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Abstract

The aim of this thesis has been to develop a visualization application that supports the analysis of
psycho-physiological data recorded from software developers working on code comprehension
tasks. Since psycho-physiological (also known as biometric) measurements, such as electrodermal
activity (EDA), or electroencephalography (EEG), can be used as indicators for cognitive states,
these data are used to detect the difficulties a developer might have experienced during source
code comprehension activities.

Using three different visualization approaches, a dataset consisting of EEG, EDA and eye-
tracking data was investigated with a special focus on the identification of various kinds of pat-
terns (e.g., code reading patterns or time-related biometric patterns). Based on the results of visual
inspection (enabled by the visualizations developed for this purpose), significance tests were con-
ducted to verify the findings. The analysis has confirmed eye movement patterns that had been
described in previous research. New insights are made regarding time-related patterns. Metric
correlations within task data were found, like the accumulation of eyeblinks with concomitant
low values for mental focus (Attention eSenseTM values). Additionally, metric differences in task
pairs of inherently easier/harder tasks were analyzed and interpreted. For example, it was found
that the use of mnemonic variable names instead of generic variable names result in a significant
lower number of occurrences of the retrace declaration pattern.

Learning how software developers read source code and how they emotionally and physiolog-
ically react on reading code comprehension tasks could help to locate problematic code segments.
Findings in this research field can be used to develop novel programming support tools that make
use of psycho-physiological sensors. Depending on programming difficulties detected on the fly
(e.g., by identification of biometric patterns), appropriate interventions could be suggested by a
rule engine.





Zusammenfassung

Ziel dieser Arbeit ist es, einen Visualisierungsprototypen zu entwickeln, der psycho-physiol-
ogische Daten aus Codeverständnisaufgaben geeignet darstellt. Verschiedene Studien der psy-
chologischen Forschung haben gezeigt, dass psycho-physiologische (biometrische) Daten wie
EEG, EDA oder Eye-tracking Daten Rückschlüsse auf kognitive Aktivitäten zulassen. Aufgrund
dieser Tatsache können psycho-physiologische Sensoren dazu eingesetzt werden, um auf den
Schwierigkeitsgrad von bestimmten Codeverständnisaufgaben zu schliessen.

Ein Datensatz, bestehend aus EEG, EDA und Eye-tracking Daten, wurde mithilfe der eigens
zu diesem Zweck entwickelten Visualisierungen auf Datenmuster und Auffälligkeiten hin un-
tersucht (z.B. zeitbezogene biometrische Muster oder Lesepfadmuster). Die gefundenen Resul-
tate wurden anschliessend Signifikanztests unterzogen. Neben bereits bekannten Muster bzgl.
des Code-Lesepfads wurden beispielsweise zeitbezogene Auffälligkeiten entdeckt. So gehen An-
häufungen von Lidschlägen oft einher mit relativ tiefen Messwerten für den mentalen Fokus
(Attention eSenseTM-Werte). Zusätzlich wurden speziell die Messdaten von ähnlich konstru-
ierten Aufgabenpaaren miteinander verglichen und die Resultate interpretiert. Dabei wurde u.a.
festgestellt, dass beim Gebrauch von sogenannten mnemonischen Variablennamen signifikant
weniger "retrace declaration patterns" (Blickbewegungen zur Variablendeklaration) zu beobachten
sind.

Die Erkenntnisse darüber, wie Softwareentwickler Quellcode lesen und wie sie auf bestimmte
Codeaufgaben reagieren, können dazu beitragen, problematische Codestellen zu identifizieren.
Resultate aus diesem Forschungsbereich könnten dazu genutzt werden, neuartige Unterstützungs-
tools zu entwickeln, die aufgrund der identifizierten Datenmuster Codeänderungen oder ander-
sweitige Eingriffe vorschlagen könnten.
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Chapter 1

Introduction

1.1 Motivation
Performing software coding activities requires varying levels of cognitive effort depending on
the overall difficulty of a given task or the complexity of specific code segments [PD10]. Various
research studies (e.g., [Doe57, Ax53, Tep02]) in psychology have shown that psycho-physiological
measures as for example electroencephalography (EEG) or electrodermal activity (EDA) can be
used to indicate cognitive states and efforts. In the field of human factors in software develop-
ment, current research is exploring the use of psycho-physiological measures to support develop-
ers [Cur14].

This thesis is based on a noval approach by Fritz et al. that aims to classify code comprehen-
sion tasks into easy and difficult ones using various psycho-physiological measures. Fritz et al.
explore the potential of EEG, EDA and eye-tracking data to predict the difficulty of code com-
prehension tasks. Actually, the approach investigates whether psycho-physiological data can be
used to determine if a task is considered to be easy or difficult by an individual developer. Ma-
chine Learning experiments have shown that an accurate prediction whether a participant would
find a specific task to be difficult or easy is possible. The same underlying dataset that is used by
Fritz et al. is also used for this thesis [FBM+14].

Learning how software developers read code and how they react on specific parts of source
code could help to locate problematic code segments. Findings in this research field could be used
for example to develop novel programming support tools that make use of psycho-physiological
sensors. Depending on patterns detected on the fly, appropriate interventions could be suggested
by a rule engine. For instance, if based on the eye-movements an extraordinary high number of
retrace movements to the variable declaration is recognized for a specific variable, renaming that
variable could be suggested. A better variable name makes remembering what the variable was
related to easier, which reduces the number of retrace actions that have to be performed by the
developer.
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1.2 Goal
The focus of this thesis is on finding patterns in a dataset that consists of EEG, EDA and eye-
tracking data. The data are recorded in a lab experiment with 15 professional software developers
solving 6-8 code comprehension tasks of varying difficulty level. The study was carried out by
the University of Zurich in cooperation with Microsoft Research. The pattern analysis can be
described as exploring the recorded data for interesting facts that apply for multiple participants.
This includes various kinds of patterns as for example patterns that can be related to code-reading
techniques (fixation path patterns), to biometric data that was measured at the beginning of a task
or at the end of a task (time-related patterns), or to findings that apply to some specific groups of
tasks only (task property patterns).

To provide a framework for the identification of patterns in the said data, visualization ap-
proaches have to be developed beforehand. A visualization prototype allow for the selection
of an experimental task and display the code of that task in alignment with visualized psycho-
physiological measurement data. Based on the eye-tracking data, the psycho-physiological mea-
surements can be related to specific code segments. In the prototype, visual elements that allow
to put the measured data in relation with the corresponding code segments should be integrated.

So, the goals of the thesis can be summarized as follows:

• Develop a visualization prototype that supports the analysis of biometric data recorded from
developers working on code comprehension tasks. A set of different visualization ap-
proaches is required to identify various kind of patterns (i.e., time-related patterns, fixation
path patterns, code segment specific insights).

• Analyze an existing dataset using the implemented visualization approaches and evaluate whether
the obtained insights are statistically significant or not. In particular, metric differences
regarding task pairs that had been specifically designed to provide different difficulty levels
are analyzed and interpreted.

1.3 Research Questions
Derived of the thesis goals, three research questions are formulated and listed in the following.
The first research question focuses on the visualization approach, whereas the second is in connec-
tion with the process of finding patterns. Additionally, the third research question asks whether
code segment specific data (measurement data that can be related to specific areas of interest) can
be used as an indicator for difficulty.

(RQ1) How can psycho-physiological measurements be visualized to support the analysis of patterns
in the data that can be related to difficulties a software developer might have experienced while
working on a specific parts of the code?

(RQ2) Which reoccurring patterns within code comprehension tasks can be identified in psycho-
physiological data using visual inspection?

(RQ3) Given a pair of tasks that have been specifically designed to provide two different difficulty
levels, can we explain the difference in difficulty by the AOI measurements?
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1.4 Structure of Thesis
This thesis is structured as follows: In a first step, background information (Chapter 2) about
physio-physiological data is given. In particular, it focuses on the measurements that are received
from the psycho-physiological sensors used in the code comprehension study. The related work
section which is presented in Chapter 3 is categorized into three areas: eye movement research
concerning code reading tasks, use of various biometric measures in software development re-
search and the use of biometric data in other research fields.

Then, the data gathering and handling is described in Chapter 4. This includes a description of
the experimental study setup, lists the measured data as well as various metrics that are computed
and shows data transformation steps that are used to prepare the relevant data for the different
visualization approaches. Additionally, the database schema that is used for the visualization
prototype is given in this chapter.

Before the implemented visualization approaches are presented in detail, the application ar-
chitecture is explained and the design and interaction concept describing how the application can
support the pattern finding process is given in Chapter 5. Then, the application as such is pre-
sented in eight different use case scenarios that make use of the three implemented visualization
approaches (Chapter 6).

After the description of the main application features, the data analysis and pattern finding
process are subject of Chapter 7. Basically, the data analysis part is divided into two parts: 1) Iden-
tification of patterns by visual inspection and 2) evaluating patterns using statistical tests. Several
analysis approaches were applied to the visualized data leading to various kinds of patterns and
data insights. Each of these approaches is presented in a separate chapter:

• Chapter 7.2: Fixation Path Patterns

• Chapter 7.3: Participant-specific Analysis

• Chapter 7.4: Time-related Analysis

• Chapter 7.5: Comparable Task Pair Analysis

• Chapter 7.6: Task-property Analysis

• Chapter 7.7: Metric Dependency Analysis

Finally, the findings are summarized, the stated researched questions are answered and as-
pects of future work are given in Chapter 8.





Chapter 2

Psycho-Physiological
Background

In this chapter, background information is provided that describes psycho-physiological mea-
sures. First of all, an overview of the most commonly used psycho-physiological measures used
in today’s research is given. The measures that are used in the experimental study this thesis is
based on, are then briefly presented. This includes also descriptions of analytical procedures to
relate the data with cognitive states and processes.

2.1 Overview
In various research fields, psycho-physiological measures are popular to study the human’s cog-
nitive states. Psycho-physiological measures can be described as physical signals of the human
body that are responses to psychological changes [DG11]. Using appropriate equipment, these
signals can be tracked in real-time.

