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Summary

For most investors and banking regulators the down side loss potential of a finan-

cial position is of great interest, which can be quantified though the widely used

measure Value–at–Risk. Chapter 2 introduces a method in which this down side

of the return distribution receives more attention by using special weighting func-

tions. Up to now, in empirical finance, the overwhelming majority of time series

models for density and Value–at–Risk forecasting are estimated with traditional

maximum likelihood methods. By definition, the likelihood implicitly involves

placing equal weight on each of the observations in the sample, but this need not

be the case. For example, Mittnik and Paolella (2000) have demonstrated that

using a weighted likelihood scheme in which more weight is placed on observations

in the recent past results in considerable forecast improvement compared to the

default of equal weights. This is presumably because the data generating process

is not constant through time. Now, if instead of accurate forecasting of the entire

density, interest is restricted to just Value–at–Risk, then it would seem wise to

place more weight on the negative observations in the sample which, as shown in

this Chapter, yields to a considerable improvement in forecast accuracy.

In Chapter 3 a new and quite general class of models for asset returns is proposed.

The structure of the model is such that the two most characteristic stylized facts

of financial time series are modelled, which are i) that risk, measured for example

through volatility, comes in clusters and is therefore not constant through time

and ii) that more severe market movements are observed (so called fat tails) than

suggested by the Gaussian assumption which served as a convenient model for

many years.
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The proposed model combines a dynamic multi–component generalized autore-

gressive conditional heteroscedastic (GARCH) structure (to tackle volatility clus-

ter) with the stable Paretian distributional assumption (to tackle fat tails). It is

well known that the stable Paretian is the only valid distribution that arises as

a limiting distribution of sums of independently, identically distributed random

variables. Given that unexpected innovations in econometric models are usually

interpreted as random variables that represent the sum of the external effects not

being captured by the model, the use of the stable Paretian assumption should

therefore be highly desirable and lends some theoretical justification for the model

and its economic interpretations.

A common property of the dynamic multi–component GARCH structure is con-

stancy of the mixing weights of the component densities, which often allows for a

straightforward interpretation of the contributions of the individual components

(for example one component for the firm level, one for the sector level and one

economy wide component). However, constancy of the distributional proportions

may not be a realistic assumption in general, and, as is demonstrated in Chapter

4 leads to less accurate forecasts compared with a more general class of models

which allows for time variation in the weights. In particular, by relating current

weights to past returns via sigmoid response functions, an empirically reasonable

representation of Engle and Ng’s (1993) news impact curve with an asymmetric

impact of unexpected return shocks on future volatility is obtained.

In Chapter 5 experimental stock markets are used to add more evidence that

Black‘s (1976) leverage effect in financial markets does not necessarily stem from

the financial leverage of the firm. The original explanation of the leverage ef-

fect (a negative correlation between volatility and stock price level) goes back to

Modigliani and Miller’s (1958) classical work and the firm’s capital structure, e.g.

2



its ratio of debt to equity. We surprisingly observe the leverage effect also in a

large number of markets although the underlying assets do not exhibit any finan-

cial leverage, and therefore have a capital structure without any debt.
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Chapter 1
Introduction

The world is getting more and more quantitative as computer science further de-

velops in terms of computing power and data warehouses pop up everywhere. Nat-

urally, this development influences the way empirical finance is answering today’s

theoretical and practical questions raised by policymakers, analysts and researchers

alike. New quantitative techniques and models answering selected questions of em-

pirical finance are the topic of the next four Chapters.

For example, for most investors and banking regulators the down side loss po-

tential of a financial position is of great interest, which can be quantified though

the widely used measure Value–at–Risk. Chapter 2, coauthored with Marc S.

Paolella, introduces a method in which this down side of the return distribu-

tion receives more attention by using special weighting functions. Up to now,

in empirical finance, the overwhelming majority of time series models for density

and Value–at–Risk forecasting are estimated with traditional maximum likelihood

methods. By definition, the likelihood implicitly involves placing equal weight on

each of the observations in the sample, but this need not be the case. For example,

Mittnik and Paolella (2000) have demonstrated that using a weighted likelihood

scheme in which more weight is placed on observations in the recent past results

in considerable forecast improvement compared to the default of equal weights.

This is presumably because the data generating process is not constant through

time. Now, if instead of accurate forecasting of the entire density, interest is re-

stricted to just Value–at–Risk, then it would seem wise to place more weight on
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the negative observations in the sample which, as shown in this Chapter, yields to

a considerable improvement in forecast accuracy.

In Chapter 3, coauthored with Markus Haas, Stefan Mittnik and Marc S. Paolella,

a new and quite general class of models for asset returns is proposed. The struc-

ture of the model is such that the two most characteristic stylized facts of financial

time series are modelled, which are i) that risk, measured for example through

volatility, comes in clusters and is therefore not constant through time and ii) that

more severe market movements are observed (so called fat tails) than suggested by

the Gaussian assumption which served as a convenient model for many years.

The proposed model combines a dynamic multi–component generalized autore-

gressive conditional heteroscedastic (GARCH) structure (to tackle volatility clus-

ter) with the stable Paretian distributional assumption (to tackle fat tails). It is

well known that the stable Paretian is the only valid distribution that arises as

a limiting distribution of sums of independently, identically distributed random

variables. Given that unexpected innovations in econometric models are usually

interpreted as random variables that represent the sum of the external effects not

being captured by the model, the use of the stable Paretian assumption should

therefore be highly desirable and lends some theoretical justification for the model

and its economic interpretations.

A common property of the dynamic multi–component GARCH structure is con-

stancy of the mixing weights of the component densities, which often allows for a

straightforward interpretation of the contributions of the individual components

(for example one component for the firm level, one for the sector level and one

economy wide component). However, constancy of the distributional proportions

may not be a realistic assumption in general, and, as is demonstrated in Chapter

4, also coauthored with Marc S. Paolella, Markus Haas and Stefan Mittnik, leads
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to less accurate forecasts compared with a more general class of models which al-

lows for time variation in the weights. In particular, by relating current weights to

past returns via sigmoid response functions, an empirically reasonable representa-

tion of Engle and Ng’s (1993) news impact curve with an asymmetric impact of

unexpected return shocks on future volatility is obtained.

In Chapter 5, coauthored with Thorsten Hens, experimental stock markets are

used to add more evidence that Black‘s (1976) leverage effect in financial markets

does not necessarily stem from the financial leverage of the firm. The original

explanation of the leverage effect (a negative correlation between volatility and

stock price level) goes back to Modigliani and Miller’s (1958) classical work and

the firm’s capital structure, e.g. its ratio of debt to equity. We surprisingly observe

the leverage effect also in a large number of markets although the underlying assets

do not exhibit any financial leverage, and therefore have a capital structure without

any debt.
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Chapter 2
Multi Weighted Maximum Likelihood

2.1 Introduction

In many quantitative disciplines, particularly economics, estimation of time se-

ries models plays a fundamental role for both theoretical researchers and applied

analysts. Among the major estimation methods (including Bayesian, GMM, indi-

rect inference, nonparametric, and least squares), likelihood based inference, with

emphasis on the maximum likelihood estimator (MLE), is at least among, if not

the, most popular and important. Similar to the other methods of inference, in

its traditional form, the likelihood places equal weight on all observations in the

sample. Similar to the well-known use of weighted least squares to account for

discrepancies in the variance of the dependent variable, weighted likelihood is an

established method for estimation and hypothesis testing when the elements of the

sample have differing amounts of information. Typically, this is used in the context

of robust estimation, to avoid the destructive effect of outliers; see, e.g. Hadi and

Luceno (1997) or Cheng (2005). In a related strand of literature, weighted likeli-

hood methodology is used in the area of mixture distributions, see, e.g. Markatou

(2000), who uses weighting functions to downweight certain observations.

In the current context, we consider time series models, and generalize the usual

likelihood paradigm of implicitly placing equal weight on each of the filtered inno-

vations in, e.g. ARMA or GARCH models. The first generalization of the standard

procedure we consider, when applied to time series, is to apply a weighting function

such that more recent observations receive a higher relative weight than values far

in the past. Observe that, with time weighted ML (or, in short, TiWML), param-

eter estimation is conducted using all available data, instead of just the notorious

choice of “moving window” procedures which completely ignore observations be-
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yond a certain arbitrarily–chosen distance in the past, while equally weighting

recent ones. Indeed, this popular scheme is just a (poor) special case of TiWML.

The method of TiWML should be particularly appealing when dealing with

the modelling and forecasting of time series of financial returns, with their quite

nonstandard properties including rich, nonlinear dynamics which change through

time, as well as high kurtosis and time-varying skewness. The most notable stylized

fact of asset returns measured at a weekly or daily, or higher, frequency, is volatility

clustering. It is well-known that recent volatility shocks are good predictors of

volatility in subsequent periods, which would suggest that placing more weight

on recent observations could enhance predictive power. Also, for a model whose

parameters are changing over time or—more likely in the context of modelling

financial returns data—for a much more complicated data generating process which

cannot be embodied in either a parametric or nonparametric setup, the method

of choosing a tractable parametric structure which reasonably captures the salient

features of the data generating process and estimating it with more weight given to

recent observations can lead to considerable forecasting improvements. This was

demonstrated to be the case by Mittnik and Paolella (2000) in the—for finance,

very relevant—context of density forecasting; see, e.g. Diebold et al. (1998), Tay

and Wallis (2000), Bao et al. (2006), Amisano and Giacomini (2006), and the

references therein.

While TiWML responds to the window size issue through heavier weights for

recent observations, it still places equal weight on both negative and positive ob-

servations in the sample. With financial risk management applications in mind,

standard likelihood inference can be further generalized by placing relatively more

weight on negative returns. This will be advantageous if, instead of accurate fore-

casting of the entire density, interest is restricted to some risk measure that just

takes the downside of the distribution into account, such as Value–At–Risk (VaR),

or Expected Shortfall (ES).
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One source of inaccuracies in the prediction of downside risk in this context is

likely to stem from asymmetries in the data which are not adequately captured by

the chosen model, even when the model allows for (i) an asymmetric response to

shocks in the GARCH equation and (ii) a flexible asymmetric innovations distri-

butional assumption. This is the case, for example, with the asymmetric-power-

GARCH (or APARCH) model coupled with an asymmetric generalized Student’s t

distribution, which has been shown independently by Mittnik and Paolella (2000)

and Giot and Laurent (2004) to deliver relatively (compared to other models)

very accurate VaR forecasts, but which still have room for improvement. We con-

jecture, and show in our empirical study below, that with weighting functions

designed to place more weight on negative observations, this asymmetry problem

can be mitigated. We refer to the proposed method as tail weighted ML (or, in

short, TaWML).

It should be mentioned that there are now numerous ways of computing the VaR

of a particular financial asset, with comparisons of some of the most promising

methods detailed in Bao et al. (2006) and Kuester et al. (2006). As emphasized

in the methodology developed in Hartz et al. (2006), the search for ever-more-

complicated models might not be as productive as starting with simpler, easily-

estimated models and changing instead something other than the parametric form

of the model. In Hartz et al. (2006), the authors demonstrate the viability of using

the bootstrap and a bias-correction step in conjunction with the rudimentary (and

otherwise inadequate, but easily estimated) normal-GARCH model. In this paper,

we use parametric GARCH models which are only slightly more sophisticated and

still very easy to program and estimate, but change the weights associated with

the observations as they enter the likelihood.

A completely different approach to modelling in this context is to use nonpara-

metric methods. Kuester et al. (2006) demonstrate that, even for the successful

nonparametric methods (which, interestingly, all have, as part of their method-

ology, a parametric component, including EVT-GARCH and filtered historical

10



simulation), the choice of the parametric modelling component associated with

the GARCH filter and distributional assumption for the innovations is critical for

the out–of–sample performance. As such, parametric methods still appear to be

of great relevance in this context. We do not consider other types of nonparamet-

ric GARCH modelling schemes, such as that developed in Bühlmann and McNeil

(2002).

The remainder of this paper is organized as follows. Section 2.2 introduces the

two weighted likelihood families, TiWML and TaWML. A short description of the

parametric models that are used for illustrative purpose is contained in Section

2.3, while Section 2.4 discusses the empirical results. Because the two weighting

families address different shortcomings, we also show how a combination of them

results in further gains from synergies. Section 2.5 concludes.

2.2 Weighting Families

The fundamental concept of TiWML is to places more weight on recent obser-

vations. To implement the weighting scheme, a vector of standardized weights

τ = (τ1, . . . , τT ), is used such that
∑T

t=1 τt = 1, where T is the length of the time

series under study. The model parameters are then estimated by maximizing the

weighted likelihood, whereby the likelihood component associated with period t,

t = 1, . . . , T , is multiplied by τt.

In Mittnik and Paolella (2000), the two weighting schemes, geometric and hy-

perbolic, are proposed and studied, given respectively by τt ∝ ρT−t and τt ∝
(T − t + 1)ρ−1, where the single parameter ρ dictates the shape of the weighting

function. In both cases, values of ρ < 1 (ρ > 1) cause more recent observations to

be given relatively more (less) weight than those values further in the past; ρ = 1

corresponds to standard ML estimation.

The method of TaWML, proposed herein, places relatively more weight on nega-

tive (or, possibly, only on the extreme negative) returns in the sample. As already

mentioned, this would seem promising when, for example as in risk management
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applications, interest centers on the downside risk potential of a financial position

and density forecasts are not necessarily needed.

There are several possible strategies of placing more weight on negative obser-

vations. As in the time weighting scheme TiWML, each of the T components

of the likelihood gets multiplied by the tth component of a standardized weight

vector ω = (ω1, . . . , ωT ), with
∑T

t=1 ωt = 1. Figure 2.1 shows some promising tail

weighting candidates. Except for the upper left plot, which shows the default set-

ting of equal weights on positive and negative returns, all weighting schemes place

relative more weight on negative observations in the sample, with the special case

of the candidate labelled number 4, which is such that both extremes (negative

and positive) receive relatively more weight, while medium sized returns receive

less. The following is a description of the most promising weighting schemes in

risk management applications.

The first extension of the traditional approach of equal weights is straightforward

and obvious: split the sample into two groups of negative and positive observations,

and assign relatively more weight assigned to the former group, such that all nega-

tive observations receive the same weight, and likewise for the positive ones. This

can be graphically seen in the upper right panel of Figure 2.1, labelled “Weighting

Scheme 1”, subsequently referred to as WS-1. Let wn (wp) be the weight on the

negative (positive) values, of which there are nn (np) of them. For the weights to

sum to one, we require wnnn + wpnp = 1. In the standard (unweighted) setup,

clearly wn = wp = 1/ (nn + np), and to characterize the weighted case, we use

parameter γ and take

wn =
γ

nn + np

, wp =
1− wnnn

np

, where γ ∈
[
0,

nn + np

nn

]
.

Observe that, if γ = 0, then wn = 0 and wp = n−1
p , i.e., all weight is placed on

positive observations, and if γ = (nn + np) /nn, then wn = n−1
n , wp = 0, and all

weight is placed on the negative observations. For financial returns data, nn ≈ np,

so the upper bound on γ is approximately 2.
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The way WS-1 is constructed, it is not smooth in the sense that there is a

discrete jump in the weights where the filtered innovations of the model are split

into positives and negatives. Our second weighting scheme, WS-2, avoids this jump

by making use of a cumulative density function (CDF) to dictate the weights (see

Figure 2.1). The CDF of a Beta(p, q) random variable is used,

FBeta(x; p, q) =
Bx(p, q)

B(p, q)
, (2.1)

where Bx(p, q) =
∫ x

0
tp−1(1− t)q−1dt is the incomplete beta function and B(p, q) =

B1(p, q) is the beta function.

WS-2 is constructed as follows. Let ωt, t = 1, 2, . . . , T denote the weight cor-

responding to rt, . . . , rT , respectively. Mapping the returns on the domain of the

beta CDF by means of the transformation πt = rt/maxt(−rt) + 1, we have the

following relation between the weights and the returns rt,

ωt =





γ(1− FBeta(πt; p, q)) + 1 if rt < 0

1 otherwise,

resulting in the continuous weighting scheme shown in Figure 2.1. In the above

equation weighting factor γ ∈ R≥0 is the scale constant determining how much

weight is assigned to negative weights. A value of γ > 0 means negative returns

receive more weight, while γ = 0 is the default case of equal weights. In the final

step the weights are standardized so that the sum of all weights (negative and

positive) equals one,
∑T

t=1 ωt = 1.

When assigning different weights to negative returns we keep the parameters of

the beta CDF (p and q) constant in order to preserve the shape shown in Figure

2.1. In order to get the desired (and economically reasonable) shape for the time

weights, we used p = 250 and q = 2. The CDF corresponding to these values

gives rise to the plot in Figure 2.1 although with varying maxima governed by

the constant γ. We also tested different values for p and q but the results were

qualitatively the same.

In the empirical analysis we limit ourselves to WS-1 and WS-2, but there are

many more possible variants of weighting schemes. For example, WS-1 is easily

13



extended to the case in which (like for WS-2) more weight is placed on extreme

negatives than on moderate negatives, which can be seen in Figure 2.1 in the

second row of subplots labelled ’Weighting Scheme 3’. Furthermore, in WS-1 and

WS-2, we formed two groups of returns, e.g. positive and negative ones. It is also

possible to distinguish extreme negative returns and moderate negative returns on

the one hand and positive returns on the other hand, as can be seen in Figure 2.1

for ’Weighting Scheme 3’ in the third row.

There are more potentially interesting schemes we have not yet empirically tested

(schemes 4, 5, and 6). Candidates can be seen in Figure 2.1. Weighting scheme

4 places more weight on both extremes, positive and negative observations, not

necessarily equally. Weighting scheme 5 places more weight on negative returns

but not on very extreme negative returns. And finally scheme 6 even further

reduces the relative weight of very positive returns compared to moderate positive

returns.

