavior closer to the data
it operates on [DDN02].

Figure 2.2: A sample god class and how to refactor it [DDN02].

God classes have many negative consequences on software systems: components containing
god classes are poorly or even not at all maintainable and modifiable [SW00]. The reusability
and extensibility is very low and also testing is very difficult [DDN02]. The main problem of
a god class regarding performance is the increase of required message traffic [SW00]. A lot of
traffic is required to transmit the data to the collaborators to operate on it and push the updated
data back to the respective collaborators afterwards. In [SC93] Sharble and Cohen were able
to verify this circumstance. They compared two object oriented designs, a data-driven- and a
responsibility-driven design, by measuring the total number of messages that are required to

10 Chapter 2. Background

complete different scenarios. The data-driven design is mainly constructed by a god class while
the responsibility-driven design is a refactored variation of the data-driven design. Figure 2.3
illustrates the dramatic impact of a god class on the number of required messages in the different
scenarios9 [SC93]. From that we can derive the time loss as shown in Equation 2.1.

T = M∆ ×OM (2.1)

where M∆ is the number of additional messages used in the god class variation and OM is the
resulting overhead for one message [SW00]. Even for a very small messaging overhead the per-
formance damages of a god class can become very high, as the large deltas in Figure 2.3 illustrate.

Figure 2.3: The impacts of a god class on the number of messages (data from [SC93]).

2.2.2 Excessive Dynamic Allocation
In object-oriented programming dynamic allocation denotes the principle of creating objects when
they are first accessed and destroyed as soon as they are no longer needed [Smi01]. This can be
a good approach in many situations. However, creating and destroying objects is expensive: the
memory to contain an object and any objects it contains has to be allocated from the heap and the
object’s initialization code has to be executed [Smi01]. On object-destruction the required clean-
up code must be executed and, in order to prevent memory leaks, the released memory has to be
returned to the heap. The excessive dynamic allocation pattern addresses designs where many
objects of the same class are created and destroyed unnecessarily during the application’s life-
cycle [Smi01]. In his book, Object-oriented Design Heuristics, Reil highlights this situation with a
nice metaphor. He compares the approach of repeatedly creating and destroying objects of the
same type with buying a piece of land and building up a whole gas station with all its compo-
nents each time your car needs gasoline [Rie96]. When the gas tank of the (single) car has been
filled, the gas station is destroyed and the land is sold. Equation 2.2 defines the time required for
dynamic allocation.

T = N ×
∑
depth

S with S = sc + sd (2.2)

9The names of the scenarios are omitted because they are of no relevance

2.2 Performance Anti Patterns 11

where N is the number of allocations, depth is the number of (recursively) contained objects and
S is the (service) time for creation (sc) and destruction (sd) of objects [SW00]. Figure 2.4 illustrates
the overhead of excessive dynamic allocations for some typical values of the mentioned variables
[SW00]. To eliminate dynamic allocation objects should, if possible, be reused. Shared objects can
for example be collected in a central object pool and handed on to clients on-demand.

Figure 2.4: Overhead of excessive dynamic allocation [SW00].

2.2.3 Aggressive Loading of Entities
This anti pattern, similar to excessive dynamic allocation, deals with the costs of object creation,
but more specifically focuses on deep recursive object structures, which typically apply to entity
beans. The term entity bean is used in the Java world for objects that build up an in-memory rep-
resentation of persistent data [PM04a]. The term (entity) bean is used in the following as a general
term for such objects without restriction to the Java world. When a bean is instantiated, the data
has to be loaded from the database, which can be a very time consuming task [PM04b]. Entity
beans are typically strongly interconnected. Depending on the inter-bean connection graph, in-
stantiating a single entity bean can lead to numerous other entity beans being loaded from the
database [PM04b]. Given the fact that the majority of those interconnected objects are often not
used, this is an expensive performance issue. The issue can be resolved using lazy loading, which
means that references to other entity beans are not resolved until they are actually used [PM04b].
Upon the initialization of a bean only proxies [GHJV94] of the related beans are created.

2.2.4 Too Many Remote Calls
One of the most costly operation in a distributed system is the communication between different
components. Too many remote calls addresses systems whose (bad) design results in a large com-
munication overhead and thus in potential performance problems [PM04b, PM04a]. A typical
example of such a design is shown in Listing 2.1. A remote call fetches some data items that are
subsequently iterated and for each item another remote call is required to fetch any sub items. In
cases where the remote call accesses a database this anti pattern is also known as the N+1 select
or N+1 query problem [Acc, Docb], because fetching N items results in N+1 select operations
on the database. The example in Listing 2.1 can be arbitrarily nested through iterating over sub
items and conducting further remote calls. Remote database calls are often even more problematic
than other remote calls, since additional costs for database connection establishment and query
processing accrue in addition to the network delay [PM04a].

12 Chapter 2. Background

1 items = getRemoteItems()
2 for item in items:
3 subItems = getRemoteSubItems(item)
4 [...]

Listing 2.1: Simple example of too many remote calls (N+1 select problem).

Parsons and Murphy [PM04b, PM04a] extended the scope of too many remote calls and intro-
duce the circuit treasure hunt anti pattern. The name originates from the analogy of a treasure
hunt game, where one small hint helps to find the next one and so on until the treasure can be
located [PM04b]. The only difference to the too many remote calls anti pattern is that it is not re-
stricted to remote calls only, but to costly operations in general. They mention big response sets
as an example: to actually get the data item of interest a client has to recursively invoke different
operations on different intermediate objects. Sometimes intermediate objects even have to be cre-
ated and/or destroyed, which results in additional costs (see Chapter 2.2.2 about excessive dynamic
allocation).

There are different solutions to the too many remote calls and its related anti patterns depending
on the situation. In the case of databases, one can, if possible, design the database schema itself
in another way, such that typical requests are achievable with only one query [PM04b]. Denor-
malized database schemas often perform better than normalized designs. Of course, all scenarios
(i.e., all typical database requests) should be considered, because optimizing for one scenario can
have negative effects on others [PM04b]. An optimal tradeoff has to be found. Another way of
optimizing the design to eliminate the discussed pattern is to introduce the Adapter- [GHJV94]
or the (Session) Facade Pattern gamma1994, alur2003 to align the (remote) interface to the client’s
needs.

2.2.5 Expensive (Nested) Loops
Studying over 100 different performance bugs in five real-world open-source projects, Jin et al.
showed that 90% of all performance bugs involve loops and 50% involve nested loops [JSS+12].
In subsequent research Nistor et al. [NSML13] categorized those loop-related performance bugs
into several categories. They detected two root causes for loop-related performance issues, one
is redundant computation and the other is inefficient computation [PM04b]. Redundant compu-
tation means that the same computation is done on the same data - with the same result - in all
or multiple cycles of the same loop (assuming the computation doesn’t induce any side-effects).
Considering nested loops Nistor et al. derived the following four problem categories:

• Redundancy in Outer Loop

• Redundancy in Inner Loop

• Inefficient Outer Loop

• Inefficient Inner Loop

Listing 2.2 shows a very simplified nested loop with a computation in the inner loop. Based
on the data passed to the computation the result is potentially the same for all iterations of the
inner or even all iterations of the outer loop. The first case is typically true if the computation
operates only on data of the scope of the outer loop, the latter one can arise if the computation
operates on the whole dataset of the outer loop (i.e., all items) or on data from outside the loops.
In such simple cases as shown in Listing 2.2, one could argue that such redundant calculations
should be easily detectable when looking at the source code, but most real-world examples are a

2.2 Performance Anti Patterns 13

lot more complex. Typically, the loops are not directly nested, but some operation invocations are
in between. Sometimes the pattern is put together by own code in combination with third-party
libraries (whose code is not visible).

1 for outerItem in outerItems:
2 for innerItem in outerItem.getInnerItems:
3 result = computation(...)

Listing 2.2: Redundant computation in nested loops.

Figure 2.5 shows a real-world example of an outer loop redundancy in the JFreeChart10 li-
brary that resulted in a severe performance issue, because it froze the chart display [PM04b].
The drawVerticalItem, called from drawItem in the outer loop, contains an inner loop that
computes the maximum volume of all the items that are iterated in the outer loop. Of course,
the maximum volume does not change, because the data set is the same for all invocations of
drawVerticalItem. Therefore, the computation is redundant and the maximum volume could
be computed only once and then be cached. This concept is called memoization [ABH03]. Resolv-
ing inefficient (inner/outer) loops sometimes works by simply moving costly calculations out of
the loop [PM04b]. In some cases this does not work, because the calculation is based on data from
loop iterations. In those cases a more efficient data structure has to be found to enable a more
efficient algorithm [PM04b].

Figure 2.5: Example of a redundant outer loop [PM04b].

2.2.6 One Lane Bridge
A one lane bridge is a potential bottleneck in a traffic system, because the traffic can only traverse
the bridge in one direction at a time, and multiple parallel lanes have to be merged into one, which
results in a traffic jam and waiting times [SW00]. The analogous situation in software arises if at
any point in time during an application’s lifecycle only one or a few processes are able to continue
doing their work [SW00]. All the other processes are blocked and have to wait. Unlike in the one
lane bridge analogy, this is typically not a physical problem, but a design issue. A typical case of
this anti pattern are resources, for example a database table or row, that are locked as long as one
process accesses them [SW00]. Another example of this pattern arising is a non-multi-threaded
process that is synchronously called by multiple other processes [SW00]. The calling processes
are served one after another.

10http://www.jfree.org/jfreechart

14 Chapter 2. Background

The easiest solution for the one lane bridge anti pattern is to reduce the time for concurrent com-
putations (i.e., the time to traverse the bridge). Figure 2.6 illustrates this solution by showing the
results of a respective experiment of [SW00]: the residence time is the total time required to serve
all waiting processes, the arrival rate is the number of arriving requests (to the shared resource)
per second, and S (service time) is the time required to serve one process. The difference between
the two curves illustrates that by reducing the service time even as little as one millisecond, the
performance can be significantly improved.

In the case of database locks, the one lane bridge can be further improved by minimizing the
locks by using row blocking (i.e., only blocking rows instead of the entire table), if updates do
not operate on the whole table. Alternatively the database schema can, if possible, be adapted to
reduce the number of tables that have to be locked for typical updates [SW00].

Figure 2.6: Impact of improving the service time of a one lane bridge [SW00].

2.2.7 Traffic Jam
Traffic Jam describes a situation where response times for the same operation widely diversify
over time [Smi01]. The name of the anti pattern originates in the analogy of the stop-and-go be-
havior that often occurs on highways with high traffic volume [Smi01]. In software, the problem
often occurs if there is a job backlog and jobs come in collectively: a lot of jobs come in more or
less simultaneously while during other periods only a few or even no jobs come in [Smi01]. Often,
the cause for this problem is the one lane bridge anti pattern (see Section 2.2.6). Other causes are
covered in [Smi01].

Sometimes the Traffic Jam anti pattern is caused by user selections. In this case the solution to it
is using the Flex-Time pattern: if a system allows its users to specify the time to generate a report
(which is a costly operation), the selection options should consist of time intervals rather than
specific times [Smi01]. Often the cause of multiple users choosing the same value is the usage of
default values that are not changed by most of the users. Therefore, a solution can be to either not
provide default values or vary their value randomly. If external factors result in a traffic jam, the
online solution is to streamline the concerned operations as much as possible [Smi01].

2.2.8 The Ramp
This anti pattern describes a scalability problem where the processing time for a certain opera-
tion continuously increases over time [SW03]. The curve of the processing times on a timeline
correspondingly looks like a ramp (see Figure 2.7). A typical cause for this problem is accruing
data: requests operate on a data set and each request increases the data set. A typical example

2.2 Performance Anti Patterns 15

is checking requests for duplicates, which requires to store all the requests and with each new
request the list of requests to be checked gets longer [SW03]. Another example is covered by the
sisyphus database retrieval performance anti pattern introduced by Dugan et al. [DGS02]. In this case
a large data set is processed (e.g., a search on a table in a relational database) and a subset of the
result is displayed to the user [DGS02]. Let us assume a web search displaying 20 results per page:
requesting the first page requires searching the first 20 items, while the second page requires 40
items to be able to display items 21-40. The size of required result items of course increases with
each subsequent request which results in very bad scalability.

Figure 2.7: The ramp anti pattern [SW03].

The ramp anti pattern is typically not detected during testing, since test data sets usually
do not contain enough items to determine a significant performance loss [SW03]. The solution
to the Ramp anti pattern is to find a more appropriate (search) algorithm to operate on large
data sets [SW03]. In some cases it might even make sense to implement self-adapting algorithms
that are able to assimilate their processing logic according to the size of the data set [SW03].
Further potential solutions for the sisyphus database retrieval performance anti pattern are discussed
in [DGS02].

2.2.9 Unbalanced Processing
When processes cannot use the available processors effectively, either due to processors being
dedicated to other processes or due to single-threaded code, unbalanced processing occurs [SW03].
This is often the case in pipe and filter architectures, whereat long running filters block faster
ones [SW03]. The solution to that problem is, on the one hand, to determine long running filters
and, if possible, split them into multiple, parallelly executable, steps [SW03]. On the other hand,
multiple short-running filters can be combined into one step [SW03]. This results in a more bal-
anced workflow which in turn results in more efficient resource utilization. A second often occur-
ring example of unbalanced processing is the usage of static routing algorithms to split up work
items into multiple queues [SW03]. Due to the static characteristics the items can be distributed
in an unbalanced way [SW03]. The solution to this problem, of course, is to change the algorithm
to using dynamic information for the routing in order to distribute the items uniformly [SW03].

2.2.10 More is Less
More is less uses the analogy of trying to do too many things in parallel and then actually ending
up doing nothing [SW03]. The same can occur in software systems, if too many processes try
to run in parallel. This can result in the underlying system spending all its time doing paging
and serving page faults rather than doing the actual work [SW03]. Although this might not be a

16 Chapter 2. Background

big issue in modern environments, the more is less anti pattern can also be related to bad system
designs. Smith et al. determined the following causes:

• Creating too many database connections

• Allowing too many internet connections

• Creating too many pooled resources

• Allowing too many concurrent streams relative to the number of available processors

A possible solution to overcome those problems is to introduce a priority queue that can be filled
with command objects [SW03]. The command objects are constructed using the Command pattern
[GHJV94] and can perform various tasks. If this limited concurrency doesn’t fit to the applications
needs the system design has to be adopted to somehow limit the number of parallel streams
[SW03].

2.2.11 Unnecessary Work
Unnecessary work (also known as unnecessary processing [SW03]) is as simple as it sounds: it ad-
dresses source code that simply does work that is not required. Although this might sound like
a beginner’s mistake, a study on open-source software showed that this anti pattern causes over
25% of all performance bugs [JSS+12], because in the context in which they were called, functions
simply conducted unnecessary work [JSS+12]. A real-world example from a graphic program is
the invocation of a draw()-method for multiple transparent figures [JSS+12]. Often, unnecessary
processing occurs due to stale data being processed, even though the result is discarded after-
wards [SW03]. Other cases involve unnecessary synchronization code, which results in processes
waiting for other processes unnecessarily. This type of issue often occurs in server (e.g., Apache:
4 out of 15 investigated bugs [JSS+12]) and database applications (e.g., MySQL: 5 out of 26 inves-
tigated bugs [JSS+12]).

The elementary cases of unnecessary work can be eliminated by simply removing the respec-
tive operation invocations [SW03]. In more complex cases it sometimes helps to re-order steps in
the execution to early detect stale data that does not have to be processed anymore [SW03].

2.3 Statistical Methods
In order to deal with data from performance engineering, a number of statistical models and
methods can be used. This section describes three statistical concepts relevant for this thesis.

2.3.1 Time Series Data
A time series is a collection of observed values of a stochastic system ordered according to their
occurrence in time [SS10]. While in a deterministic system, the future state of a system is only de-
termined by the current state of the system, stochastic systems describe non-deterministic systems
whose future state is not completely determined by its current state. This means, that there are
always multiple possible transitions to future states. The aim of time series is to observe stochas-
tic systems. If a time series is the collection of values {x1, x2, x3, ..., xn}, x1 is the value observed
at the first time point, x2 is the value observed at the second point in time, and so on. Generally,
xt is the value observed at the point t in time [SS10].

The underlying system of the FDD approach is the monitored application, which clearly is
a stochastic system and the monitored runtime data can be classified as time series data. Since

2.3 Statistical Methods 17

future states of stochastic systems are not determinable from past and current states, predictive
analysis of the time series data is required in order to estimate how the performance of an appli-
cation evolves.

2.3.2 Moving Average

The moving average (MA) is a statistical model that is used to smooth time series [BJR13]. Smooth-
ing describes the process of filtering out random fluctuations from a time series that can arise due
to some external phenomena, but are not relevant to the long-term trend of the time series [BJR13].
In software applications, such a fluctuation can occur due to temporary high network delays. To
filter out the fluctuations from a time series, the MA model takes the time series as input and
creates a new time series that is computed out of average values of subsets of the original time
series [et12].

at =

w−1∑
i=0

xt−i

w
(2.3)

For each time point t on the original time series X , the average of a pre-defined number of
foregoing values {xt − w, ..., xt} determines the value at of the new time series MA, where w is
called the window size (see Equation 2.3). Figure 2.8 illustrates an example of a moving average:
the red line, which is constructed of the MA values, is a smoothed trend of the observed values
(black line).

Figure 2.8: An example plot of a moving average with window size 5.

2.3.3 Change-Point Analysis

Change Point Analysis (CPA) is a statistical concept that enables investigating whether and at
which point in time changes occur in a time series [Tay00]. There are multiple different ap-
proaches that allow to perform a CPA. In the following, we focus on an approach developed
by Taylor in [Tay00]. It combines the two concepts of cumulative sum (CUSUM) and bootstrap-
ping to detect changes. The approach is illustrated on the basis of an example: Figure 2.9 shows
a time series plot containing the execution times of the last twenty executions of a procedure.

18 Chapter 2. Background

Figure 2.9: Execution times of a procedure.

Looking at the plot one can see a change after the time point 8, where the execution time
decreases significantly for a longer time. To detect changes algorithmicly, the CUSUM chart of
the time series values {x0, x1, ..., xn} is calculated as described in the following. First, the average
of all the observed values is determined according to Equation 2.4.

x̄ =
x1 + x2 + ...+ xn

n
(2.4)

Now, the cumulative sums {s0, s1, ..., sn} can be calculated as shown in Equation 2.5. For each
time point, the difference between the value of the current time point and the average value is
added to the CUSUM of the preceding time point. For the first CUSUM s1, the preceding CUSUM
is declared to be zero (s0 = 0).

si = si−1 + (xi − x̄) (2.5)

In the time series example from Figure 2.9, the average value x̄ is 90, and the CUSUM values
are therefore calculated like as follow:

s0 = 0
s1 = 0 + (140− 90) = 50
s2 = 50 + (150− 90) = 110
...
s20 = 30 + (60− 90) = 0

Due to the fact that the cumulative sums are calculated from the differences between the values
and the average, they always sum to zero. That is why the last CUSUM value is always zero (s20

in the example). Figure 2.10 shows the CUSUM chart of the example. The CUSUM chart can be
interpreted as follows: As long as the curve goes upwards, the values of the underlying time series
tend to be above average. Analogously, a segment where the curve goes downward indicates
values below average. If the chart follows a more or less constant value, this indicates underlying
values which are close to the average. The interesting places in a CUSUM chart are the points
where the curve suddenly changes its slope. Those are the points where a change is assumed in
the time series. In Figure 2.10, a turn is recognizable after time point 8, which coincides with our
manual observations made in Figure 2.9.

2.3 Statistical Methods 19

Figure 2.10: The CUSUM plot of the time series in Figure 2.9.

Calculation of Confidence Level

The interpretation of the CUSUM chart in Figure 2.10 is relatively clear. However, there is no
guarantee that a turn of the CUSUM chart always indicates a change point in the time series.
There can be CUSUM charts with less obvious turns that can be interpreted differently. To make
reliable statements about change points, their confidence level can be calculated as described in
the following. First, sdiff is defined to be the difference of the maximum and the minimum value
of {s1, s2, ..., sn} (see Equation 2.6).

sdiff = smax − smin , where smax = max
i=0,...,n

si and smin = min
i=0,...,n

si (2.6)

Now, the actual bootstrapping analysis is conducted. A bootstrap sample is created randomly
reordering the original values {x1, x2, ..., xn} from the time series and then calculating the cumu-
lative sums {s0

1, s
0
2, ..., s

0
n} and from that the difference of the maximum and minimum s0

diff

is determined. The bootstrap sample creation is repeated, each time with another random order
of the original values. Figure 2.11 visualizes the original CUSUM chart together with three dif-
ferent bootstrap samples. The differences sjdiff of the particular bootstraps is determined by the
distance between the topmost and the lowermost point of the respective curve.

To calculate the confidence level, the difference sdiff is compared to the difference calculated
for each bootstrap sjdiff and it is checked whether the sdiff is larger than sjdiff . If N is the
number of conducted bootstrap samples and X is the number of bootstrap samples for which
sdiff > sjdiff , then the confidence level CL of the change point is defined as the proportion of X
and N (see Equation 2.7).

CL = 100
X

N
(2.7)

20 Chapter 2. Background

Figure 2.11: Bootstrap samples of the CUSUM from Figure 2.10.

Table 2.2 contains the values from the bootstrapping samples from Figure 2.11. All of the three
samples exhibit a smaller difference than the original time series, which means that the confidence
level is 100%. However, three samples is a very small number for this kind of analysis. The higher
the number of created samples is chosen, the more precise the calculated confidence level. In
order to receive a reliable confidence level, the number of samples should at least be 1000. For
the example presented here more precise bootstrapping analyses have been conducted with 1000,
10000, and even 100000 samples, which all resulted in a confidence level of 100%. Therefore, the
detected change point in this example can be treated as significant. Typically, a confidence level
of 90%-95% is required to classify a change point as significant [Tay00].

Sample sjmax sjmin sjdiff sdiff > sjdiff
Original Order 480 0 480 -
Bootstrap 1 50 -160 210 yes
Bootstrap 2 10 -170 180 yes
Bootstrap 3 80 -150 230 yes

Table 2.2: Results of the boorstrapping analysis.

As already mentioned in the beginning of this section, there are other methods to conduct a
Change Point Analysis than the one presented here. Deeper knowledge about the CPA can be
found in [CG11].

Chapter 3

Bringing Runtime Metrics to the
Developer

This chapter describes the approach of Feedback-Driven Development (FDD) [BFKB+14]. First,
the underlying problems is analyzed based on previous research and the main goals of Feedback-
Driven Development are derived. A conceptual approach providing a possible solution is then
presented and discussed in detail. It is shown how the approach solves the elicited problem and
consequently targets the derived goals. Finally, the architecture of a respective system imple-
mented as part of this thesis is illustrated - followed by some essential implementation details.

3.1 Problem Analysis
Modern, high-level software platforms and their corresponding programming languages provide
a valuable abstraction to developers by hiding system- and hardware-related aspects. With frame-
works on top, the level of abstraction is further increased and developers can completely focus
on implementing business value rather than dealing with complex technological problems. This
trend has, of course, positive impacts on the productivity - it allows to deliver features faster.
Nevertheless, the downside of this evolution is that developers often lose the awareness and
knowhow of the technological layers behind the high-level abstraction:

“Modern advances in software technologies have allowed developers to concentrate
less on issues such as performance and resource management, and instead developers
have been able to spend more time developing the functionality of their applications.
An example of this can be seen in modern languages (Java, C#) that provide garbage
collection facilities, freeing developers from the task of having to manage memory,
which had typically been a complex and time consuming exercise. [..] A downside of
this advance in software technologies is that developers become less familiar with
the mechanics of the underlying system, and as a result, can make decisions during
development that have an adverse effect on the system.” [Par07]

While high-level technologies enable developers to implement features faster, non-functional
aspects are often not covered sufficiently. The above-mentioned quotation of Parsons nicely illus-
trates that developers generally care insufficiently about their application’s performance. They
tend to make decisions during development without having the complete understanding of how
the underlying system of the application behaves [Par07] and often do not know the implica-
tions of a particular design on the runtime system. Performance problems are regarded as issues
that have to be solved solely on lower abstraction layers. This leads to bad software quality,

22 Chapter 3. Bringing Runtime Metrics to the Developer

non-functional requirements being broken, and thus problems at runtime, such as performance
issues.