Table 2.1 provides a categorized overview of the most frequently used psycho-physiological
measures based on Dirican et al. [DG11]. Measures used in this thesis are highlighted in bold.

Brain related Eye related Skin related Heart related

• Electroencephalo-
graphy (EEG)

• Event Related
Brain Potentials
(ERP)

• Electroocuolo-
graphy (EOG)

• Eye Movements
(Fixations,
Saccades)

• Eye blinks

• Electrodermal
Activity (EDA) or
also known as
Galvanic Skin
Response (GSR)

• Electromyrogram
(EMG)

• Heart rate
variability (HRV)

• Heart rate (HR)

• Blood pressure
(BP)

• Respiration

Table 2.1: Overview of brain-, eye-, skin- and heart-related psycho-physiological measures [DG11].
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2.2 Electrodermal Activity (EDA)

2.2.1 Defintion
The term electrodermal activity (EDA) was introduced by Johnson and Lubin in 1966 and includes
all electrical phenomena in skin [Bou12]. It can be said that it measures changes in the skin’s
ability to conduct electricity over the time. It is also known as galvanic skin response (GSR) and
is one of the most frequently used biosignal in psychophysiology [Bou12]. This has multiple
reasons: First of all, electrodermal recording allows easy recognition of distinct electrodermal
responses (EDR) that can be related to certain stimulus intensity [Ras73]. Using this data, implicit
emotional states can be identified in an easy way. In addition to the ease of obtaining stimulation,
accurate data recording is possible with fairly inexpensive recording devices [Bou12].

2.2.2 Tonic and Phasic Phenomena
Electrodermal activity can be divided into the tonic phenomena (Electrodermal level: EDL) and
the phasic phenomenea (Electrodermal response: EDR) [Bou12]. Whereas the tonic signal com-
ponent vary slowly over the time and changes occur typically in a period of 10 to 60 seconds, the
phasic component is associated with short-term events and can be used to identify time intervals
in that stimuli has been provided [FM11, Aff14]. A more detailed explanation is given below:

Tonic Signal (Skin Conductance Level). The tonic component of the EDA signal can be de-
scribed as the level of skin conductance in absence of any specific external stimuli or discrete
environmental events. Typically, the tonic skin conductance level is slowly varying over the
time depending on factors like the persons’ psychological state, dryness of the skin or hydra-
tion [Aff14]. In particular, stress or mental demanding activities can rise up the tonic skin con-
ductance [Nak11].

Phasic Signal (Skin Conductance Response). Changes in the phasic component of the EDA
can be associated with external stimuli or discrete environmental events as for instance sound
or smell. In the phasic signal, such events are apparent as peaks (Skin Conductance Responses:
SCR). To identify possible external stimuli, the latency time regarding conductance responses
which amounts to 1-3 seconds must me taken into account [Aff14].

In summary, the tonic phenomena describes “the smooth underlying slowly-changing levels”,
whereas the phasic component typically show “rapidly changing peaks” [Aff14]. In contrast to the
EEG signal, the EDA signal is of lower frequency and is based on physiological processes that are
relatively slow-changing. In addition to that, the analysis of phasic changes in the phasic signal
focuses mainly on irregularly occurring single events and not on pattern identification based on
frequency or amplitude [Bou12].
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2.2.3 Analytic Procedures
For the data analysis, the tonic and phasic component must be extracted from the recorded signal.
Because of the relatively short time durations of the tasks used in the experimental study, the
focus is set on analyzing the phasic component of the EDA signal. It has to be mentioned that
there is not always a distinct relationship between a stimulus and a peak that occurs in the phasic
signal. The skin conductance responses that are not event-related are called non-specific skin
conductance responses (NS-SCRs). Fortunately, it is possible to separate the artifacts from the
signal in most of the cases based on the characteristic course of the phasic changes [BWJR14].

Compared to other physiological signals as for example the heart rate changes, the electroder-
mal responses have a relatively long latency time. Normally, the latency time amounts between
1 and 2 seconds. Venables and Christie proposed a time window between 1 and 3 seconds for
a SCR that is followed by a distinct stimulus [Chr81]. It was found that the latency varies with
body temperature [Bou12]. In cases of skin cooling, it can increase up to 5 seconds [Bou12]. This
means in fact that body temperature should also be considered if it is desired to further reduce the
mentioned time window. For the analysis that is done in this thesis, the time window proposed
by Venables and Christie is used to identify code segments that can be related to stimuli.

Based on literature, electrodermal activity can be related to cognitive processes or states such
as arousal, attention, stress or anxiety [Bou12, DSF07]. Studies have shown that EDA measures
can be used as an indicator for cognitive load level and task difficulty level [Bou12]. For instance,
Wilson et al. has found significant differences in electrodermal activity regarding tasks that de-
mand different mental workload [Wil02].

2.3 Electroencephalography (EEG)

2.3.1 Definition
The EEG measurement is commonly used in medicine and various research areas. It can be de-
fined as medical imaging technique that measures the neural activity of the human brain [Tep02].
The human brain consists of billions of nerve cells that are called neurons [Wag75]. The electrical
activity of these neurons produces current flows. The summation of currents result in voltage
fluctuations on the scalp, which can be recorded using medical equipment. This recording is
typically done using multiple electrodes (small metal discs) placed on the head’s surface [Tep02].

2.3.2 Frequency Bands
The raw EEG signal can be divided into frequency bands that are alsow known as brainwave
types. Brainwaves can bee categorized into the following basic groups: beta (>13 Hz), alpha (8-13
Hz), theta (4-8 Hz), delta (0.5-4 Hz). Each of these brainwave types can be associated to different
mental states [Tep02]. Since NeuroSky’s proprietary metrics have been used for representing
the EEG data in the visualization approaches, the mental states that can be associated with the
brainwave types are not mentioned in this section.
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2.3.3 NeuroSky’s Attention and Meditation eSenseTM Metrics
In the experimental study, the lightweight and easy to setup NeuroSky MindBand that is placed
on the participant’s forehead is used as an EEG measuring device. It must be said that the device
uses a single electrode and therefore provides a coarser information in comparison to a EEG mea-
suring technique where multiple electrodes are used [RMDMM+09]. But due to the fact that the
device is very easy to setup, barely noticeable and therefore reduces some of the difficulties to col-
lect accurate data, the NeuroSky MindBand is a very suitable device for the code comprehension
study. Along with the raw EEG Signal, NeuroSky provides two separate measures named as At-
tention and Meditation which provide information about emotional and cognitive states [Neu09].
These values are computed using dynamically learning algorithms that are developed by Neu-
roSky eSenseTM [RMDMM+09]. Both values are reported on a scale of 1 to 100 and are operating
at 1Hz. Implications for values in certain value ranges are given in Table 2.2. The color of the cells
in the last two columns indicate how values within certain ranges can be related to task difficulty
(red: high difficulty, green: low difficulty). Below, the eSenseTM metrics are described:

Attention. The eSenseTM Attention meter value measures the level of mental focus. It can be said
that the measure shows how concentrated somebody is at a given moment in time. Intense con-
centration and stable mental activity leads to high attention values whereas wandering thoughts
or anxiety can reduce the attention value [Neu14].

Meditation. The eSenseTM Meditation meter value represents the person’s mental calmness. It
must be said that it measures the relaxation on mental levels and not on physical levels. This
means, that relaxing the muscles does not necessarily lead to high meditation values. High
meditation values can be related to reduced active mental processes. In addition to wandering
thoughts or anxiety, agitation and sensory stimuli can lead to lower values [Neu14].

eSenseTM Value Status Attention Meditation

1 - 20 strongly lowered strongly distracted strongly agitated

20 - 40 reduced distracted agitated

40 - 60 neutral - -

60 - 80 slightly elevated mental focused mental relaxed

80 - 100 strongly elevated heightened attention heightened calmness

Table 2.2: NeuroSky’s eSenseTM value ranges with corresponding implications [Dug13].
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2.3.4 Eyeblinks
Although the EEG is designed to record brain activity, it is also possible to detect motor signal of
the face because of the placement of electrodes on the scalp [AÇÇ09]. It was found that eyeblinks
are one of the major sources of inferences in the EEG exam [SAdA08]. Fortunately, such artifacts
can be distinguished from the neuronal activities [FBM+14]. In neuroscience research, it was
found that an increased blinking rate can be used as an indicator for arousal [DJM90].

2.4 Eye-tracking

2.4.1 Tracking Methods
There exists several techniques to record eye-movements. Basically, they can be categorized as
follows: 1) recording eye rotations using so called in-eye sensors, 2) eye tracking based on video
recording and 3) measuring of electric potentials using electrodes placed near the eyes [Tor07].
Actually, the technique that is listed second was used in the code comprehension study. In this
method, a camera focuses on the eyes that are illuminated with light (typically infrared). Using
the camera, the reflection of the light can then be recorded. Based on these reflections as well as
the center of the pupil, eye-movements can be determined [Tor07].

2.4.2 Gaze Event Types
Eye movements are typically analyzed in terms of gaze event types that are described below:

Fixations. A fixation is recognized when a person focuses on a specific area of interest and
pauses in that informative region [SG00]. A common metric that is related to fixation is the fixa-
tion duration which is also provided by the eye-tracker that was used in the experimental study
this thesis is based on.

Saccades. The rapid movements between the fixations are called saccades [SG00]. For these
saccades, no specific area of interest can be assigned. In literature, the terms "saccadic jumps"
or "saccadic eye movements" are often used for this fast change of the eyes’ position [FWL59].
The number of saccades over a specific period of time is a popular measure that is used as an
indicator for various phenomena. Goldberg et al. has shown in a user interface evaluation study
that a relatively high number of saccades indicates that the interface tends to be poor [GK99].