In the empirical section we show how the results change when we combine the

weighting families TiWML and TaWML. The returns are then multiplied by the

product of each weighting family and re–standardized so that the weights sum to

one.

Note that, for both weighting scheme families (including the time weighting

schemes), an “optimal” value of ρ and γ cannot be estimated with the model

parameters, but must be obtained with respect to some criterion outside of the

likelihood function of the T observations. In Section 2.4 we will make use of out–

of–sample VaR predictions for this purpose.
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FIGURE 2.1: Different possible weighting schemes through which more weight is placed on negative ob-

servations in the sample. On the horizontal axes are the returns, the vertical axes shows the weights associated

with them. Weighting scheme ’Constant Weights’ corresponds to the default case of equal weights on negative

and positive returns.
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2.3 VaR Models

In order to show the general usefulness of the aforementioned weighting schemes, we

explore how the forecasting ability of different fully parametric models is influenced

by the proposed weighting functions.

In particular, we entertain five different models in the empirical section:

1. As a basic reference model we apply the original GARCH model by Bollerslev

(1986) with normally distributed innovations (hereafter normal–GARCH).

2. We use the same GARCH structure as in 1. but with the Student’s t distri-

bution to accommodate the fat tailed behavior (t–GARCH), and

3. also with an asymmetric generalized Student’s t distribution (t3) to allow for

skewness in the distributional assumption (t3–GARCH).

4. To capture the asymmetric impact of unexpected return shocks on future

volatility, Black’s (1976) so called leverage effect, we apply the asymmetric

power GARCH by Ding et al. (1993) coupled with the t3 distribution (t3–

APARCH).

5. We further analyze the mixed normal GARCH model (MixN) by Haas et

al. (2004a), through which, owing to its great flexibility, the skewness in the

data generating process is captured in a completely different way then by the

t3 distribution for example.

We will describe the models in more detail in the remainder of this section. All

entertained models belong to a location–scale family of probability distributions

of the form

rt = µt + εt = a0 +

p∑
i=1

airt−i + σtzt, (2.2)

where location µt and scale σt are Ft−1–measurable parameters and zt
iid∼ fZ(·),

where fZ is a zero–location, unit–scale probability density which could have addi-

tional shape parameters (such as the degrees of freedom parameter in the Student’s
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t distribution). Concerning µt we limit ourselves in the empirical analysis to an

AR(1) process.

In Bollerslev’s (1986) GARCH(r, s) model the scale parameter evolves as,

σ2
t = c0 +

r∑
i=1

ciε
2
t−i +

s∑
j=1

djσ
2
t−j. (2.3)

As mentioned above we utilize three different assumptions for the innovation distri-

bution, fZ , which are the normal, the Student’s t with ν ∈ R+ degrees of freedom

(in short, t distribution), and the generalized asymmetric t, (in short, t3) with

density

f (z; d, ν, θ) = C

(
1 +

(−zθ)d

ν

)− ν+1
d

I(z < 0) + C

(
1 +

(z/θ)d

ν

)− ν+1
d

I(z ≥ 0),

(2.4)

where d, v, θ ∈ R+, I (·) is the indicator function and

C = [(θ + θ−1) d−1ν1/dB (d−1, ν)]−1. The rth raw integer moment, 0 ≤ r < νd, for

the t3 is
(−1)r θ−(r+1) + θr+1

θ−1 + θ

B
(

r+1
d

, ν − r
d

)

B
(

1
d
, ν

) νr/d,

from which, for example, variance, skewness and kurtosis can be computed if they

exist. The cumulative distribution function (CDF) of the t3 (as required for VaR

calculation) is given by

F (z) =





IL (ν, 1/d)

1 + θ2
, if z ≤ 0,

IU (1/d, ν)

1 + θ−2
+ (1 + θ2)

−1
, if z > 0,

where L = ν /
[
ν + (−zθ)d ]

, U = (z/θ)d /
[
ν + (z/θ)d ]

, and

Ix(a, b) =
Bx(a, b)

B(a, b)

is the incomplete beta ratio.

With Bollerslev’s original GARCH model (and any distributional assumption) it

is not possible to let positive and negative shocks to the series have different impacts

on future volatility. In order to show that our results hold also for asymmetric
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models in which negative shocks have greater impact on future volatility than do

positive shocks of the same size, we also entertain the asymmetric power ARCH,

or A–PARCH (r, s). Then (2.3) is extended to

σδ
t = c0 +

r∑
i=1

ci (|εt−i| − γiεt−i)
δ +

s∑
i=1

diσ
δ
t−i, |γi| < 1, (2.5)

which, as is shown in Ding et al. (1993), nests at least seven GARCH(r, s) models

proposed in the literature. The special case δ = 1 and γ = 0 corresponds to (2.3);

parameter δ serves as a symmetric power transformation of σt; while γ 6= 0 allows

σt to respond asymmetrically to positive and negative shocks.

We now briefly turn to the last model for which we will provide forecasting com-

parisons in the empirical section. This is the mixed normal GARCH model, de-

noted MixN, that has recently been proposed by Haas et al. (2004a) and Alexander

and Lazar (2006), and generalizes the classic normal GARCH model of Bollerslev

(1986) to the normal mixture setting. In general, a random variable is said to

follow a k–component normal mixture distribution if its density is given by

fMixN(y; λ,η,σ(2)) =
k∑

j=1

λjφ(y; ηj, σ
2
j ), (2.6)

where φ(y; ηj, σ
2
j ) are normal densities; λ = [λ1, . . . , λk]

′ is the vector of strictly pos-

itive mixing weights which satisfy
∑

j λj = 1; and the elements of η = [η1, . . . , ηk]
′

and σ(2) = [σ2
1, . . . , σ

2
k]
′ are the component means and variances, respectively. If

Y ∼ MixN(λ,η, σ(2)), then

E[Y ] =
k∑

j=1

λjηj, and Var(Y ) =
k∑

j=1

λj(σ
2
j + η2

j )−
(

k∑
j=1

λjηj

)2

. (2.7)

In the MixN model for asset returns, it is assumed that the conditional distri-

bution of the return at time t, rt, is MixN, that is,

rt|Ft−1 ∼ MixN(λt, ηt, σ
(2)
t ), (2.8)

where Ft is the common information set at time t. The vector of component

variances, σ2
t , evolves according to the recursion

σ
(2)
t = α0 +

r∑
i=1

αiε
2
t−i +

s∑
j=1

βjσ
(2)
t−j, (2.9)
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where αi = (αi1, αi2, . . . , αik)
′, i = 0, . . . , r, are k × 1 vectors; βj, j = 1, . . . , s, are

diagonal k × k matrices1 with the component–specific persistence parameters on

the main diagonal; and from (2.2), εt, is

εt = rt − E(rt|Ft−1) = rt −
k∑

j=1

λj,tηj,t. (2.10)

As in Haas et al. (2004a) we will not pursue the case of component–specific mean

dynamics, but assume that we have the same AR(p) structure in each component.

That is, the conditional mean in component j can be written as

µj,t = a0,j +

p∑
i=1

airt−i, j = 1, . . . , k, (2.11)

where only the constant a0,j may differ across components in order to allow for

skewness of the conditional distribution. As an example in the empirical section, we

will use the mixed normal GARCH model with three components, denoted MixN,

because it might capture different aspects of the skewness than the t3, and also

because several analyses support their superiority in terms of forecasting ability. In

the empirical analysis that follows we use a GARCH(1, 1) as a basis for all models.

2.4 Empirical Results of various Stock Indices

and Exchange Rates

For the empirical analysis we use 9 sets of daily returns, of which 6 are stock

indices (NASDAQ Composite, S&P 500, DJIA, Nikkei 225, DAX 30 and FTSE 500)

and 3 are foreign exchange rates (US$–Swiss Franc, US$–JEN and US$–German

Mark and US$–Euro after 2001). The stock indices range from January 1970 to

January 2005 except for NASDAQ and FTSE whose inception dates are February

1971 and January 1978, respectively. The exchange rates range from January

1983 to January 2005 except the US$–Swiss Frank which starts in January 1986.2

1The full–matrix specification is considered in Haas et al. (2004a), though, as discussed there and confirmed

with other data sets, the diagonal restriction is usually favored in empirical applications.
2Datastream provides no US$–Swiss Frank data beyond 1986.
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For the analysis we calculate the continuously compounded percentage returns,

rt = 100 (log Pt − log Pt−1), where Pt denotes the index or exchange rate level at

time t.

2.4.1 Forecasting Performance

Because a major concern of risk management professionals is the downside loss

potential of a financial position, we study the out–of–sample forecast performance

with respect to Value–at–Risk (VaR). Our primary aim is to assess the potential

improvement in forecasting ability when using the proposed weighting functions,

and so we limit ourselves in this study to one–step–ahead forecasts. The VaR

with shortfall probability ξ is calculated as F̂M
t|t−1(VaRt(ξ)) = ξ, where F̂M

t|t−1 is

the predicted return distribution function at time t based on the information set

up to time t − 1 and use of model M. While numerous tests for the efficiency of

VaR forecasts are available (see, e.g. Christoffersen and Pelletier (2004); Kuester

et al. (2006); and the references therein), we consider only the empirical coverage

probabilities associated with the VaR forecasts. Our forecasting exercise for the

9 returns series uses a moving window of length 1, 000 days with parameter re–

estimation for each window. Given the length of the series we archive roughly 8000

forecasts per model that can be compared.

Most forecasting exercises show the percentage of violations associated with the

VaR forecasts for the 1%, 2.5%, 5% and 10% ξ-level. Clearly, the model which

achieves the closest coverage probability performs best for the respective data

set and VaR–level. In order to illustrate the forecasting performance of different

models, Kuester et al. (2006) illustrate their results for a spectrum of VaR levels

up to ξ = 10% with a convenient graphical depiction. They plot the forecast CDF

against the deviation from a uniform CDF. The VaR levels can therefore be read off

the horizontal axis, while the vertical axis depicts, for each VaR-level, the excess

of percentage violations over the VaR-level. Thus, the relative deviation from

the correct coverage can be compared across VaR levels and competing models.

Theoretically, an ideal model would exhibit a flat line at zero. Using this concept as
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γ = 0 γ = .25 γ = 5 γ = 10

a0 .0469 (.0462) .0489 (.0463) .0668 (.0465) .0660 (.0465)

a1 .2638 (.0139) .2576 (.0139) .2100 (.0135) .1747 (.0132)

c0 .0207 (.0001) .0207 (.0001) .0206 (.0001) .0206 (.0001)

c1 .0531 (.0003) .0532 (.0003) .0541 (.0003) .0541 (.0003)

d1 .9112 (.0059) .9119 (.0059) .9217 (.0057) .9287 (.0055)

TABLE 2.1: Normal–GARCH parameter estimates with WS-2 (standard errors in parentheses) as they

change when more weight is placed on negative observations. Parameter notation is from (2.2). γ = 0 means

negative and positive observations receive the same weight. As γ increases, more weight is given to the negative

observations.

a basis, we also compute the mean absolute deviation (MAD) of the actual violation

frequencies from the corresponding theoretical VaR–level over the intervals [0 −
0.01], [0− 0.025] and [0− 0.05] and compare these deviations for different weights

and weighting functions.

For WS-1 this can be seen in Figure 2.2 for each model and different values of

the weight parameter γ. Given a particular VaR level, the best model for this data

set is the one which has smallest MAD at γ = 1, emphasized though the dotted

horizontal line, which shows the point where negative and positive observations

receive the same weight. The closer the MAD is to zero, the better the model is for

the respective value of γ. For example, in Figure 2.2 we see in the upper left subplot

that, for increasing γ, the MAD decreases. That is, the forecasting performance

of the models improves as more weight is given to negative observations. When

we look at the third row we observe, for example in the third column, that for γ

bigger than 1.3 the MAD starts rising again, indicating that too much weight on

negative observations leads to an increase of the MAD eventually.
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FIGURE 2.2: Mean absolute deviation (MAD) of the empirical from the theoretical tail probability for

different weights, γ, ranging from .95 to 1.5 (x–axis) for WS-1. A weight equal to 1 indicates positive and negative

observations get the same weight (see vertical dashed line) while a weight bigger than 1 (smaller than 1) results in

more (less) weight for negative observations than for positive observations. The upper row depicts the results for

GARCH with Gaussian innovations, then follows GARCH with Student’s t innovations (second row) and GARCH

with skewed t innovations (third row). The fourth row contains the results for the APARCH model with skewed

t innovations, while the last row shows how the forecasting performance of the MixN model changes when more

weight is placed on negative weights. The left, middle and right columns show the MAD up to 1%, 2.5% and 5%

VaR–level, respectively. Data base is the NASDAQ Composite from January 1970 to January 2005.
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2.4.2 Empirical Results

We first describe the results for the first weighting scheme, WS-1, for the stock

indices and exchange rates and then turn to the second weighting scheme, WS-2,

both introduced in Section 2.2. Concerning WS-1, Figure 2.2 contains all enter-

tained models and their MAD for VaR levels of 1%, 2.5% and 5% for the NASDAQ

index. For the two weighting schemes, WS-1 and WS-2, different intervals for the

weighting factor γ are used. After some experimenting we chose a range for γ for

WS-1 of [.95; 1.5] and for γ of WS-2 of [0; 10].

−12 −10 −8 −6 −4 −2 0

2

4

6

8

10

r
t

Weight on negative returns

FIGURE 2.3: Weighting functions for the negative observations or returns for the NASDAQ data set and

the used grid for WS-2, γ = [.01, .1, .25, .5, 1, 1.5, 2, 2.5, 3, 4, 5, 6, 7, 8, 9, 10]. As γ increases more weight is placed

on negative observations, i.e. the bigger the area under the negative side of the weighting function.

For WS-1 we used steps of .01 resulting in 56 runs with different weights. Values

for γ < 1 mean more weight is placed on positive observations. γ = 1 is the non–

weighted case, while a γ > 1 means more weight is placed on negative observations.

For WS-2, γ = 0 refers to the non weighted case and γ > 0 means more weight

is placed on negative than on positive observations. The following grid for γ was

used: [.01, .1, .25, .5, 1, 1.5, 2, 2.5, 3, 4, 5, 6, 7, 8, 9, 10], which results in the different

weighting functions as shown in Figure 2.3.
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To illustrate how the parameters actually change when we place more and more

weight on negative observations Table 2.1 provides an overview of their realizations

for WS-2 for the normal–GARCH model from (2.2) and (2.3) for the NASDAQ

data set. As expected we observe that the AR and the GARCH parameters change

when more weight is placed on negative observations. For the AR parameters there

seems to be no tendency for a0, but a1 decreases monotonically as γ increases.

For the GARCH parameter we observe that c0 decreases by a very little amount.

However, at the same time both parameters that govern the volatility clusters,

c1 and d1, increase quite substantially, thus increasing the GARCH effects in the

model and making extreme values more likely to occur.

There are numerous papers comparing the forecasting performance of competing

VaR models and so we do not go into detail comparing the models for the equal

weight case, for which, unsurprisingly, our results are in line with the literature.

Going though all data sets and models we find that the plain vanilla GARCH is

outperformed by all fatter tailed models.

Turning to WS-1 and Figure 2.2 the first striking result for the NASDAQ data

set is that for all entertained models the forecasting performance can be improved

by allocating more weight on negative observations. Even the powerful models that

incorporate fat tails and skewness, the t3–GARCH, the t3–APARCH and the MixN,

can be improved by placing more weight on negative observations. The behavior

of the MAD, however, is different among the models. First and not surprisingly,

we see different absolute and percentage changes of the MAD for different models.

Second, within the range of γ for some models their MAD starts getting worse

again after some optimal γ while for other models the turning point seems to lie

outside the applied range. Third, the MAD changes are erratic for some models,

but for other models it changes quite smoothly.

Concerning the turning point of the MAD we find that, for example, for the

normal-GARCH (upper row) and the 2.5%-VaR level in the middle row of Figure

2.2 the MAD starts at a value of about .85 at γ = 1 and we receive a lowest MAD
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of about .55 for γ = 1.5. For the MixN the lowest MAD is at about γ = 1.15 with

a MAD value of less than .1. So, in order to archive the same reduction in MAD

we need more weight on negative observations for the normal–GARCH than for

the MixN, for example.

Table 2.2 gives an overview of the MAD of the other data sets. For every data

set and VaR–level the table contains the MAD value for γ = 1 and the lowest

MAD that was obtained in the γ–interval [0.95, 1.5]. For example, for the 1%–VaR

level for the normal–GARCH in the first row we have a MAD of .33 for the Dow

Jones index in the equal weight case and can achieve a value of at least .17 when

more weight is placed on negative observations, meaning we more than half the

respective MAD. Because of the erratic behavior of the MAD that can be seen in

Figure 2.2 the table actually just provides an indication of the MAD improvement

that can be achieved with WS-1. To save space pictures have been omitted for

the other data sets because they look similar to the NASDAQ case. The general

picture of these data sets is, however, qualitatively the same as we see for the

NASDAQ index.

For the Jen–US$ exchange rate the potential improvement of the MAD is prin-

cipally comparable with the NASDAQ index as can be seen from Figure 2.4. For

example, for the normal–GARCH and the 1% and 2.5% VaR level we do not even

achieve the minimum MAD within the chosen interval for γ. Also, we observe the

usual turning point for the more complex models, for example, the t3–GARCH in

the third row, from which on the MAD starts increasing again. Results for the

US$-German Mark and US$-SFR exchange rates are also contained in Table 2.2.

We now turn to WS-2. Up to this point we have seen results for the most

simple WS-1. This weighting scheme comprises a characteristic jump at ε = 0 as

can be seen in Figure 2.1. During the estimation process this jump can lead to

convergency problems due to the fact that we actually weight filtered innovations.