This problem is further strengthened by the lack of tools providing runtime information dur-
ing development. IDE’s provide a huge amount of functionality, but often only static aspects are
considered. A lot of static source code analysis tools, such as Checkstyle1, PMD2, or FindBugs3,
are directly integrated into the IDE. Additional information is provided from external tools like
issue trackers, version control systems, and Continuous Integration servers. But they all have in
common that they focus on static aspects and lack runtime information. While various research
has been done integrating those different systems, filtering and visualizing the combined data
sets [BGG14a,BGG14b,Bir14,Hil14], only little research has been done in integrating runtime data
into the developers environment. Most of the available tools that monitor runtime systems, such
as New Relic4 or Datadog5, are relatively isolated tools that are not treated during development.
A study of Cito et al., based on qualitative interviews and a quantitative survey, has shown that
developers are indeed aware of the available runtime metrics [CLFG14]. Nevertheless, the vast
majority stated that they use their intuition during development, rather than consolidate those
metrics, even if they are working on performance issues [CLFG14]. Although this has not been
proven so far, it can be assumed that one of the main reasons for this dichotomy is that the data
is not enough easily available [CLFG14].

Summarizing the discussed problems it can be said that modern, high-level software tech-
nologies, even though they improve the productivity of developers, have negative impacts on the
developers awareness of non-functional aspects, because those are often tightly related to lower
level technologies. The available tools typically used by developers mainly focus on static source
code artifacts and mostly exclude runtime aspects. Together those circumstances result in isolat-
ing developers from runtime and especially performance aspects which is completely contradic-
tory to the DevOps approach (see 2.1.2) which is recommended when developing cloud-based
applications.

3.2 Feedback-Driven Development
As current tools lack the support of runtime data and developers do not seem to be willing to
consolidate other tools to get information about the runtime behavior of the developed applica-
tions, a new approach is required to increase the developers awareness of the available metrics
and overcome issues related to the lack of runtime-related knowledge.

“If the developer won’t go to the metrics, the metrics must go to the developer.”6

The quotation above nicely puts the obvious solution in a nutshell: in order to enforce a de-
veloper to use operational data, it has to be closely integrated into his usual development en-
vironment, which is precisely the target of Feedback-Driven Development (FDD), an approach
introduced in [BFKB+14] to align the engineering methods and tools for the development of
cloud-based applications.

Figure 3.1 provides a simplified illustration of the suggested principle, where at the red parts
constitute the elements of Feedback-Driven Development. An application is developed in an IDE
and then deployed to any cloud platform. The deployment itself, whether and how Continuous

1http://checkstyle.sourceforge.net
2http://pmd.sourceforge.net
3http://findbugs.sourceforge.net
4http://newrelic.com
5https://www.datadoghq.com
6https://speakerdeck.com/citostyle/the-developers-devops-mountain?slide=11

3.2 Feedback-Driven Development 23

Integration is applied, is of course very important to the lifecycle of cloud-based applications, but
is not in the scope of Feedback-Driven Development and therefore not discussed in more detail
in this thesis. From the time when the application is released on a productive server, Feedback-
Driven Development comes into effect: the running application is continuously monitored and
metrics, such as the execution time of a particular method, the CPU- or memory usage, are gath-
ered and stored. The huge data set that accrues thereof is filtered such that only the data which
is relevant for specific development activities can be sent back into the IDE of the developer. This
runtime feedback can either contain raw data, aggregated values (e.g., average execution time),
or any suggestions derived from that data.

Source Code Deployed App

Monitoring

IDE Cloud PlatformDeployment

Feedback
OperationsDevelopment

Filtering

Figure 3.1: The principle of Feedback-Driven Development.

3.2.1 A Practical Scenario

This section briefly describes a contrived practical scenario to further illustrate the purpose of
Feedback-Driven Development. Let’s assume a development team of a software provider work-
ing on an enterprise application for a retailer of spare parts. The core module of the application
is a customer relationship manamgenent (CRM) system to manage the large amount of the re-
tailer’s customers of different types (local garages, car dealers, private clients). The CRM system
is already well-engineered, only maintenance work is conducted. A second module provides a
web shop solution that is integrated into the CRM system and is still under active development.
One big issue with the system are customer record duplicates: due to the fact that customers can
be registered over different front- and backend systems, it very frequently occurs that duplicates
are registered. To overcome this problem, there is a service in the CRM that allows to detect du-
plicates automatically. This service is executed each night and each morning an administrative
backend provides a list of duplicates that should be merged manually. Observations have shown
that most of the duplicate records are introduced through online registrations of customers in the
web shop that are already registered in the CRM due to a previous contact with the retailer. There-
fore, the development team is charged with introducing a validation in the registration process
of the online shop that checks whether a respective customer record already exists. The devel-
oper taking care of this issue knows about the job triggered each night to detect duplicates and
consults the respective code to see whether he can reuse some functionality. Indeed he finds the
service that parses the whole data set for duplicates and re-uses it in his implementation. As he
finishes the task, he integrates the code into the system and the feature goes live with the next
release at the end of the month. After releasing this new version, problems with the registration
process suddenly arise. A lot of visitors of the web shop report very long waiting times when
creating a new account. Due to the high frequency of account-creation negative impacts to the
overall performance of the web shop are recognizable. While analyzing the issue it turns out that
the problem is the newly introduced duplication-check. The reused service from the nightly-job

24 Chapter 3. Bringing Runtime Metrics to the Developer

has a relatively long execution time. So far, this has not been detected as a problem, because the
service was not frequently executed and no end-users were concerned. The problem could also
not be detected in the testing phase, because the data sets for the tests were too small to detect
any performance impacts. The development team rolls back the feature as fast as possible and
creates an issue to find another solution to the problem.

Feedback-Driven Development tooling would have been capable of detecting the issue right
when the new code was introduced, because runtime information would have been available
that covers the execution time of methods and the frequency of method execution. Therefore, the
developer could have been warned directly in the IDE when she invoked the long running dupli-
cation detection service in the frequently executed customer creation procedure. This illustrates
how developers can profit from Feedback-Driven Development through shorter feedback loops.
Problems can be identified very early and are not rolled out to productive systems. Thereby costs
and time can be saved and end-users of the system are not affected.

3.2.2 Goals

The overall goal of Feedback-Driven Development is to provide the necessary techniques to over-
come the problems discussed in Section 3.1 and to enable a DevOps (see Chapter 2.1.2) way of
development. This includes a lot of subordinated goals discussed in the following. Operational
data shall be made available to developers in an easy way that does not require additional (man-
ual) steps to access it. This is achieved by integrating the data directly into the developers IDE,
which enables taking decisions during development activities based on concrete metrics instead
of assumptions. Consequently, decisions become more comprehensible and logical and therefore
hard to refute, because there’s much less space for interpretation [Kla12]. The decision-making
process becomes much more data-driven (objective facts) and less emotional (subjective opin-
ions) [Kla12]. Through using the measurable metrics to compare various versions of an appli-
cation over time, the impact on software quality and application performance can be recognized
and even predicted. This is achieved through predicting the future state of an application based
on the measured metrics from the past, which is another important goal of Feedback-Driven De-
velopment.

Achieving all the mentioned goals enables development teams to shorten their development
and innovation cycles, which in turn increases the agility of a team, because they can react to
changes faster, which is important for the success of small as well as large projects [Ado06].
Through integrating the operational data into the development environment, a shared tooling
for development and operations aspects is provided. This enables the evolution of DevOps pro-
cesses along the software development lifecycle [Hü12].

3.2.3 FDD and Continuous Delivery

In Section 2.1.3 Continuous Delivery has been introduced as an extension of Continuous Integra-
tion that allows to release single changes very fast by going through several subsequent steps
in the so called Deployment Pipeline [Mar13a]. An important aspect of Continuous Delivery is
that developers retrieve feedback from each step in the pipeline, which is illustrated in Figure
2.1. Taking into account Feedback-Driven Development, the Continuous Delivery Pipeline can be
extended with an additional feedback loop, providing feedback from the runtime system, which
is the last step in the Continuous Delivery Pipeline. Figure 3.2 shows an adapted version of the
pipeline from [Che] with Feedback-Driven-Development being integrated.

3.3 Introducing a Concept for FDD 25

Figure 3.2: The Continuous Delivery Pipeline extended with FDD (adapted from [Che]).

According to the modified Continuous Delivery Pipeline illustrated in Figure 3.2 we can look
at Feedback-Driven Development as a major extension of Continuous Delivery by providing an
additional feedback loop that takes into account operational data. It effectively integrates the
production system into the pipeline.

3.3 Introducing a Concept for FDD
After introducing the basic idea of Feedback-Driven Development and positioning it inside the
software development lifecycle, this section describes a concept of what a system that provides
FDD tooling looks like.

3.3.1 Characteristics of an FDD System
From the problem analyis (see Section 3.1) and the discussed goals (see Section 3.2.2) we can
derive some basic characteristics that a system implementing Feedback-Driven Development has
to exhibit in order to provide the discussed benefits. We can also look at those characteristics as
the high-level requirements for such a system:

• IDE-Integration: One of the discussed goals of FDD is to bring the metrics closer to the
developer in order to solve the problem that developers do not consolidate the available
runtime data [CLFG14]. The logical way of targeting this issue is to integrate the provided
runtime feedback directly into the IDE, because this is where developers typically are during
their daily work. If developers would have to switch the tool in order to receive the runtime
feedback, we can assume that they would make less use of it. Therefore, this characteristic
is absolutely crucial in order to achieve the goals of FDD.

• Filtering and Aggregation: When monitoring the runtime behavior of an application, a
huge amount of data can be collected, metrics of different types can be measured. It makes
sense to monitor comprehensively and to store all gathered data. But it doesn’t make sense
to directly expose the gathered data to the developer. Rather, the data should be filtered and
metrics should be aggregated in order to not flood developers with information.

• Mapping to Source Code: The feedback that developers receive from operational data has
to be directly mappable to concrete source code artifacts. Feedback that is not allocatable to
specific places in source code is of less value to the developers.

26 Chapter 3. Bringing Runtime Metrics to the Developer

• Minimal setup costs: The activities required to make an existing project FDD-ready should
be held as minimal as possible. The installation of the tooling for an individual developer
needs to be easy and fast. Existing software projects should be FDD-ready without major
adoptions. Apart from minimal configurations no additional changes should be required.

3.3.2 From Runtime Data to Meaningful Feedback
To meet the requirement of filtering and aggregation we suggest an FDD system working very
similarly to a data-driven decision support system [Pow02], which is a special type of decision
support system (DSS) that takes a large amount of data as input [Pow02] for its analysis. The
output of a DSS is transformed data from which decisions can be generated [Pow02]. Figure 3.3
illustrates this process for an FDD system. The input for the analysis is the gathered runtime data
of the application. In a first step, this large amount of data is filtered and aggregated according
to specific use cases resulting in a smaller data set. In a second phase this smaller data set is
combined with the corresponding static code artifacts. The analysis of the combined data set then
results in the transformed output data in form of advices.

Runtime Data

Filtering

Analysis

...

Advices

Static Code
Structure

Figure 3.3: From raw data to Advices.

Advices

For the output of the system visualized in Figure 3.3 we introduce the term advice. An advice is
one particular outcome of the filter, aggregation, and anaylsis steps of an FDD system. An advice
has the following two basic properties:

• Based on operational data: An advice is always elicited from the analysis of runtime data.
As shown in Figure 3.3, the analysis can be supported by static code analysis. Nevertheless,
outcomes elicited from pure static code analyis are not called advices. Those results do not
require an FDD system and are therefore not in the scope of our approach.

• Referable to code artifacts: Each advice is precisely allocatable to a particluar element in the
source code (visualized by the gray arrows in Figure 3.3). This element can be of arbitrary
granularity: it can be a class, a method, a code block (e.g., a for-loop), or even a single line
of code (e.g., a method invocation). Advices do not comprise architectural aspects that refer
to whole modules, layers, or a system rather than one particular code-level element.

3.3 Introducing a Concept for FDD 27

Taxonomy of Advices

The definition of an advice is kept very generic. Despite its two basic properties, it does not pro-
vide any restriction about the information it gives to the developer. This makes advices adaptable
to different environments with different technologies (e.g., Java Platform, .NET Framework) as
well as different programming paradigms (e.g., object-oriented programming, functional pro-
gramming). Nevertheless, advices can be classified into two basic characteristics, which are in-
formative and warning. For each of these generic advices types, a number of concrete sub-types
exists depending on the particular programming paradigm. Figure 3.4 introduces an overview of
the advice taxonomy proposed for an object-oriented system. Each individual type is discussed
in the following paragraphs, including mockups visualizing how the advices can be displayed in
an IDE.

Figure 3.4: Taxonomy of advices for an object-oriented system.

Informative advices. Informative advices provide the developer with any runtime informa-
tion about a source code element that can be used during any kind of development activity. The
purpose of informative advices is to extend the static (design-time) information that is typically
available in IDE’s with operational data. Informative advices basically cover the same informa-
tion that debugging tools provide, but with the essential differences that the data is gathered from
the productive system and over a long time period instead of one specific execution. Figure 3.5
visualizes possible informative advices and how they can be displayed in an IDE. A possible type
of advice is the average method execution time. This can be of interest to the developer in many
different situations, for example to compare different algorithms solving a particular task. An-
other example of useful runtime information is a list of the dynamic collaborators of a particular
class or method (see Figure 3.5). IDE’s typically provide functionality to find all the places in the
source code where a method or a class is referenced. This is only partially useful, because due
to polymorphism, the accurate type used at runtime cannot be determined without operational
data. Displaying the dynamic callers and callees of a method is therefore a useful extension of
the existing IDE feature. On class level, this information can be especially useful if dependency
injection [Mar04] is used, in order to find the concrete implementation that is injected. We suggest
the following informative advices:

• Procedure7 Metric Advices: Advices may give information about the average execution
time of a procedure and the average CPU usage required for the execution. The aggregated
average values can be complemented with more detailed information visualizing the two
metrics on timelines to illustrate any possible trends.

• Input and Output Advices In static typed prgoramming languages the signature of a proce-
dure specifies the types of the input parameter as well as the return value (output). Advices

7The term procedure is used here as generic term for any kind of sub-routines, such as functions, methods, or construc-
tors.

28 Chapter 3. Bringing Runtime Metrics to the Developer

extend this information through providing information about the values of those types at
runtime. Gaining knowledge about the actual input and output of a procedure at runtime
allows a developer to improve the source code accordingly. In case of numeric types, the
average value can be of interest. For textual parameters, the average length may be relevant.
In case of polymorphic types, the frequency of particular concrete types can be interesting.
For value objects [Fow12] it can be interesting if the same value is returned very frequently.
In this case, a possible improvement may be to cache the value instead of recalculating and
regenerating it each time.

• Dynamic Collaborator Advices: As described above, advices can provide information about
the dynamic collaborators in polymorphic systems. Two advices comprise the dynamic col-
laborators of a procedure: One contains its callers and the second its callees, which both has
been proven as valuable pieces of information for developers [RGN07, BRB10]. In the case
of a class the dynamic collaborators correlate to the dependencies of the class. These de-
pendencies are typically injected at runtime through setters, a constructor, or a dependency
injection framework. Therefore, the concrete types of the dependencies are not known at
design-time. Dynamic collaborator advices instead are capable of giving the developer in-
formation about the concrete collaborators of a class.

Figure 3.5: Mockup visualizing a part of an IDE displaying informative advices.

Figure 3.5 furthermore illustrates the UI elements we suggest in order to display the advices
in the IDE. The first possibility is a hover appearing directly in the source code editor. Most
IDE’s already use this principle for their own hovers. Therefore, we suggest to make the hover
appear on performing a keyboard shortcut after hovering the respective element in the source
code. Hovers are useful to display advices that summarize a large amount of data and possibly
provide a link to a separate view providing more detailed advice. Taking the example of the
average method execution time from the mockup in Figure 3.5, the linked view could provide a plot
visualizing the execution times of the method on a timeline.

Figure 3.5 also illustrates a second possibility to display informative advices by using an ex-
ternal view beside the source code editor. This is useful for advices displaying comprehensive
information about a large amount of runtime data. Such views should always be synchronized
with the editor, which means that the information displayed in the view is always related to the
source code element in the editor where the cursor is located.

3.3 Introducing a Concept for FDD 29

Warning advices. A warning advice points to source code elements that are assumed to be
critical for the performance of the application. A simple example is a long-running method that
is executed very frequently. Warning advices provide a meaningful summary of the operational
data that hypothesizes the performance issues and, optionally, suggests a solution to resolve it.
Warning advices therefore help developers to resolve existing performance problems or to even
detect them in advance. Figure 3.6 illustrates our suggestion of how to display warning advices in
the IDE: the corresponding location in the source code is somehow marked to indicate a warning
at this position. This concept is known from other warnings in IDE’s, such as compiler errors.
Hovering the warning shall open a hover providing detailed information about the advice. Fur-
thermore, we suggest an additional view outside the source code editor that summarizes all the
warning advices and allows to navigate to the appropriate source code artifact. This concept is
also well known from regular IDE warnings. Using regular IDE concepts prohibits developers
from learning new things. Suggested warning advices are:

Figure 3.6: Mockup visualizing a part of an IDE displaying warning advices.

• Hotspot Procedure Advices: A hotspot procedure is one that is potentially critical to the
performance of the application. The simplest case to define a procedure as a hotspot is if its
execution time is above a pre-defined threshold. Developers can take care of such methods
and try to improve their performance. Other criteria of high interest are the frequency of
execution of particular procedures [BRB10, RHV+09a] or the percentage of executions per
user request [RGN07]. This helps to identify the methods that are critical to performance
due to their frequent execution. A short, but frequently executed method may have more
impact on the overall performance than one that exceeds a threshold but is executed only a
few times.

• Repetitive Remote Calls Advices: In distributed systems remote calls are required to com-
municate and pass data between different nodes. As discussed in Section 2.2.4, remote calls
are typically expensive calls and hence relevant to performance. A repetitive remote call
advice indicates multiple remote calls that are often executed after each other. The assump-
tion is that those calls can be combined into one call by refactoring the system. Hence, this

30 Chapter 3. Bringing Runtime Metrics to the Developer

kind of advice targets the detection of the too many remote calls and the N+1 select problem
anti patterns (see Section 2.2.4).

• Expensive Loop Advices: This type of advices covers the exposure of runtime data on
(nested) loops that are very expensive (i.e., long execution time) and therefore critical to
the performance. The time required for one iteration, the number of iterations as well as the
total execution time can be of interest to the developer. Furthermore, the advice can contain
informative advices about the methods executed in the loop body. Expensive loop advices
help the developer to detect the anti pattern of the same name discussed in 2.2.5.

• Object Creation Advices: Section 2.2.2 illustrates how expensive the creation of objects
can be and explains the excessive dynamic allocation anti pattern addressing the repetitive
creation and destruction of similar objects. Object creation advices indicate locations in
the source code where this anti pattern arises by comparing the objects created at runtime.
Furthermore the detection of the aggressive loading of entities anti pattern is possible through
analyzing which kind of procedures and fields of a method are used how frequently. This
helps developers to improve the code through introducing lazy loading for particular parts
of objects.

• Added Code Advices: Even the smallest code changes can have significant impacts to the
performance of an application [NNH+14]. Added code advices target those code changes
that have a high probability of resulting in such performance impacts. The scenario de-
scribed in Section 3.2.1 is a good example of such a code change. A respective warning can
be shown in the IDE as soon as a developer has introduced such a code change.

In summary, we can state that informative advices extend the information available to a de-
veloper helping to find a concrete design for source code artifacts of different granularities (e.g.,
classes, procedures), while warning advices help to find weaknesses and possible performance
problems in the chosen design.

3.3.3 Application of Statistical Methods
An interesting aspect of the FDD approach is the possibility to provide the developer with pre-
dictive analyses about the performance of a system using the available runtime data. This section
describes how the statistical methods introduced in Section 2.3 can be applied for this purpose.

Predictive Analysis with the Moving Average Model

We propose to use the moving average (MA) model (see Section 2.3.2) as a base for predictive
analyses of an application as part of an FDD system. The MA can be used to estimate the future
values of the execution time of a method, its CPU utilization, or memory usage. Let us assume a
procedure m with measured execution times {etm1

, ..., etmn
}. Derived from Equation 2.3, we can

predict the execution time of m as given in Equation 3.1

etmp =

w−1∑
i=0

etmt−i

w
+ ε (3.1)

The result etmp
is the estimated execution time of m with a statistical error ε. This gives us a

simple model for the performance of an application based on the measured operational data in

3.3 Introducing a Concept for FDD 31

the past. The predicted values of CPU utilization and memory usage of procedures can be defined
analogously.

For many performance problems, procedures are a reasonable level of granularity for the
measurement of operational data (see Section 2.2). However, as discussed in Section 2.2.5, per-
formance problems are often related to loops. We therefore further propose to make predictive
analyses of the execution time of loops. To do so, we first have to define the execution time of a
loop. Taking the example loop of Listing 3.1, the execution time of an iteration is the sum of the
execution times of the methods a(), b(), and c(). Multiplying the sum with the number of ex-
ecutions, which in this case is determined by the size of the collection returned by getItems(),
gives the execution time of the loop. The execution time required to check the termination condi-
tion of the loop is negligible.

1 for (Object item : getItems()) {
2 a(b(item));
3 c(item);
4 }

Listing 3.1: A simple loop example (Java).

Generally, the total loop execution time etl of a loop l can be defined as the sum of the execu-
tion times {etm1

, ..., etmn
} of all procedures {m1, ...,mn} executed in the loop-body multiplied by

the number of iterations i of the loop (see Equation 3.2).

etl =

n−1∑
a=1

etma
× i (3.2)

We previously proposed to use the moving average to predict the execution time of a loop (see
Equation 3.1). If the loop execution time is defined as shown in Equation 3.2, we can multiply the
sum of the moving averages of all the methods inside the loop with the predicted number of
iterations to predict the execution time of the loop. To predict the number of iterations, the mov-
ing average of the iterations can be calculated analogously. Integrating these moving averages
into Equation 3.2 results in Equation 3.3. The first sigma sign sums up the first bracket, which
calculates the MA for each method. This is multiplied with the second bracket, which calculates
the MA of the number of iterations. wm and wt are the window sizes of the moving averages of
the method execution times and the number of iterations respectively. As for every predictive
analysis, there is a statistical error ε.

etlp =

n−1∑
a=1

wm−1∑
b=0

etmab

wm

×

wi−1∑
c=0

ic

wi

 + ε (3.3)

The introduced predictions for method- and loop execution times allows an FDD system to
make reasonable assumptions about the evolution of the performance of an application. The
developer can be kept up to date with respective information in form of advices.

32 Chapter 3. Bringing Runtime Metrics to the Developer

Using Change Point Analysis in FDD

As illustrated in Section 2.3.3, Change Point Analysis can be used to detect significant changes
in the evolution of the performance of procedures. We propose to use this information in FDD
and combine it with release information in order to automatically detect releases that introduce
or resolve major performance problems. If newly arising performance problems can be mapped
to code releases, the developer is able to rapidly find the responsible code change containing the
source of the problem. This is especially valuable if Continuous Delivery is applied (see Section
2.1.3) and the FDD system is integrated into the Continuous Delivery process (see Section 3.2.3).
The idea of using Change Point Analysis to conduct analyis in performance management has
already be proven by Cito et al. in [CSLD14].

3.3.4 Proposed Conceptual System Architecture

Based on the aspects discussed so far we propose an architecture for an FDD system that meets
the characteristics described in Section 3.3.1 with the purpose of achieving the goals mentioned
in Section 3.2.2. The focus lays on illustrating the necessary components and their interaction
required by each system to implement the FDD approach. The conceptual architecture is visu-
alized in Figure 3.7. It contains three different types of elements. The Main Components are the
actual building blocks which establish the FDD system. The Environmental Components encom-
pass the (existing) environment the FDD system is embedded into. Finally, the Target Application
corresponds to any application that is developed and deployed in the illustrated environment
and shall benefit from the capabilities of the FDD system.

Figure 3.7: The proposed architecture for an FDD system.

3.3 Introducing a Concept for FDD 33

Environmental Components and Target Application

The following list describes the characteristics of the environmental components and the Target
Application. The main components are described individually in more detail in the subsequent
sections.

• IDE: The Integrated Development Environment is the starting point of the FDD process.
It is the place, where the developer works on the source code of a target application. The
integration of an FDD system into the IDE is a crucial requirement.

• Cloud Platform: This is the platform where the application is deployed to run in produc-
tion. It can be an arbitrary platform of any provider and is totally independent of the com-
ponents of the FDD system.

• Target Application: The Target Application represents the application the developers are
working on while using the FDD system. It is developed in the IDE and deployed onto
the cloud platform where it is used in production. The exact deployment process, includ-
ing Continuous Integration, is not relevant for the architecture and therefore not further
visualized.

• External Metric Source: This can be any external source that handles incoming runtime data
and calculates metrics. Examples of such providers are New Relic8 or Kieker9. The metric
source can also be part of the Feedback Handler component itself if no external source is
used.