2.4.3 Pupillometry
Besides the fixation durations and the number of saccades, the pupil size is an important mea-
surement that allows conclusions about cognitive states and processes. In psychology, the term
pupillometry is used for the measurement of the pupil diameter [KKH08]. Studies have shown,
that especially the peak amplitude of the pupil size can be used as an indicator for memory
load [Bea82, Kli10]. Note that for analyzing pupil diameter data, only the data of the dominant
eye of the subject should be considered [CH06]. This is because of the so called ocular dominance
that describes "the tendency to prefer visual input from one eye to the other" [KC01].





Chapter 3

Related Work

The related work section is classified into three areas: First of all, research concerning code reading
techniques and eye movement patterns is given. After that, general findings on the use of psycho-
physiological metrics in various research fields are listed, before it is then focused on software
development research using psycho-phyisological measures.

3.1 Code Reading Patterns
There exist a number of studies where eye-tracking is used to analyze how code reviewers read
software code. Uwano et al. have proposed an objective way to characterize the performance of
participants in reviewing software code by using eye movement data. This includes an integrated
measuring environment for line-by-line tracking of eye movements [UNMM06]. As a result of this
study, three patterns were found: The scan pattern, the retrace declaration pattern and the retrace
reference pattern. These patterns are briefly exlpained below.

Scan Pattern. It was found that most of the participants read the code from the top to the
bottom briefly before concentrating on some specific parts of the code. The statistics in Uwano’s
study shows that in the first 30 percent of the code review time, nearly 73 percent of the total
lines of code were watched in average. Uwano names this preliminary reading as scan pattern
[UNMM06].

Retrace Declaration Pattern. In addition to the scan pattern, Uwano et al. found that when a
participant reaches a line of code where a variable is initially used, the subject often focuses the
line where that variable is declared within a short time period. This pattern, that is named as
retrace declaration pattern, is interpreted as a cognitive action where the participant wants to be
sure about the data type [UNMM06].

Retrace Reference Pattern. The retrace declaration pattern has similar characteristics as the re-
trace declaration pattern. It describes the eye movement from a specific line of code where a
variable is defined back to the line where the variable is referred. Uwano argues that this be-
haviour is shown to remember or to recalculate the value of a specific variable [UNMM06].

Illustrated examples of the patterns that are described above can be found in the data analysis
part of this thesis (see Chapter 7.2). In addition to these patterns, Uwano et al. found in a quantita-
tive analysis that participant with a relatively short scan time tend to take more time for detecting
errors in the source code. That means, that the longer a participant spends in the initial scan, the
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quicker the error is found [SFM12]. In the mentioned study, the first scan time is defined as the
time spent from the beginning of the task until 80 percent of all the lines are read [UNMM06].
Another study by Sharif et al. that follows a similar experimental setup but with a higher number
of participants makes the conclusion that scanning time significantly inversely correlates with er-
ror detection time and the total number of fixations. In addition to that, Sharif et al. found in a
replication study that programming novices tend to read lines more broadly than programming
experts. Also the amount of time to scan the code is higher for the novices. The found differences
are explained by the experts intuitive notion of detecting problem areas [SFM12].

3.2 Psycho-physiological Research
There exist several studies that investigate the use of various psycho-physiological measures to
characterize a person’s mental or emotional state and processes. Table 3.1 provides an overview of
cognitive processes that can be related to different psycho-physiological measurements [FBM+14].

Measure Metric Findings related to Cognitive States and Efforts

EEG Attention Mental focus, concentration,
cognitive load [RMDMM+09]

Meditation Mental calmness, relaxation [Neu14]

Frequency bands Can be connected to different mental states [Tep02]

Eyeblinks Inverse correlation with visual attention or mental load
[DJM90], indicator for stress or anxiety [Doe57, HBPR09],
arousal corresponds to increased eyeblink rate [DJM90]

EDA Tonic signal Mental workload [Wil02], anger & fear [Ax53]

Phasic signal Anger & fear [Ax53], arousal [MKK+12]

Eye-tracking pupil diameter Diameter of peak amplitude indicates memory load,
pupillary response varies with task difficulty [Bea82],
pupil dilation as a measure for workload [BI08]

Saccades Regarding user interfaces: A relatively high number of
saccades indicates a poor interface [GK99]

Fixations Fixation duration used as a indicator for the difficulty of
extracting information from a display [JK03]

Table 3.1: Psycho-physiological measures and their use as indicators for various mental states.
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3.3 The Use of Psycho-physiological Measures in
Software Development Research

Apart from the already presented related research concerning code reading techniques using eye-
tracking systems, there exist a few other studies in the field of software development that make
use of psycho-physiological measures. In the following, a selection of studies that investigate
software engineering aspects is briefly presented.

Identifier-naming Conventions. Sharif et al. have investigated the effect of using identifier-
naming conventions "camel-case" and "underscore" on code comprehension with the help of eye-
tracking. Results have shown that there is no difference between the two conventions in accu-
rancy. However, a difference concerning recognition time and visual effort is found: Using iden-
tifiers in the underscore style, participants tend to recognize them faster and lower visual effort is
required [SM10].

Experienced-based Differences regarding Code Reading. Crosby et al. have examined in a
code comprehension study how participants view short algorithms. In particular, the differences
regarding code reading techniques between low- and high experienced developers are discovered
using eye-tracking. It was found that less experienced software developers took more time on
comments but less time on complex statements than advanced developers [CS90].

Influence of Programmers’ Mood. Khan et al. have investigated how developers’ mood affect
their programming activities. Although no psycho-physiological sensors were used in this study,
it examines psycho-physiological aspects. In lab experiments, the developers’ mood was manipu-
lated using low-arousal-evoking and high-arousal-evoking video clips a mood change validation
tests was performed. Results for debugging tasks have suggested that developers’ performance
were influenced by their mood [KBH11].

User Interface Evaluation based on Eye-tracking. In a user interface evaluation study, Gold-
berg et al. uses eye movement locations and scan paths to evaluate the user interface of a drawing
tool. Good and poor interfaces are created i.e., by various grouping of buttons and icons. Results
have shown that well-organized functional grouping lead to significantly shorter scan paths and
a lower number of fixations [GK99].

Detection of sub-vocal Utterances. Parnin et al. investigates the use of electromyopgrahy
(EMG) for software developers. Using EMG, occurrences of so called sub-vocal uterrances can be
detected. The phenomena of sub-vocal uterrances can be described as electrical signals that are
sent to vocal cords or the tongue. Parnin et al. have found that this measure might be used to
determine the complexity of a task [Par11].

Most of the research studies that are described above are limited to eye-related psycho-physio-
logical measures. Little research has investigated the use of other measures as for example elec-
troencephalography (EEG) or electrodermal activity (EDA) in software development. However,
Züger has shown in her thesis that EEG data can be used to determine between two levels of
difficulty for code comprehension tasks. In addition to that she suggested use cases in relation to
how brainwave data can be used to support software developers. Concrete use cases with regard
to self-monitoring or the integration of a reward system are described in her work [Zü13].
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Fritz et al. goes further and investigates also the use of eye-tracking and EDA data to classify
code comprehension tasks based on the difficulty. In the approach this thesis is based on, it was
shown that psycho-physiological measures such as eye-tracking, EEG or EDA can be used to de-
termine whether a task is considered to be easy or difficult. Machine Learning experiments have
shown that the task difficulty (easy or difficult) for a new participant can be predicted with a pre-
cision of 65% using eye-tracking-, EDA- and EEG data [FBM+14]. For predicting a new task the
precision amounts to nearly 85%. It was shown that also using fewer sensors, an accurate pred-
ication whether a task is perceived as easy or difficult is possible (e.g., prediction by participant,
precision using eye-tracking data only: 69.16%) [FBM+14].



Chapter 4

Data Processing and Storing

In this chapter, relevant data processing steps to integrate the existing dataset into the visualiza-
tion prototype are explained. First of all, a description of the experimental study setup is given
and the used psycho-physiological measures are listed. In addition to that, it is briefly described
how additional metrics are computed from the raw data. Finally, an overview of the database
schema that is used by the visualization prototype is given.

4.1 Experimental Study Setup

4.1.1 Subjects and Measuring Devices
The underlying dataset used in this thesis was obtained in a lab experiment1 conducted by Mi-
crosoft Research in cooperation with the Unveristy of Zurich. In the study, 15 participants who
have at least two years of programming experience solved 6-8 short code comprehension tasks of
different difficulty level. In total, data for 116 tasks was obtained. Below, the measuring devices
used in the experimental study are listed:

• Eye-tracker to record fixation/saccade and pupil diameter information

• NeuroSky MindBand device placed on the forehead to record EEG. Additionally, attention and
meditation level data are provided, computed based on the brainwave data.

• Wrist band (on the non-mouse holding hand) to measure EDA and body temperature

A more detailed overview of the measuring devices along with the corresponding measure-
ments as well as further metrics that can be computed out of this data can be found in Table 4.1,
Chapter 4.2.

1For the replication package of the experiment, see: http://research.microsoft.com/apps/pubs/?id=209878
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4.1.2 Experimental Tasks
All the code comprehension tasks used in the study are written in C# and are basically about
drawing shapes on the screen. The tasks were constructed to have a varying level of difficulty.
Based on the kind of task, it can be classified in two task types. These types are briefly described
below and illustrated in Figure 4.1.

• Task Type A: In task A1 and A2 two rectangular objects are drawn on the screen based
on specific coordinates of the rectangles’ corners. The participant was asked to figure out
whether these rectangles overlap or not. Task A2 is constructed in a more complex way than
task A1. So it is expected that the participants experience more difficulties in task A2 than
in task A1.

• Task Type B: In tasks B1, B2, B3, B6, B9 and B11, various shapes as for example circles
or rectangles are drawn. For each of these code comprehension tasks, the participant was
asked for the correct order in which the objects were drawn on the screen. The tasks varied
for example in the order of variable assignments, the mathematical complexity, kind of vari-
able name or the complexity of loop statements. More details can be found in Chapter 7.5.

Figure 4.1: Illustration of task types: tasks of (a) type A are about overlapping rectangles and in tasks of (b)
type B it is asked for the order of the drawn shape objects.