AR–parameters that change during the estimation process influence the group

composition of negative or positive observations and thus effecting the estimation.
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To use a weighting scheme with no such jump in the weighting function at ε = 0

we also show the results for WS-2. As an example, Figure 2.5 depicts the results

for the known VaR levels of 1%, 2.5% and 5% for the NASDAQ data set and the

t3–GARCH model. What is striking is that the picture looks very similar to the

plots for WS-1. We observe that for growing γ the models provide better forecasts

and we also observe the typical turning point at a value of γ between 2 and 6.

26



D
O

W
D

ax
F
T

S
E

S
&

P
N

ik
ke

i
D

M
-U

S
$

U
S
$-

S
F
R

M
o
d
el

V
aR

–l
ev

el
γ

=
1

m
in

γ
=

1
m

in
γ

=
1

m
in

γ
=

1
m

in
γ

=
1

m
in

γ
=

1
m

in
γ

=
1

m
in

n
or

m
al

-G
A

R
C

H
1%

.3
3

.1
7

.2
7

.1
1

.3
5

.2
1

.3
2

.2
3

.3
7

.3
0

.3
4

.2
1

.2
5

.1
0

2.
5%

.3
2

.1
4

.3
0

.1
5

.4
6

.1
7

.3
8

.1
7

.5
7

.2
6

.3
7

.1
7

.2
4

.1
3

5%
.2

8
.2

4
.2

3
.1

7
.3

0
.1

8
.2

9
.2

6
.6

5
.2

6
.2

7
.2

5
.2

8
.2

6

t−
G

A
R

C
H

1%
.0

9
.0

3
.1

3
.0

4
.2

4
.0

2
.0

8
.0

5
.1

0
.0

2
.0

6
.0

3
.1

4
.1

2

2.
5%

.1
2

.0
5

.1
5

.0
8

.3
4

.0
8

.1
0

.0
5

.2
6

.0
3

.0
8

.0
5

.2
0

.1
4

5%
.1

4
.0

5
.1

9
.0

6
.4

0
.0

6
.1

8
.0

4
.5

1
.0

5
.1

0
.0

6
.2

1
.1

3

t 3
-G

A
R

C
H

1%
.0

4
.0

3
.0

5
.0

3
.0

5
.0

8
.0

6
.0

5
.1

0
.1

0
.1

2
.1

0
.0

8
.0

4

2.
5%

.0
5

.0
4

.0
5

.0
5

.0
7

.0
3

.0
7

.0
4

.1
2

.0
6

.1
3

.1
0

.0
8

.0
7

5%
.0

5
.0

4
.0

8
.0

5
.1

5
.0

6
.0

8
.0

4
.1

4
.0

8
.1

3
.0

8
.1

2
.0

9

t 3
-A

P
A

R
C

H
1%

.0
5

.0
2

.0
6

.0
3

.0
9

.0
3

.0
6

.0
3

.0
7

.0
2

.0
5

.0
5

.0
8

.0
4

2.
5%

.0
5

.0
5

.0
9

.0
3

.0
9

.0
4

.0
5

.0
3

.1
2

.0
3

.0
9

.0
9

.0
7

.0
7

5%
.1

3
.0

4
.1

3
.0

5
.3

0
.0

7
.0

6
.0

5
.1

2
.0

7
.1

3
.0

8
.1

3
.0

6

M
ix

N
1%

.0
9

.0
4

.1
0

.0
3

.1
1

.0
4

.1
3

.0
2

.0
4

.0
2

.1
2

.0
7

.0
4

.0
3

2.
5%

.1
2

.0
6

.1
0

.0
5

.1
7

.0
8

.0
8

.0
3

.0
9

.0
3

.2
7

.1
3

.0
6

.0
6

5%
.1

3
.1

2
.1

7
.0

6
.2

2
.1

0
.0

8
.0

5
.2

1
.0

5
.3

7
.1

4
.0

5
.0

5

T
A

B
L
E

2.
2:

M
ea

n
a
b
so

lu
te

d
ev

ia
ti

o
n

(M
A

D
)

o
f

th
e

em
p
ir

ic
a
l

fr
o
m

th
e

th
eo

re
ti

ca
l

ta
il

p
ro

b
a
b
il
it
y

fo
r

W
S
-1

.
T

h
e

en
tr

y
’γ

=
1
’

co
n
ta

in
s

th
e

M
A

D
fo

r
th

e
eq

u
a
l

w
ei

g
h
te

d
ca

se
(a

s
a

re
fe

re
n
ce

)
a
n
d

th
e

en
tr

y
n
a
m

ed
’m

in
’

st
a
n
d
s

fo
r

th
e

m
in

im
a
l

a
ch

ie
v
ed

M
A

D
w

h
en

m
o
re

w
ei

g
h
t

is
g
iv

en
to

th
e

n
eg

a
ti

v
e

o
b
se

rv
a
ti

o
n
s.

T
h
is

ta
b
le

is

b
a
si

ca
ll
y

a
su

m
m

a
ry

o
f
F
ig

u
re

2
.2

fo
r

o
th

er
d
a
ta

se
ts

.

27



0.9 1 1.1 1.2 1.3 1.4 1.5
0.37

0.38

0.39

0.4

0.41

0.42

0.43

0.44

JEN−−USD, 1% VaR

0.9 1 1.1 1.2 1.3 1.4 1.5
0.45

0.5

0.55

0.6

0.65

0.7

0.75

JEN−−USD, 2.5% VaR

0.9 1 1.1 1.2 1.3 1.4 1.5
0.5

0.55

0.6

0.65

0.7

0.75

JEN−−USD, 5% VaR

0.9 1 1.1 1.2 1.3 1.4 1.5
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

JEN−−USD, 1% VaR

0.9 1 1.1 1.2 1.3 1.4 1.5
0

0.05

0.1

0.15

0.2

0.25

0.3
JEN−−USD, 2.5% VaR

0.9 1 1.1 1.2 1.3 1.4 1.5
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

JEN−−USD, 5% VaR

0.9 1 1.1 1.2 1.3 1.4 1.5
0

0.05

0.1

0.15

0.2

0.25

JEN−−USD, 1% VaR

0.9 1 1.1 1.2 1.3 1.4 1.5
0.05

0.1

0.15

0.2

0.25

0.3

JEN−−USD, 2.5% VaR

0.9 1 1.1 1.2 1.3 1.4 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

JEN−−USD, 5% VaR

0.9 1 1.1 1.2 1.3 1.4 1.5

0.05

0.1

0.15

0.2

0.25

0.3
JEN−−USD, 1% VaR

0.9 1 1.1 1.2 1.3 1.4 1.5
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4 JEN−−USD, 2.5% VaR

0.9 1 1.1 1.2 1.3 1.4 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

JEN−−USD, 5% VaR

0.9 1 1.1 1.2 1.3 1.4 1.5
0

0.05

0.1

0.15

0.2

0.25

0.3

JEN−−USD, 1% VaR

0.9 1 1.1 1.2 1.3 1.4 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6
JEN−−USD, 2.5% VaR

0.9 1 1.1 1.2 1.3 1.4 1.5
0

0.2

0.4

0.6

0.8

1

1.2
JEN−−USD, 5% VaR

FIGURE 2.4: Same as Figure 2.2 but for JEN-US exchange rate data.
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2.4.3 Combining the Weighting Families

As mentioned earlier the two weighting families: tail and time weighting (TaWML

and TiWML) address different shortcomings of the traditional approach. To com-

bine both weighting schemes we multiply the two respective weights belonging to

the same likelihood component and, as usual, divide them by their joint sum. For

the analysis of the combined approach we use a two dimensional grid. The first

dimension contains the know grid for WS-2 that we used in the analysis above

for TaWML. The second dimension contains a grid for the ’damping factor’ ρ to

capture the time dimension. We use a similar grid for ρ as in Mittnik and Paolella

(2000) for their geometric decay function, [.6, .7, .8, .9, 1, 1.1, 1.2]. For values of

ρ < 1 (ρ > 1), recent observations are given relatively more (less) weight than

those values far in the past, while ρ = 1 corresponds to standard ML estimation.

So we have 16 realizations of γ for TaWML and 6 realizations of ρ for TiWML

leading to 86 different forecasting exercises. To safe computing time we just run

the t3–GARCH model for the NASDAQ index. With Matlab Version 7 and a

standard Pentium 4 PC this alone takes about a week of number crunching.
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FIGURE 2.5: Same as in Figure 2.2 but for WS-2 and just for the t3–GARCH model.

Figure 2.6 shows the results. It basically shows 8 subplots with different val-

ues of γ for every subplot. On each subplot we have ρ on the X–axis and the

corresponding MAD on the Y–axis. We observe that for lower ρ (as more weight

is placed on recent observations) MAD tends to be lower. Furthermore, it seems
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FIGURE 2.6: MAD for three VaR levels (1% (solid), 2.5% (dashed) and 5% (dashdot)) and time varying

weighting parameter ρ, which determines how much weight is allocated between recent and past observations.

ρ = 1 refers to the case in which all observations are equally weighted. The smaller ρ the more weight is placed

on recent values.

clear that for increasing γ the graphs move down, however, this is not true for very

high values of γ, for example γ = 10. In that case there is even no improvement

by varying ρ anymore.

Figure 2.7 can be seen as an aggregated version of Figure 2.6 in which the

synergies of both weightings are more apparent. Different combinations of γ and

ρ for the 1% VaR level are shown and we find an optimal MAD for γ = 1.5 and

ρ = .8. So we indeed see that the MADs improve for smaller ρ (more weight on

recent observations) and as γ increases (more weight on negative observations).

Both weighting families are capable of decreasing the model MADs, and their
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combination leads to the best forecasting performance independent of the model

choice.

2.5 Conclusion

Almost all time series models used in empirical finance for density and Value–

at–Risk (VaR) forecasting are estimated via maximum likelihood methods. As

known to the literature using a weighted likelihood scheme in which more weight

is placed on observations in the recent past results in considerable out–of–sample

one step–ahead forecast improvement compared to the default of equal weights.

Extending the concept of weighted ML we introduce a weighting scheme in which

negative observations are valued heavier than positive ones. We propose several

potential weighting schemes in which the ’left side’ of the return distribution is

treated more important and demonstrate that for a variety of GARCH models

using such weighting schemes leads to an even further improvement in terms of

VaR forecasts.
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FIGURE 2.7: Same as Figure 2.6 but MAD just for the 1% VaR level and different values of γ.
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Chapter 3

Stable Mixture GARCH Models

3.1 Introduction

Starting with the pioneering works of Mandelbrot (1963) and Fama (1965), a va-

riety of studies have investigated the use of the stable Paretian distribution for

modelling the unconditional—and, later, the conditional—distribution of asset re-

turns. Given the skewed and very fat-tailed nature of weekly, daily, and higher-

frequency financial returns data, it is not surprising that the asymmetric stable

distribution has been very successful in this regard. However, an array of other fat-

tailed, skewed distributions exist, some of which also fit asset returns remarkably

well (see, e.g., McDonald (1996); Mittnik and Paolella (2000); Knight and Satchell

(2001); and the references therein), but none of these are closed under summa-

tion. It is well known that the stable Paretian is the only valid distribution that

arises as a limiting distribution of sums of independently, identically distributed

(iid) random variables. Given that error terms in econometric models are usually

interpreted as random variables that represent the sum of the external effects not

being captured by the model, the use of the stable Paretian assumption should be

highly desirable. For an overview of the use of the stable Paretian distribution in

financial and other econometric applications, see Mittnik and Rachev (1993a,b),

McCulloch (1996), Rachev et al. (1997), Rachev et al. (1999), Rachev and Mittnik

(2000), Bams et al. (2005), and the contributions in Adler et al. (1998) and Rachev

(2003).

Another popular and successful approach to the unconditional modelling of as-

set returns and VaR prediction involves the use of discrete mixtures of normal

distributions. Owing to its great flexibility, a normal mixture, even with just two

components, is well-suited for capturing the usual stylized facts typical in a finan-

cial context. This model has been investigated by numerous authors, including
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Fama (1965), Kon (1984), Akgiray and Booth (1987), Tucker and Pond (1988)

and Kim and Kon (1994). For example, Kon (1984) suggests that returns may

be influenced by a series of different information flows including macroeconomic,

institutional specific and seasonal information announcements, thus justifying the

discrete mixture.

A different economic motivation for the presence of a mixture of distributions

is provided by Vigfusson (1997). He builds on theoretical work which attempts to

explain the stylized facts of financial time series by the interaction of heterogeneous

groups of agents, with the groups processing market information differently; see,

e.g., Samanidou et al. (2002) for an overview of such models. In doing so, he

identifies a “chartist” and a “fundamentalist” component. The fact that, for each

component, a central limit theorem argument can be used to justify the use of the

normal distribution is appealing, and lends some theoretical justification for the

model and its economic interpretations.

In recent years, attention has moved somewhat away from the unconditional

modelling of the distribution of asset returns, and more towards accurate assess-

ment of predicting the Value-at-Risk, or VaR, of a financial portfolio. For a given,

small target probability λ, typically chosen between 1% and 5%, the VaR delivers

an upper bound on losses such that it will be exceeded with probability λ. In

particular, conditional on the information given up to time t, the VaR for period

t + h of one unit of investment is the negative λ-quantile of the conditional return

distribution, i.e.,

VaRt+h := −Qλ(rt+h | Ft) = − inf
x
{x ∈ R : Pr(rt+h ≤ x | Ft) ≥ λ}, 0 < λ < 1,

(3.1)

where Qλ(·) denotes the quantile function; rt is the return on an asset or portfolio

in period t; and Ft represents the information available at date t. While it has

been argued that VaR is not an adequate risk measure because it does not satisfy

the essential property of subadditivity,1 its importance and practical relevance is

1See, e.g., Artzner et al. (1999), Acerbi and Tasche (2002a,b), Tasche (2002) and Dowd (2002, Sec. 2.2.3).
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undoubted, due to its central role in banking regulation and its use for internal risk

management, which has stimulated a great deal of academic interest in calculating

reliable VaR measures. The fact that VaR involves the quantile of a predictive

distribution means that all the unconditional and conditional parametric distri-

butional models of (portfolio) asset returns using the stable Paretian and/or the

normal mixture assumption are relevant.

This paper proposes a model which nests the stable Paretian and the normal

mixture assumptions, combines them with a rich conditional heteroscedastic struc-

ture, and demonstrates its effectiveness for VaR prediction. The remainder of this

paper is as follows. Section 3.2 summarizes the existing conditional heteroscedas-

tic models and their relation to the stable Paretian and mixed normal models

discussed above. Section 3.3 introduces the new model, Section 3.4 illustrates its

use with the DAX stock index, and Section 3.5 provides some concluding remarks.

3.2 Conditional Heteroscedastic Models

Of all the conditional models in use for VaR prediction (see Kuester et al. (2005),

and the references therein for surveys of the various methods), the class of GARCH

models has proven itself to be highly effective and is by far the most popular;

see Bollerslev, Engle and Nelson (1994), Palm (1997) and Gourieroux (1997) for

surveys. The standard GARCH model of Engle (1982) and Bollerslev (1986), is

given by

rt = µ + σtεt, σ2
t = θ0 +

r∑
i=1

θi|yt−i − µ|2 +
s∑

j=1

φjσ
2
t−j, (3.2)

where εt
iid∼ N (0, 1). Despite their success in capturing a very high percentage of the

volatility movement, countless applications have confirmed that the residuals, or

filtered innovations, from (3.2), when applied to weekly, daily, or higher frequency

asset return data, still deviate considerably from normality. This has given rise

to a large number of alternative models which replace the normality distributional

assumption in the GARCH model with a fat-tailed, possibly skewed, distribution,

the most popular of which being the t-GARCH, which assumes a Student’s t dis-
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tribution whose degrees of freedom parameter, v ∈ R+, is jointly estimated with

the other model parameters.

With regard to the aforementioned appropriateness of the stable distribution

instead of ad-hoc assumptions such as the Student’s t, it would seem natural

to consider its use in conjunction with a GARCH-type model. This was indeed

done, first by McCulloch (1985) in a simplified ARCH-type structure, and later

in the more general GARCH setting by Liu and Brorsen (1995), Panorska et al.

(1995), Mittnik et al. (1998a,b), and Mittnik and Paolella (2003), all of whom have

demonstrated its effectiveness in a variety of applications. A more general power-

stable-GARCH model is proposed in Mittnik et al. (2002), where sufficient, easily

computable stationarity conditions are derived. Their model is given as follows.

The sequence yt is said to be a stable Paretian power GARCH process or, in short,

an Sδ
α,βGARCH(r, s) process, if

yt = µ + ctεt, cδ
t = θ0 +

r∑
i=1

θi|yt−i − µ|δ +
s∑

j=1

φjc
δ
t−j, (3.3)

where εt
iid∼ Sα,β (0, 1), and Sα,β (0, 1) denotes the standard asymmetric stable Pare-

tian distribution with stable index α, skewness parameter β ∈ [−1, 1], zero location

parameter, and unit scale parameter. The power parameter δ is introduced for the

same reasons as in the power GARCH model of Ding et al. (1993), and, in this

context, is constrained such that 0 < δ < α. This differs from the model of Liu and

Brorsen (1995), who constrain δ = α, and Panorska et al. (1995), who set δ = 1, for

both theoretical and practical reasons; see Mittnik et al. (2002) for further details.