Monitoring Component

The Monitoring Component is responsible for gathering the runtime data. It is somehow injected
into the program flow of the Target Application. How this is achieved depends on the concrete
technologies of the Target Application. For machine language, the injection typically has to be
done during compilation. For interpreted languages there are other possibilities such as bytecode
modifications. Conceptually, there are no restrictions on how to conduct the injection, the only
condition that has to be obeyed is that the developer doesn’t have to take care of the injection.
Furthermore, the source code or even the design of the Target Application may not be influenced
by the Monitoring Component.

The Monitoring Component is able to track the program flow during execution and measure
data such as the execution time and the CPU usage. The exact extent of the gathered data de-
pends on the types of advices (see Chapter 3.3.2) that are supported. At least the execution time
of the executed program elements (typically procedures) should be measured, which is the basis
for most of the proposed advices. The Monitoring Component regularly sends the collected data
to a metric source, which can either be an external provider (as shown in Figure 3.7) or an internal
component of the Feedback Handler. We propose to provide an Application Programming Inter-
face (API) on the Feedback Handler to send metrics in both cases. The Feedback Handler then
either treats the data itself or redirects it to an external source. This decouples the Monitoring
Component from the concrete API’s of the External Metric Source providers and hence makes
them exchangeable more easily.

8http://newrelic.com
9http://kieker-monitoring.net

34 Chapter 3. Bringing Runtime Metrics to the Developer

Feedback Handler Component

The Feedback Handler is the core component of the FDD system. Together with the IDE plug-in
it spans up a client-server architecture where the Feedback Handler acts as server and processes
requests from the IDE plug-in. The Feedback Handler receives the runtime data either directly
from the Monitoring Component or from an External Metric Source provider. The data fetched
from the external metric sources will most likely exhibit different formats. The Feedback Handler
itself has its own representation of the runtime data and should be as independent as possible
from the third party formats. A Data Format Adapter therefore takes the responsibility of con-
verting the different formats from the metric source providers into the common one known and
shared by the other components in the FDD system. After converting the data into the common
format, it is stored in the metrics DB, which is also part of the Feedback Handler. The metrics DB
is the data source for the Aggregation and Filtering and the Server-side Analysis Module. Those
two modules operate on the data from the Metrics DB in order to serve client requests from the
IDE plug-in. They provide the implementation for the concept described in Section 3.3.2.

IDE Plug-in Component

The IDE plug-in is the third main component of our proposed FDD system architecture. It extends
an existing IDE (e.g., Eclipse10, IntelliJ11, or Cloud912) with the proposed FDD features. It gets the
partially analyzed runtime data from the Feedback Handler. The Client-side Analysis Module
combines this data with the available static data from the source code artifacts. The outcome
of this process is a collection of advices (see Section 3.3.2). The UI module gets this collection
of advices and is responsible for visualizing them in an appropriate manner inside the IDE (see
Figures 3.5 and 3.6). This closes the feedback loop by bringing back the runtime aspects to the
Target Application and consequently to the developer. The concrete visualization of the advices
should be assimilated to the concepts and look and feel of respective IDE and should be tightly
integrated into the existing views, such as source code editors.

3.3.5 Summary of the Approach

From the practical scenario illustrated in Section 3.2.1 and the goals discussed in Section 3.2.2,
the main characteristics an FDD system have been derived. To get from raw operational data
to valuable feedback for the developer, the concept of advices has been introduced. It has been
shown how advices are elicited from runtime data and how they are linked with the static source
code elements in the IDE. Advices have been further classified into informative and warning
advices and for both types a concrete mockup has been shown giving a suggestion on how to
visualize the respective information in the IDE. The statistic method of the moving average has
been treated and it has been shown how it can be used to predict the future performance of
applications on procedural level. The Change Point Analysis has been suggested to automatically
detect significant performance variations and it has been proposed to link these information to
the release history of the application in order to detect problematic releases. Finally, a conceptual
architecture for an FDD system has been illustrated providing an overview of the environment
and a description of the main components.

10http://www.eclipse.org
11https://www.jetbrains.com/idea
12https://c9.io

3.4 Implementing an FDD system 35

3.4 Implementing an FDD system
This section describes the implementation of PerformanceHat, a concrete prototype of an FDD
system that has been developed in order to verify the concept discussed so far. While the con-
ceptual approach has been introduced independently of any concrete technologies, technological
decisions have to be made in order to implement such a system. Due to the fact that an FDD
system is integrated very closely into a development environment, it is not possible to implement
a generic application for multiple platforms, since the tight integration is one of the basic charac-
teristics of an FDD system (see Section 3.3.1). PerformanceHat therefore is established for the Java
platform and the Eclipse IDE. Nevertheless, the architecture has been designed to be adaptable to
other platforms. Modules that are independent of the concrete environment have been designed
to be reusable if the application is extended to support other platforms. This section first illus-
trates the concrete system architecture, describes the particular system components and finally
explains some important implementation details.

3.4.1 Architecture
Figure 3.8 visualizes the architectural components of PerformanceHat, derived from the concep-
tual architecture treated in Section 3.3.4. While the conceptual architecture visualized the system
landscape, the system architecture focuses on the developed components. The system is designed
to support target applications written in Java and the IDE component is built on top of the Eclipse
IDE. The system components themselves are all implemented in Java, too. The following list pro-
vides a short overview of the components and their functionality. A detailed discussion about the
most important implementation details follows in the subsequent sections.

• Common Component: The Common component, which was not part of the conceptual
architecture, contains all the modules that are shared amongst the other components. It
is not deployed as standalone component, but rather as part of all the other components.
It contains the shared runtime model the system uses to deal with operational data, basic
functionality for the communication between the components, a number of data transfer
object (DTO), basic error handling capabilities, and some utility classes.

• Monitoring Component: The Monitoring component is designed to be easily integrated
into target applications13 and is kept as thin as possible. It consists of a Data Gathering
module that is responsible for instrumenting the source code of the target application in
order to collect runtime data and a Data Transmission module that takes over the responsi-
bility of sending the gathered data to the Feedback Handler component.

• Feedback Handler Component: The Feedback Handler is implemented as a web applica-
tion based on the Spring Framework14. Most of its modules have already been described
in Section 3.3.4, because they are tightly related to the concept. The Feedback Handler pro-
vides a RESTful HTTP API that enables the communication with the Monitoring component
and the Eclipse plug-in.

• Eclipse Plug-in: The IDE component of the FDD system is implemented as a plug-in for the
Eclipse IDE. The plug-in is based upon the Eclipse core components and the Eclipse JDT15.
The plug-in contains a REST-Client that communicates with the Feedback Handler to re-
ceive runtime data. A Resources Extension module is designed to deal with Eclipse resources

13The target application is the application that makes use of the FDD system, see Section 3.3.4
14http://projects.spring.io/spring-framework
15https://eclipse.org/jdt

36 Chapter 3. Bringing Runtime Metrics to the Developer

(see Section 3.8.1). The Feedback Builder is integrated into Eclipse’s builder mechanism (see
Section 3.8.3) in order to distribute the elicited advices which are visualized by the Marker
and Hover module (see Section 3.8.5).

Figure 3.8: Architecture of the FDD system.

3.5 Common Component
The Common component contains all the code that is shared amongst the other three compo-
nents in order to avoid duplicate source code along multiple components. It therefore contains
miscellaneous modules and has no inherent structure. The main modules of the Common com-
ponent contain a shared runtime data model and data transfer objects. The runtime data model is
a representation of the gathered runtime data. It constitutes the domain of the FDD system and is
explicitly discussed in Section 3.5.1. The data transfer object (DTO) module contains a collection of
plain old Java object (POJO)’s16 used to transfer domain objects as well as other data between the
three other components. DTO’s are therefore a serializable, often aggregated, representation of
the domain objects. The data transmission between the components is achieved through RESTful
HTTP API’s. For this purpose the Common component provides an abstract base implementation
of a REST client that is based on the Web module of the Spring Framework17. Additional classes
from the Common components provide functionality to create HTTP headers and request bodies
to construct HTTP requests. Corresponding generic error handling for the REST communication
is also provided by the Common component. A single exception type is introduced that exhibits
an error type property allowing to explicitly specify different error types related to the HTTP
transmission. This allows the client component of the communication to handle different types
of errors by catching only one single exception type. Other concrete exception types, especially
those from the underlying frameworks, are decoupled from the client.

Finally, the Common component includes a utility module containing different classes that
provide a common functionality for various issues such as the dealing with date/time data types
and strings or the creation of meaningful hash codes.

16Plain Old Java Object: an ordinary Java object independent of any frameworks, libraries, or conventions. See
http://www.martinfowler.com/bliki/POJO.html.

17http://projects.spring.io/spring-framework

3.5 Common Component 37

3.5.1 Runtime Data Model
Operational data comprise all the dynamic data gathered through application monitoring. It is
a very complex domain that can be regarded from different perspectives upon different levels of
granularity. In order to deal with operational data, the components of PerformanceHat require a
shared view of how the world of operational data looks like. This view is provided by the Runtime
Data Model, a domain model for operational data. Figure 3.9 visualizes its entities.

Figure 3.9: The domain model of the FDD system.

The runtime data model can be divided into two main parts, where the first part, compos-
ing the right part of the diagram, covers the call trace. The call trace is the tree of executed
Java procedures. Procedure is the super-type of all sub-constructs of a class. In Java, these are
methods and constructors. A Procedure is uniquely identifiable through its qualifier property
(getQualifier()) that is compounded out of its main properties which are the name, its list of
parameters, and the qualified name of the class the procedure belongs to. Additionally, the pro-
cedure has an attribute ProcedureKind specifying the type of procedure. In Java, this is either
method, static method, or constructor.

While the Procedure only focuses on the static part of a procedure, the ProcedureExecution
is introduced to cover the dynamic part that actually happens at runtime. A ProcedureExecution
represents the execution of its associated Procedure at any point in time. It contains a start time
and a caller, which refers to the ProcedureExecution that has called the current one. This
structure is sufficient to model the whole execution trace of an application at runtime.

The second part of the domain model covers metrics. The Metric interface, which is the
central entity of this part, represents any metric measured at any point in time. Instead of in-
heriting the Metric interface for all possible kinds of metrics (e.g., execution time, CPU usage),

38 Chapter 3. Bringing Runtime Metrics to the Developer

a MetricType interface is introduced that specifies the type of a Metric. A MetricType is
composed of a name and the proper unit (e.g., milliseconds). Furthermore, a metric has attributes
containing its measured value and a qualifier that allows to store additional context of the metric.
The Metric interface is completely independent of the call trace part of the model. To com-
bine metrics with the call trace, the ProcedureMetric and ProcedureExecutionMetric
types are introduced. The ProcedureMetric is a specialization of a generic metric which is
directly related to a Procedure, for example the average CPU usage the procedure requires.
The base qualifier of a ProcedureMetric metric is consequently identical to the qualifier of the
related Procedure. To further distinguish between different metrics of the same type related to
the same Procedure, an additional qualifier is introduced that is appended to the base qualifier. A
ProcedureExecutionMetric is a continuative specialication of the ProcedureMetric that is
analogously related to a ProcedureExecution. The execution time of a ProcedureExecution
is an example of such a metric.

This design provides a lot of flexibility. The basic Metric interface is kept very generic and
allows the representation of any kind of possible runtime metrics, which makes the FDD system
flexible and adaptable to concrete types of target applications. Despite the metrics that are com-
mon in each application, domain-specific metrics can be introduced per target application. For
example, in case of a voice over IP or a video streaming application, it could be valuable to in-
troduce metrics such as jitter to measure some Quality of Service (QoS) aspects. Beside the high
flexibility of the Metric interface, its specialized sub-types provide a tight integration into the
call trace part of the model, which increases the cohesion of the model and makes the association
of metrics to source code constructs very easy.

Implementation of the Model

Besides interfaces visualized in Figure 3.9, the Common component also provides an imple-
mentation layer of the domain model. Abstract classes provide basic implementations of all
the domain entities and a second layer provides concrete default implementations. Figure 3.10
shows the implementation layers on the example of ProcedureExecution (the other types are
omitted for improved clarity). The other components can either use the abstract base imple-
mentations or the default implementations to implement their own extension classes on top of
it. The DTO class in Figure 3.10 (ProcedureExecutionDto) for example expands the default
implementation with serialization meta-information, while the database-specific implementation
(DbProcedureExecutionImpl) adds some information about the database mapping. The do-
main model itself, including the default implementation, is therefore completely independent of
any concrete framework or library, those aspects are introduced in the subclasses.

Figure 3.10: The layers of the domain model entities.

3.6 Monitoring Component 39

3.6 Monitoring Component
This section describes the most important implementation aspects of the Monitoring component,
which constitutes the part of the FDD system that is capable of monitoring the target application
during runtime.

3.6.1 Requirements
For being able to monitor the target application, the Monitoring component has to be injected into
the target application’s source code somehow. This process has to be undertaken each time the
code of the target application is rebuilt. In order to meet an FDD systems basic requirement of
minimal setup costs (see Section 3.3.1), the initial costs of integrating the Monitoring component
into the target application have to be as low as possible. Furthermore, the developer should not
be involved in the recurring step of injecting the Monitoring component after she did the initial
setup. These are the most important requirements.

Another important requirement is to keep the monitoring overhead as low as possible. The
monitoring overhead is the additional time that is required to execute the target application due
to the execution of the Monitoring components code. Depending on the granularity of the source
code elements that are monitored, the Monitoring component can compose a significant percent-
age of the execution time and therefore has to be implemented very efficiently.

3.6.2 Instrumenting Java Applications
In order to inject the code of the Monitoring component, the target application’s source code has
to be somehow instrumented. When working with Java, there are two possibilities to achieve
that: Java bytecode instrumentation and Aspect-Oriented Programming (AOP). Bytecode instru-
mentation is a technique to modify the interpreted bytecode of virtual environments [BHM07].
Since JDK 1.5, Java provides the Java bytecode instrumentation API that allows to augment the
bytecode of a class using a Java agent18 as soon as the class is loaded by the classloader of the Java
Virtual Machine (JVM) [BHM07].

Aspect-Oriented Programming is a paradigm that targets the modularization of crosscutting
concerns in software design [KH01]. An aspect is a crosscutting concern that is executed at specific
points in the application execution (join points). AspectJ19 is a Java library that has become the
de facto standard for AOP in Java applications. Using AspectJ, the aspects can either be weaved
into an application during compilation, as post-compilation action or at load-time of the class20.
The load-time weaving is based on bytecode instrumentation and therefore requires a Java agent
to be executed.

When designing the Monitoring component, both alternatives, Java bytecode instrumentation
and Aspect-Oriented Programming (AOP) with AspectJ, were considered. Early prototypes were
implemented for both of them in order to become more familiar with the technologies and be able
to verify the advantages and disadvantages. While the main advantage of AOP and AspectJ is its
easy and higher-level API, bytecode instrumentation enables more flexibility. AOP is restricted
to the bounds of methods and fields, which means that aspects can only be weaved before, af-
ter, or instead of a method invocation or a field access. With AspectJ, it is not possible to, for
example, weave an aspect before or after a loop execution21. Bytecode instrumentation on the

18http://www.javabeat.net/introduction-to-java-agents
19https://eclipse.org/aspectj
20https://eclipse.org/aspectj/doc/next/devguide/ltw.html
21The issue of a loop pointcut in AspectJ is also discussed in the web: http://dev.eclipse.org/mhonarc/lists/aspectj-

users/msg00929.html

40 Chapter 3. Bringing Runtime Metrics to the Developer

other hand allows to add code anywhere in the bytecode. However, working on bytecode level
to find source code constructs such as loops is very complex and requires deep understanding of
Java bytecode. There are various discussions on the web providing partial approaches for such
issues22, but no reliable approach could be found. Bytecode instrumentation libraries, such as
ASM23, Serp24, or Apache Commons BCEL25, hide such bytecode-related issues from the devel-
oper by providing a higher-level API allowing to instrument Java source code statements, but
exhibit similar limitations as AOP. The big advantage of AspectJ over bytecode instrumentation
is the ability of compile- or post-compile weaving. This makes the code instrumentation a part of
the build-process, no effort is required at runtime and most importantly there is no need to start
a Java agent. This is a considerable benefit, because starting a Java agent couples the FDD system
with the runtime environment the target application is embedded into, because a Java agent can
only be started on the startup of the Java Virtual Machine (JVM). If the target application is a
standalone application, this problem is reduced to considering starting the Java agent together
with the application. The only impact, therefore, is a slight increase of the setups costs to start the
Java agent, which would be tolerable according to the requirements (see Section 3.6.1). However,
FDD is typically used in cloud computing environments where standalone applications are rarely
the case. Assuming a Java web server, the JVM is started together with the server rather than on
application deployments. Hence, the start of the Java agent is decoupled from the application
startup and depending on the level of access of the used cloud service it can be difficult to de-
fine hooks on the server startup. Therefore, load-time instrumentation breaks the requirements of
low setup costs (see Section 3.6.1) and using AOP with AspectJ is the logical consequence. Since
minimizing the monitoring overhead has also been identified as a requirement, a second major
benefit of this choice is the elimination of additional monitoring overhead caused by load-time
instrumentation.

3.6.3 Setting up the Target Application

As discussed in the previous section, the compile-time weaving alternative of AspectJ is used to
inject the code of the Monitoring component into the target application. This reduces the setup
costs to a minimum. Being a Maven26 project is the only precondition a target application has to
meet in order to integrate the Monitoring component. The Monitoring component is delivered as
a Maven dependency, too. Hence, the code can simply be integrated as managed dependency in
the target application’s Maven project object model (POM). Additionaly the build has to be filled
with some configuration that integrates the weaving into the compilation step using the AspectJ
Maven plug-in27. The only additional thing that is required, in order to enable the communication
with the Feedback Handler, is a simple configuration file (config.properties) containing the ID and
the Authentication Token of the target application. This information is received when registering
the target application at the Feedback Handler. The PerformanceHat User Guide, which can be
found in Appendix C of this thesis, provides a step-by-step instruction of how to set up a target
application including concrete examples of the required configurations.

22There is various discussion in the web about the problem of detecting loop constructs in Java bytecode:
http://cory.li/bytecode-hacking, http://stackoverflow.com/questions/6792305/identify-loops-in-java-byte-code

23http://asm.ow2.org
24http://serp.sourceforge.net
25http://commons.apache.org/proper/commons-bcel
26http://maven.apache.org
27http://mojo.codehaus.org/aspectj-maven-plugin

3.6 Monitoring Component 41

3.6.4 Monitoring Aspects
In order to monitor the source code of the target application with AOP, an aspect has to be defined
that allows to add monitoring code before and after each method and constructor invocation.
Listing 3.2 shows the respective code. AspectJ provides an API that allows to specify aspects in
pure Java, using annotations. Using the @Pointcut annotation, pointcuts28 for all method calls (see
allMethodCalls) as well as all constructor calls (see allConstructorCalls) are specified. An Around-
advice29 is defined (see aroundProcedureCalls) that executes the actual monitoring code. The regu-
lar expression that specifies at which time the advice is executed is composed of a disjunction of
the two mentioned pointcuts for the method- and the constructor invocations associated with an
additional pointcut that excludes all invocations of methods inside the monitoring package. This
prohibits methods of the Monitoring component themselves from being woven with the advice
code, which would result in an infinite recursion.

1 @Aspect
2 public class MonitoringAspect {
3
4 @Pointcut("call(* *.*(..))")
5 public void allMethodCalls() {}
6
7 @Pointcut("call(*.new(..))")
8 public void allConstructorCalls() {}
9

10 @Pointcut("within(eu.cloudwave.wp5.monitoring..*)")
11 public void allMonitoringPackages() {}
12
13 @Around("(allMethodCalls() || allConstructorCalls()) &&

!allMonitoringPackages()")
14 public Object aroundProcedureCalls(final ProceedingJoinPoint joinPoint) {
15 return TracingHandler.of().execute(joinPoint);
16 }
17 }

Listing 3.2: The Java class defining the aspect that is used to monitor the target application
(JavaDoc comments are omitted).

3.6.5 Join Point Handlers
In order to collect the runtime data, join point handlers are introduced. A join point handler is a
class that executes the additional monitoring of the code at a join point. Each join point handler
extends the abstract implementation AbstractAroundJoinPointHandlerTemplate shown
in Listing 3.3. This class operates as a template for handlers of procedure30 call join points by
specifying the execution flow and providing hooks to execute specific code before and after the
execution of the procedure itself. In line 3, the execute() method first creates an object of type
ProcedureCallJoinPoint which is a decorator extending the ProceedingJoinPoint with
domain-related functionality. This decorator is passed to the before-hook that is executed by
concrete subclasses. Then, the actual procedure of the join point is called and, together with the
ProcedureCallJoinPoint, its result is passed to the after-hook which is again executed by

28A pointcut is a group of join points, whereas a join point is any point in the execution of the program flow where an
advice (code) is injected.

29An @Around advice acutally replaces the code of the join point with the advice. It has therefore been taken care to
execute the actual join point inside the advice.

30We use procedures as superset of methods and constructors

42 Chapter 3. Bringing Runtime Metrics to the Developer

subclasses. This design makes it easy to define new join point handlers if needed. The current join
point handlers already gather extensive runtime data: the whole execution trace is recorded and
for each procedure in the trace, the execution time and its CPU usage is measured. Furthermore,
information about the size of collections (i.e., objects whose type inherits from the Collection
interface of the Java standard library) is gathered. This information is sufficient to fill the domain
model discussed in Section 3.5.1 with data. The gathered data is buffered locally and sent to the
Feedback Handler as soon as a call trace is finished.

1 public abstract class AbstractAroundJoinPointHandlerTemplate {
2 public final Object execute(final ProceedingJoinPoint joinPoint) {
3 final ProcedureCallJoinPoint procedureCallJoinPoint = new

ProcedureCallJoinPoint(joinPoint);
4 before(procedureCallJoinPoint);
5 try {
6 final Object result = joinPoint.proceed();
7 after(procedureCallJoinPoint, result);
8 return result;
9 }

10 catch (final Throwable e) {
11 e.printStackTrace();
12 }
13 return null;
14 }
15
16 protected abstract void before(ProcedureCallJoinPoint joinPoint);
17
18 protected abstract void after(ProcedureCallJoinPoint joinPoint, Object

result);
19 }

Listing 3.3: The AbstractAroundJoinPointHandlerTemplate class specifying a template
for all procedure call join point handlers (JavaDoc comments are omitted).

3.7 Feedback Handler Component
The Feedback Handler component constitutes the server-side of the FDD architecture. It is imple-
mented as a web application based on the Spring Framework and can be deployed on any Java
webserver. To communicate with the other components, it provides a RESTful HTTP API. It re-
ceives the runtime data from the Monitoring component and from external metric sources and is
responsible for processing and storing this data. The Feedback Handler is capable of aggregating
and filtering the stored data to expose it to the client (i.e., the IDE Plug-in).

3.7.1 Handling incoming Data
As suggested in Section 3.3.4, the Monitoring component always sends the operational data to
the Feedback Handler rather than directly to external metric source providers. The Feedback
Handler then has the possibility to pass the data on to an external metric source that processes and
aggregates the data. The current implementation of the Feedback Handler directly stores the data
in its own local storage by default. There is an experimental implementation of the data format
adapter that allows to pass the data on to either NewRelic31 or the CloudWave infrastructure32.

31New Relic is an industrial software monitoring service: http://newrelic.com
32For more information about the CloudWave project see Section 3.9

3.7 Feedback Handler Component 43

3.7.2 Data Storage
The operational data one received either directly from the Monitoring component or from any ex-
ternal metric source is stored on the Feedback Handler in a mongoDB33 database. Several reasons
argue for the usage of this database system. One important aspect is high flexibility, because the
domain model is designed to be very flexible and extendable (see Section 3.5.1). The current im-
plementation is a research prototype and there is a high probability that the underlying domain
model will change as further research is pursued. Therefore, NoSQL data stores are preferred
over relational databases due to their schemaless nature that allows the data to evolve without
having to make expensive schema changes [SF12]. This gives the developer high flexibility and
increases the productivity when changes are made to the database [SF12]. When dealing with
operational data, scalability is an important aspect, because the data expeditiously increases over
time. NoSQL databases are suitable to handle large-scale data [SF12], which is another benefit
over relational databases.

The selection of mongoDB over other NoSQL technologies is due to its suitability for time se-
ries data. Time series data can be defined as an ordered sequence of observations [Mad07], which op-
erational data for the most part consists of. With its aggregation framework, mongoDB provides
proper support for dealing with time series data [Mih14]. Having Spring as the underlying frame-
work of the Feedback Handler, a secondary benefit of choosing mongoDB is its integration into
the Spring framework. The Spring Data MongoDB34 project, amongst other things, provides sup-
port for mapping domain model entities to a mongoDB database, templates for common database
operations, and a Java API for the mongo aggregation framework.