The fact that the tasks with the same task type are quite similar but differ in their difficulty
level allows a pairwise comparison between some of them. These comparable tasks are named
in this thesis as task pairs. A detailed list along with difference descriptions can be found in
Chapter 7.5.

For each task, a duration of 2 to 5 minutes was planned, but results have shown that some of
the tasks were solved in less than 30 seconds (i.e., task B1). The longest average task duration was
noticed for task B6 (3.85 min). In total, 67.2 percent of the tasks were solved correctly. In order
to reduce inferences, a fishtank movie is shown for 120 seconds before each of the tasks, so that
the gathered data is influenced by the task he solved before as less as possible. To mitigate the
learning effect, the task order is randomized for each participant.
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4.1.3 Perceived Difficulty of Tasks
After each task in the experimental study, a written NASA TLX survey is conducted [HS88]. A
NASA TLX survey includes a set of workload-related human factors that have to be rated by
the participant. The subscale ratings are combined and a perceived difficulty value is computed
[HS88]. In the end of the experiment, the participant was asked to rank all the tasks based on
the perceived difficulty. To get an overview of the difficulty of the individual tasks, the resulted
rankings are illustrated in Figure 4.2. The dots that are colored in red represent tasks that were not
solved correctly, whereas black dots indicate that the task is completed successfully. Mean ranking
values are shown as vertical lines in each lane of a corresponding task. Based on Figure 4.2
following statements regarding the perceived difficulty of the tasks can be made:

• Task B1 is ranked as the easiest task, followed by task B2.

• 7 Participants ranked task B6 as the most difficult task.

• Although no participant completed task B9 successfully, two participants ranked it as the
second easiest task (implies that perceived difficulty 6= difficulty).

• Task A1 has the highest deviation in perceived difficulty.

• Order of tasks based on mean perceived difficulty: B6, A2, B11, B9, A1, B3, B2, B1.

Figure 4.2: Dot plot representing perceived difficulty data for each participant.
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4.1.4 Areas of Interest (AOIs)
For all the tasks so called areas of interest are defined. These can be single lines of code or code
blocks. If the eye-tracker recognizes that the subjects’ focus is in a specific area of interest, the flag
for that segment is set to true for this data entry. Figure 4.3 illustrated two code examples where
the defined areas of interest are highlighted using colored rectangles.

Figure 4.3: Example tasks with AOIs that are highlighted with colored rectangles: AOIs for task B1 on the
left and AOIs for task B2 on the right.

The defintion of these areas of interest allows code segment specific comparison. For instance,
the object initialization in task B1 can be directly compared with the object initialization part in
the comparable task B2. This AOI-specific comparison allows to discover psycho-physiological
insights for varying code segment difficulty.
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4.2 Measured Data and Computed Metrics

4.2.1 Overview
Table 4.1 gives an overview of all the psycho-physiological data that is measured in the experi-
mental study. In the last column, metrics that are computed using Matlab scripts are listed. A
description how these computations are performed is given in the section that follows the table
below.

Measuring Device Measured Data Computed Metrics

Measure:
EEG

Device:
NeuroSky’s
eSenseTM

Sampling Rate:
512Hz

Attention eSenseTM,
Meditation eSenseTM

Raw EEG signal

Brainwave frequency
bands, Eyeblinks

Measure:
EDA

Device:
Affectiva Q
Sensor 2.0

Sampling Rate:
8Hz

EDA signal

Body temperature,
Acceleration data

Tonic and phasic sig-
nal component, phasic
EDA peaks

Measure:
Eye-tracking

Device:
Tobii TX300
EyeTracker

Sampling Rate:
300Hz

Pupil size left,
Pupil size right

Gaze event type,
Gaze event duration

Pupil diameter peaks
are computed for the
dominant eye

Table 4.1: Overview of measuring devices, recorded data as well as computed metrics [Min13, ia13,Tec13].
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4.2.2 Metric Computations
The computations steps that are performed to get the metrics listed in the last column of Table 4.1
are briefly described below:

Brainwave Frequencies and Eyeblinks. To retrieve the brainwave frequency bands, the EEG
data is split using a Fast Fourier Transformation (FFT). Also the eyeblinks can be detected based
on the EEG data. This is the case due to the placement of the EEG device: Motor activities of the
face as for example are eyeblinking are identified as artifacts that can be distinguished from the
neuronal activities [FBM+14]. So, in addition to the brainwave frequency bands, the eyeblinks
are also computed based on the EEG data. For that, a band-pass Butterworth filter (0.5 Hz - 3Hz)
is used [FBM+14]. Then, an algorithm that detects peaks 2 in a given signal is applied. Peaks that
are more than 100 times stronger than the mean amplitude of the waveform are then considered
as eyeblinks.

Tonic and Phasic Component of EDA Signal. The EDA signal consists of two parts: The
low frequency tonic component and the high-frequency phasic component. After removing noise
from the raw EDA-Signal using exponential smoothing filtering, butterworth filters are applied
to extract the tonic and the phasic component of the signal. For the tonic signal a low-pass But-
terworth filter (5th order, 0.05Hz) is used, whereas for the phasic component, a high-pass Butter-
worth filter is applied. Because the phasic signal reflects reactions based on exteranl stimuli, the
peaks of the phasic component can be defined as an important measure [FBM+14]. This meas
that detected peaks can be associated with short-term psycho-physiological events. Like for the
eye blink detection, the Matlab-based peak finding algorithm is used to detect peaks in the phasic
component of the EDA signal (min. amplitude: 0.02 µS [Bou12]).

Pupil Diameter Peaks. Based on the pupil diameter data of the participants’ dominant eye, data
points with extraordinary high pupil dilation are extracted from the dataset. Again, the Matlab-
based peak finding algorithm is used for that. Before applying the algorithm on the dataset, some
preprocessing steps are required: First of all, data points that are tagged as invalid by the eye-
tracker are removed. Then, the first data entry for each fixation that is recorded after an eyeblink
has to be eliminated. Removing this entry is required to not distort the data since the pupils dilate
a little bit when the eyes are closed (even if this is only for a short time) [FBM+14]. Finally, three
types of peaks that are categorized based on the peak size are determined: Peaks that correspond
to a pupil diameter that is 0.4 mm, 0.2 mm and 0.1 mm above the mean pupil diameter.

2PeakFinder: http://www.mathworks.ch/matlabcentral/fileexchange/25500-peakfinder/content/peakfinder.m
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4.3 Dataset Transformation

4.3.1 Overview of Relevant Visualization Data
For the various visualization approaches, the measured data has to be prepared in an appropriate
way. For that, data extraction and transformation steps are required. Basically, the visualization
data can be categorized into three data categories. These categories along with examples what
kind of data that can be associated with each category is given below:

• AOI Measurement Data: For each participant, the metric values for all the AOIs that are
involved in one of the tasks a participant worked on, are computed. This is done using
time- and memory intenstive Matlab calculations. For example, the mean attention value
of a specific code segment is calculated by all the attention values that have been measured
when a hit in that specific code segment was recognized. The resulted metric values are
finally used for the Grid View; see Chapter 6.4. A list of all defined AOI metrics can be found
in Appendix C. In the following ,an extact of a sample JSON document (returned from a
web service request) that contains measurement data for the AOI named A1_AOILine8Hit
is given.

1 {
2 "value": 172830.9914,
3 "metric": "BetaOverAlphaPlusThetaDiffTFTWithinAOI",
4 "metricID": 41,
5 "aoiName": "A1_AOILine8Hit",
6 "participant": "P06"
7 },
8 {
9 "value": 3.229,

10 "metric": "FixationsPerMinuteWithinAOI",
11 "metricID": 60,
12 "aoiName": "A1_AOILine8Hit",
13 "participant": "P06"
14 },

Listing 4.1: Extract of sample JSON document representing AOI metrics.

• Timeline Data: For the visualization, it is suggested to implement a timeline approach that
displays how the various sensor data vary over the time for a specific task and participant.
Data that is displayed on the timeline includes e.g., fixation data, eyeblinks, MindBand val-
ues, EDA values, pupil diameter data a.s.m. For more details about the Timeline View, see
Chapter 6.2. The listing below shows an extract of a sample JSON document that contains
timeline data.

1 {
2 "timestamp": "2013−01−21T09:45:58.000Z",
3 "attention": 30,
4 "meditation": 34
5 }

Listing 4.2: Extract of sample JSON document representing timeline information.
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• Task Information Data: Along with the visualization, a information container that is filled
with statistical information as for example the perceived difficulty or the information whether
the task is solved correctly or not is given. A sample JSON document that contains informa-
tion data for task B1, solved by participant P02, is given in the listing below:

1 {
2 "A_TaskName": "B1",
3 "A_ParticipantName": "P02",
4 "Position_in_Task_Order": 1,
5 "Is_Correct_Answer": [1],
6 "avg_Meditation": 57.878,
7 "min_Meditation": 27,
8 "max_Meditation": 88,
9 "avg_Attention": 29.6321,

10 [...]
11 "Task_Completion_Time": 33,
12 "Task_Difficulty_Ranking": 2,
13 "NASA_TLX": 6.3299999237,
14 "NASA_TLX_Rating_Performance": 12,
15 "NASA_TLX_Rating_MentalDemand": 5,
16 "NASA_TLX_Rating_PhysicalDemand": 2,
17 "NASA_TLX_Rating_TemporalDemand": 5,
18 "NASA_TLX_Rating_Effort": 3,
19 "NASA_TLX_Rating_Frustration": 3
20 }

Listing 4.3: Extract of sample JSON document representing task information.
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4.3.2 Metric Computations by Areas of Interest
AOI specific measurements are used for the Grid View. The Grid View presents various metrics for
specific code segments in a table-like form. These AOI metrics are defined based on the metrics
that are used by Fritz et al. (computation of metrics per task). Table 4.2 lists some of the AOI
metrics defined in this thesis along with a short explanation of how they are calculated. A com-
plete list can be found in Appendix C. For the value calculations, Matlab scripts are created that
automatically fetch table entries for a specific area of interest and participant. Using AOI specific
data, as well as corresponding baseline data, values for all the defined metrics are computed.