As in Samorodnitsky and Taqqu (1994) and Rachev and Mittnik (2000),

∫ ∞

−∞
eitxfS(x; α, β, 0, 1) dx =





exp{−|t|α[1− iβsign(t) tan πα
2

]}, if α 6= 1,

exp{−|t|[1 + iβ 2
π
sign(t) ln |t|]}, if α = 1,

(3.4)

is the characteristic function of the standard (location zero, scale one) asymmetric

stable Paretian distribution and fS denotes its density function. For α = 2, the

standard stable Paretian distribution coincides with normal distribution N(0, 2),

while for α < 2, εt does not possess moments of order α or higher.
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If the true data generating process of the observed data is actually given by

(3.3) and the model is estimated with a consistent estimator such as maximum

likelihood, then the residuals of the model should be (approximately) iid stan-

dard asymmetric stable, and thus obey the summability property. A test for the

summability property in the context of stable GARCH models with correct size

and reasonable power against alternatives (such as Student’s t and mixed normal

innovations) has been proposed and studied in Paolella (2001), and further applied

in Mittnik et al. (2000). The results from those studies indicate that, for several

stock indices and exchange rate series, the null hypothesis of stable innovations is

tenable, though for many series, the null hypothesis can be rejected.

Building on the success of the mixed normal for capturing the skewness and

excess kurtosis of asset returns, several ways have been proposed which combine

mixture distributions with GARCH-type structures. These are reviewed in Haas et

al. (2004a), hereafter HMP, in which a general model structure is proposed and its

stationarity conditions are derived. The model nests previously proposed models

which worked with various parameter-restricted, two-component structures, such

as those in Vlaar and Palm (1993), Palm and Vlaar (1997) and Bauwens et al.

(1999), and also reduces to Bollerslev’s (1986) original GARCH model in the single-

component case. The model allows for conditional heteroscedasticity in each of the

components as well as dynamic feedback between the components. This mixed–

normal GARCH model also inherits the economic appeal attributed to the normal

mixture models, and, irrespective of economic interpretation, has been shown in

HMP and Kuester et al. (2005) to produce very competitive out-of-sample VaR

predictions.

As in HMP, we say that time series {εt} is generated by an n–component mixed

normal GARCH(r, s) process, denoted MixN-GARCH, if the conditional distribu-

tion of εt is an n–component mixed normal with zero mean, i.e.,

εt|Ft−1 ∼ MN
(
ω,µ,σ2

t

)
, (3.5)
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where ω = (ω1, . . . , ωn)′, µ = (µ1, . . . , µn)′ and σ2
t = (σ2

1t, . . . , σ
2
nt)

′ are column

vectors, and the mixed normal density is given by

fMN

(
y; ω,µ, σ2

t

)
=

n∑
j=1

ωjφ
(
y; µj, σ

2
jt

)
,

φ is the normal density, ωj ∈ (0, 1) with
∑n

j=1 ωj = 1 and, to ensure zero mean,

µn = −∑n−1
j=1 (ωj/ωn) µj. The component variances, σ

(2)
t , follow the GARCH–like

structure

σ
(2)
t = γ0 +

r∑
i=1

γiε
2
t−i +

s∑
j=1

Ψjσ
(2)
t−j, (3.6)

where γi = (γi1, γi2, . . . , γin)′, i = 0, . . . , r, are n× 1 vectors, and Ψj, j = 1, . . . , s,

are n × n matrices. In virtually all applications, r = s = 1 suffices, which agrees

with the vast number of papers which implement the regular normal GARCH

model. In the remainder of this paper, we take r = s = 1. As discussed and

demonstrated in HMP, it is also reasonable to restrict Ψj to be diagonal because

it results in a much more parsimonious model which is superior to the fully pa-

rameterized one according to the usual model selection criteria AIC and BIC. It is

noteworthy that, for n > 1, the MixN-GARCH model (with or without the diago-

nal restriction on the Ψj matrices) gives rise to time varying skewness, a stylized

fact which has been noted by several authors (see e.g., Harvey and Siddique (1999);

Rockinger and Jondeau (2002)).

It is plausible that the component of the mixture assigned to the most volatile ob-

servations does not require a GARCH structure, i.e., occasionally occurring jumps

in the level of volatility may be captured by a component with a relatively large,

but constant, variance. We denote by MixN(n, g) the model given by Equations

(3.5) and (3.6), with r = s = 1 and diagonal Ψ1, and with n component densities,

but such that only g, g ≤ n, follow a GARCH(1,1) process (and n− g components

restricted to be constant). For capturing the weak correlation in the returns, the

AR(1) model rt = a0 + a1rt−1 + εt is used jointly with the GARCH structure (3.5)

and (3.6).
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Kuester et al. (2005) demonstrate that one or more of the component densities

of the MixN model can still exhibit tails which are fatter than the normal. Simi-

lar to replacing the normal assumption in a standard GARCH model, one ad-hoc

remedy is to replace the mixed normality assumption by a more flexible (symmet-

ric) distribution. For example, HMP used a Student’s t for each component while

Kuester et al. (2005) applied the generalized exponential distribution, or GED,

which was found to be superior to the use of the Student’s t. The location–zero,

scale–one GED density with exponent p is given by

f (x; p) =
p

2Γ (p−1)
exp {− |x|p} , p ∈ R+. (3.7)

After rescaling, the normal and Laplace distributions arise as special cases for

p = 2 and p = 1, respectively. As p → ∞, the GED approaches a uniform

distribution. The cumulative distribution function (CDF) is required for VaR

calculations; straightforward calculation shows that the CDF for x ≤ 0 is given by

F (x; p) =
1

2

(
1− Γ̄(−x)p

(
p−1

))
, x ≤ 0, (3.8)

where Γ̄ is the incomplete gamma ratio. The symmetry of the density implies

that F (x) = 1 − F (−x), from which F (x) for x > 0 can be computed using

Equation (3.8). We denote by MixGED(n, g) the model similar to how we define

MixN(n, g), but such that the n distributional components are GED instead of

normally distributed, each with its own shape parameter pi, i = 1, . . . , n. These

additional n parameters are (as usual) not pre-specified, but jointly estimated

along with the remaining ones.

While the MixGED leads to improved model fit and forecasts, the GED is still

just an ad-hoc distribution not in accordance with the central limit theorem. In

light of these facts, this paper extends the MixN model by replacing the normality

assumption with the symmetric stable Paretian distribution—which also nests the

normal, but is still in line with the (generalized) CLT. We show in Section 3.4

that, based on almost 8000 out-of-sample VaR forecasts for the daily returns of
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the DAX stock index, our new model yields a highly significant improvement in

VaR prediction compared to its special cases, and also improves upon the MixGED.

3.3 The MixStab Model

Analogous to the model given in Equations (3.5) and (3.6), time series {εt} follows

an n–component mixed stable GARCH(r, s) process, denoted MixStab-GARCH, if

the distribution of εt | Ft−1 is a weighted mixture of symmetric stable distributions,

i.e., its density at some real value x is given by

fεt|Ft−1(x; α,ω,µ,σ
(δ)
t ) =

n∑
j=1

ωjfS(x; αj, 0, µj, σ
δ
jt), (3.9)

where α = (α1, . . . , αn)′ is the set of tail indices corresponding to the n symmetric

stable distributional components, and, as before, ω = (ω1, . . . , ωn)′ is the set of

nonnegative weights which sum to one, µ = (µ1, . . . , µn) is the set of component

means, and now σ
(δ)
t = (σδ

1t, . . . , σ
δ
nt)

′ is the set of strictly positive scale parameters,

and fS(x; α, 0, µ, c) is the location-µ, scale-c, symmetric stable Paretian density

function with tail index α. We assume that 1 < α ≤ 2, so that the mean exists,2

and restrict 0 < δ < mini αi, which is a natural extension of the power restriction

in the (single component) stable GARCH model (3.5) and (3.6). As with the MixN

model, to ensure zero mean, µn = −∑n−1
j=1 (ωj/ωn) µj. The component scale terms,

analogous to the variance term in the MixN model, evolve according to

σ
(δ)
t = γ0 +

r∑
i=1

γiε
δ
t−i +

s∑
j=1

Ψjσ
(δ)
t−j. (3.10)

Similar to the MixN model, MixStab(n, g) denotes the n–component mixed stable

GARCH(1, 1) process with diagonal Ψ1 matrix, the above constraints on the αi

and δ, and such that only g of the n components have a GARCH structure.

The resulting model nests, among others, the following models:

2This has never been a binding constraint; in all applications, for the single-component stable-GARCH model,

the estimated value of α has always been well above one, and this will certainly be the case for n αi–values in the

MixStab-GARCH, because the richer GARCH structure accounts for even more of the fat-tailed behavior of the

series.
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1. The unconditional stable Paretian model, as proposed for stock returns by

Mandelbrot (1963) and Fama (1965), by taking n = 1 component and no

GARCH structure.

2. The unconditional mixed normal model from Fama (1965), Kon (1984) and

others, by taking α restricted to be 2 in each of the n components and no

GARCH structure.

3. The plain normal–GARCH model (3.2), by taking n = 1 component, and α

and δ restricted to be 2.

4. The stable-GARCH model (3.3) of Mittnik et al. (2002), by taking n = 1

component.

5. The MixN(n, g) GARCH model (3.5) and (3.6) of HMP, by taking δ and each

αi, i = 1, . . . , n, to be 2.

We have found, for a variety of data sets including the one under study in this

paper, that restraining δ to be one results in very little loss of goodness of fit.3

Given the already large number of parameters in the MixStab model, such a model

simplification is welcome.4 As such, in all MixStab models discussed below, δ = 1.

From Equations (3.9) and (3.10), it is readily apparent that the likelihood of

the MixStab model is straightforward to calculate, provided that a computable

expression for the density of the stable Paretian distribution is available. This has

been addressed in different ways by McCulloch (1998), Doganoglu and Mittnik

(1998), and Mittnik, Doganoglu and Chenyao (1999). We use the fast Fourier

transform–based method of the latter paper, which, by the nature of the FFT

algorithm, is particularly well–suited for computing the density at a large number

of (data) points. This was used in conjunction with the (in Matlab Version 7

3This agrees with the findings in Panorska et al. (1995) and, for a variety of other distributional assumptions,

GARCH-structures, and data sets, Paolella (1997).
4Other constraints were tried, such as restricting all αi to be equal, but this was clearly rejected using likelihood

ratio tests and both penalty criteria AIC and BIC.

40



noticeably improved and very reliable) quasi-Newton multivariate minimization

routines available in Matlab for computing and maximizing the likelihood of the

model. As computing the likelihood entails evaluating the n stable densities at all T

sample observations (in our empirical study, we use a moving window of T = 1000

observations), significant computational time is unavoidable, but, despite the large

parameterization, numeric estimation problems did not arise, even with the use of

relatively naive starting values.

As the stable distribution does not possess a finite second moment, the MixStab–

GARCH process will not be covariance stationary. It may have finite unconditional

moments of lower order, however. As mentioned above, in the applications, we

will always assume δ = 1, i.e., the absolute power GARCH specification. For this

model, a sufficient condition for the existence of the unconditional first moment

can be obtained by arguments similar to Bollerslev (1986) and HMP. We will only

consider the GARCH(1,1) case, which certainly possesses the greatest practical

relevance.

We can write the MixStab–GARCH process as

εt = zj,tσj,t + µj with probability ωj, j = 1, . . . , k, (3.11)

where {zj,t}, j = 1, . . . , k, is an iid sequence of stable random variables with index

αj. It is well known (see, e.g., Samorodnitsky and Taqqu (1994); Mittnik et al.

(2002)), that E(|zj,t|) = καj
, where

καj
=

2

π
Γ

(
1− 1

αj

)
.

As |zj,tσj,t + µj| ≤ |zj,t|σj,t + |µj|, this implies

E(σt|Ft−2) ≤ γ0 + γ1

k∑
j=1

ωj(καj
σj,t−1 + |µj|) + Ψ1σt−1 (3.12)

= b + Cσt−1, (3.13)

where

b := γ0 + γ1ω
′|µ|, |µ| := [|µ1|, . . . , |µk|]′, C := γ1(ω ¯ κ)′ + Ψ1,
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and κ := (κα1 , . . . , καk
)′. From (3.12), we can further deduce that

E(σt|Ft−3) = E[E(σt|Ft−2)|Ft−3] ≤ b + CE(σt−1|Ft−3) ≤ (Ik + C)b + C2σt−2.

Proceeding in this fashion, we get E(σt|Ft−τ ) ≤
∑τ−2

i=0 Cib + Cτ−1σt−τ+1, which

tends to (Ik −C)−1b < ∞ with τ →∞, given that the largest eigenvalue of C is

below unity. Assume that the process started indefinitely far in the past with finite

first moment, then it has a finite unconditional first moment, which is bounded

by (ω ¯ κ)′(Ik − C)−1b + ω′|µ|. If all component means are zero, implying a

(symmetric) scale mixture of stable distributions, the condition on the eigenvalues

of C is also necessary and sufficient for E(εt) to remain finite, and the unconditional

expectation can be computed exactly.

Given that the component means are constant, i.e., they do not contribute to the

dynamics of the process, we suspect that the condition on C is also necessary in

the more general case, but this is yet to be established. We may also note that the

autocorrelation function of |εt| will never exist, because this requires E(ε2
t ) < ∞.

3.4 Empirical Results

The VaR forecasting analysis is carried out using the DAX 30 index, which covers

the 30 largest German public companies, from Jan. 26th, 1970, to Jan. 25th, 2005.

For daily closing index price pt at time t, we work with the percentage log–returns,

rt := 100(ln pt− ln pt−1) of the index. The daily closing index price and returns are

shown in Figure 3.1. Using a rolling window of length 1, 000 days to account for

the fact that the model parameters most likely change through time, our analysis

comprises 7,758 one-step out–of–sample forecasts. For all models considered, we

re–estimate the model parameters every 20 trading days. This resulted in a massive

computing time reduction, in particular for the stable mixtures model (this being

an admitted drawback of the model).

As discussed in the Introduction, we restrict attention to the out–of–sample

forecast performance with respect to VaR, and also to one-step ahead forecasts,

which is common in the literature (though not always what is desired in practice).
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FIGURE 3.1: Percentage returns (lower panel) and levels (upper panel) of the DAX
30 Index; daily closing quotes from January 26th, 1970 to January 25th, 2005.

Multi-step ahead VaR forecasts require simulation, and are straightforward to con-

duct with all the models considered herein, but we limit ourselves in this study to

one-step, which is adequate for demonstrating the benefit of our newly proposed

model class. Also, while numerous tests for the efficiency of VaR forecasts are

available (see, e.g., Christoffersen (1998); Kuester et al. (2005); and the references

therein), we study only the empirical coverage probabilities associated with the

VaR forecasts, the accuracy of which is by far the most important criteria.

3.4.1 Model Comparison

For the empirical out–of–sample forecasting comparison, we restrict ourselves to

the conditional models because, as numerous studies including Brooks et al. (2005),

Kuester et al. (2005), and Bao et al. (2004) have shown, the unconditional model

specifications suffer from poor VaR performance across all λ–levels. These include

the models 1 and 2 listed in Section 3.3.

Besides the mixture models MixN(n, g), MixGED(n, g), and MixStab(n, g), the

conditional models under investigation include the normal–GARCH model (num-

ber 3 in our list) and the stable–GARCH model (number 4). Regarding the former,
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we take the power parameter in the GARCH equation of (3.2) to be one instead

of two. This is done firstly because it enables a more direct comparison with the

stable models, and secondly, because it generally leads to a better fit and better

volatility forecasts than the usual choice of two; see Taylor (1986), Schwert (1989)

and Nelson and Foster (1994). (The same idea can also be applied to the MixN

recursion (3.6), though in our empirical studies, the difference was very minor and

not worth reporting.) Regarding the stable–GARCH model, we use two forms; one

restricting the stable innovations to be symmetric (so that it is precisely the one-

component, MixStab(1, 1) model), and unrestricted, i.e., with asymmetric stable

innovations. This allows us to determine the benefit of asymmetric innovations

in the one-component model. For all GARCH-type models used in our study, we

always take r = s = 1.

In sample fit: As is common in the GARCH literature, we use the standard

model selection criteria AIC and BIC (see, e.g., Burnham and Anderson, 2003,

for an excellent presentation and derivation of such criteria) to rank the models

with different numbers of parameters. For a K–parameter model, based on T

observations and with log likelihood L at the MLE, AIC = −2L + 2K and BIC =

−2L + K log T .

Consider first the results for the one component models of normal–GARCH,

symmetric stable–GARCH, and asymmetric stable–GARCH. The top segment of

Table 3.1 shows the empirical coverage probabilities (as percentages) for the 1%,

2.5%, 5% and 10% VaR–levels. The results across the three models are similar,

and not particularly good. The symmetric and asymmetric stable GARCH are,

as expected, better than the normal GARCH model for the more extreme VaR

values, including 1% and 2.5%. The normal–GARCH performs best for the 10%

VaR level.

For a more convenient overview of the performance for the three models, Figure

3.2 plots the forecast CDF value (i.e., F̂t+1|t(rt+1), where F̂t+1|t is the CDF of the

predictive distribution) against the deviation from a uniform CDF for all VaR
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levels up to λ = 0.1. The VaR levels can be read off the horizontal axis, while

the vertical axis depicts, for each VaR-level, the excess of percentage violations

over the VaR-level. Thus, the relative deviation from the correct coverage can be

compared across VaR levels and competing models. It is clear from Figure 3.2 that

asymmetric stable–GARCH perform best for the more extreme (and indeed, most

commonly used) VaR–levels, up to roughly 6%, while normal–GARCH outperforms

both stable–GARCH models for the less interesting VaR–levels from 6% to 10%.5
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FIGURE 3.2: Deviation probability plot for the one component GARCH models with
different distributional assumptions. Plotted values are “Deviation” := 100(FU − F̂ )
(vertical axis) versus 100F̂ (horizontal axis), where FU is the CDF of a uniform random
variable; F̂ refers to the empirical CDF formed from evaluating the 7,758 one–step,
out–of–sample distribution forecasts at the true, observed return.