3.7.3 Filtering and Aggregation Techniques
As described in the previous section, mongoDB has an extensive aggregation framework. There-
fore, it makes sense to do a lot of filtering and aggregating directly on the database. The mon-
goDB aggregation framework is modeled as a data processing pipeline [Doca]. A simple example
of such a pipeline from the official mongoDB documentation is shown in Figure 3.11.

Figure 3.11: The mongoDB aggregation pipeline [Doca].

33http://www.mongodb.org
34http://projects.spring.io/spring-data-mongodb

44 Chapter 3. Bringing Runtime Metrics to the Developer

An input collection is filtered by subsequently passing a number of pipeline stages, whereas
the result of a stage is the input of the next stage. In the example in Figure 3.11, a list of orders is
first filtered with a match criteria that checks for a given type and in a second operation grouped
by the customer id. With the $sum statement in the query, the total amount for each customer
is calculated. As true for any data in mongoDB, the result sets are always JSON nodes. The
aggregation query, which is constructed from an array of pipeline stages, is itself written in JSON.

The described aggregation framework is used by the Feedback Handler to filter and aggre-
gate the operational data. Rather than directly creating queries in the Java code, the Spring Data
MongoDB project is used, which provides a Java API for those operations. Listing 3.4 shows
an example: the method aggregateProcedureMetrics is capable of computing the average
value of the metrics with the given type (e.g., execution time, CPU usage) for all procedures of
the given application. To do so, it creates an aggregation using the fluent Java API of Spring
Data MongoDB as described in the following. First, a match operation is composed that filters
the metrics according to their type and the application they belong to (line 3). Second, a group
operation groups the filtered metrics based on the procedure they belong to (line 4). With the
appended avg method, it is specified that the average of each group shall be calculated. Finally,
a sort operation is created that sorts the remaining data in descending order according to their
averageValue attribute (line 5). Out of these three pipeline operations, an aggregation is cre-
ated (line 6), which is then passed to the mongo template together with the name of the targeted
database table and the output type (line 7). The output type (ProcedureMetricAggregation)
is a POJO that contains fields and accessor methods for the attributes of the aggregation result
items. The mongo template, which is a simple template class that provides methods to operate
on a mongoDB database, is responsible for executing the query on the database and return the
result. It is provided as a Spring Bean and can therefore be injected with Spring’s dependency
injection mechanism. Listing 3.5 shows the respective aggregation query that is executed in the
background with the code of Listing 3.4.

1 public AggregationResults<ProcedureMetricAggregation>
aggregateProcedureMetrics(final Application app, final MetricType type) {

2 final MatchOperation matchOperation = match(new Criteria("application.$id")
3 .is(application.getId()).and("type").is(type.toString()));
4 final GroupOperation groupOperation =

group(fields).avg("value").as("averageValue");
5 final SortOperation sortOperation = sort(Sort.Direction.DESC,

"averageValue");
6 final Aggregation executionTimeAggregationSpec =

newAggregation(matchOperation, groupOperation, sortOperation);
7 return mongoTemplate.aggregate(aggregation, DbTableNames.METRICS,

ProcedureMetricAggregation.class);
8 }

Listing 3.4: An aggregation pipeline in the Feedback Handler code.

1 db.metrics.aggregate([
2 { $match : { "application.$id" : ObjectId("<application-id>"), type :

"<METRIC_TYPE>" } },
3 { $group : { _id : { procedure : "$procedure"}, averageValue: { $avg:

"$value" } } },
4 { $sort : { "averageValue" : -1 } }
5]);

Listing 3.5: The corresponding aggregation query of Listing 3.4.

3.8 Eclipse Plug-in Component 45

3.7.4 REST API
To expose runtime data to the Eclipse plug-in (or theoretically any other client), the Feedback
Handler provides a RESTful HTTP API. The API is designed on top of the Spring Web MVC
framework35, which is part of the Spring Core Framework. Spring Web MVC allows to spec-
ify controller methods using Java annotations. A controller method is mapped to its URL with
the @RequestMapping annotation, defining the relative URL as a String. Listing 3.6 shows an
example of such a method called avgExecTime, which returns the average execution time of a
procedure. The procedure is given through a number of request parameters, which are passed
to the method as parameters using the @RequestParam annotation. The method operates on
the data and returns the result, which builds the HTTP response body sent to the client. The
handleUnauthorized method in line 9, defined in an abstract base controller class, checks the
validity of the authentication parameters of the client. The authentication parameters consist of
an application ID and an authentication token and are passed as HTTP headers with each request.
If the authentication is successful, handleUnauthorized does nothing and the application re-
turns to the invoking method. Otherwise, an exception is raised that is sent back to the client.

1 @RequestMapping(Urls.ANALYIS__AVG_EXEC_TIME)
2 @ResponseStatus(HttpStatus.OK)
3 public Double avgExecTime(
4 @RequestHeader(Headers.ACCESS_TOKEN) final String accessToken,
5 @RequestHeader(Headers.APPLICATION_ID) final String applicationId,
6 @RequestParam(Params.CLASS_NAME) final String className,
7 @RequestParam(Params.PROCEDURE_NAME) final String procedureName,
8 @RequestParam(Params.ARGUMENTS) final String arguments) {
9 final DbApplication application = handleUnauthorized(applicationId,

accessToken);
10 final Optional<Double> averageExecTime =

metricRepository.aggregateExecutionTime(application, className,
procedureName, Splitters.arrayOnComma(arguments));

11 return averageExecTime.isPresent() ? averageExecTime.get() : null;
12 }

Listing 3.6: An example of a REST controller method.

3.8 Eclipse Plug-in Component
The Eclipse plug-in is the client component of the FDD system. While the FDD approach suggests
to support multiple IDE’s (see Section 3.3), the prototype so far only supports the Eclipse IDE.
However, the other components of the system (i.e., the Monitoring component and the Feedback
Handler) are completely independent of the IDE. Therefore, the system is designed to be extend-
able to support further IDE’s. The Eclipse IDE component has also been designed to maximize
the reusability of the sub-components. However, some of the logic cannot be isolated from the un-
derlying IDE technologies. This lies in the nature of an FDD system due to its basic characteristic
of tight IDE integration (see Section 3.3.1).

The architecture of the Eclipse platform is implemented on top of Equinox36, which is an im-
plementation of the OSGi framework specification37. The Eclipse platform itself consists of a small
core only, most of the functionality is added in form of plug-ins [BW14]. Plug-in’s are the main

35http://docs.spring.io/spring/docs/current/spring-framework-reference/html/mvc.html
36http://eclipse.org/equinox
37http://www.osgi.org/Main/HomePage

46 Chapter 3. Bringing Runtime Metrics to the Developer

building blocks that bundle related functionality. A plug-in contains the Java code (JAR) and
describes its dependencies to other plug-ins [BW14]. On top of the plug-ins deployed with the
Eclipse IDE itself, developers can implement their own plug-in’s in order to extend the generic
functionality. The Eclipse plug-in of PerformanceHat is built on top of the core component and
the Eclipse JDT38. In the following sections, the most important implementation aspects of the
plug-in are illustrated.

3.8.1 FDD Resources Extension

The Eclipse resources plug-in is a substantial plug-in for the Eclipse IDE that provides an API
to access projects, folders, and files inside the workspace the developer is working with 39. The
resources plug-in works on top of the Eclipse File System (EFS), which is an abstract file system
API that provides an abstraction of the concrete details of particular underlying file systems 40.

The resources API provides comprehensive functionality to deal with Eclipse resources. It
provides methods to create, copy, move, and delete resources, traverse hierarchical resource trees,
add and remove markers, and acess and modify the resources content and metadata. Part of this
generic functionality is used by the FDD plug-in. On top of it, a lot of FDD-specific functionality
is implemented. To optimally integrate the FDD-specific functionality into the existing resources
plug-in, a so called FDD Resources Extension has been designed and implemented. It extends the
resource types from the Eclispe resource plug-in using the Decorator pattern [GHJV94]. Figure
3.12 contains a class diagram of the FDD Resources Extension. The topmost section of the diagram
(the gray box named Eclipse Resource Plug-in) is not part of the extension, but shows the involved
types of the Eclipse resources API: IResource is the basic interface for all kinds of resources in
an Eclipse workspace, IProject and IFile are generalizations of IResource for the respective
concrete resource types. Those three interfaces are the ones that are decorated with functionality
specific to Feedback-Driven Development in the extension layer. The FDD Resources Extension
itself (the blue part in Figure 3.12) consists of three layers.

The Basic Decorators Layer includes an abstract implementation of a Decorator for all of the
three decorated interfaces having the AbstractBaseResourceDecorator as basic class. This
class specifies an abstract method resource() that has to be implemented by each subclass in
order to provide the decorated elements. The AbstractBaseResourceDecorator itself sim-
ply implements all the methods from the IResource interface and delegates all of the work to
the decorated element. The other three abstract classes of this layer extend the basic class and pro-
vide the concrete decorated element implementing the resource() method. Additionally, the
AbstractProjectDecorator and the AbstractFileDecorator implement the methods of
the according interface, also delegating all of the work to the decorated element. In Figure 3.12,
the overridden methods are omitted in the decorator as well as in the interfaces due to the lack of
space.

On the level of the Basic Decorators Layer, no FDD-related functionality is provided. The
purpose of this layer is solely to provide abstract implementations of decorators that do the del-
egation required in order to implement concrete decorators [GHJV94]. The concrete decorators
are provided by the FDD Generic Layer, which is divided into an API sub-layer providing the
required interfaces and an Implementation sub-layer providing the respective implementations.
The inheritance hierarchy is the same as in the Eclipse resources plug-in.

38https://eclipse.org/jdt
39http://help.eclipse.org/luna/index.jsp?topic=%2Forg.eclipse.platform.doc.isv%2Fguide%2FresInt.htm&cp=2_0_10
40https://wiki.eclipse.org/EFS

3.8 Eclipse Plug-in Component 47

Figure 3.12: A class diagram of the Eclipse resources extension layer.

The fact that Java does not support multiple inheritance prevents the classes
FeedbackProjectImpl and FeedbackFileImpl from extending their appropriate ab-
stract decorator as well as the FeedbackResourceImpl class. To overcome this issue,
the interface FeedbackResourceExtension and its associated implementation were in-
troduced as a workaround. The FeedbackResourceExtension contains the methods
that would have actually been designed in the FeedbackResource interface. This al-

48 Chapter 3. Bringing Runtime Metrics to the Developer

lows the FeedbackResourceImpl and FeedbackFileImpl classes to use composition
rather than inheritance to use the common functionality: Both these classes, as well as
the FeedbackResourceImpl, delegate the resource-specific methods to an instance of
FeedbackResourceExtensionImpl.

The functionality provided by the FDD Generic Layer is mostly related to the handling of
markers (see Section 3.8.5). Additionally, the FeedbackProject provides some methods to ac-
cess FDD-specific project properties (see Section 3.8.2). The functionality is not discussed in more
detail here, but it is documented in the code.

The third layer of the FDD Resources Extension, the FDD Java Layer, works on top of the
FDD Generic Layer and bundles all the Java-specific functionality related to FDD. In addition to
the Eclipse resources plug-in, it has dependencies to the Eclipse JDT, which contains all the Java
plug-ins from the Eclipse IDE. Similar to the FDD Generic Layer, the FDD Java Layer consists of
an API and an implementation part. The interfaces in the API sub-layer simply extend the ones
from the FDD Generic Layer and the classes in the implementation sub-layer provide the respec-
tive implementations. The separation from the Java-specific functionality into a separate layer
decouples the FDD Generic Layer from the Eclipse JDT. This increases the reusability and makes
the FDD Resources Extension expandable to support support other programming languages at a
later point in development.

3.8.2 Project Nature
Eclipse’s Project Natures41 allow to tag a project as a specific type of project. Project Natures are
defined by plug-ins and can be added to a project. This creates an association between the plug-in
and the project [Art03]. The plug-in is now aware of the project and can conduct arbitrary actions
on it [Art03]. Typically, a builder is registered for a project nature (see Section 3.8.3). A project can
have multiple natures to interact with different plug-ins.

In the FDD Eclipse plug-in, the Feedback Nature is defined. Projects that want to use the func-
tionality of PerformanceHat have to enable the Feedback Nature. This triggers the Feedback Builder
on that project (see Section 3.8.3). To trigger (i.e., enable or disable, depending on the current state)
the Feedback Nature, a context menu action is available in the Eclipse Project Explorer as well as
in the Java Package Explorer (see Figure 3.13a). As soon as the nature is enabled, this is visible in
the user interface through a decorator showing a blue feedback icon (see Figure 3.13b).

(a) Enabling the Feedback Nature with a context menu action. (b) Decorator of the Feedback Nature.

Figure 3.13: The Feedback Nature.

Project Properties

As soon as the Feedback Nature is enabled for a project, the project’s properties are extended with
a Feedback-Driven Development property page that allows to specify the properties related to the
FDD plug-in (see Figure 3.14). Currently, two groups of properties are available: Authentication

41https://eclipse.org/articles/Article-Builders/builders.html

3.8 Eclipse Plug-in Component 49

properties required to connect to the Feedback Handler (see Section 3.7.4) and thresholds that
define the maximum allowable values for particular warning advices (see Section 3.3.2).

If the Feedback Nature is disabled, the FDD property page is not displayed anymore, but
the properties remain stored in the project. This allows for temporary disabling of the Feedback
Nature and re-enabling without the necessity for specifying the properties again. Temporarily
disabling the nature is a common use case, because having the nature enabled causes longer build
times due to the communication with the Feedback Handler.

Figure 3.14: The FDD project property page.

3.8.3 Builder Mechanism
In Section 3.8.2 the Eclipse project natures were discussed. The concept of Builder’s is tightly
coupled to project natures, each builder is associated with exactly one project nature. A builder is
responsible for manipulating and creating resources in projects which have the builder’s nature
enabled [Vog09]. Plug-in’s have the possibility to implement and register their own builder. Each
registered builder is executed as soon as a build is triggered, which is either the case after one or
more resources have been changed, if auto-build is activated, or through an explicit invocation of
the user [Art03]. There are four different kinds of builds in Eclipse:

• Incremental Build: An incremental build happens in most of the cases when a build is
processed in Eclipse. Incremental means, that the builder receives a resource delta, which
describes what has been changed since the last build [Art03]. The incremental builder can
analyze the delta and build the output that is affected by the changed resources only [Art03].
This prohibits the inefficiency of rebuilding the whole output after each change.

• Auto-Build: An auto-build is the same as an incremental build with the only difference that
it is triggered automatically by the reason of changed resources in the workspace [Art03].
This happens, when the auto-build option is turned on for the workspace. If so, each time a
resources is added, modified, or removed, all the registered builders are executed [Art03].

• Full Build: A full build uses the whole resource set as input instead of a resource delta and
rebuilds everything from scratch [Art03]. Typically, this only occurs after executing a clean
action.

• Clean Build: A clean build first deletes all files generated by the builder and then performs
a full build. Just like the full build itself, it should theoretically never be used, if the incre-
mental builder performs correctly [Art03].

50 Chapter 3. Bringing Runtime Metrics to the Developer

The FDD plug-in associates its own builder called Feedback Builder with the plug-in’s project
nature. The Feedback Builder is responsible for parsing the resources of the project, gathering
the corresponding runtime data, and assigning the warning advices (see Section 3.3.2) in form of
markers to the source code. Markers will be discussed in more detail in the subsequent section.
To divide the work of the builder into separate parts, the so called concept of builder participants is
introduced. The purpose of the builder participant is to adopt one particular use case and create
the respective advices. Listing 3.7 shows the simple interface specifying the API of a builder par-
ticipant. The build method receives the respective project and the set of the changed files as input
and is responsible for creating the appropriate advices. Figure 3.15 shows the type hierarchy of
the builder participants. The base class AbstractFeebackBuilderParticipant implements
the build method in a common way by iterating over the changed files and calling the abstract
method buildFile, that has to be implemented by subclasses, for each file. Additionally it pro-
vides a helper method for the purpose of adding markers to a file. Concrete builder participants
therefore only have to implement the buildFile method, which provides the content of the files
as input (the CompilationUnit parameter).

1 public interface FeedbackBuilderParticipant {
2
3 public void build(final FeedbackJavaProject project, final

Set<FeedbackJavaFile> files) throws CoreException;
4 }

Listing 3.7: The FeedbackBuilderParticipant interface defined by the FDD plug-in in order
to split the work of the Feedback Builder.

Figure 3.15: The Feedback Builder and builder participants.

The Feedback Builder itself receives the list of registered builder participants and simply del-
egates all the work to them. Listing 3.8 shows the source code of the method executing an incre-
mental build from the FeedbackBuilder class. It computes the resource delta of the change as
a first step and only proceeds if the delta could be successfully loaded. If so, the builder cleans
all the sources affected by the delta, which means that all the FDD-related markers are deleted.
Finally, it invokes all the builder participants and passes the resource delta to them in order to
allow them to investigate the source code and distribute the markers.

Separating the build process into different builder participant for each use case (i.e., each type
of warning advice, see Section 3.3.2) has several benefits. It allows to separate concerns with-
out having to register a builder, and hence a project nature, for each advice. While registering

3.8 Eclipse Plug-in Component 51

a builder is relatively expensive and requires to modify the plug-in’s configuration file, creating
a new builder participant simply requires creating a new Java class extending the abstract base
builder participant. The design enables activating and deactivating particular builder partici-
pants at runtime without having to add and remove project natures. Although this feature is not
implemented so far, deactivating a builder participant could be valuable to the developer to cut
down the build time if he is not interested in some specific advices.

1 private void incrementalBuild(final FeedbackJavaProject project) throws
CoreException {

2 final IResourceDelta resourceDelta = getDelta(getProject());
3 final Optional<? extends FeedbackJavaResourceDelta> feedbackDeltaOptional =

feedbackJavaResourceFactory.create(resourceDelta);
4 if (feedbackDeltaOptional.isPresent()) {
5 final FeedbackJavaResourceDelta delta = feedbackDeltaOptional.get();
6 cleaner.cleanDelta(delta);
7 for (final FeedbackBuilderParticipant participant : participants) {
8 participant.build(project,

feedbackDeltaOptional.get().getChangedJavaFiles());
9 }

10 }
11 }

Listing 3.8: The method incrementalBuild from the FeedbackBuilder class.

3.8.4 Static Source Code Analysis
In Section 3.3.2, the process from raw runtime data to valuable feedback was described. The
last step in this process is the concatenation of the dynamic feedback to static source code ar-
tifacts. Static source code analysis is required to detect the right artifacts. The Eclipse JDT
component provides an API to navigate the abstract syntax tree (AST) of Java sources. This
API is used to determine the right location in the source code to attach dynamic feedback to.
The AST is traversed using the Visitor pattern [GHJV94]. Listing 3.9 shows an extract of the
HotspotsBuilderParticipant, showing how a Java source can be traversed by subclassing
the ASTVisitor. The ASTVisitor is an abstract implementation that provides hook methods
for all the AST nodes that can potentially be visited. A subclass, like the anonymous inner class
in Listing 3.9, only has to override the methods of interest. In the case of hotspot methods, all
method declarations and invocations are parsed. The actual matching of the runtime data to the
right method is executed in AST node decorators. In the lines 5 and 11 in Listing 3.9, such decora-
tors, called MdethodDeclarationExtension and MethodInvocationExtension, are cre-
ated. These classes provide the methods to match runtime feedback with the respective AST
nodes.

1 protected void buildFile(final FeedbackJavaProject project, final
FeedbackJavaFile javaFile, final CompilationUnit astRoot) {

2 astRoot.accept(new ASTVisitor() {
3 @Override
4 public boolean visit(final MethodDeclaration methodDeclaration) {
5 visit(new MethodDeclarationExtension(methodDeclaration));
6 return true;
7 }
8
9 @Override

10 public boolean visit(final MethodInvocation methodInvocation) {
11 visit(new MethodInvocationExtension(methodInvocation));

52 Chapter 3. Bringing Runtime Metrics to the Developer

12 return true;
13 }
14
15 private void visit(final AbstractMethodExtension<?> methodExt) {
16 for (final AggregatedProcedureMetricsDto hotspot : getHotspots()) {
17 if (methodExt.correlatesWith(hotspot.getProcedure())) {
18 final int startPosition = methodExt.getStartPosition();
19 final int line = astRoot.getLineNumber(startPosition);
20 addMarker(javaFile, createMarkerSpecification(new MarkerPosition(line,

startPosition, methodExt.getEndPosition()), hotspot));
21 }
22 }
23 }
24 });
25 }

Listing 3.9: The AST visitor in the HotspotsBuilderParticipant.

The matching is as simple as comparing the qualified class name of the method, the name,
and the qualified names of the parameter’s classes. Listing 3.10 shows the respective code of
the class AbstractMethodExtension, which is a base class for AST method node decorators.
The Procedure of the runtime feedback is passed as input parameter and each of its attribute
is compared to the respective attribute of the AST node. The methods returning the AST node
attributes are implemented in the particular subclass.

1 public boolean correlatesWith(final Procedure procedure) {
2 return correlatesClassName(procedure) && correlatesMethodName(procedure) &&

correlateArguments(procedure);
3 }
4
5 private boolean correlatesClassName(final Procedure procedure) {
6 return getQualifiedClassName().equals(procedure.getClassName());
7 }
8
9 private boolean correlatesMethodName(final Procedure procedure) {

10 return getMethodName().equals(procedure.getName());
11 }
12
13 private boolean correlateArguments(final Procedure procedure) {
14 return Arrays.equals(getArguments(), procedure.getArguments().toArray());
15 }

Listing 3.10: Matching runtime feedback with AST nodes.

3.8.5 Markers and Hovers
Section 3.8.3 described how the builder mechanism works. In the FDD plug-in, since no sources
are generated, the only task of the builder is to contribute markers to the resources. Markers42 are
an Eclipse concept to communicate any kind of problem or other information. They are always
attached to a resource. Their characteristics makes markers a perfect concept to visualize warning
advices in the Eclipse UI. Using the existing markers concept to show advices allows the FDD
plug-in to reuse a lot of functionality already integrated into the Eclipse IDE. The IDE provides a
Problem View similar to the warnings overview in the suggested mockup in Figure 3.6. Markers

42http://help.eclipse.org/luna/index.jsp?topic=%2Forg.eclipse.platform.doc.isv%2Fguide%2FresAdv_markers.htm

3.8 Eclipse Plug-in Component 53

are further integrated into the Java Editor, and the respective locations in the source code can be
highlighted and a small icon appears beside the respective line numbers. This concept is known
from the Eclipse Java editor, displaying compiler warnings and errors directly in the source code.
The builder of the FDD plug-in provides additional markers to Java source files - communicating
warning advices to the developer. Figure 3.16 shows an example of two warning markers from
the FDD plug-in visualized in the Java editor.

Figure 3.16: FDD markers showing warning advices in the Java editor.

In order to not have to register an own marker for each type of advice, the same marker is
reused for all the different kinds of advices and a type-attribute is added to each marker specifying
which type of advice the marker is identifying. This reduces the amount of required plug-in
configuration and increases the reusability and maintainability of the marker module. Similar
to the builder participants discussed in Section 3.8.3, this allows to easily add new marker types
without having to change the plug-in configuration.

Displaying detailed Information in Hovers

While the markers are reasonable to indicate the location of a problem, they are not capable of
communicating detailed information about the problem themselves. Indeed, a one-line descrip-
tion can be added to a marker that is displayed in the Problems View and as small tooltip when
hovering a marker icon. However, a more elaborate UI element is required to illustrate all the run-
time data available about an advice. For this purpose, the Java editor is extended with FDD Hovers
displaying runtime data. The FDD hovers are similar to the existing Javadoc hovers known from
the Java editor. Figure 3.17 shows an example of such a hover containing detailed information
about a critical loop.

Figure 3.17: FDD hover displaying detailed information about a warning advice.

54 Chapter 3. Bringing Runtime Metrics to the Developer

Technically, the main area of the hover is constructed of a browser control that is capable of
rendering HTML, which makes the visualization very flexible. The content of a hover is provided
by different content providers, which are registered in a content provider registry per type of
advice. Adding a new marker type therefore entails the need for a new content provider, but
does not require registering a new hover for the Java editor.

3.9 CloudWave Integration
CloudWave43 is a research project, funded by the EU, with the goal of revolutionizing the cloud
infrastructure in order to enable a higher level of agile development processes, dynamic adaption
of cloud services to the environment, and optimization of resource utilization and service quality
[BFKB+14]. Feedback-Driven Development is one of the three main pillars of the CloudWave
project [BFKB+14]. Figure 3.18 visualizes the proposed framework of the CloudWave framework.
Further details about the framework and the project as a whole can be found in [BFKB+14]. Our
prototype is designed to be integratable into the CloudWave infrastructure to be used as part
of it. The integration is not completed so far, but part of the required adaption code is already
implemented.