Measure AOI Metric Name Description and Computation

EDA ∆ Mean tonic (Mean tonic value during mind relaxation phase) -
(Mean tonic value of data entries where participant’s fixa-
tion is in AOI)

∆ Mean phasic
peak amplitude

(Mean phasic peak amplitude during mind relaxation
phase) -
(Mean phasic peak amplitude for peaks that occurred
while participant focused on AOI)

EEG ∆ Mean Attention (Mean Attention during mind relaxation phase) -
(Mean Attention while participant focused on AOI)

∆ Mean Meditation (Mean Meditation during mind relaxation phase) -
(Mean Meditation while participant focused on AOI)

∆ Eyeblinks
per second

(Eyeblinks per second during mind relaxation phase) -
(Eyeblinks per second while participant focused on AOI)

Eye Mean fixation
duration

(Sum of fixation durations for specific AOI) /
(No. of fixations for specific AOI)

Mean pupil size Mean pupil size of dominant eye while participant focused
on specific AOI

[...] [...]

Table 4.2: Selection of AOI metrics (7 of 45) with computation descriptions
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To understand how this metric computation is implemented in Matlab, the computation for
a sample metric (∆Number of phasic peaks per second) is shown in the following step-by-step. The
computed values for this AOI metric represent the number of peaks that can be related with
fixations in the area of interest under consideration, normalised by total fixation duration of the
AOI and the baseline data.

1. Import data from the relational database using Matlab database Toolbox3: The relevant data
entries of a specific task and the corresponding fish tank phase (mind relaxation phase) are
retrieved from the MySQL database.

2. Then, the EDA signal is cleaned. This includes a DC Shift correction to base the signal at
0 micro Siemens. Additionally, noise is removed by applying an exponential smoothing
[FBM+14].

3. In a further step, the EDA signal recorded during the fish tank phase as well as the EDA
signal that is recorded while the participant was working on the code comprehension phase
is extracted from the imported data. Butterworth filters are applied to split these EDA sig-
nals into its phasic and tonic parts. The phasic signal of the task is then stored in a variable
named as phasic_task.

4. Then, for each of the AOIs that are part of a given task, the metric values are computed one
after the other.

(a) First, the data entries that are tracked while the participant focused on the AOI un-
der consideration is extracted from the retrieved task data. The timestamps of these
extracted entries are stored in a separate array named as aoi_timestamps.

(b) For the metric under consideration (∆Number of phasic peaks per second), the peaks of the
phasic signal that can be related to a given AOI have to be determined. This is done
using the function shown in Listing 4.4.

function peakContainer = getAOIPeakIDs(eda_task, phasic_task, aoi_timestamps)

% Retrieve timestamps of peaks in the phasic signal

peak_timestamps = getPeakTimestamps(eda_task, phasic_task);

% Iterate over all the peaks & check whether there is any

% AOI timestamp in the stimuli time range of the peak.

% Stimuli time range of a peak:

% Start: Timestamp of peak - 3 s

% End: Timestamp of peak - 1 s

peakContainer = [];

for i = 1:size(peak_timestamps)

[peakStart,peakEnd]= getPeakRange(peak_timestamps(i),3,1);

isPeakInAOI = checkPeakDatetime(peakStart, peakEnd, aoi_timestamps);

if isPeakInAOI == true

peakContainer(end+1)= i;

end

end

end

Listing 4.4: Extract of M-File to determine whether found peaks can be related to specific AOI.

3http://www.mathworks.ch/products/database/



4.3 Dataset Transformation 25

To figure out whether the external stimuli (can be associated with phasic signal peak)
occurred while the participant focused on a specific AOI, it must be checked whether
the participant’s focus during the time interval in which the stimuli can be located was
on the AOI or not. This means that it is checked for each peak whether there is any AOI
timestamp in the time window range of a probable stimuli (start: timestamp of peak -
3 s, end: timestamp of peak - 1 s). The resulted peak information is then returned.

(c) Finally, the number of peaks that can be associated with the specified AOI is nor-
malised over the total time the participant focuses on that AOI. The ∆-value is then
computed by subtracting the normalised AOI-specific value from the time normalized
number of peaks in the fish tank phase. The required steps to normalize the number
of phasic EDA peaks by the fixation durations and the baseline data respectively, are
shown in Listing 4.5.

numberOfAOIPeaks = size(peakContainer,1);

aoiDuration = size(aoi_timestamps,1)*0.125;

if (numberOfAOIPeaks ~=0)

nPeaksFT = calculateNoEDAPeaks(phasic_ft);

if (nPeaksFT ~= 0)

fFTValue = nPeaksFT/60;

else

fFTValue = 0;

end

fAOIValue = numberOfAOIPeaks/aoiDuration;

fValue = fFTValue - fAOIValue;

Listing 4.5: Extract of M-File that normalizes the number of phasic peaks.

The computation process of an AOI metric value described above is performed for all the par-
ticipants over all the tasks and all the AOIs that are defined within a task. Using loops, each of the
45 metric computation process is started automatically (see Matlab script FeatureGenLoop.m).
How the computed AOI measurements are used in the visualization prototype to discover AOI
specific insights is presented in Chapter 6.4.
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4.3.3 Database Schema
Figure 4.4 gives an overview of the required data processing steps and shows the data tables that
are created for the visualization prototype. There exists two main approaches how the data entries
are generated. On the one hand, Matlab scripts are run to get the computed metric values. This
includes for example the calculation of the AOI metrics as well as the computation of eyeblinks,
pupil diameter peaks or peaks in the phasic component of the EDA signal. This data processing
step is highlighted in Figure 4.4 using a grey rectangle. Because of performance reasons, data
requests are not performed on the raw table. Instead of that, basic SQL scripts are created that
extract data from the raw table and create smaller tables containing only relevant visualization
data. Latter approach is performed for all data where no additional computations are required
(e.g., attention/mediation data, fixation data and task information data).

Figure 4.4: Overview of generated tables for visualization prototype and how database entries are generated
using computation and extraction processes.
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Visualization Prototype

This section presents mockups of the protoype as well as the architecture of the implemented
application. In addition to that, related visualization approaches are given. The visualization tool
as such is then presented in form of use case scenarios in a separate chapter.

5.1 Related Visualization Approaches

5.1.1 Fixation Path Visualizations
There exists a number of studies on eye-tracking, in which eye movements on a source code is the
center of investigation. Some of the visualization approaches that were used to gain data insights
are presented in this chapter. Uwano et al. developed a software application named Crescent
(Code Review Evaluation System by Capturing Eye movemeNT), which allows the visualization
of the line-by-line fixation data using the result viewer [MUOM09]. A sample result viewer screen
is depicted in Figure 5.1. In this visualization, the X-axis captures the time spent on a code review
task. The grey bars mark fixations in the corresponding lines of a code. The width of a bar
indicates the duration of a fixation.

Figure 5.1: Line-by-line fixation visualization in the result viewer of the Crescent application [MUOM09].
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To identify patterns that focus on the fixation path and are independent of fixations duration,
Uwano et al. proposes a visualization that is illustrated in Figure 5.2. In this case, the X-Axis
represents the fixation index. The fixation durations are omitted.

Figure 5.2: Line-by-line fixation visualization with focus on fixation path [MUOM09].

An eye-tracking enabled software traceability environment called iTrace that is being devel-
oped by the Software Engineering Research Lab of the Wichita State University allows to record
and visualize eye-tracking data for various purposes. Figure 5.3 shows in two examples how the
iTrace environment can be used for eye-tracking data on source code [WSU14]. Both approaches
are well suited to identify those areas of the code with a high density of fixations. The heat map
approach (depicted on the right-hand side of Figure 5.3) is an ideal approach for fixation density
analysis. However, the approach bears the disadvantage that path information is not preserved in
the visualization. For the visualization prototypes of this thesis, fixation visualizations as shown
in Figure 5.3 present no practicable scheme, because the dataset at hand contains only line-by-line
tracking information, rather than accurate eye location information.

Figure 5.3: Eye-tracking on source code visualizations generated using the iTrace environment [WSU14].
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5.1.2 EEG, EDA and Pupillometry-related Visualizations
In research, EEG, EDA, and Pupil Diameter data is often visualized as simple line charts [CSPM10,
JN11]. Software applications specialized in biometric data provide various features to support
data analysis. Biopac’s AcqKnowdledge software, for example, is an EDA analysis software and in-
cludes options to locate skin conductance responses (SCR). Figure 5.4 [BWJR14] provides a sample
screenshot with highlighted skin conductance responses (SCR).

Figure 5.4: EDA data visualized in Biopac’s AcqKnowdledge software (drop icons represent SCRs) [Ins14].

5.2 Design and Interaction Concept
The main requirement for the prototype can be summarized as follows: Visually display the code
that was used in specific code comprehension tasks and in alignment to that code, various psycho-
physiological measurements that were recorded during the code comprehension task. Addition-
ally, the visualization should allow to relate measurement values to specific parts of the code
based on the eye tracking data.

In an early phase of this project, several UI sketches and mockups were conceived and con-
templated in order to show how visualizations can help to analyze the present data. A selection
of these mockups is given in this chapter. Already existing data visualization approaches han-
dling similar data were taken into account (e.g., eye-tracking data recorded for software devel-
opers during code reviews). In each elaborated visualization approach, the code that was used
in a specific code comprehension task is shown. In alignment to that code, the corresponding
psycho-physiological data should be visualized in an appropriate way. In a first phase, two main
visualization approaches are found to be suitable to support the data analysis:

• A first visualization approach called Grid View shows AOI specific metric data over multiple
participants. This means that all measurement data that is recorded while specified partic-
ipants focused a specific AOI is collected for the computation of aggregated metric values.
This approach can be used to explore AOI-specific insights.

• Another approach named as Timeline View is used to display data over task duration for a
specific task and a specific participant. This allows to discover task- and participant specific
insights.