From Figure 3.2, it is readily apparent for which VaR levels, and how much, im-

provement is gained in going from the (one-component) symmetric stable GARCH

model to the asymmetric: for virtually the whole range of VaR levels considered,

and notably from 2.5% to 7.5%, there is considerable improvement. However, as

we now demonstrate, the additional accuracy achieved by the mixture models is

far greater than this. This underscores our finding that, for this data set and class

of models, changing the innovations distribution in a (single component) GARCH

model is not enough to reap large improvements in VaR quality; what is required is

5That the normal–GARCH model performs reasonably well for larger values of λ agrees with the findings of

other empirical studies such as McNeil and Frey (2000) and Danielsson and Morimoto (2000).
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a richer GARCH structure which can account for the heteroscedasticity dynamics

which the usual GARCH structure (irrespective of r and s) cannot capture.

We now turn to the mixture models, which, as just mentioned, are superior to

their simple, one-component counterparts. An important question inherent in these

models regards the optimal number of mixture components to be used. For this

data set and the chosen window length of 1,000 days, we found that, for all three

distributional assumptions, the two–component models (n = 2) are significantly

outperformed by use of n = 3. This agrees precisely with the findings of Kuester

et al. (2005) for the NASDAQ returns data set. We thus restrict attention to

the three–component models and the two choices g = {2, 3}. The VaR violation

frequencies for the MixN(n, g), MixGED(n, g) and MixStab(n, g) models can be

found in Table 3.1 for the 1%, 2.5%, 5% and 10% VaR levels. It is evident that

the MixGED(n, g) outperforms the MixN(n, g) models, indicating that substantial

nonnormality in the filtered mixture components still exists. While this was to be

expected, it is less obvious that the MixStab(n, g) should emerge as the overall

best performer.

As with the results for the one-component models, a broader overview of the

quality for all VaR levels up to 10% is provided by the deviation plot in Figure 3.3.

To serve as a reference, the normal–GARCH result from Figure 3.2 is overlaid. The

most obvious (and least surprising) observation is that all mixture models perform

far better than the normal–GARCH. Next, a clear ranking between the mixture

models emerges from the plot: The forecasting performance of the MixGED(3, g)

and MixStab(3, g) models is better than that of the MixN(3, g), while MixStab(3, g)

is seen to be the best. The MixN(3, g) and MixGED(3, g) prediction performance,

for both g = 2 and g = 3, is such that the deviation plots are above the horizontal

line, i.e., these models, on average, underestimate the true frequency of extreme

returns. The one–component GARCH models, regardless of the distributional

assumption, underestimate even more (see Figure 3.2). On the other hand, the
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MixStab(3, g) models tend to slightly overestimate VaR, which is not surprising

given their inherently very heavy–tailed nature.

We also report a measure of fit that summarizes the VaR performance of each

model. As in Kuester et al. (2005), we report the mean absolute deviation (MAD)

and mean squared deviation (MSD) of the actual violation frequencies from the

corresponding theoretical VaR-level. Table 3.2 provides this summary information

by averaging over all deviations in the (practically more interesting) interval for

λ (0, 0.05] and also in (0, 0.1]. Both summary measures indicate the same results

revealed in the deviation plots, namely that the MixStab(3, g) models provide the

lowest deviation over the entire tail. For MAD(5%) and MSD(5%), MixStab(3,2)

is the best performer, very closely followed by MixStab(3,3) and the MixGED

models. Note that, for reasons of simplicity, both measures treat under– and

overestimation of risk equally, which might not be reasonable for risk–management

purposes. The performance of the stable models would profit even further from an

adjusted measure which favors overestimation.

3.4.2 Further Analysis of the Mixture Models

As the MixStab and MixN models coincide by taking all the stable indices αj to

be two, it is interesting to examine how far from two the values of the estimated

αj deviate. For convenience, we just write g = 2 and g = 3 to refer to the

MixStab(3, 2) and MixStab(3, 3) models, respectively. Figure 3.4 and 3.5 plot the

estimated tail index values, though the moving window, for g = 2 and g = 3,

respectively. The clear upward pattern in Figure 3.5 for g = 3 would seem to

indicate that the returns on the DAX have become less heavy–tailed through time.

Notice, however, that because of the scaling in the graph, only the first (least fat–

tailed) component increases significantly.6 The α̂j for g = 2 also indicate that the

6From a practitioners point of view, this would suggest that, when working with recent DAX data, the constraint

α1 = 2 could be entertained, which would save estimation time and, depending on its validity, potentially lead to

more accurate point estimates of the remaining model parameters. We leave this exercise to future, more applied

work.
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tails of the DAX have become less heavy. However, in stark contrast to the g = 3

case, all three α̂j sequences decrease at the beginning of the second half of the

sample (which roughly coincides with the years 1987 to 1991). From Figure 3.1,

we see that this window comprises three very negative returns, each of more than

−9% (Oct. 19th, 1987; Oct. 16th, 1989; and Aug. 19th, 1991). A straightforward

and plausible reason why the α̂j decrease in this period for g = 2 and not for g = 3

is that the added GARCH structure in the latter is compensating for the increased

occurrence of tail events (which is exactly what the original GARCH model was

designed to do).

We now briefly look at the estimated component weights for some of the models.

Figure 3.6 shows the evolution of the three component weights ω̂j, j = 1, 2, 3,

for the MixStab(3, 3) model, estimated throughout the moving window of 1,000

trading days, and having been updated (re-estimated) 20 days. We see immediately

that the first two component weights are, in terms of relative changes, virtually

constant through time, and the third component lies below 4%, and is never zero.

This relative constancy of the weights contributes some evidence that the DAX

market index is actually comprised of mixtures of different components.7 Figures

3.7 and 3.8 are similar to Figure 3.6, but show the weights for the MixN(3,3) and

MixGED(3,3) models, respectively. In both cases, the weights are far more volatile

than with the stable mixture model. While this is not evidence, per se, that the

stable model is preferable to the normal and GED, it certainly lends favor to it,

in the sense that weights which are highly erratic complicate the interpretation of

the model and weaken the case supporting the usage of mixtures.

7As the weights do move somewhat, their relative constancy is not an artefact of faulty numerical likelihood

maximization (whereby the parameters “stick” to their initial values). This was also confirmed by using different

starting values for some data segments.
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Model VaR(1%) VaR(2.5%) VaR(5%) VaR(10%)

normal–GARCH 1.68 3.28 5.71 10.23

sym-stable–GARCH 1.43 3.27 6.01 10.63

asym-stable–GARCH 1.41 3.16 5.68 10.39

MixN(3, 2) 1.25 2.99 5.45 10.30

MixN(3, 3) 1.12 2.75 5.31 10.32

MixGED(3, 2) 1.15 2.73 5.40 10.30

MixGED(3, 3) 1.22 2.69 5.17 9.99

MixStab(3, 2) 1.13 2.55 5.03 9.72

MixStab(3, 3) 0.88 2.40 4.86 9.89

TABLE 3.1: Empirical VaR coverage percentages of the mixture models, MixN(n, g), MixGED(n, g) and

MixStab(n, g), as well as the (one component) GARCH model with normal, symmetric stable and asymmetric

stable distribution. For the mixture models, parameters (n, g) indicate a model with n components, g of which

follow a GARCH process and n− g components are restricted to having constant variances.
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FIGURE 3.3: Same deviation probability plot as in Figure 3.2 for the GARCH models
with a mixture of normal distributions (upper plot), a mixture of GED distributions
(middle plot), and a mixture of stable distributions (lower plot). Mix*(n, g) is short for
a mixture of distributions for a GARCH(1,1) process with n components, g of which
follow a GARCH process and n− g are restricted to having constant variance.
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FIGURE 3.4: Evolution of the three stable indices (α̂j , j = 1, 2, 3) estimated through-
out the moving window of 1,000 trading days (updated only every 20 days) for the
MixStab(3, 2) case.
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FIGURE 3.5: Similar to Figure 3.4, but with three stable indices for the MixStab(3, 3)
case.
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3.5 Conclusions and Outlook

We have proposed a new model class which nests a variety of seemingly disparate

models used for modelling asset returns and VaR prediction, and demonstrated its

superiority to the most important special cases and related models in an extensive

out-of-sample forecasting comparison. Our results thus lend further evidence that

the stable Paretian hypothesis for the conditional modelling of asset returns is

viable, but primarily when the conditional heteroscedasticity is correctly accounted

for via a rich dynamic structure such as (3.10).

The fact that the test results in Paolella (2001) and Mittnik et al. (2000) based

on use of the single component stable GARCH model (3.3) often rejected the stable

hypothesis could potentially be due to having used too simple of a dynamic struc-

ture for capturing the conditional heteroscedasticity. The results of this paper and

those in Kuester et al. (2005) clearly indicate the inadequacy of single-component

models compared to the mixed structure used herein. As such, future consid-

erations include developing testing procedures for the stable assumption which

are applicable in the mixture context considered here. Also, methods using the

MixStab model to deliver not just a point estimate of VaR, but also a region (which

correctly takes into account the parameter uncertainly), along the lines of Bams

et al. (2005), would be of interest.

Various model extensions suggest themselves for future consideration. A natural

variation on the model used here would use asymmetric stable Paretian components

instead of symmetric. Although this source of asymmetry is different than that

achieved via the µi mean components, it will most likely be required to restrict

the µi to be zero. Another viable extension is generalizing the law of motion for

the scale terms in (3.10) along the lines of the GARCH models in Ding, Granger

and Engle (1993) or Sentana (1995). Finally, incorporation of a Markov switching

structure, as done in Haas et al. (2004b) based on the normal mixture GARCH

model, or extension to time-varying component weights, as recently investigated

by Haas et al. (2005) could also be entertained.



Model MAD(5%) MSD(5%) MAD(10%) MSD(10%)

normal–GARCH 0.63 0.42 0.58 0.36

sym-stable–GARCH 0.58 0.39 0.70 0.56

asym-stable–GARCH 0.49 0.26 0.58 0.38

MixN(3, 2) 0.32 0.12 0.41 0.18

MixN(3, 3) 0.20 0.05 0.23 0.06

MixGED(3, 2) 0.24 0.07 0.31 0.11

MixGED(3, 3) 0.17 0.03 0.13 0.02

MixStab(3, 2) 0.08 0.01 0.10 0.01

MixStab(3, 3) 0.10 0.02 0.09 0.01

TABLE 3.2: The mean of the absolute deviation (MAD) and mean squared deviation (MSD) of the empirical

from the theoretical tail probability (“Deviation” in Figure 3.2 and Figure 3.3). This is computed over the first

393 and 786 (up to 5% and 10% VaR, respectively) of the sorted out–of–sample CDF values.
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FIGURE 3.6: The evolution of the three component weights (ω̂j , j = 1, 2, 3), estimated

throughout the moving window of 1,000 trading days (updated only every 20 days) for

the MixStab(3, 3) model.
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FIGURE 3.7: Same as in Figure 3.6 but for MixN(3, 3).
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FIGURE 3.8: Same as in Figure 3.6 but for MixGED(3, 3).
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Chapter 4

Analyzing and Exploiting Asymmetries

in the News Impact Curve

4.1 Introduction

The use of a mixed normal distribution for modelling the unconditional distribution

of asset returns is very effective, and has been considered by numerous authors,

including Fama (1965), Kon (1984), Tucker and Pond (1988), and Aparicio and

Estrada (2001). More recently, Kim and White (2004, p. 72) provide further ev-

idence of the appropriateness of normal mixtures for financial data, stating “[We

propose that] it may be more productive to think of the S&P500 index returns

studied here as being better described as a mixture containing a predominant

component that is nearly symmetric with mild kurtosis and a relatively rare com-

ponent that generates highly extreme behavior.” Along similar lines, Neftci (2000)

argues that the extreme movements in asset prices are caused by mechanisms which

are “structurally different” from the “routine functioning of markets”.

The problem with any unconditional model for asset returns is that they can-

not capture the blatant volatility clustering inherent in virtually all return series

observed at weekly or higher frequencies, and will suffer appropriately in terms

of short–term Value–at–Risk (VaR) forecasting ability. The effectiveness and easy

implementation of GARCH models for this purpose is undisputed, and numer-

ous variations and extensions of Bollerslev’s (1986) original construct have been

proposed and shown to deliver superior forecasts; see, for example, Palm (1996),

Alexander (2001, Ch. 4), and Kuester et al. (2006) for surveys.

The mixed normal GARCH, or MixN-GARCH, is a very recent GARCH–type

model class which combines the features of normal mixture distributions and a

GARCH model, and has been independently proposed and investigated by Alexan-

der and Lazar (2006) and Haas et al. (2004a,b). By judiciously coupling a k–

mixture of normal distributions with a GARCH–type dynamic structure which
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links the k density components, several previously advocated models can be nested,

and a variety of stylized facts of asset returns can be successfully modelled, such

as the usual fat tails and volatility clustering, but also time-varying skewness and

kurtosis. The model has been shown in the aforementioned papers to offer a plau-

sible decomposition of the contributions to market volatility, and also to deliver

highly competitive out-of-sample forecasts.

A common property of the MixN–GARCH models discussed in the aforemen-

tioned papers is constancy of the mixing weights of the component densities, which

often allows for a straightforward interpretation of the contributions of the indi-

vidual components. However, constancy of the distributional proportions may not

be a realistic assumption in general, and, as we demonstrate below, leads to less

accurate forecasts compared with a more general class of models which allows for

time variation in the weights.

The choices of functional forms, or “laws of motion”, of the mixing weights are

discussed below; they are shown to give rise to a smooth sigmoid–type response

function between the previous time period’s innovation and the weights of the mix-

ing components, where sigmoid functions, in their most general from, are smooth

monotonic functions bounded between zero and one (as applied, for example, in

neural networks).

While in empirical applications of the MixN–GARCH model with constant

weights negative component means and higher component volatilities coincide,

there is no dynamic asymmetry in the sense that negative shocks tend to increase

future volatility more than positive shocks. This type of dynamic asymmetry is

known as Black’s (1976) leverage effect, and it is a robust characteristic of stock re-

turns. As will be shown below, an appealing and operationally straightforward way

of incorporating an asymmetric response between lagged innovations and future

volatility is by relating current mixing weights to past innovations.

In the context of MixN–GARCH models, Alexander and Lazar (2005) discuss

several asymmetric extensions. Their approach, however, is to employ existing
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asymmetric GARCH structures to extend each component’s volatility process, and,

thus, fundamentally differs from our approach. A discussion of their models will be

given in Section 4.2.2, while an empirical comparison with our approach is provided

in Section 4.6.

The remainder of this paper is as follows. Section 4.2 briefly introduces the

MixN–GARCH model. Section 4.3 discusses its extension to allow for time-varying

mixing weights and some choices for the functional form describing the evolution of

the weights. Section 4.4 discusses the implications of the model on the news impact

curve. Empirical results and out–of–sample forecasting exercise are detailed for the

NASDAQ index in Section 4.5, while Section 4.6 briefly summarizes our findings

for other financial return series. Section 4.7 provides concluding remarks and some

ideas for future research.

4.2 Mixed Normal GARCH Models

In this section, we briefly review the mixed normal GARCH model and the asym-

metric extensions considered by Alexander and Lazar (2005).

4.2.1 Mixed Normal GARCH

The mixed normal GARCH model, denoted MixN-GARCH, has recently been pro-

posed by Haas et al. (2004a) and Alexander and Lazar (2006), and generalizes the

classic normal GARCH model of Bollerslev (1986) to the normal mixture setting.

In general, a random variable is said to follow a k–component normal mixture

distribution if its density is given by

fMixN(y; λ,µ,σ(2)) =
k∑

j=1

λjφ(y; µj, σ
2
j ), (4.1)

where φ(y; µj, σ
2
j ) are normal densities; λ = [λ1, . . . , λk]

′ is the vector of strictly

positive mixing weights which satisfy
∑

j λj = 1; and the elements of µ = [µ1, . . . , µk]
′

and σ(2) = [σ2
1, . . . , σ

2
k]
′ are the component means and variances, respectively. If
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Y ∼ MixN(λ,µ,σ(2)), then

E[Y ] =
k∑

j=1

λjµj, and Var(Y ) =
k∑

j=1

λj(σ
2
j + µ2

j)−
(

k∑
j=1

λjµj

)2

, (4.2)

with the latter being relevant to the discussion in Section 4.3.1 below.

In the MixN-GARCH model for asset returns, it is assumed that the conditional

distribution of the return at time t, rt, is MixN, that is,

rt|Ft−1 ∼ MixN(λt,µt,σ
(2)
t ), (4.3)

where Ft is the information set at time t. The vector of component variances, σ2
t ,

evolves according to the recursion

σ
(2)
t = α0 +

r∑
i=1

αiε
2
t−i +

s∑
j=1

βjσ
(2)
t−j, (4.4)

where αi = (αi1, αi2, . . . , αik)
′, i = 0, . . . , r, are k × 1 vectors; βj, j = 1, . . . , s, are

diagonal k × k matrices1 with the component–specific persistence parameters on

the main diagonal; and the innovation, εt, is

εt = rt − E(rt|Ft−1) = rt −
k∑

j=1

λj,tµj,t. (4.5)

Haas et al. (2004a) considered the case where the mixing weights, λj,t, and the

component means, µj,t, j = 1, . . . , k, are constant over time, but the generaliza-

tion considered in equations (4.3)–(4.5), with these quantities being time–varying,

is straightforward conceptually. In particular, in this paper, we consider MixN-

GARCH specifications with time–varying mixing weights, which we discuss in the

next section.