Figure 3.18: The proposed framework of the CloudWave project [BFKB+14].

Some of the components of the CloudWave environment are not implemented in Java. To com-
municate with those components, PerformanceHat uses a Java wrapper library from CloudWave,
which uses the Java Native Interface44 to access native code. One of the basic things that has
to be done in order to enable the communication between PerformanceHat and the CloudWave
environment is the translation of metrics. While a metric in PerformanceHat has the properties

43http://www.cloudwave-fp7.eu/
44http://docs.oracle.com/javase/7/docs/technotes/guides/jni

3.9 CloudWave Integration 55

described in Section 3.5.1, a metric in CloudWave has a slightly different appearance, being com-
posed of a name, some textual data, a unit, and a value. In order to transmit metrics between
the two systems, a metric converter is implemented that converts FDD metrics into the CloudWave
format (see Figure 3.19). The CwMetric type is a Java representation of the CloudWave metric
format. The metric converter is capable of translating a Metric into a CwMetric and vice versa.
Based on this converter, additional integration components can be developed at a later point in
development.

Figure 3.19: The metric converter.

Chapter 4

Evaluation

The evaluation of PerformanceHat is separated into two distinct parts. A qualitative evaluation
compares the prototype with other performance management tools from research and industry.
In the quantitative evaluation, the performance of PerformanceHat itself is reviewed.

4.1 Qualitative Evaluation
In a qualitative evaluation, PerformanceHat is compared to different kinds of tools in the area
of performance engineering. Other research prototypes as well as industrial tools are considered.
The foundation for the comparison is constructed out of six different dimensions targeting impor-
tant features and characteristics. First, the dimensions are briefly explained and the selected tools
are presented. Then, a tabular overview illustrates the comparison. Each dimension is discussed
in detail. Finally, a conclusion is derived from the comparison.

4.1.1 Dimensions
The quantitative evaluation constitutes of the six dimensions listed below, which can either be
fulfilled or not fulfilled by each of the compared tools.

• Monitoring Capabilities: This dimension covers the capability of collecting runtime met-
rics on application level (e.g., method execution time) and system level (e.g., CPU utiliza-
tion, memory usage) as well as graphically visualizing these metrics to allow the user to
observe the system state.

• Problem Detection: Problem detection describes the ability to automatically detect known
performance problems, such as the performance anti patterns discussed in Section 2.2, based
on the available runtime data.

• Predictive Analysis: Predictive analysis denominates the capability of predicting the future
performance of an application based on of the performance data gathered in the past.

• Production Data: Some performance engineering tools conduct their analysis directly on
the developer’s local machine, others use data from productive environments. Since pro-
ductive systems typically exhibit other conditions than development environments (differ-
ent hardware, different underlying software stack), monitoring data at production is more
valuable to detect performance problems. This dimension is fulfilled if the tool gathers run-
time data on the production system rather than on the developer’s machine.

58 Chapter 4. Evaluation

• Non-Intrusiveness: In order to monitor a system, additional code besides the actual appli-
cation code is required to execute the monitoring actions. If the monitoring logic is mixed
with application- or business-logic, the maintainability of the system decreases. The code is
less readable and additional dependencies are introduced to the components containing the
business logic. Therefore, it is desirable to decouple the monitoring logic from the business
logic. Systems which fulfill this property are called non-intrusive [vHRH+09].

• IDE Integration: Tools that are integrated into an Integrated Development Environment
fulfill this dimension. IDE integration prohibits developers from context switches through
having to change the application they are working in.

4.1.2 Selected Tools
Different kinds of tools, both from research as well as from industry, have been included into the
comparison.

Research Prototypes

The following nine prototypes from research are discussed in the comparison:
• Kieker [vHWH12, vHRH+09] is an extensible framework that provides functionalities to

monitor and analyze software systems. It contains various plug-ins to conduct different
kinds of analyses on the monitored data.

• Senseo [RHV+09b, RHV+09a, RHB+12] is a tool that enhances the static source views of
the Eclipse IDE with dynamic runtime data. It collects runtime type information as well as
performance-related metrics and visualizes this data in the IDE.

• VIVIDE [TSH12] is a programming environment that combines static and dynamic data of
an application. It uses tests to collect runtime information. The goal is to provide a task-
oriented environment to the developer.

• Profiling Blueprints is a visualization concept proposed by Bergel et al. [BRB10] that helps
to identify and remove performance bottlenecks. The implementation is integrated into the
Pharo1 development environment.

• In [NNH+14] Nguyen et al. describe a performance regression detector that is able to dis-
cover the cause of performance problems based on a repository that is filled with data about
performance tests and information about the causes of past performance regressions.

• *J [DHV03] is a tool that provides functionalities to gather, compute, and visualize dynamic
metrics from Java applications. It’s aim is to support the developer in understanding the
behavior of the application at runtime.

• In [Rei03] Reiss proposes a dynamic Java visualizer that focuses on minimal overhead in
order to not slow the monitored application down. The main goal is to provide a tool de-
velopers can use almost all the times without being concerned about long waiting times.

• DynaMetrics [SS08] provides evaluation and analysis capabilities for dynamic data about
object-oriented software systems. A main aspect of the approach is to compare the dynamic
metrics with their static counterparts to determine the usefulness of individual metrics.

• JInsight [PJM+02] allows to visually explore the runtime behavior of a Java program. It is
designed to be used for performance analysis and debugging activities.

1http://pharo.org

4.1 Qualitative Evaluation 59

Java Profiler

Profilers are tools that allow for investigating the runtime behavior of an application during de-
bugging. The functionality of the available, well-known profiler for the Java platform is very
similar: the method call trace can be monitored and runtime metrics, such as CPU utilization and
memory usage, can be observed. There are small differences briefly mentioned in the following
and discussed in more detail in the comparison. Four different profilers have been considered for
the comparison with PerformanceHat. VisualVM2 is a tool that is delivered as part of the Java
Development Kit (JDK). JVM Monitor3 is a profiler that integrates into the Eclipse IDE. JProfiler4

goes a step further and even provides multiple IDE support. Finally, XRebel5 differs from the
others in that it also provides detection mechanism for the N+1 performance anti pattern (see
Section 2.2.4).

Industrial application performance management (APM) Tools

The collection of treated tools is complemented by a number of industrial application perfor-
mance management (APM) tools. New Relic6, AppDynamics7, and Datadog8 are web-based
APM tools that allow for monitoring applications written in different programming languages as
well as different relational database management systems. DripStat9 is another web-based tool,
but is restricted to the Java platform. Glassbox10 differs from the others in that it is not web-based.

4.1.3 Comparison
Table 4.1 illustrates the complete comparison of the introduced tools. Yes means that a tool fulfills
the respective dimension, partial means that some aspects of the dimension are considered, and
no means that the dimension is not covered by the tool. All the statements about foreign tools
made in the following paragraphs are based on the available documentation and to the best of
the author’s knowledge.

First of all, it can be stated that all the considered tools exhibit some Monitoring Capabilities.
This is not surprising, since this dimension comprises basic features of performance monitoring
tools. However, the degree to which the dimension is covered is different. Therefore, a finer
granular comparison of the Monitoring Capabilties dimension is presented in the following sub-
section.

Problem Detection is differently supported by the compared tools. The only tool that exhibits
a comprehensive detection mechanism is the performance regression detector of Nguyen et al..
Based on information from performance tests and past performance regression root causes, their
system is able to identify root causes of performance issues. Kieker also provides some detection
mechanisms, but focuses mainly on architecture discovery (i.e., extracting information about the
structure and behavior and identifying architectural entities and their interaction). XRebel pro-
vides a detection mechanism dedicated to the N+1 problem (see Section 2.2.4). Glassbox is the
only industrial APM tool that provides detection mechanisms. The other four at least fulfill the
dimension partially through the possibility of specifying thresholds for particular transactions.

2http://visualvm.java.net
3http://www.jvmmonitor.org
4https://www.ej-technologies.com/products/jprofiler/overview.html
5http://zeroturnaround.com/software/xrebel/
6http://newrelic.com
7https://www.appdynamics.com
8https://www.datadoghq.com
9https://dripstat.com

10http://glassbox.sourceforge.net

60 Chapter 4. Evaluation

As these thresholds are violated, a respective warning appears. PerformanceHat detects hotspot
methods and critical loops, as described in this thesis. Further anti-patterns are not supported so
far, therefore the dimension is fulfilled only partially.

With its predictive analysis, PerformanceHat provides a feature that is rarely covered so far in
research as well as in industrial tools. The only tool that exhibits similar functionality is Kieker.
Similar to PerformanceHat, Kieker conducts predictive analyses based on the gathered time series
data.

M
on

it
or

in
g

C
ap

ab
il

it
ie

s

Pr
ob

le
m

D
et

ec
ti

on

Pr
ed

ic
ti

ve
A

na
ly

si
s

Pr
od

uc
ti

on
D

at
a

N
on

-
In

tr
us

iv
en

es
s

ID
E

In
te

gr
at

io
n

Research Prototypes

Kieker [vHWH12, vHRH+09] yes yes yes yes yes no
Senseo
[RHV+09b, RHV+09a, RHB+12] yes no no no yes yes

VIVIDE [TSH12] yes no no no yes yes

Profiling Blueprints [BRB10] yes no no no yes yes

Performance Regression Detector [NNH+14] yes yes no no yes no

*J [DHV03] yes no no no yes no

Visualizing Java in Action [Rei03] yes no no no yes no

DynaMetrics [SS08] yes no no no yes yes

JInsight [PJM+02] yes no no no yes no

Java Profilers

VisualVM yes no no no yes no

JVM Monitor yes no no no yes yes

JProfiler yes no no no yes yes

XRebel yes yes no no yes no

Industrial APM Tools

New Relic yes partial no yes yes no

AppDynamics yes partial no yes partial no

Datadog yes partial no yes partial no

DripStat yes partial no yes yes no

Glassbox yes yes no yes yes no

PerformanceHat yes partial yes yes yes yes

Table 4.1: Comparison of performance management tools along different dimensions. The
assignment of yes (dimension is fulfilled), partial (dimension is partially fulfilled), and no
(dimension is not fulfilled) is based on the available documentation and to the best of the

author’s knowledge

4.1 Qualitative Evaluation 61

The benefit of using production data to conduct performance analyses has already been dis-
cussed. The treated profilers all run on the developers local machine and therefore none of them
fulfills this dimension. The industrial APM tools in contrast are all embedded into productive
environments. PerformanceHat and Kieker are, to the best of the author’s knowledge, the only
research prototypes that monitor productive environments. Senseo runs the monitored applica-
tion in a different JVM, but on the same physical machine. Other systems, like VIVIDE, Profiling
Blueprints, and the performance regression detector, use data from test execution. Tools from re-
search like PerformanceHat exhibit a major benefit over these tools through being integrated into
productive systems.

The non-intrusiveness is a critical characteristic of performance management tools, in order
to not reduce the readability and maintainabilty of the monitored application’s source code. Ap-
pDynamics and Datadog are the only tools that merely partially fulfill this criteria. The reason
is that they break with the non-intrusiveness in case of loop observation (see the following sub-
section). All the other tools completely separate the monitoring logic from the application’s actual
business logic.

The last dimension of interest is the IDE integration. As already discussed in this thesis, its
main purpose is to increase the developers awareness of the available runtime metrics. As Per-
formanceHat, Senseo integrates with the Eclipse IDE. VIVIDE and Profiling Blueprints are de-
veloped on top of the Pharo platform11. Two profilers also provide IDE integration. The JVM
Monitor includes an Eclipse plug-in, while the JProfiler even supports multiple IDE’s (Eclipse,
IntelliJ12, NetBeans13, and Oracle JDeveloper14). None of the industrial APM tools provides IDE
integration. However, NewRelic, AppDynamics, and Datadog at least provide an API that theo-
retically allows to integrate with an IDE plug-in.

Monitoring Capabilities Revisited

The Monitoring Capabilities dimension is at some extend covered by all tools. However, the di-
mension is spanned very broadly and there are significant differences in the degree of support
between the tools. A tripartite classification, as given in the overall comparison, is not sufficient
in order to make useful statements. Therefore, the following sub-dimensions are discussed:

• Application-Level Monitoring: Different tools provide different levels of support for mon-
itoring application-level artifacts. Since Methods, Loops, and Conditional Branches are
the source code artifacts with most interest for performance problems and anti patterns (see
Section 2.2), those three constructs are treated in the comparison.

• System-Level Monitoring: Another important aspect of performance engineering is to ob-
serve how applications make use of system resources. For the comparison, CPU utilization
and memory usage are treated, due to their relevance to the examined performance anti
patterns (see Section 2.2).

• Graphical Visualization: The last sub-dimension investigates whether and to what degree
the compared tools provide graphical visualizations for the data of the other two dimen-
sions.

Table 4.2 shows the comparison of the monitoring capabilities sub-dimensions. Each dimen-
sion is discussed in the following.

11http://pharo.org
12https://www.jetbrains.com/idea
13https://netbeans.org
14http://www.oracle.com/technetwork/developer-tools/jdev/overview/index.html

62 Chapter 4. Evaluation

Application-Level
Monitoring

System-Level
Monitoring

Graphical
Visuali-
zation

M
et

ho
ds

Lo
op

s

C
on

di
ti

on
al

B
ra

nc
he

s

C
PU

U
ti

li
za

ti
on

M
em

or
y

U
sa

ge

Research Prototypes

Kieker [vHWH12, vHRH+09] yes no no yes yes yes
Senseo
[RHV+09b, RHV+09a, RHB+12] yes no no no yes yes

VIVIDE [TSH12] yes no no no no partial

Profiling Blueprints [BRB10] yes no no yes no yes

Performance Regression Detector [NNH+14] yes no no yes yes no

*J [DHV03] yes no no no no partial

Visualizing Java in Action [Rei03] yes no no no no yes

DynaMetrics [SS08] yes no no no no yes

JInsight [PJM+02] yes no no no no yes

Java Profilers

VisualVM yes no no yes yes yes

JVM Monitor yes no no yes yes yes

JProfiler yes no no yes yes yes

XRebel yes no no no no yes

Industrial APM Tools

New Relic yes no no yes yes yes

AppDynamics yes yes no yes yes yes

Datadog yes no no yes yes yes

DripStat yes yes no yes yes yes

Glassbox yes no no yes yes yes

PerformanceHat yes yes no yes no partial

Table 4.2: Comparison of performance management tools along their monitoring capabilities.
The assignment of yes (supported), partial (partially supported), and no (not supported) is based

on the available documentation and to the best of the author’s knowledge

Looking at the application-level monitoring, it can be stated that all tools support the monitor-
ing of metrics related to methods. This can be explained with the fact that methods are the main
building blocks. In contrast, the other source code constructs are treated very rarely. Most of the
tools only look at methods as a whole and do not monitor further constructs. Apart from Perfor-
manceHat, only AppDynamics and DripStat support observing loops. Conditional branches are
not treated by any of the tools, although information about code coverage may be crucial to per-
formance optimizations. This has been comprehensively proven in the research domain of just-in-
time (JIT) compilers. IBM applied some modifications to the reference implementation of the JVM

4.1 Qualitative Evaluation 63

in order to optimize performance [SOT+00]. One of the optimizations looks at the code coverage,
such as which conditional branch is taken how many times. Suganuma et al. [SYK+01a,SYK+01b]
developed a JIT compiler framework that does similar optimizations. Haubl et al. [HWM13] de-
veloped a just-in-time compiler that conducts trace-based optimizations. Amongst other things,
they store counts of the taken and not taken conditional branches. Soot [VRCG+99] is a Java byte-
code optimization framework that contains a JIT compiler taking care of optimization based on
conditional and unconditional branch elimination.

PerformanceHat, as well as the otherAPM tools considered, currently lacks the support of
these optimization features present in JIT compilers. However, through loop support, Perfor-
manceHat, together with AppDynamics and DripStat, provides the best support of application-
level metrics.

System-level monitoring is a popular mechanism to detect performance problems. All indus-
trial APM tools provide support for CPU utilization as well as memory usage. The functional
differences are not significant. Profilers, with the exception of XRebel, also provide compre-
hensive support for system-level monitoring. Kieker and the performance regression detector
of [NNH+14] support both of the considered metrics, Senseo only supports memory usage mea-
surements, while PerformanceHat and Profiling Blueprints only measure CPU utilization. Hence,
compared to other tools, PerformanceHat exhibits a weakness in this area.

Despite the performance regression detector, all the treated tools provide some level of graph-
ical visualization of the gathered metrics from the two foregoing dimensions. VIVIDE, *J, and
PerformanceHat have been classified as providing only partial support, since they do not cover
the same amount of visualization possibilities as the other tools. The industrial APM tools as
well as the Java Profilers provide the best visual support. They offer a large number of differ-
ent graphs showing the application performance in the past. Profiling Blueprints is an approach
that strongly focuses on visualizing dynamic metrics in general and the CPU usage in particular.
PerformanceHat so far only provides a graph visualization of the execution time and the CPU
utilization of methods.

4.1.4 Conclusion

From the discussed comparison some practical deductions can be derived. On application-level,
most of the tools measure metrics only at the boundaries of methods. Through considering loops
as separate units of interest, PerformanceHat provides a benefit over the other research proto-
types. Some industrial tools offer similar functionality. Conditional branches are so far only
examined in the research area of just-in-time compilation, performance analysis tools do not pro-
vide the respective functionality. Looking at system-level monitoring, PerformanceHat does not
provide a functionality as extensive as other tools. The same is true for the graphical visualiza-
tion of both application-level and system-level monitoring. PerformanceHat supports problem
detection as well as predictive analysis, which results in a very broad functional range compared
to the other tools.

While the requirement of non-intrusiveness is fulfilled by all tools at least partially, only a few
research prototypes, including PerformanceHat, are capable of conducting analyses on produc-
tion data. The industrial tools on the other hand lack support of other dimensions. Kieker fulfills
the dimension of production data, but at the same time lacks the IDE support. Overall it can be
stated that PerformanceHat combines the most important characteristics that are requried to sup-
port the DevOps methodology. Other tools provide a more elaborate functionality in particular
areas, but do not cover the Feedback-Driven Development approach in its entirety.

64 Chapter 4. Evaluation

4.2 Quantitative Evaluation
In order to make statements about the overhead PerformanceHat adds to its environment, a quan-
titative evaluation was conducted that reviews the performance of the prototype. Two different
aspects were measured. First, the overhead which the monitoring component adds to the target
application is investigated. Second, it is measured whether and how much the activation of the
FDD plug-in slows down the build process in the IDE.

4.2.1 Monitoring Overhead Investigation
If a target application is monitored, there always arises an overhead in the execution time of the
application due to the additional code that gathers the runtime data and sends it to the Feedback
Handler. In order to review the amount of overhead that accrues, a study has been conducted
comparing the response times of an application with and wihtout enabled monitoring.

Study Setup

The overhead measurement was conducted on a simple web application called Tudu15. Tudu is a
simple task administration tool that allows to manage tasks and lists of tasks. It has the purpose
of illustrating best practices when developing web applications with the Spring framework and
is available as open-source project on Github16. To measure the overhead of the source code
monitoring, different use cases have been conducted, each with and without monitoring. The
following list briefly summarizes the 10 examined use cases:

• Register: Create a new user account for the Tudu application.

• Login: Login to the system with valid user credentials.

• Add List: Create a new, empty list of tasks with a specified name.

• Edit List: Edit the name of an existing list of tasks.

• Delete List: Delete an existing list of tasks.

• Show Task: Show all the tasks of a list.

• Add Task: Add a new task with a specified title, description, priority, and due date to a list.

• Edit Task: Edit the attributes of an existing task.

• Delete Task: Delete an existing task.

• Refresh: Refresh the task overview of a list.

The Tudu application was deployed to a Jetty17 webserver inside a Java 7 runtime environment
on a local development laptop with Windows 8.1. To measure the response times of the different
requests, the built in debugger of Google Chrome called DevTools18 was used. Since the server
runs on a local machine, no network latency is integrated in the measured time values.

15http://www.julien-dubois.com/tudu-lists.html
16https://github.com/jdubois/Tudu-Lists
17http://eclipse.org/jetty
18https://developer.chrome.com/devtools

4.2 Quantitative Evaluation 65

Results

In total, 10 different requests were conducted. Each request was executed 20 times without the
FDD system and 20 times with the monitoring component integrated into the Tudu application.
Table 4.3 gives an overview of the results for each one of the ten different requests. The listed
values represent the average of the 20 repetitions of each request. Figure 4.1 provides a graphical
illustration of the average values. A complete overview of all the measured values can be found
in Appendix B.

The results illustrate that the overhead through the monitoring component is significant to
the overall performance of the monitored application. Four out of the ten measured requests
exhibit an increase of less than 30% through the overhead (Show Tasks, Edit Task, Delete Task, and
Refresh), which might be acceptable in production environments. End users may not recognize
such relatively small performance losses while using the application, as long as there are no long-
running tasks (i.e., multiple seconds or even more). Two requests manifest an overhead of more
than 30%, but at least less than 50% (Login and Add List), which should be classified as critical to
the overall performance. The remaining four request types (Show Tasks, Edit Task, Delete Task, and
Refresh) exhibit an overhead of more than 50%. While these overheads may not be problematic
for small requests, long requests seem to be slowed down significantly through the source code
monitoring.

use case without monitoring with monitoring increase (%)
Register 97.3 148.5 52.62
Login 14.85 19.6 31.99
Add List 26.85 37.7 40.41
Edit List 40.8 66 61.76
Delete List 19.55 31.95 63.43
Show Tasks 18.65 23.8 27.61
Add Task 50.85 100.95 98.53
Edit Task 30.5 35.3 15.74
Delete Task 28.3 36.6 29.33
Refresh 5.3 6.7 26.42

Table 4.3: Average values of the monitoring overhead measurement in the Tudu application.

Figure 4.1: Graphical illustration of the average values of the monitoring overhead measurement
in the Tudu application.

66 Chapter 4. Evaluation

It is clearly visible, that the overhead percentage increases with ascending original response
times: the three requests with the highest response times (Register, Add Task, and Edit List) all
exhibit overheads of more than 52%. This indicates that the monitoring component potentially
scales badly. However, a reliable statement about the scalability can not be made on the basis
of the available measurements. Delete Task, which has a significantly smaller response time, ex-
hibits an overhead of more than 60%, too. Furthermore, all the executed requests were relatively
small (i.e., smaller than a second). Therefore, another experiment is required that is designed to
determine the scalability of the monitoring component.

Scalability Measurement

In order to prove or confute the assumption of bad scalability, the monitoring component was
subjected to another experiment. A very small web application has been created that simply
serves GET requests to one single URL. As soon as the URL is requested, the application queries a
number of items (personal data) from a NoSQL database, iterates over the result set, and concate-
nates the string representation of all the items. The resulting string is returned as response body
in plain text. The number of treated items can be specified as a request parameter. Consequently,
the volume of the request can be manually regulated.

Ten different requests were made, each with a different input parameter, starting with 50 and
doubling the value each time. The environment of the deployed application was the same as for
the precedent measurement and the request has been repeated 20 times each for all the different
input parameters.

Table 4.4 provides the averages of the measured values. Looking at the percentage increase
the overhead entails, it is evident that the assumption of the last experiment about scalability can
be confirmed. The observation becomes even clearer when looking at Figure 4.2, which graph-
ically visualizes the values. The monitoring overhead does not scale with increasing requests
sizes. Small requests (i.e., <20ms) exhibit an overhead that is not significant. But as soon as the
size of the request increases, the overhead gets more significant. Requests taking longer than 75
milliseconds, which is still a very short time, already exhibit an overhead of more than 100% in
this experiment. This is even worse than in the previous measurements on the Tudu application.

The significant overhead of the source code monitoring is not surprising, since foregoing re-
search has already come up with similar results [DDE08, AR01, NBR10]. However, the bad scal-
ability is an additional problem that has not been expected in this dimension. The consequences
derived from these findings are discussed in the subsequent section.

of items without monitoring with monitoring increase (%)
50 12.35 13.55 9.72
100 12.7 13.75 8.27
200 19.05 20.9 9.71
400 24.7 35.2 42.51
800 31.05 48.55 56.36
1600 38.1 55.3 56.36
3200 48 68.3 42.29
6400 77.85 170.65 119.20
12800 119.5 518.15 333.60
25600 316.35 1289.4 307.59

Table 4.4: Average values of the monitoring overhead scalability measurement.

4.2 Quantitative Evaluation 67

Figure 4.2: Graphical illustration of the average values of the monitoring overhead measurement
on the sample application.