In the following sections, the concept behind the data visualization ideas is described and
illustrated with corresponding mockups.
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Grid View. The Grid View consists of a table-like structure and shows various metrics for specific
areas of interest (AOIs). A column represents a specific metric (e.g., ∆Mean Attention). Each data
entry with a timestamp at which the participant has focused on a specific code segment is taken
into account for the computation of the metric value for that specific area of interest. Based on
the computated value, the corresponding cell is colored accordingly. The coloring scheme ranges
from red for values that indicate relatively high difficulty to green that represents relatively low
difficulty. In addition to that, the code segments can be also colored based on a specific AOI
metric. Figure 5.5 displays a mockup of this segment-per-segment data visualization approach.
In the selection area, the participants that should be considered for the metric computation can be
specified.

Figure 5.5: Mockup of Grid View.

AOI Comparison View. This visualization approach illustrated in Figure 5.6 is closely related
to the previously explained view but focuses on the metric data comparison of various code seg-
ments from different tasks. The idea behind this approach is to make side-by-side comparisons
of code segments across multiple tasks.

Figure 5.6:
Mockup of AOI Comp. View.
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Timeline View. In the Timeline View, data for a specific task and a specific participant (can be
selected in the selection area) is visualized. It is intended to display the fixations over the time
as Fixation Bars, represented as black rectangles (see Figure 5.7). Other measurements, as for
example MindBand- or EDA data are visualized as line charts. For reasons of clarity, a toggle
function should be implemented that allows to hide specific measurements. In addition to that,
the code segments can be colored based on a specified metric as it was shown for the Grid View.

Figure 5.7: Mockup of Timeline View.
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Aggregated Timeline View. If we talk about time related patterns, a view that allows to com-
pare aggregated time related data is desirable. To discover fixation paths of multiple participants,
an approach as presented in Figure 5.8 could be suitable. In this view, the color intensity of each
single block represents the number of participants that focused the specific AOI at a specific mo-
ment in time. This approach is used to identify code segments with high fixation density at a
given moment in time. High fixation density could then be used to locate difficulties a majority
of participants experienced for a given time interval.

Figure 5.8:
Mockup of
Aggregated Timeline View.

AOI Scatterplot View. Although the approach shown in Figure 5.9 is not implemented as part
of the application, the idea of this AOI comparison approach is explained in short: This view
could be used to compare measurement data of comparable AOIs. To allow the comparison over
multiple measurements, a scatterplot approach can be choosen. This would allow AOI-specific
comparisons between multiple participants in one single view. In Figure 5.9, scatter plot framed in
purple on the right hand side of the view shows measurement data of the purple framed segments
of the comparable tasks.

Figure 5.9:
Mockup of
AOI Scatterplot View.
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5.3 Application Architecture
This section describes the architecture of the visualization prototype that is implemented as a
JavaScript web application. The data visualization approaches are mainly implemented using the
JavaScript library D31. Rest based web services are created on a NodeJS2 server to manage the
database access. The NodeJS module named as node-mysql allows easy querying for the various
web service requests. A list of all created web services can be found in Appendix B. The data
used for the visualizations can be categorized into measurement data and task data. The category
of task data includes the code of the experimental study tasks as well as the definitions of the
areas of interest. These AOI definitions are stored as JSON objects and include e.g., name of area
of interest, number of lines or the start line of an AOI. Additionally, for each AOI, it is defined
whether it should appear in the line-by-line visualization mode or the combined visualization
mode. Currently, the JSON document that contains all AOI information is stored locally. The
JSON document containing the AOI definitions as well as the code comprehension tasks as such
are stored on a MongoDB database. For the front-end implementation, the module pattern is
used. Depending on the view that is selected in the web application, the required modules are
loaded. e.g., the CodeControlModule that is responsible for displaying the source code of the
experimental task on the left hand side of the view is used in all the implemented visualization
approaches and is therefore loaded in each of the visualization approaches.

Figure 5.10: Architecture of visualization prototype.

1http://d3js.org/
2http://nodejs.org/
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5.4 Implementation Details
This section gives an overview of the main modules that are defined in the front-end implemen-
tation. Each of the three modules that are listed below also represent an implemented view.

Timeline Control Module. The TimelineControlModule is loaded if a visualization is re-
quested from the Timeline View. Based on the selections made in the multiple dropdown menus of
the selection area in the user interface, web service requests are processed in the DataRetrieve-
Module. The retrieved measurement data is then transformed into a suitable format for visual-
ization. This is performed by the DataTransformationModule. Like in all the visualization
views, the CodeControlModule is loaded based on the selected comprehension task. It displays
the code on the screen, segmented by the areas of interest. If selected, the scan path is drawn ad-
ditionally based on the fixation data. Visualizing the complete set of measurement data for the
timeline (e.g., fixation data, MindBand data, EDA peaks and pupil diameter peaks) is performed
in the module named as LineGraphModule. Moreover, the InfoModule responsible for dis-
playing general task information in a container above the visualization is loaded.

Grid Control Module. This module is responsible for displaying the table-like Grid View. For
that, computed AOI specific measurement data are retrieved from the database for the selected
participants (DataRetrieveModule). If multiple participants are selected, the mean/median is
computed for each AOI and each AOI metric. Like in the Timeline View, the CodeControlModule
that is responsible for displaying the code comprehension task is loaded. The same applies for
the InfoModule that presents statistical information about the task.

Pattern Map Module. The PatternMapModule represents the Aggregated Timeline View (heat
map like approach). Within this module the CodeControlModule is loaded as well as the
InfoModule. The PatternMapModule includes also the computation of the number of par-
ticipants for which hits were recognized for a specific AOI in a given time interval. Similar com-
putations, that are also part of this module are performed for the number of EDA- and pupil
diameter peaks per time interval and AOI respectively.
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5.5 Data Storage

5.5.1 Tasks and AOI Definitions
The tasks of the experimental study are stored as text files. To display the content of the AOIs in
alignment to the measurement data, a method to extract the relevant lines from the task file had
to be found. For this, a JSON document containing the AOI definitions was created.

In Listing 5.1, an extract of that AOI definition document is given. It shows the configuration
data of two sample AOIs. Using this information, the lines that correspond to a given AOI are
extracted from the corresponding study task document.

1 {
2 "tasks": [
3 {
4 "name": "A1",
5 "size": 23,
6 "question": "Will the two drawn rectangles overlap?",
7 "answers": "yes / no",
8 "segments": [
9 {

10 "aoi_name": "A1_AOILine1Hit",
11 "aoi_nLines": 1,
12 "aoi_sLine": 1,
13 "aoi_nLinesBefore": 0,
14 "aoi_nLinesAfter": 1,
15 "aoi_width": 5,
16 "aoi_type": "line",
17 "lineByLineTag": true,
18 "combinedTag": true
19 },
20 {
21 "aoi_name": "A1_AOICoordinate1Hit",
22 "aoi_nLines": 4,
23 "aoi_sLine": 9,
24 "aoi_nLinesBefore": 0,
25 "aoi_nLinesAfter": 0,
26 "aoi_width": 10,
27 "aoi_type": "coordinate",
28 "lineByLineTag": false,
29 "combinedTag": true
30 },
31 ...

Listing 5.1: Extract of JSON document representing configuration details of AOIs.

5.5.2 Measurement Data
The relevant measurement data for the visualizations are generated using Matlab computations
and database extraction processes. Some of them are used for the Grid View (i.e., feature data),
whereas other tables are used for all visualization approaches (i.e., task information data). A
detailed overview of the tables used by the prototype was given in Figure 4.4 in the previous
chapter.





Chapter 6

Tool Features and Use Cases

In this chapter, the main features of the implemented visualization application are presented in a
variety of use case scenarios. First of all, an overview of the user interface components and the
available visualization screens is given. Then, the implemented approaches, namely Grid View,
Timeline View and Aggregated Timeline View are presented in detail.

6.1 Overview of User Interface
The visualization screens consist of three main components that are described below:

• Selection Module: In the selection module on the top of the user interface, an experimental
task as well as the participant(s) that should be considered can be selected. As soon as the
Visualize-Button is pressed, data requests are performed based on the selections. Then, the
required modules are loaded and the visualization appears on the screen.

• Information Module: In this module, information data about the selected task and the
selected participant(s) is displayed. This includes e.g., the task duration, the order of tasks,
the NASA TLX rating or the information whether the task is solved correctly or not.

• Visualization Module: The visualization module represents the data visualization as such.
Detailed explanations about each of the views is given in the following sections.

Figure 6.1: Overview of user interface components.
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Table 6.1 gives an overview of the implemented visualization views. The basic intention be-
hind each single approach is already explained in brief with corresponding mockups. In the
following sections, each view is presented in various use case scenarios. The scenarios that are
presented are listed in the last column in the Table 6.1.

Visualization Module Description Scenarios

Timeline View
The measurements are dis-
played on a timeline for a se-
lected task and a specific par-
ticipant. Using the highlight-
ing feature, pupil diameter
data or EDA peaks can be re-
lated to specific AOIs.

Scenario 1:
Identify eye movement
patterns

Scenario 2:
Analyze EEG, EDA and
pupil diameter data

Scenario 3:
Extract AOI related
measurements

Aggregated
Timeline View
In this approach, multiple
participants for a specific
task can be selected. It is a
heat map like approach pro-
viding fixation density infor-
mation and EDA- and pupil-
lometry data.

Scenario 4:
Analyze aggregated
fixation data

Scenario 5:
Analyze aggregated
Attention/Meditation
data

Grid View
Measurement data that was
recorded while the subject
focuses on a specific AOI is
taken into account for the
AOI metric calculation. Mul-
tiple participants can be se-
lected to retrieve aggregated
data.