While we allow for time–varying mixing laws, we keep the mean equation sim-

ple, although it is worth mentioning that mixture models with component–specific

dynamics in the conditional mean have gained some popularity in the economet-

rics literature. For example, mixture autoregressive (AR) models with a different

1The full–matrix specification is considered in Haas et al. (2004a), though, as discussed there and confirmed

with other data sets, the diagonal restriction is usually favored in empirical applications.
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AR structure in each mixture component include the popular Markov–switching

autoregressions introduced by Hamilton (1989), as well as the models of Wong

and Li (2000, 2001) and Lanne and Saikkonen (2003). However, in view of our

focus on stock market returns, and given the limited success of nonlinear models in

forecasting such variables (see, e.g., Boero and Marrocu, 2002), we will not pursue

the case of component–specific mean dynamics, but assume that we have the same

AR(p) structure in each component. That is, the conditional mean in component

j can be written as

µj,t = a0,j +

p∑
i=1

airt−i, j = 1, . . . , k, (4.6)

where only the constant a0,j may differ across components in order to allow for

skewness of the conditional distribution.

An interesting variant of the MixN–GARCH process (4.4) arises when only a

subset of the component variances gathered in the vector σ
(2)
t is subject to GARCH

dynamics. For example, occasionally occurring jumps in the level of volatility may

be captured by a component with a relatively large, but constant, variance. To

discriminate between these model variants, we shall introduce special notation, as

follows. We denote by MixN(k, g) the model given by (4.1), (4.3) and (4.4), with

k component densities, but such that only g, g ≤ k, follow a GARCH(1,1) process

(and k − g components are restricted to have constant variance). In the empirical

work in Section 4.5 below, we take r = s = 1, and, regarding k and g, consider the

four cases MixN(2, 2), MixN(3, 2), MixN(3, 3) and MixN(4, 4), and compare them

with different competing structures that exhibit time–varying component weights.

4.2.2 Asymmetric Mixed Normal GARCH

In order to capture the leverage effect, Alexander and Lazar (2005) propose two

asymmetric extensions of the MixN–GARCH model defined by (4.3) and (4.4). As

we will consider these in our empirical applications below, we introduce them here.

The first of these extensions, AMixN(1)(k), uses the asymmetric GARCH spec-

ification of Engle (1990), i.e., the GARCH(1,1) process driving the variance of
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mixture component j is

σ2
jt = α0j + α1j(εt−1 − θj)

2 + βjσ
2
j,t−1, j = 1, . . . , k, (4.7)

where the θj’s are the parameters monitoring the component–specific leverage ef-

fect. In particular, if θj > 0, then a negative shock will increase the next period’s

σ2
jt more than a positive shock.

The second variant, AMixN(2)(k), proposed by Alexander and Lazar (2005),

employs the model of Glosten, Jagannathan, and Runkle (1993), widely known as

GJR–GARCH, and specifies the variance process of component j as

σ2
jt = α0j + α1jε

2
t−1 + θjd

−
t−1ε

2
t−1 + βjσ

2
j,t−1, j = 1, . . . , k, (4.8)

where d−t−1 = 1 if εt−1 < 0 and d−t−1 = 0 otherwise. As in (4.7), a positive θj implies

that σ2
j,t reacts more intensely to negative shocks than to positive shocks.

4.3 Time–Varying Weights

The idea of modelling economic variables using mixtures with time–varying mixing

weights (or regime probabilities) is not new. Most notably perhaps, the Markov–

switching model of Hamilton (1989), which has found many applications in macroe-

conomics and finance, can be interpreted in this framework. In addition, in a

number of applications, mixture models with mixing weights depending on lagged

process values as well as exogenous variables have been employed quite successfully.

An example is the modelling of exchange rate behavior in target zones, where a

jump component reflects the probability of realignments, and the probability of a

jump depends on interest differentials and, possibly, further explanatory variables

incorporating market expectations (see, e.g., Vlaar and Palm (1993); Bekaert and

Gray (1998); Neely (1999); Klaster and Knot (2002); and Haas et al. (2006)). The

conditional densities of such mixture models exhibit an enormous flexibility. For

example, as illustrated by Haas et al. (2006) in an application to the EMS crisis

of 1992, the predictive density may become bimodal when the probability of a

realignment as well as the expected jump size are sufficiently large.
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A mixture GARCH model with time–varying mixing weights which is closer

to our approach, and which is, in fact, nested in our general specification, has

recently been proposed by Bauwens et al. (2006). A short discussion of this model

is provided in the next section.

In this paper, as mentioned in the introduction, we allow for flexible mixing

weights mainly in order to capture the leverage effect, which is a robust feature of

many stock return series. As this describes a negative relation between past returns

and future volatilities, our specification allows the mixing weights to depend on

past shocks, i.e., on the lagged εt’s defined in (4.5).

4.3.1 Sigmoid Structures

A general approach is to relate the weights of the components to past innovations

via various sigmoid response functions, also known as dose functions. In its most

general form, a sigmoid function S(u) is a smooth monotonic function such that

S(−∞) = 0 and S(∞) = 1, e.g., S(u) = (1 + exp−u)−1, u ∈ R, is a simple sig-

moid, as is any cumulative distribution function (CDF) corresponding to a strictly

continuous random variable.

Our general suggested model structure takes the form

λjt =
Wj

1 +
∑k−1

i=1 Wi

, j = 1, . . . , k − 1, λkt = 1−
k−1∑
j=1

λjt, (4.9)

where, mimicking the structure of an asymmetric GARCH-type model,

Wj = exp

(
γ0j +

u∑
m=1

γmjεt−m +
v∑

m=1

κmjλj,t−m +
w∑

m=1

δmj |εt−m|d
)

, (4.10)

and which we denote as TV(u, v, w)MixN(k, g), where u, v and w are the orders

of the lagged εt, lagged λj, and lagged |εt|d, respectively. In this paper, we will

concentrate primarily on the case with v = w = 0, in which case we just write the

model as TV(u)(k, g) or, shorter, as TV(u), when k and g are not relevant to the

discussion.

The first time–varying MixN–GARCH model we consider in detail is TV(1),

which relates current mixing weights to lagged innovations, εt−1, via sigmoid func-
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tions with two parameters: one for the location, γ0j, and one for the scale, γ1j,

j = 1, . . . , k − 1. Expressions (4.9) and (4.10) reduce to

λjt =
exp (γ0j + γ1jεt−1)

1 +
∑k−1

i=1 exp (γ0i + γ1iεt−1)
, j = 1, . . . , k − 1. (4.11)

This parametrization uses k − 1 additional parameters, compared to the MixN–

GARCH model with constant mixing weights.

To illustrate the appearance of the leverage effect in this framework, consider a

two–component mixture, i.e., k = 2 in (4.11), and let the second component have

the larger variance. We have λ1t = eγ0+γ1εt−1/(1 + eγ0+γ1εt−1), and dλ1t/dεt−1 =

γ1λ1t(1 − λ1t), so that, from (4.2), the overall variance at time t decreases with

increasing εt−1 if γ1 > 0.

The second time–varying weight setting we consider in detail is TV(2), which

is similar to TV(1), but such that current mixing weights depend on both εt−1

and εt−2. Although Engle and Ng (1993) mentioned that the older the “news”,

the smaller the impact on current and future volatility, we will see below that

this model seems quite promising for a variety of data sets. For TV(2), 2(k −
1) additional parameters are required, compared to the case of constant mixing

weights.

An alternative model specification, denoted TV(2∗), is a restricted form of

TV(2), such that the weight of component j given by

λjt =
exp

{
γ0j + γ1j (εt−1 + εt−2)

}

1 +
∑k−1

j=1 exp
{
γ0j + γ1j (εt−1 + εt−2)

} , j = 1, . . . , k − 1, (4.12)

and λkt = 1 −∑k−1
j=1 λjt. The number of parameters in TV(2∗) is the same as in

TV(1), but we also capture the influence of εt−2, albeit in a restricted fashion which

constrains the impact of εt−1 and εt−2 to be identical. Anticipating our empirical

results below, this specification is preferred for the NASDAQ data over competing

models, based on the Bayesian information criterion (BIC).

Quite recently, Bauwens et al. (2006) proposed a mixture GARCH model with

time–varying mixing weights which can be nested in (4.9) and (4.10). They specify
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a two–component model where, in (4.10), u = v = 0, w = 1, and d = 2, so that

λ1t(εt−1) =
exp{γ01 + δ11ε

2
t−1}

1 + exp{γ01 + δ11ε2
t−1}

, (4.13)

where δ11 > 0, and the first component associated with weight λ1t is assumed to

be the low–volatility component. Thus λ1t is a symmetric function of εt−1, and

λ1t(−∞) = λ1t(∞) = 1. The motivation of this specification is that “large shocks

have the effect of relieving pressure by reducing the probability of a large shock in

the next period”. However, in an application to the NASDAQ index, the authors

find that, when using (4.13), the evidence for a time–varying mixing weight is

weak. This is in contrast to our results for the NASDAQ when using (4.11) and

(4.12), indicating that the leverage effect is stronger for this series than the pressure

relieving effect, so that the specifications (4.11) and (4.12) may be preferable.

4.3.2 Non–parametric Forms

The use of the sigmoid structures allows for a fully parametric model fit. Despite

their advantage in terms of estimation and inference, the natural drawback of their

use is that the data is forced to fit the assumed shape. In order to mitigate this,

we consider a more flexible non–parametric form which also serves as a “check” for

the adequacy of the sigmoid assumption. In particular, we estimate a piecewise

linear function for the weighting scheme consisting of m lines, each with zero slope

and estimated intercept. Ideally then, we would have a “staircase” ascending from

left to right.2

More precisely, consider the case with two mixture components, i.e., k = 2.

Then for some m ∈ N and set of boundary points θ1, . . . , θm−1, the first weight is

2We also used a piecewise linear function such that the lines are forced to be connected, but the slopes get

estimated. The results were qualitatively similar.
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given by

λ1t(εt−1) =





b1, if εt−1 < θ1,

b2, if θ1 ≤ εt−1 < θ2,

b3, if θ2 ≤ εt−1 < θ3,
...

bm−1, if θm−2 ≤ εt−1 < θm−1,

bm, if εt−1 ≥ θm−1,

(4.14)

where, as usual, λ2t = 1 − λ1t and 0 ≤ bi ≤ 1, i = 1, . . . , m (but the constraint

bi < bj, i < j, is not imposed). To simplify matters, the boundaries are constructed

such that the difference between consecutive θi are equal. It is worth emphasizing

that the θi need to be determined before the estimation is carried out, but the

θi depend on the domain of λ1t(εt−1)—which is unknown before the estimation

because the εt result from the filtering of the estimated model. To circumvent this

problem and determine an approximate range of the εt, we first estimate the model

with constant weights and then, based on the range of the filtered innovations,

specify appropriate values for θ1 and θm. The choice of m involves the usual bias–

variance tradeoff and should be chosen as a function of the sample size used for

estimation.

Section 4.5.1 below discusses the estimation results for this model.

4.4 News Impact Curve

While volatility in the standard GARCH model responds equally to positive and

negative return shocks, asymmetric GARCH models allow positive and negative

news surprises to have different impacts on future volatility. The asymmetric

response of good and bad news to future volatility, or the leverage effect (Black

1976), is such that, in theory, bad news should increase future volatility while good

news should decrease future volatility. The economic rationale behind this links

the stock’s volatility to the firm’s capital structure and goes back to Modigliani

and Miller’s (1958) classic work. Briefly, for a firm issuing stocks and bonds, its

debt to equity ratio changes when, ceteris paribus, the stock price moves and,
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thus, the firm’s leverage changes. It is often argued, however, that the degree of

asymmetry in volatility is too large to be explained by leverage alone. Thus, the

term “leverage effect” is used just to refer to an empirical regularity rather than

to imply a theoretical explanation.

The leverage effect can be detected by calculating the correlation of lagged re-

turns and a measure of future volatility; see, for example, Cont (2001), who defines

the leverage effect of lag τ as L(τ) = Corr(rt−τ , r
2
t ), where Corr(a, b) is the corre-

lation between a and b, and r2
t is used as a measure of volatility at time t.
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L(
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FIGURE 4.1: Estimated leverage effect, L(τ) = Corr(rt−τ , r2
t ), of daily NASDAQ returns from February

1971 to June 2001. The upper and lower 95% confidence bounds are shown as dashed lines.

As is common in the financial econometrics literature, our out-of-sample fore-

casting exercises below will use moving windows of returns, instead of a growing

sample size, to (rudimentarily) account for the fact that the data generating pro-

cess is unlikely to be constant over time. To illustrate that the leverage effect is

not constant throughout the entire data set, Figure 4.2 shows the leverage effect

for the same data set of NASDAQ returns as in Figure 4.1, but splitting the data

into eight sub–samples, each consisting of roughly four years of data. Most of

the graphs exhibit the same characteristic shape of the leverage effect as observed

for the whole data set, as depicted in Figure 4.1. However, for some of the sub–
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samples, there is no leverage effect at all. For example, in the upper right plot in

Figure 4.2, which covers the years 1975 to 1979, the correlations hover around zero

for all depicted lags.
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FIGURE 4.2: Same as in Figure 4.1 but divided into eight sub–samples of roughly four years of data,

starting from left to right and top to bottom, e.g., the upper left graph is based on the first 1000 data points.

To further illustrate how it changes through time, Figure 4.3 shows the leverage

effect for the first, second and fourth lag for a moving window of 1,000 days.

Interestingly, all three correlations move somewhat together through time, e.g., in

periods with large asymmetry in the market, the leverage effect increases for all

lags. A further observation is that, although the leverage changes with the moving
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window, it is evident from Figure 4.3 that it is less pronounced and less volatile

for increasing lags.
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FIGURE 4.3: Leverage effect of daily NASDAQ returns February 1971 to June 2001 for a moving window

of length 1000 for lag τ = 1, 2 and 4. The leverage effect, here calculated as the correlation function between rt

and r2
t−τ is re–calculated every day using the most recent 1000 observations.

4.5 Empirical Results: Detailed Study of the

NASDAQ Returns

In this section, the empirical analysis is carried out using a set of daily NASDAQ

returns from its inception in February 1971, to June 2001, using continuously

compounded percentage returns, rt = 100 (log Pt − log Pt−1), where Pt denotes the

index level at time t.

4.5.1 In-Sample Fit

As is common in the GARCH literature, we use the standard model selection

criteria AIC and BIC (see, e.g., Burnham and Anderson, 2003, for an excellent

presentation and derivation of such criteria) to rank the models with different

numbers of parameters. For a K–parameter model, based on T observations and

with log likelihood L at the MLE, AIC = −2L + 2K and BIC = −2L + K log T .
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All models entertained and compared below share an AR(1)–MixN–GARCH(1, 1)

structure with Ψ1 in (4.4) diagonal. Parameter estimates are obtained by numer-

ically maximizing the conditional likelihood, where we condition on the first p

returns and take the initial values of the conditional variance to be a data-driven

estimate of the unconditional variance, and the initial values of εt are set to their

unconditional expected values.

Table 4.1 compares the likelihood value and the two likelihood–based information

criteria AIC and BIC for the different time–varying structures discussed in Section

4.3.1, as well as for the constant weight MixN–GARCH and the standard one–

component GARCH model. Also, the number of parameters, K, and the rank of

the fitted models with respect to each criteria are shown.

As can be seen from Table 4.1, the time–varying models perform better relative

to their constant counterparts MixN(k, k) and GARCH(1, 1). In fact, with respect

to each of the three criteria (and most notably the conservative BIC), all constant

weight models are ranked last. More striking is the huge improvement of AIC and

BIC values associated with the time–varying models. For example, the difference

with respect to the BIC between the constant model MixN(2, 2) and the basic

sigmoid model TV(1)(2, 2) is larger than 40, and the difference between MixN(k, k)

and TV(2∗)(k, k) is generally above 100 for k = 2, 3, 4. According to the BIC, the

best performing model is TV(2∗)(3, 3), while for the AIC, it is TV(2)(4, 4). Both

models also take into account the relation between current mixing weights and

past innovations at time t− 1 and t− 2. Not surprisingly, the BIC favors the more

parsimonious structure TV(2∗), for which just one parameter governs the impact

of εt−1 and εt−2, while the AIC favors TV(2), which allows for different coefficients

of the two lagged innovations.

To illustrate the sigmoid model, Figure 4.4 shows the relation between εt−1 and

the first mixing weight, λ1t, for the daily returns on the NASDAQ index from 1971

to 2001, for a time–varying weight AR(1)–MixN–GARCH(1, 1) model with two

component densities. In this example, having a second component with a higher
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Distributional L AIC BIC

Model K Value Rank Value Rank Value Rank

GARCH(1,1) 7 –9142.8 13 18299.5 13 18348.1 13

MixN(2, 2) 12 –8874.5 12 17773.0 12 17856.4 11

MixN(3, 3) 17 –8847.6 10 17729.2 11 17847.3 10

MixN(4, 4) 22 –8833.6 9 17711.2 9 17864.0 12

TV(1)(2, 2) 13 –8849.2 11 17724.4 10 17814.7 9

TV(1)(3, 3) 19 –8820.5 8 17679.0 8 17811.0 8

TV(1)(4, 4) 25 –8792.4 5 17634.8 5 17808.5 7

TV(2)(2, 2) 14 –8818.4 7 17664.8 7 17762.0 4

TV(2)(3, 3) 22 –8786.3 3 17616.8 4 17769.6 6

TV(2)(4, 4) 28 –8758.5 1 17573.0 1 17767.5 5

TV(2∗)(2, 2) 13 –8818.4 6 17662.8 6 17753.1 3

TV(2∗)(3, 3) 19 –8786.9 4 17611.8 3 17743.8 1

TV(2∗)(4, 4) 25 –8763.0 2 17576.0 2 17749.6 2

TABLE 4.1: Likelihood–based model selection criteria and model rankings for the different time-varying

model classes, as well as the MixN–GARCH model with constant weights, called MixN(k, k), and the normal-

GARCH(1,1) model. All fitted models share a common AR(1)–MixN–GARCH(1, 1) structure. The best model

with respect to the particular criteria is highlighted boldface.
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variance than the first component, this is exactly what is expected: A negative

shock increases the weight of the higher variance component in the next period

and a positive shock reduces the weight of the higher variance component. Thus,

negative and positive shocks have an asymmetric impact on future volatility in

the sense that negative news surprises increase volatility more than positive news

surprises.
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FIGURE 4.4: Estimated relation (from joint ML estimation of the full model) between lagged innovation at

time t− 1, εt−1, and the first mixing weight at time t, λ1t, for continuously compounded daily NASDAQ returns

from 1971 to 2001 for the TV(1) model (4.11) with k = 2 mixture components (and with an AR(1) term for the

mean and r = s = 1); the sigmoid function has location parameter γ̂01 = 1.33 and scale parameter γ̂11 = 0.45.