Discussion

From the results of the two examined exemplary applications, the following two basic statements
can be derived:

• The source code monitoring entails a significant overhead to the overall performance of the
monitored application.

• The entailed overhead does not scale with increasing request sizes.

Since the monitoring in an FDD system is conducted on productive systems, this observa-
tion is problematic, because typically the end-users of the system are affected by this significant
performance loss. In the prototypical status the FDD system is currently in, performance is not
a critical factor. The focus during development was on implementing the functionality in order
to prove the approach. However, to make the FDD system ready to be used in real-world envi-
ronments, the performance of the monitoring has to be addressed. Therefore, the following two
improvements are suggested:

• Improve parallelism in the source code of the Monitoring Component: The current im-
plementation of the Monitoring Component executes much of the work in the same thread
in which the target application runs. It therefore blocks the execution of the target applica-
tion after each particular method execution. This includes the construction of the domain
model entities based on the monitored data. The only step that is executed in a separate
thread is the transmission of the data to the Feedback Handler. To improve parallelism and
thereby reduce the monitoring overhead, as much work as possible should be delegated
to other threads. The only thing that has to be executed in the same thread is the actual
measurement of the raw data.

• Choose a sampling-based approach to monitor target applications: Currently, the Mon-
itoring Component instruments every single method execution of the target application.
This enables the gathering of a large amount of data in short time periods. However,
each individual request is affected by the additional overhead. To solve this problem, a
sampling-based approach can be chosen to reduce the number of requests, and hence the
number of users, that are affected by the monitoring overhead. Sampling reduces the num-
ber of affected users by only instrumenting a subset of all the events in the target applica-
tion [ED05, AR01]. Various research has investigated different approaches to optimize the
principles on which sampling is based [TFK11, DDE08, NBR10]. We suggest to introduce

68 Chapter 4. Evaluation

one of the proven principles to enable sampling in the monitoring component of the FDD
system.

4.2.2 IDE Plug-in Performance
As soon as the FDD plug-in nature is activated in the Eclipse IDE, the Feedback Builder is trig-
gered with each build process (see Section 3.8.2). The execution of the Feedback Builder takes
some time, since it requires the fetching of a huge amount of data from the Feedback Handler,
as well as analyzing and combining this data with the static source code artifacts. The following
evaluation investigates the effect of the Feedback Handler on the performance of the Eclipse build
process.

Study Setup

To make statements about the performance of the Feedback Builder, it is compared with the Java
and the Maven Builder, which are used to build a regular Java projects. Four different build types
are investigated:

• Incremental Build with 1 changed source file: An incremental build after a change in only
one single Java source file. This is the typical case if a source is modified and saved, which
triggers the build process (if automatic build is activated).

• Incremental Build with 3 changed source files: An incremental build after changing three
different source files. This is achieved through a method name refactoring. The name of the
method is changed in the defining source file and two other files using the changed method
are also modified.

• Full Build with 50 sources: A full build of a project with 50 Java source files. A full build
typically only happens if a project is imported into the Eclipse workspace or after it has been
cleaned.

• Full Build with 80 sources: A full build of a project with 80 Java source files.

If Eclipse is started in the debug mode, the time each builder takes during a build process
can be read from the console output. For this purpose a file .options with the content shown in
Listing 4.1 has to be created in the root folder of the Eclipse installation. If Eclipse is now launched
in the debug mode, which can be achieved through passing the -debug parameter, the build time
for each particular builder is written onto the console. The measurements were conducted with
the Eclipse Version Luna (Eclipse 4.4) running inside a Java runtime environment 1.7 on Windows
8.1. The Feedback Handler operated on an external Ubuntu server.

1 org.eclipse.core.resources/debug=true
2 org.eclipse.core.resources/build/invoking=true

Listing 4.1: Eclipse debug configuration in the .options file for measuring the builder times.

Results

Each of the four described build types was executed 20 times. Table 4.5 shows the average times
required for the Java and the Maven Builders together as well as for the Feedback Builder. Figure
4.3 graphically visualizes the values. A complete overview of all the measured build times can

4.2 Quantitative Evaluation 69

be found in Appendix B. The time the Feedback Builder requires is significantly higher than the
time the other two builders require. This is not a surprising fact, since the Feedback Handler has
to request a lot of data from the Feedback Handler. Therefore, a considerable amount of network
latency is included in the build time.

Build Type Java and Maven Builder Feedback Builder
Incremental Build (1 changed source) 0.123s 0.844s
Incremental Build (3 changed sources) 0.779s 5.452s
Full Build (50 sources) 3.534s 48.405s
Full Build (80 sources) 5.736s 73.532s

Table 4.5: Average values of the Eclipse builder execution times.

Figure 4.3: Graphical illustration of the values of Table 4.5.

Discussion

The comparison with the Java and Maven builder illustrates that fetching, and analyzing runtime
data is an expensive task that takes significant additional effort to the build process. However,
we argue that the relatively long build time is tolerable due to the following reasons:

• Scope of executed work: Feedback-Driven Development is an expensive activity by its
nature. Network latency is included in the build time, due to the communication with
the Feedback Handler, which makes performance optimizations on the application-level
difficult. As discussed in the approach, as much of the analysis and filtering part as possible
is done on the server (i.e., the Feedback Handler). However, some of the analysis part has
to be done on the client, because it is tightly connected to the static analyis part. Moving
this part to the server would require moving IDE concepts to the server, too. It needs to be
investigated, whether the Eclipse Flux project is capable of supporting such a scenario (see
Section 6.2.2 for further details).

• Few full builds: The Feedback Builder reaches its substantially high build times only in the
case of a full build. Full builds, however, are typically executed very rarely. If a project is

70 Chapter 4. Evaluation

imported into the Eclipse workspace, a full build is triggered. Apart from that, a full build
is only executed after a project has been completely cleaned up. The number of full builds
is therefore very small. If automatic build is activated, incremental builds are triggered each
time a source file is saved. This means, that in most cases, incremental builds happen after
only one file has been modified. An exception is a refactoring over multiple source files.
Even though, building one or a few files also results in significantly higher build times, the
absolute times shift from less than a second to a few seconds, which is still acceptable.

• Non-blocking: The Eclipse build process is executed in a separate task and neither freezes
the user interface of the Workbench nor blocks the user from continuing with the develop-
ment. Hence, the developer can continue working, while the runtime data is analyzed. The
developer still obtains the runtime Feedback very fast and is able to detect new performance
problems as soon as they are introduced.

Apart from these reasons, speeding up the build time of the Feedback Builder can improve
the developers experience when working with PerformanceHat. A possible way of reducing the
build time is to deactivate part of the Feedback Builder and only perform the analysis the devel-
oper is actually interested in. From a technical point of view, this feature would be seamlessly
integratable into a future release of PerformanceHat, since the Feedback Builder is already parti-
tioned into different builder participants. Further details about introducing a feature to activate
and deactivate builder participants are described in Section 6.2.2.

Chapter 5

Related Work

Performance Analysis in software systems has been, and still is, an active field of research. This
chapter lists and summarizes previous work from research that is related to Feedback-Driven
Development.

5.1 Detection of Performance Problems

Various research has been conducted investigating ways to detect performance regressions auto-
matically and furthermore detect the source of the problem. In [NNH+14], Nguyen et al. propose
to assemble a regression cause repository containing data about performance tests as well as in-
formation about the causes of past regressions. Mining this repository shall asisst performance
teams in identifying the causes of performance regressions. They investigate the effect of source
code changes to the performance and were able to prove that even a single additional control
statement in the source code can lead to significant performance issues. They classified perfor-
mance regression causes into different categories and determined the most frequent categories
through interviewing performance engineers of industrial software systems. On the basis of the
outcomes, they developed the regression cause repository and the mining approach for the auto-
matic detection of the regression causes.

A very similar principle has been developed by Foo et al. [FJA+10]. They extracted perfor-
mance metrics during the execution of performance tests and stored this information in the repos-
itory. New test results were then compared to the stored data to identify performance regressions.
By conducting case studies, they could prove that their tool is capable of detecting performance is-
sues that are often overlooked in practice. They furthermore proved their approach to be scalable
to large industrial software systems.

Jiang et al. also used performance tests to identify performance anomalies [JHHF08]. Altman
et al. [AAFM10] present the design and methodology of the tool WAIT, a tool to identify the root
cause of idle time in modern enterprise-class server applications.

In [vHWH12], Van Hoorn et al. present Kieker, a framework that is capable of monitoring
and analyzing an application’s runtime behavior. As in FDD, applications are monitored in pro-
duction. The analysis is done by different plug-ins. Kieker itself includes a number of plug-ins,
providing different analyses and visualizations of the monitored data. The extensible architecture
allows to add further plug-ins tailored to specific needs. The main difference of Kieker compared
to FDD is its lack of IDE integration.

72 Chapter 5. Related Work

5.2 Visualization of Runtime Information
Often, information about how an application behaves at runtime is indeed available, but de-
velopers do not use it. Different research has been conducted on trying to visualize runtime
information in a way that enables developer to benefit of it during development. In [BRB10]
Bergel et al. propose two profiling blueprints visualizing runtime information in form of poly-
metric views [LD03]. The goal is to identify performance bottlenecks and provide hints on how
to remove them by reducing the execution time of frequently used methods on the one hand and
eliminating invocations of slow methods on the other hand. The structural distribution blueprint vi-
sualizes the total execution time, the number of executions, and the number of different receivers
(i.e., the number of different objects the method has been invoked on) for each method called in a
program execution. These metrics are displayed alongside the static structure of the code (i.e., the
class hierarchy). While this allows to detect classes and methods that are central to the execution,
it does not provide any information about the call hierarchy of the invoked methods. This infor-
mation is visualized by the behavioral distribution blueprint which displays the metrics alongside
the method call invocations. The first two metrics, namely number of calls and total execution of
methods, are also considered in this view and are complemented with information about what
the method returns, whereat it is distinguished between void (which implies the method likely
performs a side effect), constant values per receiver, and all remaining cases. This information
allows to determine whether caching can be used and whether it could bring any performance
improvements. The approach has been proven by conducting a case study that illustrated how
the proposed blueprints help developers to detect the bottlenecks of a program execution. After
introducing caching mechanisms according to the information gained from the blueprints, they
achieved execution speedups from 43-45%.

In [RGN07] Röthlisberger et al. develop a tool that supports developers performing mainte-
nance activities on complex object-oriented software systems. They consider a software system
as a set of features and want to enhance traditional IDEs with a feature-centric perspective. Their
tool consists of three different views. The Compact Feature Overview shows a list of all methods
used in a feature, which allows to visually compare different features. Each method is colored
according to its Feature Affinity [Gr] measuring the relevancy of a method: singleFeature methods
participate in exactly one feature, lowGroupFeature methods in less than 50%, highGroupFeature in
more than 50%, and infrastructuralFeature methods in all of the features. The Feature Tree view
visualizes the method call tree of a selected feature. To reduce the size of the tree and increase
the expressiveness common subexpressions and recurring method calls, as a result of loops are
removed. Finally, the Feature Artifact Browser displays the source code artifacts (packages, classes,
methods) actually used in the feature. This allows the developer to focus on the artifacts that are
of interest for the feature he is working on.

To validate their tool Röthlisberger et al. conducted a user study with twelve subjects, each of
them fixing two different bugs in a software system, one of them with a traditional IDE and the
other one with the feature-centric environment. They were able to prove that their approach has
a positive effect on the program comprehension of developers and reduces the amount of time
required to localize and resolve bugs in a system.

In [RDT08] Röthlisberger et al. discuss the so called unanticipated partial behavioral reflection
(UPBR), an approach that allows for applying changes to a running application without having
to shut it down (dynamic adaption). The main purpose of such a system is to enable on-the-fly
debugging and monitoring of applications. While there are a some existing proposals for such
reflective computations in Smalltalk as well as in Scala, they all lack in one of the important char-
acteristics of UPBR. Some of them need to be prepared at load time (because bytecode has to be
transformed) which prohibits the system from being unanticipated, others do not allow the se-
lection of operation occurrences (spatial and/or temporal) that are of interest. Röthlisberger et al.

5.3 Integrating Runtime Information into the IDE 73

developed a system for Smalltalk called GEPPETTO that addresses all the required characteristics
and enhances the existing reflective model of the Smalltalk language.

5.3 Integrating Runtime Information into the IDE
Apart from FDD, previous research already pursued the idea of integrating and visualizing op-
erational data in the IDE. In [RHV+09a] Röthlisberger et al. describe an approach to integrate
dynamic information about applications into traditional IDEs to help developers understand the
behavior and structure of the system at runtime. They want to overcome the weaknesses of de-
buggers and profilers, which in fact allow to inspect the dynamic behavior of a system, but they
both only provide volatile information (i.e., the information gets lost after the session has been ter-
minated) and lack the ability to aggregate the metrics of multiple runs of the target application. To
seamlessly integrate the dynamic metrics into the IDE, they developed an Eclipse plug-in called
Senseo. Senseo uses an aspect-oriented approach to gather the runtime data and construct a Call-
ing Context Tree [ABL97], a generic data structure that allows to store different metrics for each
calling context during execution. The collected data, comprising receiver-, argument-, and return
types of message invocations, the number of invocations and created objects, and the amount of
allocated memory, is displayed in the IDE in different places. The Java editor is extended with
popups when hovering a method header or body. The rulers (vertical bars on the left and the right
side of the editor) are complemented with dynamic metrics about the respective methods using a
heat coloring scheme (blue, yellow, and red). Finally the artefacts in the package explorer (pack-
ages and classes) are decorated with an icon indicating the aggregated degree of contribution to a
selected dynamic metric (e.g., allocated memory). The overall goal of these visual pieces of infor-
mation is to quickly find hot spots in the source code which then allows to eliminate performance
issues. A functional overview of Senseo is provided in detail in [RHV+09b].

In [RHB+12] Röthlisberger et al. first present an extended version of Senseo. A collaboration
view located next to the source code editor displays a list of all dynamic collaborators (callers and
callees) of the currently selected source code artifact. The Calling Context Ring Chart (CCRC)
visualizes the underlying Calling Context Tree (CCT) and provides mechanisms to navigate and
explore subtrees. The authors validated the benefits of this extended version of Senseo by con-
ducting an extensive user evaluation with 30 professional Java developers. Typical software main-
tenance tasks had to be solved by an experimental group using Senseo and by a control group us-
ing the standard Eclipse IDE. The result of the evaluation showed that the time spent on solving
the maintenance tasks is statistically significantly lower (17.5%) when having Senseo available.
Even the hypothesis that Senseo increases the correctness of the tasks could be accepted (increase
in correctness: 33.5%).

A performance validation furthermore indicated that Senseo is fast enough to be used with
large projects even when updating the dynamic information in the IDE very frequently (i.e., once
per second).

In [TSH12] Taeumel et al. present a new approach to directly integrate runtime information
into programming environments together with a respective prototypical implementation called
VIVIDE. The approach addresses the problem that developers cannot directly view runtime data
as questions arise, which results in numerous context switches in thinking during development
and maintenance of a system. They further investigated that often programmers prefer to men-
tally simulate the program execution in order to understand the dynamic behavior of the system,
which increases their cognitive load and is therefore very error-prone.

Taeumel et al. suggest to provide information to the user in a more task-oriented way. They
introduce a so called horizontal unbounded tape which is a scrollable view allowing to place any
number of editors horizontally beside each other. On the left side of the scrollable view there

74 Chapter 5. Related Work

is a fixed project outline that allows to navigate through the whole project. The various editors
in the scrollable view allow to combine static with dynamic data of the currently visible source
code artifacts. For example, beside a traditional source code editor, an object explorer can be
displayed showing runtime information and a call tree showing all invoked methods. Overlays
are used to indicate relations between elements in different editors.Besides focusing on how to
graphically present the data to the user, they further implemented a way to gather the runtime
data by executing the existing test cases.

These approaches all have one common difference compared to Feedback-Driven Develop-
ment. They all gather the runtime data from the developers local machine rather than from ap-
plications deployed to productive environments. This entails that the analysis and visualizations
conducted by these tools do not provide inferences about the application’s behavior and perfor-
mance in production. Since performance problems are often connected to productive systems and
do not appear during development, this is an essential difference.

Chapter 6

Final Remarks

This chapter summarizes the contribution of this thesis and provides a conclusion of the discussed
material. Moreover, some possible directions for future work which have not been addressed so
far are briefly summarized.

6.1 Conclusion
This thesis underlines the importance of integrating performance engineering aspects into tech-
niques of empirical software engineering in order to support the DevOps approach in cloud com-
puting. As a foundation for the contribution of the thesis, relevant background information on
performance engineering and statistical methods is summarized. Based on that knowledge, an
approach to implement Feedback-Driven Development is introduced in order to answer the re-
search questions:

RQ1: “How can performance data from cloud infrastructures be integrated into software de-
velopment environments?”

Chapter 3 starts with illustrating the basic problem of runtime data not being used in software
development activities. Feedback-Driven Development is described as part of a Continuous De-
livery Pipeline and proposed as a solution to increase the developer’s awareness of operational
data. IDE integration is suggested as the main required characteristic of an FDD system. It is
illustrated how raw runtime data can be gradually transformed into valuable feedback through
filtering and aggregation techniques and how this feedback can be integrated into the static source
code views of traditional IDE’s. A conceptual architecture visualizes how these concepts can be
embedded into an FDD system.

RQ2: “How can this data be used to predict performance problems in advance?”

On the basis of the statistical methods and concepts introduced in Section 2.3, Section 3.3.3
proposes the application of statistical models to predict the evolution of an application’s perfor-
mance based on the available operational data. The moving average is suggested as a method
to calculate the performance from available time series data and it is investigated how change
point analysis can be combined with static data from version control systems in order to detect
performance critical change sets.

Part of the thesis contribution is a prototypical implementation of the proposed FDD concept.
The prototype gathers the required runtime data through instrumenting the running application
on productive environments. The frontend is integrated into the Eclipse IDE to provide the de-
veloper with the determined runtime feedback. The architecture as well as the most important

76 Chapter 6. Final Remarks

implementation details of the system are explained in Section 3.4. The exploratory study in Chap-
ter 4 shows that PerformanceHat combines important characteristics of the DevOps methodology
that have not been covered in their entirety in previous research. A quantitative evaluation dis-
closes the monitoring overhead of the FDD system as well as the execution times of the builder
mechanism in the Eclipse IDE and lists possible improvements.

6.2 Future Work
The following section summarizes the most important improvements that can be implemented as
future work.

6.2.1 Conceptual Improvements
The conceptual improvements address open points that improve or extend the Feedback-Driven
Development approach and increase the benefits for a developer using an FDD system.

Statistical Methods

So far, the prediction of an application’s performance is exclusively based on the principle of
the moving average. The analysis module should be extended with other statistical methods,
such as the Autoregressive (AR) model, the Autoregressive Moving Average (ARMA) model,
or the Autoregressive Integrated Moving Average (ARIMA) model. Detailed information about
these models can be found in [BJR13] and [SS10]. After having implemented them, the different
statistical models can be evaluated against each other in order to find the best model to predict
future application performance.

The Change Point Analysis method has been introduced in Section 2.3.3 to identify signifi-
cant changes in the performance of an application. However, despite being part of the approach,
this method has not been integrated into the prototype so far. Besides implementing a service
to calculate change points inside the available procedure execution time series, this would in-
clude integrating the FDD system into version control systems, in order to combine the gained
knowledge from the Change Point Analysis with source code changes, as proposed in 2.3.3. The
FDD system should therefore be extended with a component integrating with established version
control systems such as Git1 or Mercurial2.

Business Metrics

Our approach so far only focuses on technical feedback and metrics. From a business perspective
it may be beneficial to extend the FDD approach to also monitor and analyze business-related
metrics. A first step could be to analyze the importance of source code artifacts according to its
relevance for particular business transactions. It could even be possible to calculate how much
monetary value a source code artifact generates in production. Another possible improvement
would be to gather metadata about the users of the application to determine which features are
used in which geographical locations and at which times during the day. Such information may
help to optimize the source code to individual conditions. However, further effort is required to
investigate whether such analyses have the potential to provide additional benefits to the devel-
opment process and whether business metrics are directly mappable to source code artifacts at
all.

1http://git-scm.com
2http://mercurial.selenic.com

6.2 Future Work 77

User Evaluation

In order to definitively prove whether the FDD approach is able to provide the targeted benefits
to the user and to further investigate if developers do make proper use of the system and increase
their productivity when working on performance related issues, an extensive user evaluation
would be required. A possible study setup is to compare an intervention group, using Perfor-
manceHat, and a control group using a plain IDE, both solving the same development tasks.

6.2.2 Technical Improvements
The technical improvements address possible extensions of the prototypical implementation to
support nice-to-have requirements. To expand the research prototype into a releasable product,
further work would be required that is not discussed here.

Extension of the Functional Range

Currently, our prototype is able to detect hotspot methods and critical loops. Those two use cases
already make it possible to find major performance bottlenecks in the source code. However,
the system is designed to support more use cases, as described in the conceptual part of the
thesis (see Section 3.3.2). The system as a whole and especially the domain model are already
implemented to support further use cases. Implementing new advices therefore takes much less
time, since the whole technology stack is already implemented and a lot of code can be reused.
The existing model still covers enough aspects of the runtime system to be able to detect most of
the performance anti patterns discussed in Section 2.2.

Individual Control over Builder Participants

As discussed in the evaluation (see Section 4.2.2), the builder of the FDD IDE plug-in increases
the build time significantly, which is due to the number of required remote calls. The builder
of the FDD plug-in is already split into different builder participants, each of which does the
work for one particular use case. The builder participants are registered in a registry and the
builder itself delegates all the work to the registered builder participant. To narrow down the
build time, the prototype could be extended such that a user can individually turn on or off
particular builder participants. If, for example, a developer is not interested in loop execution
time, she could completely deactivate the respective builder participant, and thereby decrease
the required time to build the application.

Fine-Grained Thresholds

In the current version of PerformanceHat, threshold values that classify source code entities (pro-
cedures, loops) as performance critical are defined on the level of applications in the project prop-
erties (see Figure 3.14). However, in most cases, it would be more reasonable to define those
thresholds for particular classes, or even methods, to define the threshold according to the partic-
ular code. A smart way of implementing this feature would be to allow the developer to specify
a Java annotation (see Listing 6.1), which keeps the non-intrusiveness of the system alive.

1 @Threshold(maxExecTime=400, maxCpuUsage=25)
2 public List<Item> getItems() {
3 }

Listing 6.1: A Java annotation defining thresholds for the method getItems().

78 Chapter 6. Final Remarks

Integration of External APM Providers

The integration of external metric sources, such as NewRelic3 or Kieker4, is only in an experimen-
tal state so far and does not cover the whole functionality that would be required to seamlessly
integrate those tools. In order to support development teams that already work with these tools,
an integration of the metric source would increase the value of the tool.

Support of other Programming Languages:

Currently, the prototype only supports target applications written in Java. The whole FDD ap-
proach is very tightly coupled to object-oriented systems, an adaption to languages based on other
paradigms could therefore be hard to achieve and would require major changes even on a con-
ceptual level. Furthermore, a lot of the investigated performance anti-patterns (see Section 2.2)
are also related to object-oriented systems anyway. However, an expansion of the tool to further
support other object-oriented languages, such as C#, could be a possible improvement.

Multiple IDE Support

PerformanceHat so far only supports the Eclipse IDE. It would be desirable to also support other
IDE’s, such as IntelliJ5 or Cloud96. A lot of the existing system components could be reused:
the Feedback Handler and the Monitoring component are completely independent of the IDE.
However, a major part of the logic is implemented as part of the Eclipse plug-in. As discussed
in Section 3.8, the tight integration into the IDE lies in the nature of an FDD system, due to the
static code analysis. It is therefore difficult to separate part of its logic from concrete IDEs. A
possible way to increase the amount of reusable code in a multiple IDE scenario could be to make
use of the Eclipse Flux7 project. Eclipse Flux has the goal of providing a new, flexible architecture
and infrastructure that allows for integrating development tools across desktop, browsers, and
servers. However, further investigations would be required to evaluate the usefulness of the
platform for the FDD system.

3http://newrelic.com
4http://kieker-monitoring.net
5https://www.jetbrains.com/idea
6https://c9.io
7https://projects.eclipse.org/proposals/flight

Appendix A

Acronyms

AOP Aspect-Oriented Programming

API Application Programming Interface

APM application performance management

AR Autoregressive

ARIMA Autoregressive Integrated Moving Average

ARMA Autoregressive Moving Average

AST abstract syntax tree

CD Continuous Delivery

CI Continuous Integration

CPA Change Point Analysis

CRM customer relationship manamgenent

CUSUM cumulative sum

DSS decision support system

DTO data transfer object

FDD Feedback-Driven Development

IDE Integrated Development Environment

JDK Java Development Kit

JVM Java Virtual Machine

MA moving average

POJO plain old Java object

POM project object model

QoS Quality of Service

VCS version control system

Appendix B

Results of the Quantitative
Evaluation

The following document contains the complete, raw data from the quantitative evaluation. The
first two pages show the values of the monitoring overhead measurement and the third page the
ones from the Eclipse build time measurement.