Scenario 6:
Compare AOI metrics

Scenario 7:
Compare fixation paths

Table 6.1: Implemented visualization approaches with corresponding use case scenarios.
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6.2 Timeline View

6.2.1 Scenario 1: Identify Eye Movement Patterns
The first scenario focuses on eye movement patterns. In the experimental study, the gathered
gaze events are saccades and fixations. Since only fixations can be related to certain AOIs (in
contrast to saccades), only the fixation data is relevant for the visualization. Figure 6.2 shows an
extract of a sample timeline visualization. On the right hand side, the line-by-line fixation data is
displayed in a similar way as it is shown by Uwano et al. in the form of Fixation Bars. In addition
to that, the fixation data is directly included into the code area on the left as a Fixation Path. In the
latter approach, the size of the node is representing the fixation duration. To identify high fixation
density the fixation path approach is better suited. An analysis of the visualization example in
Figure 6.2 gives the following insights:

• The participant scans the code four times.

• In the first few seconds of the task, the duration of each fixation is relatively short.

• The scan time of the first scan amounts to 15 seconds.

• In some of the AOIs no fixation is recognized.

• An accumulation of eyeblinks (brown dashed lines) can be identified at the beginning of the
task and in the last few seconds of the task.

• As the background color of the AOIs represent in this case the metric mean attention. So it
can be said that the mean attention of the AOIs in the lower part of the code is higher than
in the first few lines.

Figure 6.2: Fixation data visualization approaches: (a) Fixation Path in code area (size of nodes indicates
fixation duration), (b) Fixation Bars in measurement area (width of bars indicates fixation duration); task A2,
participant P01.
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6.2.2 Scenario 2: Analyze EEG, EDA and Pupil Diameter Data

In this scenario, the focus is set on the analysis of EEG, EDA and pupil diameter data for a single
particpant. An extract of a sample Timeline View with focus on these three measures is depicted
in Figure 6.3. For clarity reasons, the measures are displayed in a separate lane. The first lane
shows the Neurosky’s eSenseTM values (a) Attention and Meditation as a line chart. The second
lane consists of the (b) phasic and tonic component of the EDA-signal whereas the peaks in the
phasic component are highlighted with blue circles. In the lowest lane, (c) pupil diameter peak
data is displayed using pupil icons that are placed on the timeline. The size of the inner circle in
black represents the deviation of the pupil diameter peak to the mean pupil size of the dominant
eye during the task. Additionally, the (d) eyeblinks are represented by dashed vertical lines.

Figure 6.3: Extract of Timeline View with visualized measurements (Attention/Meditation, EDA peaks and
pupil diameter peaks).

Using the highlighting feature integrated into the timeline, it is possible to hover over the
icons of pupil diameter peaks as well as those of the EDA peaks to highlight the AOIs that can be
associated with it. This peak hovering feature is illustrated in Figure 6.4. Based on literature, the
latency amounts to 1 to 3 seconds for SCRs [Chr81]. This means, that all fixations that happened
in this time range are probable reasons for a stimulus. On the right hand side of Figure 6.4 (b), the
related AOIs for a EDA-peak are highlighted whereas on the left hand side (a), the code segments
that can be related to the selected pupil diameter are colored.

Figure 6.4: Illustration of peak highlighting feature: (a) pupil diameter peak and (b) EDA peak.
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6.2.3 Scenario 3: Extract AOI Measurement Data on Timeline
This scenario presents the highlighting feature for AOI specific measurements. As Figure 6.5
illustrates, a click on a specific AOI highlights the fixations in the selected AOI. This allows e.g.,
to identify how often a participant focuses a specific line in an easy way. In addition to that, the
corresponding measurement data in the three lanes on the top of the visualization are highlighted
as well. This allows to identify data that has been recorded while the participant focused on a
specific AOI more precisely. The following findings can be extracted from the visualization in
Figure 6.5:

• The participant focuses the selected AOI basically four times for a longer period of time.

• One EDA-peak is noticed while the participant has been focused on the selected AOI.

• A few pupil diameter peaks that can be related to the selected AOI can be detected in the
last few seconds of the task.

Figure 6.5: Illustration of AOI highlighting feature in the Timeline View.
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6.3 Aggregated Timeline View

6.3.1 Scenario 4: Analyze Aggregated Fixation Data
Because the previously presented timeline approach do not allow to visualize task data for mul-
tiple participants at once due to clarity reasons, an Aggregated Timeline View in form of a heat map
like approach is implemented. An extract of a sample output is given in Figure 6.6. This approach
can be used to identify high fixation densities at a given time point during the task. The more par-
ticipants fixated a specific AOI during the time unit a block represents, the more intense the blue
appears on the screen for the corresponding block. In addition to the fixation density, EDA peaks
as well as pupil diameter peaks that were found for the selected participants were integrated into
this view. The pupil icon represents pupil peaks, the drop of water represents EDA peaks. The
larger the icon the more peaks were recognized while the participants fixated a specific AOI at a
given time point. The approach supports to display data in a scaled mode (1 block = 5% of task
time) as well as a non-scaled mode (1 block = 1 second of task time).

In the following, the aggregated timeline visualization for task B11 (scaled version), depicted
in Figure 6.6, is described: It can be said that 9 participants fixated the initialization line of the
object array in the time interval from 5 to 10 percent of the individual task duration. Because this
is relatively a high number of participants, the corresponding block appears in a slightly darker
blue than blocks for other code segments in the same time interval. Additionally, a high number
of pupil diameter peaks can be noticed in the first 5% of task time, indicated by the relatively
large pupil icons. The drop icon represents potential stimuli that can be related to EDA peaks. The
larger the drop icon appears in a specific block, the higher the number participants who potentially
had encountered an external stimulus (indicated by EDA peaks) in that specific time slot and that
specific AOI.

Figure 6.6: Extract of Aggregated Timeline View (task B1, all participants are selected).
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Using the toggle switch in the selection bar, it can be selected whether the scaled version or
the non-scaled version of the timeline should be shown. An example of the non-scaled version is
depcited in Figure 6.7 on the left hand side (only first 20s are shown) whereas the scaled version
is shown on the right. In the version on the left, one block represents 1 second whereas the time
blocks in the scaled version on the right represents 5% of the total individual task duration.

Based on the scaled and non-scaled visualizations given in Figure 6.7, the following statements
can be made:

• After about 10% of each participants task duration, most of the participants focused on the
while loop in the lower part of the code.

• In the last 5% of each participants’ task duration, a slight increase of fixation hits in the
first few lines of the code can be recognized. This could imply that participants perform an
additional scan of the code short before the answer to the task is given.

• High fixation density in the first four AOIs is mainly recognized in the first 13 seconds of
the particpants’ task duration.

• Most of the pupil diameter peaks as well as the EDA peaks occurred after 25-95% of the
total individual task time.

Figure 6.7: Aggregated Timeline Views with focus on fixation data: non-scaled fixation view and scaled
fixation view (task B6, all participants are selected).
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6.3.2 Scenario 5: Analyze Aggregated Attention/Meditation Data
In this scenario, the fixation/attention heat map that can be accessed by the tabs Attention Pattern
and Meditation Pattern in the Aggregated Timeline View is used for the analysis. In Figure 6.8, the
corresponding scaled and non-scaled versions for task A2 are shown. Basically, it can be said that
the view visualizes the aggregated mean attention/meditation values for the selected participants
over the task duration. The size of the circles represent the number of participants that fixated
the corresponding AOI in the specific time interval, while the color intensity represents the mean
attention value. Like in the previous scenario, EDA peaks and pupil diameter peaks are integrated
into the visualizations with corresponding icons.

(a) (b)

(c) (d)

Figure 6.8: Aggregated Timeline View with focus on attention and meditation data: (a) non-scaled atten-
tion view, (b) scaled attention view, (c) non-scaled mediation view, (d) scaled meditation view (task A2, all
participants selectd).
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6.4 Grid View

6.4.1 Scenario 6: Compare AOI Measurements
The intention behind the Grid View has already been explained in short with mockups. In essence,
it shows the various AOI measurement data in a table-like structure and colors the cells based on
their values. Figure 6.9 shows a sample visualization for task A1. For the computation of a specific
cell, all the measurement data that was recorded while the selected participants focused on the
corresponding AOI is taken into account. Based on the computed values, the cells are colored on
a red to green color scale (red indicates relatively high difficulty, green represents relatively low
difficulty). Each column represents a metric whose name appears on hover over a column. The
subjects that should be considered for the mean metric calculation can be selected in the multiple
select dropdown menu that can be found in the selection bar.

Figure 6.9: Illustration of Grid View (task A1, 4 participants selected).

The hovered column (3th column) of the visualization table shown in Figure 6.9 represents the
median AOI attention values, respectively the difference of the median attention values (related
to the specific AOI) to the baseline data. Based on the illustrated example, it can be said that the
median attention values of the field assignments in the second part of the code (colored in red) is
relatively higher than the corresponding values of the field assignments in the first part (colored
in orange) of task A1.
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6.4.2 Scenario 7: Compare Fixation Paths
Since the Grid View allows to select multiple participants, the drawing of fixation paths is also
supported for multiple participants. This allows to compare fixation data for participants. Al-
though each participants’ fixation path is colored differently, a comparison between more than
4 or 5 participants is not recommended due to clarity loss. Figure 6.10 shows an extraction of a
sample output. The visualization indicates that for participant P12 a higher number of fixations
can be recognized in the loop statement. In contrast to that, participant P15 (red path) shows
more fixations in the first part of the code. Additional statements about the fixation durations can
be made based on the size of the nodes and the background color of the code area. In this case,
each AOI is colored based on its mean fixation duration (red = relatively long fixations, green =
relatively short fixations). Further time-related statements are only partially possible because of
the constant horizontal spacing between each node.

Figure 6.10: Fixation paths of participant P12 (blue path) and P15 (red path), task B6.



Chapter 7

Data Analysis and Pattern
Finding

In this chapter the the analysis of the given dataset using the implemented visualization ap-
proaches is presented. First of all, the pattern finding approaches are presented in brief. After
that, the findings related to various kind of patterns (e.g., code reading patterns, time-related pat-
terns, participant specific findings) are described in several sections. Finally, the results of the
statistical tests are summarized.