Dashed lines show the 95% confidence interval for γ̂11.

Figure 4.6 shows the corresponding News Impact Curve (NIC) by Engle and Ng

(1993) which displays the functional relation between an unexpected return shock

at time t− 1 and the conditional variance at time t.

The dashed line refers to the NIC of the time–varying setting TV(1), and the

solid line to the NIC of the constant weight MixN–GARCH model. When calculat-

ing the NIC, the variance at time t−1 is set to its unconditional value. Because the

unconditional variance in the time–varying setting is not known, we have taken the

sample mean in Figure 4.6 instead. The NIC of TV(1) clearly reveals an asymmet-

ric behavior, while for the original MixN–GARCH model, the NIC is symmetric
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FIGURE 4.5: Same as Figure 4.4 with confidence interval for γ̂01.

and centered at εt−1 = 0. Another source of asymmetry in the NIC (which as can

be shown our model is capable of capturing) is to shift its minimum away from

εt−1 = 0, as is done, for example, in the non–linear NGARCH model of Engle and

Ng (1993).

4.5.2 Non–parametric

We now turn to the results when using the non–parametric setting introduced in

Section 4.3.2. After some experimenting, a reasonable choice of m in (4.14) is

between 5 and 10 for the NASDAQ data set. The resulting fit using m = 6 is

shown in Figure 4.7 for the k = 2 mixture model. Encouragingly, we indeed obtain

the “staircase formation” as the theory predicts, further justifying our use of the

sigmoid structures. For the original, constant-weight MixN–GARCH model, the

graph would be a straight line at 0.822. The intercept values b1 and bm, which

correspond to the ends of the innovation range, cannot be accurately measured

because of the lack of observations in this range, as is seen by the number of

overlaid innovations in the figures. This is also confirmed from the estimated

standard errors of the bi (not reported), which increase as we move into the tail of
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FIGURE 4.6: The asymmetric news impact curve of the fitted MixN–GARCH model with time–varying

mixing weights (dashed line) and the symmetric news impact curve for the constant weight MixN–GARCH model

(solid line) using the same data set as in Figure 4.1. Both models share two components and an AR(1)–MixN–

GARCH(1, 1) process.

the innovation distribution. For the data set under study, the range of ±8 is dense

enough to yield reasonably accurate measures of the bi.

To ensure fair evaluation of the method, the starting values of all the intercepts

used in the numeric optimization of the likelihood were set to the value that results

from the constant weight assumption (0.822). Use of other starting values were

tried, and also resulted in the final values depicted in Figure 4.7, though in general,

we have noticed that the choice of starting values can lead to local likelihood

maxima.3 Figure 4.8 is similar, but uses m = 8.

To help understand where the shape of the piecewise linear function is most

important, Figures 4.7 and 4.8 also overlay a scaled histogram of the innovations.

In the range of ±5, the weighting function clearly exhibits an asymmetric shape,

allocating more weight to the first (mild) component for positive shocks than for

negative shocks. Thus, a negative shock increases the weight of the higher variance

component.

3This is, of course, also a consequence of the algorithms chosen for optimization (in our case, the quasi-Newton

methods implemented in Matlab), and more robust and sophisticated optimization techniques might obviate the

need for trying several sets of starting values, though we have not pursued this.
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FIGURE 4.7: The non–parametric fit of the weighting function for the NASDAQ data using m = 6 for the

k = 2 mixture model. Superimposed is a scaled histogram of the fitted innovations.

A potentially new stylized fact which might deserve future investigation emerges

from Figures 4.7 and 4.8, regarding the weight of the “mild component” when big

positive shocks hit the market. With respect to the leverage effect, positive news

surprises should result in a higher weight of the low volatility component than

negative news surprises, but, for big positive shocks, Figures 4.7 and 4.8 depict

a very low weight allocated to the low volatility component. Interestingly, the

corresponding NIC is flat in the area where innovations are positive (as in Figure

4.6 for the basic sigmoid structure) but sharply increases for very large positive

innovations, which is in line with the findings of Linton and Mammen (2005), who

report a very similar shape for the NIC of S&P 500 data. A potential explanation

of this phenomena could be that the GARCH dynamics cannot account for the

volatility clusters in every respect, and so the time-varying model is allocating

more weight to the high-volatility component in both cases of big negative and big

positive shocks. This might also be a result of the fact that big positive shocks

also occur in volatile times, typically after a big negative shock (market rebound).
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FIGURE 4.8: Same as Figure 4.7 but 8 lines instead of 6.

4.5.3 Forecasting Performance

Given that a major concern of risk management professionals is the downside

loss potential of a financial position, we also study the out–of–sample forecast

performance with respect to Value–at–Risk (VaR). Our primary aim is to assess the

potential improvement in forecasting ability compared to constant-weight models,

and so we limit ourselves in this study to one-step-ahead forecasts. The VaR with

shortfall probability ξ is calculated as F̂M
t|t−1(VaRt(ξ)) = ξ, where F̂M

t|t−1 is the

predicted return distribution function at time t based on the information set up

to time t − 1 and use of model M. While numerous tests for the efficiency of

VaR forecasts are available (see, e.g., Christoffersen and Pelletier (2004); Kuester

et al. (2006); and the references therein), we consider only the empirical coverage

probabilities associated with the VaR forecasts. Our forecasting exercise for the

NASDAQ returns uses a rolling window of length 1, 000 days with parameter re-

estimation for each window, and based on the MixN(k, g) and TV(1)(k, g) models

for three sets of k, g values.

Concerning the VaR forecast, the percentage of violations can be seen from

Table 4.2 for the 1%, 2.5%, 5% and 10% ξ-level. Clearly, the time–varying mod-

els perform best, agreeing with the in–sample results. In fact, the time–varying
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models outperform their constant weight counterparts for all reported VaR levels,

except for the case of the (practically less important) 10% VaR–level and k = 3

mixture components, in which case both structures lead to the same percentage

of violations. In particular, comparing the three component models, MixN(3, 3)

has 1.18%, 2.93%, 5.55% and 10.19% violations for ξ = 0.01, 0.025, 0.05 and 0.1,

respectively, and TV(1)(3, 3) has 1.05%, 2.44%, 5.16% and 10.19%. Observe that,

in addition to being closer to the desired nominal level, the time–varying models

tend to be more conservative with respect to VaR forecasts than their constant–

weight counterparts. This is a welcome fact, given that the vast majority of VaR

forecasting models tend to underestimate risk (see, e.g., Kuester et al. (2005), and

the references therein), which might be more costly to financial institutions than

a slight overestimation of risk.

Model VaR(1%) VaR(2.5%) VaR(5%) VaR(10%)

MixN(2, 2) 0.91 2.86 5.78 11.14

MixN(3, 2) 1.29 2.86 5.66 10.43

MixN(3, 3) 1.18 2.93 5.55 10.19

TV(1)(2, 2) 0.94 2.25 5.46 10.45

TV(1)(3, 2) 1.27 2.47 5.37 9.96

TV(1)(3, 3) 1.05 2.44 5.16 10.19

TABLE 4.2: Actual percentage VaR coverage of the time–varying models, or TV(1)(k, k), as well as the

constant weight models, MixN(k, k). Parameters (k, g) indicate a model with k components, g of which follow a

GARCH process and k − g components being restricted to having constant variances.

To further illustrate this point, the results for a spectrum of VaR levels up to

ξ = 10% can be seen from Figure 4.9, which is a convenient graphical depiction of

the coverage results. It plots the forecast CDF against the deviation from a uniform

CDF. The VaR levels can be read off the horizontal axis, while the vertical axis

depicts, for each VaR-level, the excess of percentage violations over the VaR-level.

Thus, the relative deviation from the correct coverage can be compared across VaR

levels and competing models. Theoretically, an ideal model would exhibit a flat

line at zero. One can immediately spot that the deviations tend to be smaller for
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the time–varying structures. In fact, it is apparent that the time-varying structures

have roughly half the deviations compared to their constant weight counterparts

for all VaR levels, while TV(1)(3, 3) performs best overall.
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FIGURE 4.9: Deviation probability plot for the NASDAQ forecasted VaR results. The values are

“Deviation” := 100(Fξ − F̂ ) (vertical axis) versus 100F̂ (horizontal axis), where Fξ is the CDF of a uniform

random variable; F̂ refers to the empirical CDF formed from evaluating the 6,681 one–step, out–of–sample dis-

tribution forecasts at the true, observed return.

Table 4.3 provides summary information for each model by averaging over all

deviations in (0, 0.05) and in (0, 0.1). To construct a measure of fit, we computed

the mean absolute deviation (MAD) and mean squared deviation (MSD) of the
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actual violation frequencies from the corresponding theoretical VaR-level. Both

summary measures indicate the same result and underpin our previous findings:

The time–varying settings provide lowest deviation over the entire tail.

Model MAD(5%) MSD(5%) MAD(10%) MSD(10%)

MixN(2, 2) 0.28 0.12 0.56 0.42

MixN(3, 2) 0.36 0.15 0.46 0.24

MixN(3, 3) 0.27 0.09 0.30 0.11

TV(1)(2, 2) 0.15 0.03 0.30 0.12

TV(1)(3, 2) 0.16 0.04 0.20 0.05

TV(1)(3, 3) 0.08 0.01 0.08 0.01

TABLE 4.3: The mean of the absolute deviation (MAD) and mean squared deviation (MSD) of the empirical

from the theoretical tail probability (“Deviation” in Figure 4.9). This is computed over the first 334 and 668 (up

to 5% and 10% VaR, respectively) of the sorted out–of–sample CDF values.

4.6 Empirical Results: Analysis of Other Data

Sets

To compliment our previous findings, which were limited to just a single index

(NASDAQ), we use daily data from four additional major stock indices, S&P

500, DJIA, Nikkei 225 and DAX 30, ranging from January 1970 to January 2005.

While using the same model setup as for the NASDAQ, we concentrate on the out–

of–sample forecasting performance and provide their MAD and MSD for varying

VaR levels. Because of the enormous amount of computation required, we restrict

the model class to just the simplest time–varying models TV(1)(k, g) and com-

pare them with MixN(k, g) for three sets of k, g values. In practice, the other

time–varying models would be entertained and would most likely lead to further

improvement.

Table 4.4 provides an overview of the results. The best model for each data

set and deviation measure is depicted in boldface. A first result is that, for all

data sets, TV(1)(k, g) almost always outperforms MixN(k, g). There are some
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exceptions from this general scheme: For the S&P 500, MixN(3, 3) exhibits the

lowest MAD(2.5%), but it is closely followed by that of TV(1)(3, 2). For the

Nikkei index, the deviation measures at the 1% and 10% reported levels favor the

MixN(3, 3) and MixN(3, 2) model, respectively, though as in the S&P 500 case,

the differences are relatively very small. For all other deviation measures and all

other data sets, the time–varying structures perform best, often with a very sizable

improvement.

It is interesting to note that, overall, the TV(1)(3, 3) exhibits excellent perfor-

mance for all data sets. This is in agreement with our results for the NASDAQ

data. In particular, for the DAX index, TV(1)(3, 3) is the best model with respect

to all reported criteria. Another noteworthy finding visible from the table is that

the results of TV(1)(3, 3) and TV(1)(3, 2) are quite close, though the former is

almost always (slightly) better.

Turning to the two asymmetric extensions of the mixed normal model by Alexan-

der and Lazar (2005) the results concerning their forecasting performance can be

seen in Table 4.5 for the two component structures AMixN(1)(2) and AMixN(2)(2)

together with MixN(2, 2) and TV(1)(2, 2). The overall picture is that, except for

higher VaR-levels and the DAX index, AMixN(1)(2) and AMixN(2)(2) are always

inferior to the MixN(2, 2) and TV(1)(2, 2) in terms of forecasting various VaR-

levels.

4.7 Conclusions and Further Extensions

We have relaxed the constant weights assumption in the class of mixed normal

GARCH processes to allow for a more flexible time–varying weight setting. We

concentrated on relating current mixing weights to past innovations via sigmoid

response functions via (4.9) and (4.10) with v = w = 0, and limited most of the

empirical work to u = 1. We have shown that this gives rise to a more realistic

and highly asymmetric News Impact Curve, and also that in–sample tests and

out–of–sample Value–at–Risk forecasting performance favor their use.
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The model class is quite rich, and future applications should entertain assessing

other choices of the sigmoid orders u, v and w. For example, we have shown that,

for the NASDAQ data set, relating current mixing weights to both innovations

at time t − 1 and t − 2 (i.e., taking u = 2) further improves the in–sample–fit,

and the dynamics could obviously be extended to include more lagged innovations

beyond εt−2 in order to account for a more flexible decay of the leverage effect. As

mentioned above, Engle and Ng (1993) show that the older the news, the smaller

the impact on current and future volatility. Also for the leverage effect, it is well

known from Bouchaud et al. (2001) that its decay time differs across assets, with

stocks requiring about 10 days, and indices about 50 days. These authors also

show that the correlation function L(τ) describing the leverage effect can be fit

with a (single) exponential. This fitted exponential can be directly transferred to

the dynamics between current mixing weights and past εt−τ (e.g., τ = 1, . . . , 10 or

50 days). The impact of εt−τ at time t− τ on current mixing weights then decays

exponentially with increasing lag τ . An advantage of this approach is that just

two parameters are needed to model the exponential decay, instead of using one

parameter for each lag.

In addition, more flexible and more asymmetric sigmoid functions might be

useful in order to further account for the “down–market effect” or “panic effect”,

i.e., a “one–sided” leverage effect related to falling stock prices. In fact, according

to Figlewski and Wang (2000), a rise in the stock price does not affect volatility at

all. They find the leverage effect is just a “down-market effect” and not existent

for positive news surprises which could be easily incorporated in our model by

extending the constant weight assumption just for negative innovations and/or

using non–parametric response functions.

Finally, in addition to, or instead of, relating current mixing weights to the past

innovations and past mixing weights as suggested in (4.10), it might be advanta-

geous to consider use of the conditional variance, skewness or kurtosis.
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Chapter 5

The Leverage Effect without Leverage:

An Experimental Study

5.1 Introduction

Financial time series exhibit several so called ’stylized facts’ that are present in

most markets. Uncorrelated returns, non-constant volatility through time and fat

tailed return distributions are probably the most prominent (see for example, Cont

(2001) and Granger (2005)). In addition, there are several asymmetry properties

such as the skewness of the return distribution and the asymmetric impact of good

and bad news to future volatility. With regards to the latter property - the so called

leverage effect - Black (1976) and Christie (1982) found that volatility appears to

rise when stock prices go down and to decrease when stock prices go up.

One economic rationale behind this stylized fact links the stock’s volatility to

the firm’s capital structure. This reasoning goes back to Modigliani and Miller’s

(1958) classical work. Briefly, for a firm issuing stocks and bonds, its debt to equity

ratio changes when, ceteris paribus, the stock price moves. Its leverage changes

because the claims of the debt holders are limited so that (almost) all the variation

in total firm value is transmitted to equity. Thus, when the stock price increases,

the value of equity increases more than the value of debt so that its debt to equity

ratio decreases and the firm is less risky. This results in an drop in volatility.

Following the same line of reasoning, falling stock prices should lead to an increase

in future volatility.

However, there is also evidence that the leverage effect observed in financial

time series is not fully explained by the firm’s leverage. Figlewski and Wang

(2000) find a strong leverage effect for falling stock prices but for positive returns,

they find a very weak or even nonexistent leverage effect. Hence, they claim that

it would be more appropriate to call the leverage effect a ’down market effect’.

They argue further that the firm’s leverage is a level effect rather than a change
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effect. When the stock price changes and so its financial leverage, volatility should

change permanently, too. However, volatility changes stemming from stock returns

are not permanent but die out quickly. In almost the same line, Aydemir et al.

(2005) quantify the leverage effect by using an equilibrium asset pricing model and

find that financial leverage is not economically significant at market level while at

the firm level it only partially explains variations in volatility.

For assets with no financial leverage, such as commodities, other effects are at

work. Knittel and Roberts (2001) find an inverse leverage effect in electricity mar-

kets. For electricity prices volatility tends to rise more with positive shocks than

with negative shocks (the opposite of Black’s leverage effect). An inverse leverage

effect is also found for intraday stock market data by Platen et al. (2004). Richter

and Soerensen (2002) find an inverse leverage effect for soybeans. In particular,

they estimate the correlation to be above 0.4, implying that when spot prices are

high, volatility is also high on average.

From the discussion about the down market effect and the inverse leverage effect,

we learn that financial leverage is therefore not the only driver for the relation

between the level and volatility of asset prices.

In this paper we will provide clear evidence that indeed the leverage effect could

also stem from different reasons than the capital structure of the firm. We do so

by using experimental stock markets with no financial leverage in the underlying

asset. While in real stock markets changes in volatility could result from many

unobservable characteristics (for example, changes in expectation and changes in

market liquidity), in experimental stock markets one has more control on the

exogenous determinants. Experiments are by now a well established method in

finance, as evidenced by the award of the Nobel Prize in Economics to Vernon

Smith, for example.