82 Chapter B. Results of the Quantitative Evaluation

� ��� ��� �� ��
�� ���

� ��
�� ��
�� ��
�� ��
�� ��
�� ��
�� ��
�� ��

�	
���
�
�

�
�
��

����
	���

���

�	�
��

�����
����

	
�
	
�
��
�
�
�
����

���
��	�

����	
���	

�

	��
��
�
�
��
����

�
�
��	�

���	

����
��
�
	���
��
�
����
����
	�	�
��	�
��

�
�	�
�	�	
�
�
	���
��
	
���
���

�
�
��	�
��

�	�	�
����
�
��
	�
	
��
�
����
��	
��
	
��
�
��

��
�	�
����
�

	��	
��
�
�	
�
�
�
��
	

	
�
�

�����

�	��
��
�
	���	
��
�
����
�
���
��	�
�
�
�

����
����
��
�

�
�
����
���
����

�

�
�
��

�
�	�
����
�	�
����

��
�
���
�����

�	�

�
�
��

���	�
��
�
�

�
	�
�
��
�
�	

�
�	�
�	
��	�
��

��	�
�	��
�

	
��
��

���
	���

	
�	

�

���

�	�	
��

	�
�
��
�
���
�����
��
�		�
�

�	�
�
�
��
��
�
	
�	
����
��	
	����

��
�
�

����	�
����
��

��
�
����
����
�
��	

�
��

�

��	�

���
��
�
	���
��

����
��	�
�	

�
�
�

�
�	

����
��
�
	�
	
��
�
�	�

��

����
�

���		
�	��
�		�
	���
��
�
���
�����

�

���

���		
�
��
�	�

�
�

�	��
�����

�
��

��

���	�
�	��
��	�

���
��
�
���

	����

�
�
��
��

� �������� �
�	� ���	 ����� �� ���
� ��	� ���� ���
� ����� ���
 ���� ������

� ��
� �
�� �

 �� �
 ��

�� ������
��� ��� �� ��� ���� � ��� ��

�����
���� ��� �� ���� � ��� ��� !" # $" !%& '$($)*!+'

� '*,-$')'
!#. ',-/ # , 01 -2 -3 44/" +*#" !

5 ��� �� ��6 ��� ��776� ��87� �6� ��9 �: �� �6� ��;� ��< ��= ��77< ��=87� �< ��=9 �: �� �< ��=5 �> ����

83

� � ��� �� ��
�� ���

� ��
�� ��
�� ��
�� ��
�� ��
�� ��
�� ��
�� ��

�	

��

��
���
����
����
���
�
	�

�
���
���
���

�
	�
�
�
����

�	�
����
�	�
�
	�

���

�
�
�	�

	�
�
�

��

����
���
����
��	
�
�
�	
����
�
�
���

�	

�
��
�
��
����
��
�
�	
�
����
����

���
��
���

	

	��
��
�
����

���
���
����

��

�	��
��

��	

�
���
����
����
����
����
�	��
�
��

���
�
���
���

	
�

	
��
��
�
����
���
����
����
���

����
��

���

�

	
��

�
�
����
�	
�
����
����
�
��

�����
���
���

	
�

�
��
����

�	�
����
��
�
�	��

��

����

���
�	�

	

	
�

	��
����
����
���
���	
	����

���	�
��

���

	
	
��	

�

�
��
����
����
����
��
��

��	��
���
�	�

��

	�
����
�
��
���	
����
���

	�
�

��	
��
���

�

�
�
����
���
����
����
����

�

��

���
��
�	�

	
�
��

	�
�
����
����
���
����
�
��

�	�

�
�
�	

	
�

�
�
��	�
	���
����
����
���

��

�����
�
�
��

	
	
	�
�
����
����

��
����
���
�
�

��
�
�
	
�
�

��	

�
�

�
�
����
����
����
��	�
��
��

����
���
�	�

	
�

�
�
���

����
���
���
���

��
�	

��
��

��	

�
��
�

�
�
��
�
���
����
�	��

��

�����
���
���

	
�

�
�
����
�
�	
����
����
���

	�
��

�����
���
�
�

� ������
� ���
� ���
� �	
� �	�
 �
�� ��� �	�� ���
 ����� ����� �
�� ������ ��		 ���
	� ���

 ���
� �
��
� ���
�� ��

�� ������
��� ��� �� ��� ���� � ��� ��

������
��� ��� �� ���� � ��� ��� � ! " �#! $% &#' �#() *&

� &)+,#&(&
 "- &+,. " + /0)(1. &2 &3 4 11.! *)"! �

��

��
���
���
���

���
����
����

����
�����

84 Chapter B. Results of the Quantitative Evaluation

Build Type

Builder JMB FB JMB FB JMB FB JMB FB

112 974 811,2 8932 4320 53607 8347 86884

79 920 1639,2 10358 3764 48420 5634 76320

83 836 559,2 9152 3810 45039 7010 75337

78 1040 1146,4 5460 2983 49333 6792 72013

204 798 576 3366 3010 51340 6720 69320

173 786 671,2 5301 3056 51234 6340 72923

99 786 658,4 4450 3457 45201 4301 73419

97 740 803,2 4426 3842 43202 4582 73428

94 794 819,2 4142 3987 56730 4296 69207

75 830 790,4 4856 4100 44294 5092 75245

103 792 756 6903 4117 46732 5039 73457

125 932 667,2 3950 3749 46863 5140 71244

179 937 620 4105 3529 49156 4998 75230

183 1010 587,2 4035 2915 48857 6023 62341

204 874 791,2 5254 3934 48332 5870 68273

140 832 674,4 4832 2989 45700 5203 70035

73 810 810,4 4992 3239 49134 5830 82273

104 640 760 4920 3247 48114 5835 76320

133 703 665,6 4154 3104 48412 5923 73846

Average 123,05 843,89 779,28 5452,00 3534,32 48405,26 5735,53 73532,37

JMB Java and Maven Builder

FB Feedback Builder

Incremental Build

(1 changed source)

Incremental Build

(3 changed sources)

Full Build

50 sources)

Full Build

(80 sources)

Eclipse Build Time Measurements

Appendix C

PerformanceHat User Guide

The PerformanceHat User Guide attached below contains information about how to use the
FDD system to monitor a target application. Furthermore, technical details that are important for
further development are sumnmarized.

86 Chapter C. PerformanceHat User Guide

PerformanceHat User Guide
System Overview
The picture below gives an overview of the FDD prototype. The prototype is integrated into the Eclipse IDE.

In order to use it, the FDD Eclipse plugin (cw-feedback-eclipse) has to be installed into an Eclispe installation

containing the Eclispe JDT (Java Development Tools). The Feedback Handler can be deployed to any Java

webserver. The target-application is the application that wants to make use of the FDD system. In order to

do so, the Monitoring component has to be integrated. The following guide describes how to set up a

target application and the Eclipse IDE in order to use the FDD prototype. A second part is focused on

technical details and how to build and deploy the particular components.

Usage

Set up a target application for Monitoring

Preconditions
The only pre-condition a Java application has to meet is having Maven as a build system. This allows the

FDD Monitoring component to be injected using maven configurations.

Register the Application on the Feedback Handler
In order to use FDD, an application has to be registered on the Feedback Handler. This is done by calling the

following URL:

<FH-root-URL>/monitoring/register?name=<application-id>

The <application-id> can be any identifier (i.e., a name without spaces) for the application. If an

application with the same name is already registered, a respective error message is returned. Otherwise,

the application is registered and an access-token is returned.

Create the required property File

Add a file config.properties into the folder src/main/resources with the following content:

monitoring.feedback_handler_url = < FH-root-URL >

monitoring.app_id = <application-id>

monitoring.access_token = <access-token>

87

Adapt the Project Object Model (pom.xml)

Several adaptions of the pom.xml-File are required. First, add the following properties:

<properties>
 <jdk.version>1.7</jdk.version>
 <aspectj.version>1.8.2</aspectj.version>
</properties>

Next, add the following dependencies to the <dependency>-section:

<dependency>
 <groupId>cloudwave</groupId>
 <artifactId>cw-feedback-monitoring</artifactId>
 <version>0.0.1-SNAPSHOT</version>
</dependency>
<dependency>
 <groupId>org.aspectj</groupId>
 <artifactId>aspectjrt</artifactId>
 <version>${aspectj.version}</version>
</dependency>

Add the following two plugin configurations to the <build>-section

<plugin>
 <artifactId>maven-assembly-plugin</artifactId>
 <executions>
 <execution>
 <phase>package</phase>

 <goals><goal>single</goal></goals>
 </execution>

 </executions>
 <configuration>
 <descriptorRefs>
 <descriptorRef>jar-with-dependencies</descriptorRef>

 </descriptorRefs>
 <finalName>${project.build.finalName}-complete</finalName>
 <appendAssemblyId>false</appendAssemblyId>

 </configuration>
</plugin>
<plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>aspectj-maven-plugin</artifactId>
 <version>1.7</version>
 <configuration>
 <complianceLevel>${jdk.version}</complianceLevel>
 <aspectLibraries>

 <aspectLibrary>
 <groupId>cloudwave</groupId>
 <artifactId>cw-feedback-monitoring</artifactId>
 </aspectLibrary>
 </aspectLibraries>
 </configuration>
 <executions>
 <execution>
 <goals><goal>compile</goal></goals>
 </execution>

 </executions>
 <dependencies>
 <dependency>

 <groupId>org.aspectj</groupId>
 <artifactId>aspectjrt</artifactId>
 <version>${aspectj.version}</version>
 </dependency>
 <dependency>
 <groupId>org.aspectj</groupId>
 <artifactId>aspectjtools</artifactId>
 <version>${aspectj.version}</version>
 </dependency>

 </dependencies>
</plugin>

88 Chapter C. PerformanceHat User Guide

Finally, in order to remove the error marker that eclipse shows now in the pom.xml, add the following
configuration to the <pluginManagement>-part in the <build>-section:

<plugin>
 <groupId>org.eclipse.m2e</groupId>
 <artifactId>lifecycle-mapping</artifactId>
 <version>1.0.0</version>
 <configuration>
 <lifecycleMappingMetadata>
 <pluginExecutions>
 <pluginExecution>

 <pluginExecutionFilter>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>aspectj-maven-plugin</artifactId>
 <versionRange>[1.7,)</versionRange>
 <goals><goal>compile</goal></goals>
 </pluginExecutionFilter>
 <action>
 <ignore></ignore>
 </action>

 </pluginExecution>
 </pluginExecutions>
 </lifecycleMappingMetadata>
 </configuration>
</plugin>

Info: A complete example of a pom.xml-File can be found in the Appendix of this Guide.

Copy Maven Dependencies to the Classpath
This step is only required in development mode, if the Eclipse Instance used for the FDD system is started

out of the development eclipse using the PDE target platform, because it isn’t possible to install the m2e-

plugin in the target platform. Therefore, the maven dependencies of the target application have to be

added to its classpath with the following maven command:

mvn eclipse:eclipse

Set up the Eclipse IDE

Installation of the Plug-in
Install the FDD plug-in into the Eclipse workbench or start the target platform.

Set Maven Repository variable
Again, this step is only required if the Eclipse instance from the PDE target platform is used and the maven

dependencies have been added to the classpath. To resolve the dependencies, Eclipse needs to know the

path to the local maven repository. Add a variable ‘M2_REPO’ with the path of the local maven repository

to the classpath variables (Preference → Java → Build Path → Classpath Variables).

89

Edit the Workspace Preferences
Go to the Preferences and chose the Section ‘Feedback-Driven Development’. Specify the Root-URL of the

Feedback-Handler and optionally the URL of the CloudWave Dashboard, if the FDD prototype is used

together with CloudWave.

Edit the Project Properties
In the Package- or Project-Explorer of the IDE, right-click on the target application, go to the Project

Properties and chose the Section ‘Feedback-Driven Development’. Add the Application-ID and the Access-

Token of your target application and specify the desired threshold values for the respective warnings.

Enable the FDD Project Nature
Right-click on the target application and click on ‘Configure Enable Feedback Project Nature’.

A blue decorator (FDD icon) should appear on the project to indicate that the nature is enabled:

90 Chapter C. PerformanceHat User Guide

Working with the FDD plug-in
If everything works correctly, the runtime feedback should appear as soon as the application has been

executed the first time with the Monitoring component integrated. Warnings should be distributed among

the Java files. The following pictures indicate it should look like.

Editor
The warnings are shown in the Java Editor, as known from the Java compiler errors and warnings. The

yellow circles on the left side indicate a warning of the FDD plug-in:

Problems View
As an other error and warning markers, the FDD warnings are also shown in the Problems View:

91

Overview of the System Components

Projects
This following Table briefly summarizes the different projects. Technical details are given further down.

cw-feedback-monitoring Contains the code that has to be appended in an application that
wants to make use of the Feedback Handler / Eclipse plug-in.

cw-feedback-common Contains code that is shared among the two projects 'cw-
feedback-handler', 'cw-feedback-monitoring' and 'cw-feedback-
eclipse'.

cw-feedback-handler-parent This project only contains a parent pom.xml for cw-feedback-

common and cw-feedback-handler that allows to build both
projects with one maven command during continuous integration

cw-feedback-handler Comprises the code of the Feedback Handler.

cw-feedback-eclipse-target Specifies the target platform against which the Eclipse plug-in
('cw-feedback-eclipse') is developed.

cw-feedback-eclipse-
dependencies

Specifies the dependencies of the 'cw-feedback-eclipse'. This is a
workaround to overcome the issue of using non-OSGi
dependencies inside an Eclipse plug-in (more detailed information
in Technical Documentation further down)

cw-feedback-eclipse Comprises the code of the Eclipse plug-in.

cw-feedback-eclipse-tests Contains the test cases for 'cw-feedback-eclipse'.

92 Chapter C. PerformanceHat User Guide

cw-feedback-eclipse-feature Specifies a feature (containing the Eclipse plug-in) that can be
installed in an Eclipse Workbench.

cw-feedback-eclipse-p2updatesite Specifies the update-site providing the feature from 'cw-feedback-
eclipse-feature'.

cw-feedback-eclipse-build Provides the configuration to build the plug-in, feature, and
update-site.

<target-application> a placeholder for any application that is used in the described
setup (i.e. that makes use of the Feedback Handler and the
Eclipse plug-in)

Launch Configurations
The following launch configurations are provided:

CW-Common-Tests Run all tests of the project 'cw-feedback-common'.

CW-Common-Install Install the project 'cw-feedback-common' into the local maven
repository.

CW-Monitoring-Install Install the project 'cw-feedback-monitoring' into the local maven
repository.

CW-EclipseDependencies-Install Create a jar-File of all the dependencies in its pom.xml-File and
copy the created jar into the lib-folder of the project 'cw-feedback-
eclipse'.

CW-Eclipse-Tests Run all (SWTBot)-tests of the project 'cw-feedback-eclipse'.

CW-Eclipse-Run Run the Target Platform (Eclipse Workbench) with the plug-in 'cw-
feedback-eclipse'.

CW-Eclipse-Build Build the eclipse plug-in from 'cw-feedback-eclipse', the feature
specified in 'cw-feedback-eclipse-feature', and the update site
specified in 'cw-feedback-eclipse-p2updatesite'.

CW-FeedbackHandler-Tests Run all tests of the project 'cw-feedback-handler'.

CW-FeedbackHandler-Run Run the Feedback Handler on a local Jetty instance (on
localhost:8080).

CW-FeedbackHandler-Debugger1 Run the Debugger for the Feedback Handler.

CW-FeedbackHandler-Debug Run the Feedback Handler in Debug mode (requires 'CW-
FeedbackHandler-Debugger' to be launched beforehand).

1 To use this launch configuration a workspace variable MVN_EXEC has to be set containing the path to the maven execution

file (on windows maven.bat). This can be done by
 Open Window → Preferences → Run/Debug → String Substitution

 Click New… and add a variable with the name=MVN_EXEC and value=<path-to-mvn-execution-file>

93

Technical Details

Deployment
The Eclipse Plugin can be deployed manually or using tycho:

Manual Deployment

Export the plugin cw-feedback-eclipse-p2updatesite:
 Right Click on project → Export → Deployable Feature → Next
 Select features
 Choose output directory
 Switch to ‘Options’ tab → Choose ‘Categorize repository’ → Browser to category file
 By default, the Eclipse update manager shows only features with a category
 Therefore, you should always include a category for your exported feature to make it easy for the

user to install your feature
 Finish

Links

 Vogella - 6. Create update site for your plug-in

Tycho Deployment
 open console

 navigate to the directory [gitrepo]/cw-feedback-eclipse-build

 run mvn verify (or mvn clean verify)

 now the folder [gitrepo]/cw-feedback-eclipse-p2updatesite/target/repository contains the update site
for the plugin

Links

 Vogella - Eclipse Tycho for building Eclipse Plugins and RCP applications - Tutorial
 Maven Tycho - Solution of the dependency problem

Eclipse Plug-in Projects

cw-feedback-eclipse
 Eclipse Project Type: Plug-in Project

 Contains the actual eclipse plugin with the IDE extensions

 Add external libraries

 Links

• Vogella - Extending the Eclipse IDE - Plug-in development - Tutorial

cw-feedback-eclipse-dependencies
 Eclipse Project Type: General Project

 This project only specifies the (maven) dependencies of the actual eclipse plugin.

 This is a workaround to overcome the problem of referencing non-OSGi dependencies in the

eclipse plug-in.

 The project is independent of all the other eclipse-related projects and not a child of ‘cw-eclipse-

build’

 The dependencies are specified as usual in the pom.xml file

 By executing maven install a jar-File is created that contains all the dependencies (cw-feedback-

eclipse-dependencies-1.0.0-SNAPSHOT.jar) and the created jar is copied to the lib-folder of ‘cw-

feedback-eclipse’
• This is done using the maven plugin ‘org.apache.felix:maven-bundle-plugin’

 Remarks about the configuration in the pom.xml-file:
• <Import-Package>;</Import-Package> is required, because otherwise some imports are

added that cannot be resolved

• the inline=true option allows to generate all the dependencies into one jar-File, otherwise all

(transitive) dependencies have their own jar-Files

94 Chapter C. PerformanceHat User Guide

 Links

• Maven Tycho - Solution of the dependency problem

• Creating OSGi bundles of your Maven dependencies

• Apache Felix - Bundle Plugin for Maven

• bundle:bundleall

• stackoverflow - OSGI transitive dependencies level

 Alternative Approach

• There are some repositories containing OSGi-bundles of non-OSGi projects, e.g.

SpringSource Enterprise Bundle Repository

• Problem: For most of the projects old versions are provided

cw-feedback-eclipse-tests
 Eclipse Project Type: Fragment Project

 This project provides test cases for ‘cw-feedback-eclipse’

 It is a fragment project with ‘cw-feedback-eclipse’ as its host

• A fragment is always defined for another plug-in (host plug-in)

• At runtime the fragment is merged with its host and both projects are just one

• this makes fragments useful for tests, because classes of the host plug-in can be accessed,

even if the host plug-in does not define them as external API

• Remark: Fragments are always optional for their host plug-in

 There are three types of tests

• Normal Junit Tests

• Junit Plug-in Tests (Workbench-related tests)

• SWTBot Tests (UI-related tests)

 Links

• Vogella - Eclipse Fragment Projects - Tutorial

• Testing RCP Applications in Tycho can cause Serious Harm to your Brain

• SWTBot tests

‐ Add SWTBot to target platform

‐ SWTBot/UsersGuide

‐ SWTBotTestUtil implementation

cw-feedback-eclipse-target
 Eclipse Project Type: General Project

 The target platform is the set of artifacts from which Tycho resolves the project's dependencies
• You can either use a target definition based on

‐ the Eclipse p2 update manager: This can be done by adding a repository to the pom

in the build project, an example can be found here

‐ Target Definition files (our case): In this case a separate project has to be created

containing the target platform file

 It expects exactly one file <artifactId>.target in the project's base directory

 Links

• Vogella - Eclipse Target Platform - Tutorial

• http://wiki.eclipse.org/Tycho/Target_Platform#Target_files

• http://wiki.eclipse.org/Tycho/Packaging_Types#eclipse-target-definition

cw-feedback-eclipse-feature
 Eclipse Project Type: Feature Project

 A feature describes a list of plug-ins and other features which can be understood as a logical unit

 Links

• Vogella - Eclipse Feature Projects - Tutorial

95

cw-feedback-eclipse-p2updatesite
 Eclipse Project Type: General Project

 Contains the category definition

• a category contains a list of features

 By default, the Eclipse update manager shows only features with a category

• Therefore, you should always include a category for your exported feature to make it easy

for the user to install your feature.

 Links

• Vogella - 6. Create update site for your plug-in

cw-feedback-eclipse-build
 Eclipse Project Type: General Project

 This is the parent project of all the other eclipse-related projects

• it contains the parent pom.xml-file

 It specifies how the artifacts are built using tycho

Further Topics

Adding external libraries to Eclipse Plug-ins (OSGi bundles)
Adding an external library to the eclipse plugin can be done as follows

 open MANIFEST.MF → switch to Runtime tab → Classpath → Add…
• Important: Each jar-File has to be added separately, it doesn’t work by adding a whole

folder
 Right-click on Project → Plug-in Tools → Update Classpath…

This should actually be avoided. Instead the library should be added as dependency to ‘cw-feedback-

eclipse-dependencies’. This (only) dependency is itself added as described above to the eclipse plug-in.

DataFormatException when launching the Target Platform
TODO

 Problem:

• The following error occurs when launching the Runtime Workbench (i.e. target platform):

org.eclipse.jface.resource.DataFormatException: For input string: "1x"

 Solution

• The source of the problem is the package ‘org.eclipse.ui.tests’

http://dev.eclipse.org/mhonarc/lists/jdt-ui-dev/msg01342.html

‐ https://bugs.eclipse.org/bugs/show_bug.cgi?id=374292

• To exclude the package

‐ Configure Run Configuration

‐ in Tab ‘Plug-ins’ → Launch with: select ‘plug-ins selected below only’

‐ exclude the test-fragment and ‘org.junit’

 Links

o Target Platform – how to deal with optional RAP dependencies

96 Chapter C. PerformanceHat User Guide

Appendix

Complete pom.xml-File Example
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <groupId>eu.cloudwave.samples</groupId>

 <artifactId>person-app</artifactId>

 <version>0.0.1-SNAPSHOT</version>

 <packaging>war</packaging>

 <properties>

 <jdk.version>1.7</jdk.version>

 <aspectj.version>1.8.2</aspectj.version>

 </properties>

 <dependencies>

 <dependency>

 <groupId>com.google.guava</groupId>

 <artifactId>guava</artifactId>

 <version>17.0</version>

 </dependency>

 <dependency>

 <groupId>org.springframework</groupId>

 <artifactId>spring-webmvc</artifactId>

 <version>4.0.6.RELEASE</version>

 </dependency>

 <dependency>

 <groupId>org.springframework.data</groupId>

 <artifactId>spring-data-mongodb</artifactId>

 <version>1.5.2.RELEASE</version>

 </dependency>

 <dependency>

 <groupId>cloudwave</groupId>

 <artifactId>cw-feedback-monitoring</artifactId>

 <version>0.0.1-SNAPSHOT</version>

 </dependency>

 <dependency>

 <groupId>org.aspectj</groupId>

 <artifactId>aspectjrt</artifactId>

 <version>${aspectj.version}</version>

 </dependency>

 </dependencies>

 <build>

 <plugins>

 <plugin>

 <groupId>org.apache.maven.plugins</groupId>

 <artifactId>maven-compiler-plugin</artifactId>

 <configuration>

 <source>1.7</source>

 <target>1.7</target>

 </configuration>

 </plugin>

 <plugin>

 <groupId>org.eclipse.jetty</groupId>

 <artifactId>jetty-maven-plugin</artifactId>

 <version>9.2.2.v20140723</version>

 <configuration>

 <httpConnector><port>9000</port></httpConnector>

 </configuration>

 </plugin>

 <plugin>

 <artifactId>maven-assembly-plugin</artifactId>

 <executions>

 <execution>

97

 <phase>package</phase>

 <goals><goal>single</goal></goals>

 </execution>

 </executions>

 <configuration>

 <descriptorRefs>

 <descriptorRef>jar-with-dependencies</descriptorRef>

 </descriptorRefs>

 <finalName>${project.build.finalName}-complete</finalName>

 <appendAssemblyId>false</appendAssemblyId>

 </configuration>

 </plugin>

 <plugin>

 <groupId>org.codehaus.mojo</groupId>

 <artifactId>aspectj-maven-plugin</artifactId>

 <version>1.7</version>

 <configuration>

 <complianceLevel>${jdk.version}</complianceLevel>

 <aspectLibraries>

 <aspectLibrary>

 <groupId>cloudwave</groupId>

 <artifactId>cw-feedback-monitoring</artifactId>

 </aspectLibrary>

 </aspectLibraries>

 </configuration>

 <executions>

 <execution>

 <goals><goal>compile</goal></goals>

 </execution>

 </executions>

 <dependencies>

 <dependency>

 <groupId>org.aspectj</groupId>

 <artifactId>aspectjrt</artifactId>

 <version>${aspectj.version}</version>

 </dependency>

 <dependency>

 <groupId>org.aspectj</groupId>

 <artifactId>aspectjtools</artifactId>

 <version>${aspectj.version}</version>

 </dependency>

 </dependencies>

 </plugin>

 </plugins>

 <pluginManagement>

 <plugins>

 <plugin>

 <groupId>org.eclipse.m2e</groupId>

 <artifactId>lifecycle-mapping</artifactId>

 <version>1.0.0</version>

 <configuration>

 <lifecycleMappingMetadata>

 <pluginExecutions>

 <pluginExecution>

 <pluginExecutionFilter>

 <groupId>org.codehaus.mojo</groupId>

 <artifactId>aspectj-maven-plugin</artifactId>

 <versionRange>[1.7,)</versionRange>

 <goals><goal>compile</goal></goals>

 </pluginExecutionFilter>

 <action><ignore></ignore></action>

 </pluginExecution>

 </pluginExecutions>

 </lifecycleMappingMetadata>

 </configuration>

 </plugin>

 </plugins>

 </pluginManagement>

 </build>

</project>

98 Chapter C. PerformanceHat User Guide

Bibliography

[AAFM10] Erik Altman, Matthew Arnold, Stephen Fink, and Nick Mitchell. Performance anal-
ysis of idle programs. In ACM Sigplan Notices, volume 45, pages 739–753. ACM,
2010.