In particular, in an experiment one can control the degree of leverage while in

real settings the leverage is subject to mistakes in accounting, for example. As

is common in laboratory stock markets our experiment is such that eight to 24
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traders interact with each other using an electronic trading system. Trading takes

place in form of a double auction and the traded asset is a single stock that pays

a dividend at the end of each period. The dividend process is stochastic but its

true data generating process is unknown to the traders. At the beginning of the

experiment, traders start with an initial endowment of some experimental currency

and some stocks and are rewarded with real money at the end of the experiment

depending on their actual trading performance. To prevent falling market prices

towards the end of the experiment, we use the following design. Instead of being

informed about the exact amount of periods to be run, after each period investors

were only informed about the likelihood of continuing the experiment.

With this basic set up, a stock price change does not affect the capital struc-

ture of the firm. So if the stock price decreases, there is no increase in the firm’s

debt/equity ratio nor does the firm become more highly leveraged. Because the

underlying level of uncertainty remains unchanged, we expect its uncertainty stays

exactly the same so we expect no leverage effect based on the firm’s capital struc-

ture. However, we find a strong and significant leverage effect in all our markets.

The remainder of the paper is organized as follows. Section 2 describes the

basic design of the experimental markets and the experimental setup. In Section

3 we show the results concerning the leverage effect for the generated time series

and Section 4 concludes. The Appendix contains an English translation of the

instructions given to the traders.

5.2 The Design of the Experiment

At the beginning of the experiment each participant received 10,000 Gulden (an

imaginary currency) and five shares of a single risky asset as an initial endowment.

The subjects were instructed to act as participants in the real stock markets and

to use their initial endowment as well as their potential gains to participate in the

one-asset stock market. The subjects were free to buy or sell shares and could

transfer gains to a special account which served as the final disbursement at the
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end of the experiment. The trading orders, which were entered into a computer

terminal, were carried out in real time and credited and debited directly to the

individuals’ trading accounts.

The experiment was designed such that the traded shares yielded a return paid

out entirely as a dividend at the end of each period. The dividends were generated

by an iid process with a higher probability of a rise in dividends. Both the iid char-

acteristic of the dividend process and the probabilities of an increase or decrease

were unknown to the subjects. However, all possible realizations of the randomly

chosen dividends were common knowledge. In addition to the dividend informa-

tion, the subjects had a chart on the trading screen which showed the development

of the dividends and average trading prices in each round.

The subjects were students of the University of Zurich and ETH Zurich and were

recruited from the database of interested students maintained by the Institute for

Empirical Research in Economics (IEW).1 Participants were invited for a two to

three hour interactive decision-making experiment in which they could earn real

money. To allow reserves for no-show ups, 26 subjects were invited for each ses-

sion although just 24 subjects were needed per session. In the event more than 24

participants showed up volunteers were invited to leave the experiment and were of-

fered a show-up fee of SFR 10. At the beginning of each session the subjects were

reminded on the importance of absolute silence and individual decision-making

during the entire experiment. We ensured that subjects had enough time to study

the instructions at their own pace and to answer the questions at the end of the

instructions. These questions served the sole purpose of making sure that every-

body understood the procedure and the rules of the experiment. After all the

subjects had read the instructions and answered the questions, the experimenter

read a summary of the experiment. Several possible random dividend paths were

1The database is created and increased annually by recruiting students in ’freshman classrooms’ as well as via

e-mails.
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simulated for five minutes before the experiment started in order to give the par-

ticipants an idea of the random characteristics.

Each experiment had the following two stages. First investors had to decide how

much money they wanted to save for ’consumption’ and second they had to decide

how many assets they wanted to buy or sell. Regarding this consumption decision,

the investor was asked to decide how much money he or she wanted to transfer

to the disbursement account, and how much to keep available for trading shares.

It is important to mention that the final disbursement was such that the money

transferred to it could not be used for trading in the future. In other words the

final disbursement account was a ’one way account’: the money remained in this

account until the end of the session and constituted the sole payoff to the investor.

All stocks were worthless in the event that the experiment ends.

Trading took place in the form of a double auction that lasted 120 seconds.

Each trader could make offers and close agreements according to their own wishes,

although each new bid must have been higher than the previous bid, and each new

ask must have been lower than the previous ask. Throughout the whole experiment

short selling was not allowed. Individual account statements were shown at the end

of each period showing the amount of Gulden in the trading account, the amount

of Gulden in the final disbursement account, and the amount of shares belonging

to the investor.

The experiment was run in two sessions each with 24 subjects. In one of the

sessions the 24 participants were divided into three groups of eight participants

and in the other session all 24 participants acted in one market such that we

obtained 4 independent time series. When constructing the experiment, we had

to choose values for the termination probability of the sessions and the volatility

of the dividend process. As already mentioned the experiment ended at random.

With the termination probability of .03 for each period we obtained time series

with 85 periods for the first session and with 61 periods for the second session.

The dividend process we applied started with a dividend dt=0 of 100 Gulden. It
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was constructed such that in the periods t = 1, 2, . . .,T , the dividend dt changed by

+20%, +5%, -5% or -20% with probabilities 10%, 50%, 35% and 5%, respectively,

i.e., dt followed a stochastic process with positive drift resulting from the higher

probability of rising dividends.

5.3 Data and Empirical Results

In order to give a general overview of the data of the experiment, Figures 5.1 to

5.4 illustrate the time series of the dividend process and the traded stock prices.

For illustrative purposes, the figures also contain the plots of the log returns, the

liquidity for all markets as well as the trading volume. Turning to the log–returns,

they are shown here in order to spot some high volatility periods in the series as

volatility clusters can be better seen when plotting the log-returns. Market liquid-

ity is shown as additional information. We observe that liquidity is quite stable

after some ’adjustment’ periods (approximately, 5-10 periods) in the beginning.
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FIGURE 5.1: Price series together with the dividend, return and liquidity series of market 1.

Naturally, one can not see the leverage effect in these raw series just by eye-

balling. We have to calculate it for each market. To do so, we calculate the

correlation of lagged returns and a measure of future volatility. For instance, Cont
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FIGURE 5.2: Same as Figure 5.1 but for market 2.

(2001), defines the leverage effect of lag τ as L(τ) = Corr(rt−τ , r
2
t ), where Corr(a, b)

is the (linear) correlation between a and b, and r2
t is used as a measure of volatility

at time t. The leverage is present when L is significantly negative, so that past

returns and future volatility are negatively correlated.

Using the same measure as in Cont (2001) we observe a leverage effect at a

significance level of 5% in the four markets, for which, the correlations of lag one,

L(1), are: -0.26 (0.0158), -0.44 (0.0000), -0.52 (0.0000), and -0.39 (0.0026). The

associated p-values are given in parentheses. It can be seen that correlations for all

four markets are negative and also statistically significant at the 5% level. Three

out of four markets exhibit correlations that are even significant at the 1% level.

For real stock markets, the leverage effect is also present over more than one lag

but dies out after some periods, averaging 10 days in daily stock data. For two of

the series we also see a leverage effect for lag 2 and 3, but the correlations are not

significant.

Even when we split the time series in halve and calculate the leverage effect

for both series we obtain a significant leverage for five of the eight series. As

mentioned earlier the underlying asset does not exhibit a financial leverage. It is
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FIGURE 5.3: Same as Figure 5.1 but for market 3.

just a financial security with a dividend process given by a random walk with drift.

Thus, there is no increase in leverage nor risk when the stock goes down nor is there

a decrease in leverage or risk when the stock price goes up: It is therefore rather

unexpected that we observe such a significant leverage effect in all four markets.

The observation of the leverage effect in these markets with an asset that is free

of any financial leverage is not even restricted to a particular time series pattern.

Irrespective of whether the price series go up or down in the experiment, we observe

the leverage effect.

The termination probability has (theoretically) no effect on the leverage effect

even if we consider the fact that subjects loose the entire amount they hold in

stocks when the experiment ends. We therefore consider the end of the experi-

ment as a state of bankruptcy. This is because although there is no predetermined

length of the experiment, the termination probability is constant throughout. In

the case of the leverage effect observed for truly levered stocks, this is different.

The termination probability of the company, e.g., the probability of the state of

bankruptcy, will increase when the stock price drops, ceteris paribus. As men-

tioned earlier, the leverage effect occurs because the state of bankruptcy becomes
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FIGURE 5.4: Same as Figure 5.1 but for market 4.

more likely when stock prices fall. As a result, the company is more risky and

so volatility rises. This effect is not present in our experiment because a rise or

fall in the price of the stock does not effect the termination probability of the

session. Volatility should therefore stay constant, too. One can easily construct

an experiment wherein the termination probability is increased (decreased) as the

stock prices goes down (up). We leave this for future research.

5.4 Conclusion

We use experimental stock markets to provide evidence that the leverage effect

in financial markets does not necessarily stem from the financial leverage of the

firm. In all four experimental markets we explore, we find a significant leverage

effect although the underlying asset does not exhibit any financial leverage. Put

differently, although the capital structure of the underlying firm never changes, we

observe a leverage effect in traded asset prices. It would be interesting to see if

the magnitude of the leverage effect changes when we introduce an asset which

exhibits different degrees of financial leverage.
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5.5 Appendix: Experimental Instructions

Experiment Instructions

Overview

You are now participating in an economic experiment. Please read the following

instructions carefully. You will find every information you need to take part in this

experiment. If you do have further questions feel free to show hands so that we

can answer your questions at your place.

Contingent on your decisions in this experiment, you can earn real money by

collecting Gulden. The experiment takes place in several periods and in every pe-

riod you can earn Gulden. The amount of Gulden you will earn depends on your

decisions as well as on the decisions of the other participants. It is thus impor-

tant that you read theses instructions carefully. We will exchange your Gulden to

Franken2 at the end of the experiment at a rate of:

100 Gulden to 15 Rappen.

Please refrain form talking for the duration of the experiment. Furthermore,

you are only allowed to use the functions of the computer that are designed for the

experiment. If you do not observe these rules, we will have to exclude you from the

experiment and all payments, and ask you to leave. If you have questions please

feel free to ask us.

At the end of these instructions you will find some control questions. Please

answer them all and let us know that you are finished.

2One dollar was about 1.8 Franken at the time the experiment took place. And one Franken is 100 Rappen
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Basic Structure of the experiment

The experiment deals with consumption decisions and trading in financial markets

in which you can invest your money in a single stock or transfer it to a final dis-

bursement account. The stock pays a dividend, the value of which is determined

by chance. Be aware that the experiment ends at random. At the beginning of the

experiment, i.e., at the beginning of the first period, you receive an endowment in

money and stocks of:

5 stocks and 100000 Gulden.

All following periods are structured in the same way. You first decide how

much money you want to transfer to your final disbursement account and how

much money you want to put into stocks. Please note the following two important

points. First: The money transferred to the final disbursement account can not be

transferred back to the trading account during the remainder of the experiment,

so it can not be used for trading stocks again. Second: Only the money on the

final disbursement account will be disbursed, that means, if the experiment ends

the money in the trading account and the stocks are worthless.

After you chose how much money to transfer to your final disbursement account

you can start trading the stock. We will describe how the actual trading takes

place further below. Keep in mind that for trading you just have the money on

your trading account. For all stocks you buy you receive a dividend. This dividend

payment and the money that is left on your trading account can be used to trade

in the next period or can be transferred to your final disbursement account.

At the end of each period the computer decides randomly if the experiment ends

or continues. The probability of ending is 3%.

92



Some details

Trading

Trading takes place in form of double auction lasting 120 Seconds. During this

time you can make offers and close agreements according to your own wishes. The

rules for trading are easy, each new bid must be higher than the previous bid, and

each new ask must be lower than the previous ask. The contracts are closed via

pressing the button. Gains or losses will be immediately credited or debited to

your account.

Shares

All shares are based on one company and every share pays a dividend which is

paid out at the end of each period. The dividend payment is 100 Gulden in

the first period and after that the dividend payment changes at random

in every period. The dividend can rise or fall and the changes are such that

the dividend from the previous period is multiplied by 1.20, 1.05, 0.95

or 0.80.

However, none of the participants know the exact underlying dividend process.

That means, you do not know with what probability the dividend will

rise or fall in the next period.

Before we start the experiment, several possible random examples will be

shown to you in a test run. Attention! None of the shown dividend paths will

be the ’right’ one in the actual experiment, they are just examples. During the

experiment the computer will determine totally new random dividend paths.

In summary:

• The shares pay a dividend at the end of each period.

• The dividend is 100 Gulden in the first period but changes randomly for all

other periods. The dividend can change +20%, +5%, -5% or -20%.

• The dividend payment will be announced at the end of each period.

• The experiment ends at the end of the period with a probability of 3%.
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Accounts

Trading account: With the money on this account you can buy shares in each

trading period (see below). Dividend payments will be transferred to this account,

too.

Final disbursement account: At the beginning of every period you can transfer

money to this account but please notice, you can not transfer it back to the trading

account. However, just the money on this account will be paid to you as Swiss

Franks when the experiment ends.

Experiment duration

The experiment lasts several periods but ends randomly. At the end

of every period it will be determined whether the experiment ends or if there is

another period. To give you a better feeling about the experiment duration, we will

show you several examples with possible durations and dividend evolutions

before the experiment starts. Attention! None of the durations and dividend

paths will be the actual ones in the experiment. They are really just examples.

Gains

Your gain will be the actual amount on your final disbursement account at the end

of the experiment.

Sequence of a period

In every period you have to decide how much money you want to save for ’con-

sumption’ and how many shares you want to buy or sell.

Now we look at each of the steps in more detail:

• Allocation of money

You decide how much money you want to transfer from your trading account

to your final disbursement account.

• Trading

In every period you have 2 Minutes to trade. You can see the remaining

time and the period on the upper part of the screen. In the middle part
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you can see the actual number of stocks and the amount of money in you

trading account. You can also see the dividend payments for the previous

and current period.

In the lower part you can trade:

a) In the window on the left hand side you can make your offer for sale to

the other participants. You enter the price for which you want to sell one single

share and then press ’Offer for sale’. This price will then be shown to the other

participants. You can only enter whole numbers that have to be positive. Your

selling order has to be lower than the current lowest one.

b) In the next window you can view the selling orders of all other participants.

You can buy one share for the depicted price. The best offer is highlighted. If you

press ’Buy’ you will automatically buy from the person with the best offer. The

price will be subtracted from your trading account.

c) All actually traded prices of the current period are listed in the middle window.

d) In the fourth window you can see the bids of all other participants. You can

sell one of your shares for that price. The best offer is highlighted here, too. If

you press ’Sell’ you will automatically get the best price and the amount will be

credited to your trading account.

e) In the window on the right hand side you can make you bids. Enter the price

at which you want to buy one more share and press ’Bid’. This price will be shown

to all other participants in the filed ’Bids’. As for selling, you can just enter whole

numbers that are positive and your bid must be higher than the current highest

bid.

Some trading rules for stocks

You are not allowed to sell shares that you do not own. You are not allowed to sell

shares to yourself. You are not allowed to buy shares with borrowed money, e.g.,

you are not allowed to bid for a share for more money you actually have on your

trading account.
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The computer will constrain your trading behavior and will automatically en-

force these rules. In case you are surprised from a refusal of execution of one of

your orders, please check if one of the above rules are violated.

Do you have any questions? If not please turn the page and answer the following

control questions.

Control Questions

Please answer all of the following questions. We will not start before we have not

checked your answers. False answers do not have any effect on your potential gains

(nor do right ones). The questionnaire serves just to make sure that everybody

has understood the experiment correctly. The prices and money on the accounts

are chosen so that you do not have a hard time to do the maths. In case there are

any obscurities, please show hands and we will try to solve your problem.

1. Imagine a situation for participant A at the beginning of the trading. She

owns 5000 Gulden on her trading account and 8 shares. Which of the fol-

lowing transaction plans are valid given the following chronology?

(a) Buying one share at a price of 2500 Gulden and after that buying one

more for 3000 Gulden. Then selling one share for 3050 Gulden.

(b) Selling one share for 2400 Gulden. Later cancellation through buying

for her own.

(c) On the screen are already depicted the following selling orders: 3700,

3600, 3500, 3400 Gulden. You enter your selling order of 3400 Gulden.

2. Another situation for participant A. Before the trading starts A transfers 500

Gulden to her final disbursement account. Until now, she has 4500 Gulden

on this account. At the beginning of the trading she has 6500 Gulden on her

trading account and 5 shares. She buys one share from participant B for a

price of 3100 Gulden and one from participant C for 3300 Gulden. She then

sells one for 3500 Gulden. In the end of the period the dividend increases
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20% from a level of 110. How do the individual accounts of participant A, B

and C look like?

3. Given the dividend is fixed at 200 Gulden for the whole experiment. How

much is the sum of all dividends that you expect when you hold one share

for the whole experiment and when you know the termination probability is

3%?

a) 10000 Gulden b) 6666 Gulden c) 1000 Gulden

d) Own estimate:

4. What is the average price of the share you expect in the first trading period?

(This question can not be answered right or wrong, meaning there is no right

answer from the instructions given so far. We are just keen on hearing your

opinion.)

Ready? Please show hands. We will come to you!

97



Bibliography

Acerbi, C. and Tasche, D. (2002a). Expected Shortfall: a natural coherent alter-

native to Value at Risk. Economic Notes, 31(2):379–388.

Acerbi, C. and Tasche, D. (2002b). On the coherence of Expected Shortfall. Journal

of Banking and Finance, 26(7):1487–1503.

Adler, R. J., Feldman, R. E., and Taqqu, M. S., editors (1998). A Practical Guide

to Heavy Tails. Birkhäuser, Boston.
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