[ABH03] U.A. Acar, G.E. Blelloch, and R. Harper. Selective Memoization. Research paper.
School of Computer Science, Carnegie Mellon University, 2003.

[ABL97] Glenn Ammons, Thomas Ball, and James R. Larus. Exploiting hardware perfor-
mance counters with flow and context sensitive profiling. In Proceedings of the ACM
SIGPLAN 1997 Conference on Programming Language Design and Implementation, PLDI
’97, pages 85–96, New York, NY, USA, 1997. ACM.

[Acc] Telerik Data Access. How to: Detect and solve n+1 problems.
http://docs.telerik.com/data-access/developers-guide/profiling-and-
tuning/profiler-and-tuning-advisor/data-access-profiler-n-plus-one-problem,
accessed October 2014.

[Ado06] Steve Adolph. What lessons can the agile community learn from a maverick fighter
pilot? In Agile Conference, 2006, pages 6 pp.–99, July 2006.

[AFG+09] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy H. Katz,
Andrew Konwinski, Gunho Lee, David A. Patterson, Ariel Rabkin, Ion Stoica, and
Matei Zaharia. Above the clouds: A berkeley view of cloud computing. Technical
Report UCB/EECS-2009-28, EECS Department, University of California, Berkeley,
Feb 2009.

[AFG+10] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy Katz,
Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, and Matei
Zaharia. A view of cloud computing. Commun. ACM, 53(4):50–58, April 2010.

[AI10] S.A. Ahson and M. Ilyas. Cloud Computing and Software Services: Theory and Tech-
niques. An Auerbach book. Taylor & Francis, 2010.

[AIS+77] Christopher Alexander, Sara Ishikawa, Murray Silverstein, M Jacobson, I Fiksdahl-
King, and S Angel. A pattern language. 1977. Center for Environmental Structure
Series, 1977.

[AR01] Matthew Arnold and Barbara G. Ryder. A framework for reducing the cost of instru-
mented code. In Proceedings of the ACM SIGPLAN 2001 Conference on Programming
Language Design and Implementation, PLDI ’01, pages 168–179, New York, NY, USA,
2001. ACM.

100 BIBLIOGRAPHY

[Art03] John Arthorne. Project builders and natures, January 2003.

[BBG10] R. Buyya, J. Broberg, and A.M. Goscinski. Cloud Computing: Principles and Paradigms.
Wiley Series on Parallel and Distributed Computing. Wiley, 2010.

[BFKB+14] D. Bruneo, T. Fritz, S. Keidar-Barner, P. Leitner, F. Longo, C. Marquezan, A. Metzger,
K. Pohl, A. Puliafito, D. Raz, A. Roth, E. Salant, I. Segall, M. Villari, Y. Wolfsthal,
and C. Woods. Cloudwave: Where adaptive cloud management meets devops. In
Computers and Communication (ISCC), 2014 IEEE Symposium on, volume Workshops,
pages 1–6, June 2014.

[BGG14a] Martin Brandtner, Emanuel Giger, and Harald Gall. Supporting continuous integra-
tion by mashing-up software quality information. In IEEE CSMR-WCRE 2014 Soft-
ware Evolution Week (CSMR-WCRE), pages 109–118, Antwerp, Belgium, FEB 2014.
IEEE.

[BGG14b] Martin Brandtner, Emanuel Giger, and Harald Gall. Supporting continuous integra-
tion by mashing-up software quality information. In IEEE CSMR-WCRE 2014 Soft-
ware Evolution Week (CSMR-WCRE), pages 109–118, Antwerp, Belgium, FEB 2014.
IEEE.

[BHM07] Walter Binder, Jarle Hulaas, and Philippe Moret. Advanced java bytecode instru-
mentation. In Proceedings of the 5th International Symposium on Principles and Practice
of Programming in Java, PPPJ ’07, pages 135–144, New York, NY, USA, 2007. ACM.

[Bir14] Jens Birchler. Sqa-timeline: A timeline-based visualisation approach for software
evolution data. Master’s thesis, 2014.

[BJR13] G.E.P. Box, G.M. Jenkins, and G.C. Reinsel. Time Series Analysis: Forecasting and
Control. Wiley Series in Probability and Statistics. Wiley, 2013.

[BKB00] Anna Bouch, Allan Kuchinsky, and Nina Bhatti. Quality is in the eye of the be-
holder: Meeting users’ requirements for internet quality of service. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, CHI ’00, pages 297–
304, New York, NY, USA, 2000. ACM.

[BRB10] Alexandre Bergel, Romain Robbes, and Walter Binder. Visualizing dynamic metrics
with profiling blueprints. In Jan Vitek, editor, Objects, Models, Components, Patterns,
volume 6141 of Lecture Notes in Computer Science, pages 291–309. Springer Berlin
Heidelberg, 2010.

[Bro98] W.J. Brown. AntiPatterns: Refactoring Software, Architectures, and Projects in Crisis.
Wiley computer publishing. Wiley, 1998.

[BW14] A. Brown and A.B.G. Wilson. The Architecture of Open Source Applications. Creative
Commons, 2014.

[BYV+09] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg, and Ivona
Brandic. Cloud computing and emerging {IT} platforms: Vision, hype, and real-
ity for delivering computing as the 5th utility. Future Generation Computer Systems,
25(6):599 – 616, 2009.

[CBWDR10] Victor Chang, David Bacigalupo, Gary Wills, and David De Roure. A categorisation
of cloud computing business models. In Proceedings of the 2010 10th IEEE/ACM Inter-
national Conference on Cluster, Cloud and Grid Computing, CCGRID ’10, pages 509–512,
Washington, DC, USA, 2010. IEEE Computer Society.

BIBLIOGRAPHY 101

[CC] Inc. Cunningham & Cunningham. Anti pattern.
http://c2.com/cgi/wiki?AntiPattern, accessed December 2014.

[CG11] J. Chen and A.K. Gupta. Parametric Statistical Change Point Analysis: With Applications
to Genetics, Medicine, and Finance. SpringerLink : Bücher. Springer, 2011.

[Che] Chef.io. What is continuous delivery? https://www.chef.io/solutions/continuous-
delivery, accessed December 2014.

[Cit14] Jürgen Cito. Statistical methods in managing web performance. Master’s thesis,
2014.

[CLFG14] Jürgen Cito, Philipp Leitner, Thomas Fritz, and Harald C. Gall. The making of
cloud applications an empirical study on software development for the cloud. CoRR,
abs/1409.6502, 2014.

[CSLD14] Jürgen Cito, Dritan Suljoti, Philipp Leitner, and Schahram Dustdar. Identifying root
causes of web performance degradation using changepoint analysis. In Sven Caste-
leyn, Gustavo Rossi, and Marco Winckler, editors, Web Engineering, volume 8541 of
Lecture Notes in Computer Science, pages 181–199. Springer International Publishing,
2014.

[DDE08] M. B. Dwyer, M. Diep, and S. Elbaum. Reducing the cost of path property mon-
itoring through sampling. In Proceedings of the 2008 23rd IEEE/ACM International
Conference on Automated Software Engineering, ASE ’08, pages 228–237, Washington,
DC, USA, 2008. IEEE Computer Society.

[DDN02] S. Demeyer, S. Ducasse, and O. Nierstrasz. Object-Oriented Reengineering Patterns.
The Morgan Kaufmann Series in Software Engineering and Programming. Elsevier
Science, 2002.

[DGS02] Robert F. Dugan, Jr., Ephraim P. Glinert, and Ali Shokoufandeh. The sisyphus
database retrieval software performance antipattern. In Proceedings of the 3rd In-
ternational Workshop on Software and Performance, WOSP ’02, pages 10–16, New York,
NY, USA, 2002. ACM.

[DHV03] Bruno Dufour, Laurie Hendren, and Clark Verbrugge. *j: A tool for dynamic anal-
ysis of java programs. In Companion of the 18th Annual ACM SIGPLAN Conference
on Object-oriented Programming, Systems, Languages, and Applications, OOPSLA ’03,
pages 306–307, New York, NY, USA, 2003. ACM.

[Doca] MongoDB Documentation. Aggregation pipeline.

[Docb] Phabricator Contributor Documentation. Performance: N+1 query prob-
lem. https://secure.phabricator.com/book/phabcontrib/article/n_plus_one, ac-
cessed October 2014.

[ED05] S. Elbaum and M. Diep. Profiling deployed software: assessing strategies and test-
ing opportunities. Software Engineering, IEEE Transactions on, 31(4):312–327, April
2005.

[et12] F. et. A First Course on Time Series Analysis: Examples with SAS. epubli GmbH, 2012.

[FJA+10] King Foo, Zhen Ming Jiang, B. Adams, A.E. Hassan, Ying Zou, and P. Flora. Mining
performance regression testing repositories for automated performance analysis. In
Quality Software (QSIC), 2010 10th International Conference on, pages 32–41, July 2010.

102 BIBLIOGRAPHY

[Fow12] M. Fowler. Patterns of Enterprise Application Architecture. Addison-Wesley Signature
Series (Fowler). Pearson Education, 2012.

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns:
elements of reusable object-oriented software. Pearson Education, 1994.

[GNJ] Menasce Daniel A. Smith Connie U. Williams Dr. Lloyd G. Gun-
ther Neil, Maddox Michael and Raj Jain. Performance engineering.
http://www.mitre.org/publications/systems-engineering-guide/acquisition-
systems-engineering/acquisition-program-planning/performance-engineering-,
accessed November 2014.

[Gr] Orla Gr, evy. PhD thesis.

[HF10] J. Humble and D. Farley. Continuous Delivery: Reliable Software Releases through Build,
Test, and Deployment Automation. Addison-Wesley Signature Series (Fowler). Pearson
Education, 2010.

[Hil09] David Hilley. Cloud computing: A taxonomy of platform and infrastructure-level
offerings. Georgia Institute of Technology, Tech. Rep. GIT-CERCS-09-13, 2009.

[Hil14] Stefan Hiltebrand. Sqa-pattern: a recognition framework for violations of conven-
tions in software engineering. Master’s thesis, 2014.

[HWM13] Christian Häubl, Christian Wimmer, and Hanspeter Mössenböck. Deriving code
coverage information from profiling data recorded for a trace-based just-in-time
compiler. In Proceedings of the 2013 International Conference on Principles and Prac-
tices of Programming on the Java Platform: Virtual Machines, Languages, and Tools, PPPJ
’13, pages 1–12, New York, NY, USA, 2013. ACM.

[Hü12] Michael Hüttermann. DevOps for Developers. Apress, 2012.

[JHHF08] Zhen Ming Jiang, Ahmed E Hassan, Gilbert Hamann, and Parminder Flora. Auto-
matic identification of load testing problems. In Software Maintenance, 2008. ICSM
2008. IEEE International Conference on, pages 307–316. IEEE, 2008.

[JSS+12] Guoliang Jin, Linhai Song, Xiaoming Shi, Joel Scherpelz, and Shan Lu. Understand-
ing and detecting real-world performance bugs. In Proceedings of the 33rd ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’12,
pages 77–88, New York, NY, USA, 2012. ACM.

[KH01] Gregor Kiczales and Erik Hilsdale. Aspect-oriented programming. In Proceedings of
the 8th European Software Engineering Conference Held Jointly with 9th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, ESEC/FSE-9, pages
313–, New York, NY, USA, 2001. ACM.

[Kin03] A.B. King. Speed Up Your Site: Web Site Optimization. Voices Series. New Riders, 2003.

[Kla12] Mantas Klasavičius. Metrics-driven development, November 2012.
http://www.infoq.com/articles/metrics-driven-development, accessed December
2014.

[LD03] Michele Lanza and Stéphane Ducasse. Polymetric views-a lightweight visual ap-
proach to reverse engineering. IEEE Trans. Softw. Eng., 29(9):782–795, September
2003.

BIBLIOGRAPHY 103

[Mad07] H. Madsen. Time Series Analysis. Chapman & Hall/CRC Texts in Statistical Science.
Taylor & Francis, 2007.

[Man] Rajesh Mansharamani. Software performance engineering.
http://www.softwareperformanceengineering.com/contact.html, accessed Oc-
tober 2014.

[Mar00a] Robert C Martin. Design principles and design patterns. Object Mentor, 1:34, 2000.

[Mar00b] Robert C Martin. The principles of ood. Object Mentor, 1:34, 2000.

[Mar04] Fowler Martin. Inversion of control containers and the dependency injection pat-
tern, January 2004. http://martinfowler.com/articles/injection.html, accessed De-
cember 2014.

[Mar13a] Fowler Martin. Continuous delivery, May 2013.
http://martinfowler.com/bliki/ContinuousDelivery.html, accessed December
2014.

[Mar13b] Fowler Martin. Deployment pipeline, May 2013.
http://martinfowler.com/bliki/DeploymentPipeline.html, accessed December
2014.

[MG11] Peter Mell and Tim Grance. The nist definition of cloud computing. 2011.

[Mih14] Vlad Mihalcea. Mongodb time series: Introducing the aggregation framework, Jan-
uary 2014.

[Mur11] John Murphy. Performance engineering for cloud computing. In Proceedings of the
8th European Conference on Computer Performance Engineering, EPEW’11, pages 1–9,
Berlin, Heidelberg, 2011. Springer-Verlag.

[NBR10] Harish Narayanappa, Mukul S. Bansal, and Hridesh Rajan. Property-aware pro-
gram sampling. In Proceedings of the 9th ACM SIGPLAN-SIGSOFT Workshop on Pro-
gram Analysis for Software Tools and Engineering, PASTE ’10, pages 45–52, New York,
NY, USA, 2010. ACM.

[NNH+14] Thanh H. D. Nguyen, Meiyappan Nagappan, Ahmed E. Hassan, Mohamed Nasser,
and Parminder Flora. An industrial case study of automatically identifying per-
formance regression-causes. In Proceedings of the 11th Working Conference on Mining
Software Repositories, MSR 2014, pages 232–241, New York, NY, USA, 2014. ACM.

[NSML13] A. Nistor, Linhai Song, D. Marinov, and Shan Lu. Toddler: Detecting performance
problems via similar memory-access patterns. In Software Engineering (ICSE), 2013
35th International Conference on, pages 562–571, May 2013.

[Pal10] George Pallis. Cloud computing: The new frontier of internet computing. IEEE
Internet Computing, 14(5):70–73, 2010.

[Par07] Trevor Parsons. Automatic Detection of Performance Design and Deployment Antipat-
terns in Component Based Enterprise Systems. PhD thesis, 2007.

[PJM+02] Wim De Pauw, Erik Jensen, Nick Mitchell, Gary Sevitsky, John M. Vlissides, and
Jeaha Yang. Visualizing the execution of java programs. In Revised Lectures on
Software Visualization, International Seminar, pages 151–162, London, UK, UK, 2002.
Springer-Verlag.

104 BIBLIOGRAPHY

[PM04a] Trevor Parsons and John Murphy. Data mining for performance antipatterns in
component based systems using run-time and static analysis, 2004.

[PM04b] Trevor Parsons and John Murphy. A framework for automatically detecting and as-
sessing performance antipatterns in component based systems using run-time anal-
ysis. In The 9th International Workshop on Component Oriented Programming, part of
ECOOP, 2004.

[Pow02] D.J. Power. Decision Support Systems: Concepts and Resources for Managers. Quorum
Books, 2002.

[RDT08] David Röthlisberger, Marcus Denker, and Éric Tanter. Unanticipated partial behav-
ioral reflection: Adapting applications at runtime. Comput. Lang. Syst. Struct., 34(2-
3):46–65, July 2008.

[Rei03] Steven P. Reiss. Visualizing java in action. In Proceedings of the 2003 ACM Symposium
on Software Visualization, SoftVis ’03, pages 57–ff, New York, NY, USA, 2003. ACM.

[RGN07] David Röthlisberger, Orla Greevy, and Oscar Nierstrasz. Feature driven browsing.
In Proceedings of the 2007 International Conference on Dynamic Languages: In Conjunc-
tion with the 15th International Smalltalk Joint Conference 2007, ICDL ’07, pages 79–100,
New York, NY, USA, 2007. ACM.

[RHB+12] David Rothlisberger, Marcel Harry, Walter Binder, Philippe Moret, Danilo Ansa-
loni, Alex Villazon, and Oscar Nierstrasz. Exploiting dynamic information in ides
improves speed and correctness of software maintenance tasks. IEEE Trans. Softw.
Eng., 38(3):579–591, May 2012.

[RHV+09a] D. Rothlisberger, M. Harry, A. Villazon, D. Ansaloni, W. Binder, O. Nierstrasz, and
P. Moret. Augmenting static source views in ides with dynamic metrics. In Software
Maintenance, 2009. ICSM 2009. IEEE International Conference on, pages 253–262, Sept
2009.

[RHV+09b] David Röthlisberger, Marcel Harry, Alex Villazón, Danilo Ansaloni, Walter Binder,
Oscar Nierstrasz, and Philippe Moret. Senseo: Enriching eclipse’s static source
views with dynamic metrics. In ICSM’09, pages 383–384, 2009.

[Rie96] A.J. Riel. Object-oriented Design Heuristics. Addison-Wesley Publishing Company,
1996.

[SC93] Robert C. Sharble and Samuel S. Cohen. The object-oriented brewery: A comparison
of two object-oriented development methods. SIGSOFT Softw. Eng. Notes, 18(2):60–
73, April 1993.

[SF12] P.J. Sadalage and M. Fowler. NoSQL Distilled: A Brief Guide to the Emerging World of
Polyglot Persistence. Pearson Education, 2012.

[SMG11] Subhajyoti Bandyopadhyay Juheng Zhang Sean Marston, Zhi Li and Anand Ghal-
sasi. Cloud computing — the business perspective. Decision Support Systems,
51(1):176 – 189, 2011.

[Smi01] Connie U. Smith. Software performance antipatterns: Common performance prob-
lems and their solutions. In In Int. CMG Conference, pages 797–806, 2001.

BIBLIOGRAPHY 105

[SOT+00] T. Suganuma, T. Ogasawara, M. Takeuchi, T. Yasue, M. Kawahito, K. Ishizaki, H. Ko-
matsu, and T. Nakatani. Overview of the ibm java just-in-time compiler. IBM Sys-
tems Journal, 39(1):175–193, 2000.

[SS08] Paramvir Singh and Hardeep Singh. Dynametrics: A runtime metric-based analy-
sis tool for object-oriented software systems. SIGSOFT Softw. Eng. Notes, 33(6):1–6,
October 2008.

[SS10] R.H. Shumway and D.S. Stoffer. Time Series Analysis and Its Applications: With R
Examples. Springer Texts in Statistics. Springer, 2010.

[ST13] F. Schulz and W. Theilmann. Towards systematic mobile cloud performance analy-
sis. In Wireless and Mobile Networking Conference (WMNC), 2013 6th Joint IFIP, pages
1–4, April 2013.

[SW00] Connie U. Smith and Lloyd G. Williams. Software performance antipatterns. In
Proceedings of the 2Nd International Workshop on Software and Performance, WOSP ’00,
pages 127–136, New York, NY, USA, 2000. ACM.

[SW03] Connie U Smith and Lloyd G Williams. More new software performance antipat-
terns: Even more ways to shoot yourself in the foot. In Computer Measurement Group
Conference, pages 717–725. Citeseer, 2003.

[SYK+01a] Toshio Suganuma, Toshiaki Yasue, Motohiro Kawahito, Hideaki Komatsu, and
Toshio Nakatani. A dynamic optimization framework for a java just-in-time com-
piler. SIGPLAN Not., 36(11):180–195, October 2001.

[SYK+01b] Toshio Suganuma, Toshiaki Yasue, Motohiro Kawahito, Hideaki Komatsu, and
Toshio Nakatani. A dynamic optimization framework for a java just-in-time com-
piler. In Proceedings of the 16th ACM SIGPLAN Conference on Object-oriented Program-
ming, Systems, Languages, and Applications, OOPSLA ’01, pages 180–195, New York,
NY, USA, 2001. ACM.

[Tay00] Wayne A. Taylor. Change-point analysis: A powerful new tool for detecting
changes, 2000.

[TFK11] Johnson J. Thomas, Sebastian Fischmeister, and Deepak Kumar. Lowering over-
head in sampling-based execution monitoring and tracing. In Proceedings of the 2011
SIGPLAN/SIGBED Conference on Languages, Compilers and Tools for Embedded Systems,
LCTES ’11, pages 101–110, New York, NY, USA, 2011. ACM.

[TSH12] Marcel Taeumel, Bastian Steinert, and Robert Hirschfeld. The vivide programming
environment: Connecting run-time information with programmers’ system knowl-
edge. In Proceedings of the ACM International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software, Onward! 2012, pages 117–126, New
York, NY, USA, 2012. ACM.

[vHRH+09] André van Hoorn, Matthias Rohr, Wilhelm Hasselbring, Jan Waller, Jens Ehlers,
Sören Frey, and Dennis Kieselhorst. Continuous monitoring of software services:
Design and application of the kieker framework. Forschungsbericht, Kiel Univer-
sity, November 2009.

[vHWH12] André van Hoorn, Jan Waller, and Wilhelm Hasselbring. Kieker: A framework for
application performance monitoring and dynamic software analysis. In Proceedings
of the 3rd ACM/SPEC International Conference on Performance Engineering, ICPE ’12,
pages 247–248, New York, NY, USA, 2012. ACM.

106 BIBLIOGRAPHY

[Vog09] Lars Vogel. Eclipse builder - tutorial, October 2009.
http://www.softwareperformanceengineering.com/contact.html, accessed Jan-
uary 2015.

[VRCG+99] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and Vijay
Sundaresan. Soot - a java bytecode optimization framework. In Proceedings of the
1999 Conference of the Centre for Advanced Studies on Collaborative Research, CASCON
’99, pages 13–. IBM Press, 1999.

[VRMCL08] Luis M. Vaquero, Luis Rodero-Merino, Juan Caceres, and Maik Lindner. A break in
the clouds: Towards a cloud definition. SIGCOMM Comput. Commun. Rev., 39(1):50–
55, December 2008.

[WFP07] M. Woodside, G. Franks, and D.C. Petriu. The future of software performance en-
gineering. In Future of Software Engineering, 2007. FOSE ’07, pages 171–187, May
2007.

[WTK+08] Lizhe Wang, Jie Tao, M. Kunze, A.C. Castellanos, D. Kramer, and W. Karl. Scientific
cloud computing: Early definition and experience. In High Performance Computing
and Communications, 2008. HPCC ’08. 10th IEEE International Conference on, pages
825–830, Sept 2008.