7.1 Methodology
In order to visually analyze the data in a formal way, screenshots are captured of all 116 Timeline
Views. All these visualization outputs are then arranged in a table-like structure that allows to
inspect and compare the data in an easy way (by task or by participant). This table-like arrange-
ment of the Timeline Views is used in all the conducted pattern finding approaches. Additionally,
if appropriate, the Grid View as well as the Aggregated Timeline View is also taken into account.
Below, the set of pattern finding approaches is listed:

Fixation Data Analysis using Timeline View. Using the captured screenshots, the fixation data
are compared with each other. In addition to that, investigations concerning existing fixation
patterns as for example the scan pattern or the retrace declaration pattern are performed.

Participant-specific Analysis based on Timeline View and Mean Metric Values. To get an
overview of the measurement data, mean metric values for each of the tasks are computed. Using
bubble charts, a participant-specific analysis is performed regarding aggregated attention/medi-
tation data and time normalized skin- and eye related data. For example, it is examined how the
fixation rate or the eyeblink rate differ by participant.

Time-related Analysis using Timeline View and Aggregated Timeline View. The aggregated
Timeline View is implemented to support the identification of time-related patterns. Based on the
findings by visually inspecting the individual Timeline Views, the Aggregated Timeline View is used
to prove whether the findings apply to the majority of participants or not.

Comparable Task Pair Analysis using Timeline View and Grid View. The main goal of this
analytical approach is to figure out whether it is possible to explain the difference in difficulty by
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comparing the Timeline Views of task pairs (tasks that had been specifically designed to provide
different difficulty level) and evaluating specific AOI measurement data.

Task-property Analysis using Timeline View. In a further approach, all 116 individual tasks
of the experimental study are categorized based on various properties. For example, the tasks are
grouped into two different groups based on their NASA TLX score. It is then elaborated what
kind of differences between the two groups exist (e.g. regarding EDA peaks in the first 20s).

Metric Dependency Analysis using Timeline View. This approach focuses on possible cor-
relations between psycho-physiological measures within task data. In particular, it is analyzed
whether any correlations can be identified between measures as for example attention level and
EDA peaks or between the fixation rate and the eyeblink rate.

7.2 Fixation Path Patterns

7.2.1 Scan Pattern
The scan pattern describes the initial reading of the code, before focusing on specific parts. An
analysis of the fixation paths by visual inspection has shown that especially for task A1 and A2 a
scan over the entire code is performed multiple times. In contrast to that, in tasks of type B, the
scan pattern is rarely visible more than once. A probable reason for that can be found on the tasks
itself: In the tasks B1 to B11, the order of the drawn shape objects is asked. There, basic parts in
the first few lines of the code do not require to be viewed additionally. In contrast to that, some
participants had to read in task A1 and A2 (tasks that are about overlapping rectangles) the entire
code multiple times to find and extract the relevant coordinate information. Figure 7.1 shows an
extract of a sample Timeline View showing two scans.

Figure 7.1: Fixation visualization showing two scan pattern instances (task A2, participant P07).
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Uwano et al. defines the first scan time as the time un-
til 80 percent of the total lines of code (except blank
lines) are read [UNMM06]. Based on the fixation bars
in the timeline visualization, the first scan time is elabo-
rated for each of the tasks in the dataset under considera-
tion. Results of various code review studies have shown
that developers who spend more time for the initial scan
tend to use less time for error detection (e.g., [UNMM06],
[SFM12]). In this thesis a similar analysis is conducted.
In contrast to the code review studies by Uwano et al.
and Sharif et al., no significant correlation between the
first scan time and the task completion time was found;
see box on the right.
An additional statistical test that uses the correctness of
the tasks as performance indicator was conducted. Be-
cause of the ratio of false and correct answers to a spe-
cific task, only task B3 and B11 are considered for this
analysis. In both cases, no significant difference was ob-
tained; see middle box on the right.
Additionally, a Pearson correlation coefficient was com-
puted to assess the relationship between the first scan
time and the subjects’ perceived difficulty rating of the
corresponding task. As the dot plot in Figure 7.2 already
indicates, there was a positive correlation between the
two variables. It was found that for tasks that are per-
ceived as more difficult (based on the participants’ rat-
ing), a significantly longer scan time was observed; see
bottom box on the right.

Pearson’s Test:
H0: Task completion time is the same
regardless of the first scan time (Note: only
correctly solved tasks were considered).

There was no correlation between the
first scan time and the task completion
time. For task B11: [r = -0.453, n = 7, p =
0.221].

Cannot Reject H0

T-Test (independent samples):
H0: Task performance (correct/false answer)
is regardless of scan time (Note: performed
for task B3 and B11 only).

There was not a significant difference in
the first scan time for correctly solved
tasks (MB3=25, SDB3=17.1) and not cor-
rectly solved tasks (MB3=26.7, SDB3=13.7);
tB3(12)=0.195, pB3 = 0.848

Cannot Reject H0

Pearson’s Test:
H0: Scan time is regardless of perceived
difficulty ranking.

There was no correlation between the
two variables [r = 0.393, n = 106, p <
0.001].

Reject H0
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Figure 7.2: Scatter plot that shows the first scan time in relation with the perceived difficulty of the tasks
(Note that tasks were omitted because of incomplete eye-tracking data).
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7.2.2 Retrace Declaration Pattern
The retrace declaration pattern that is presented in the study conducted by Uwano et al. is also
found in the dataset that is used in this work [UNMM06]. Especially in cases where generic vari-
able names are used as for example in task B2, a significant amount of retrace declaration patterns
can be identified. An extract of a sample Timeline View where the mentioned pattern can be iden-
tified multiple times is given in Figure 7.3. In this task, the participant looks back to the variable
declaration a few times to be sure what kind of shape object is drawn on the screen.

In task pair B1 - B2, the difficulty level is increased by using generic variable names (naming
not related to variable) instead of mnemonic variable names (aims at retaining what a variable
stands for). To quantify the effect of using mnemonic variable names, a comparison regarding the
number of retrace declaration pattern instances seems to be an appropriate approach. Such an
approach is performed in the comparable task pair analysis; see Chapter 7.5;

Figure 7.3: Fixation visualization that includes the retrace declaration pattern (task B2, participant P13).

7.2.3 Retrace Reference Pattern
When the participant looks back to lines where a specific variable is recently referred, a retrace
reference pattern is identified [UNMM06]. Due to the way most of the tasks are constructed, no
significant amount of retrace reference patterns has been noticed in the given dataset. A few
instances can be found in task B6, B9 and B11. Because of the low amount of total instances, no
quantitative analysis regarding retrace reference patterns can be performed. However, to complete
the set of reading patterns defined by Uwano et al., an illustrated example for that pattern is given
below [UNMM06].
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Figure 7.4: Fixation visualization that includes retrace reference pattern.

7.2.4 Multiple Scan Pattern
Apart from considering each fixation path in isolation, it is also analyzed how the paths differ
from participant to participant and from task to task respectively. In addition to that, it is also
elaborated what kind of fixation data differences exist between tasks that were solved correctly
compared to tasks where the participants were not able to find the correct answer. Considering
fixation data of tasks A1 and A2 grouped by correctness shows interesting insights that are il-
lustrated with a selection of fixation data visualizations in Figure 7.5 and Figure 7.6 (correspond
to task A1 or A2 and represent tasks with correct answers and tasks with false answers, respec-
tively). Figure 7.6 shows the fixation paths that correspond to tasks that were solved not correctly,
whereas Figure 7.5 shows a selection of fixation visualizations that correspond to tasks that were
solved correctly. Scans are highlighted in blue whereas time periods where the participants fo-
cused on specific part of the code are highlighted in red. As visual inspection of these visualiza-
tions (which represent the majority of each category) indicates, a larger number of scans can be
noticed for tasks that were not solved correctly. In most of the tasks that were solved correctly,
there are no more than two scans seen before the participant focuses on a specific part of the code.
For this analysis, tasks A1 and A2 were considered only because of the small amount of scans
identified in the other tasks (due to code structure). An independent-samples t-test was con-
ducted to compare the number of scans for tasks that were solved correctly and tasks that were
not solved correctly (considering tasks A1 and A2 only). The result show that there was a signif-
icant difference in the number of scans for tasks that were solved correctly (M=1.28, SD=0.843)
and for those that were not solved correctly (M=2.75, SD=1.5); see box on the right below.
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In this work, this pattern is named Multiple Scan Pattern
and can be interpreted as a cognitive action of reading
the code multiple times without recognizing the crucial
parts of the task. In the case of the tasks under consid-
eration (A1 and A2), the participant has to figure out
whether two rectangles overlap or not. The crucial parts
can be defined as the coordinate definitions of the ver-
tices where an overlap is possible (e.g., coordinates of
bottom left corner of rectangle 1 and coordinates of top
right corner of rectangle 2).

T-Test (independent samples):
H0: The number of scans is regardless of the
task performance (correct/false). (Note: Tasks
A1/A2 are considered only).

There was a significant difference in the
number of scans for correctly solved
tasks (M=1.28, SD=0.84) and not correctly
solved tasks (M=2.75, SD=1.5);
t(27) = 2.908, p = 0.007.

Reject H0

Figure 7.5: Selection of visualized fixations for tasks that were solved correctly (tasks A1 and A2).

Figure 7.6: Selection of visualized fixations for tasks that were not solved correctly (tasks A1 and A2).
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7.3 Participant-specific Insights

7.3.1 Attention and Meditation
In this section, mean task values of NeuroSky’s proprietary metrics named Attention (mental fo-
cus) and Meditation (mental calmness) are presented. The bubble charts in Figure 7.7 clearly show
that there are participant-specific differences. e.g., the mean attention for participant P01 is for all
the tasks below 40, whereas for participant P10 and P11 the lowest value amounts to 48 and 47
respectively. For the meditation metric, differences in a similar range can be noticed.
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Figure 7.7: Bubble charts representing mean attention and mean meditation level per task.

In order to compare attention and meditation between multiple tasks and multiple partici-
pants, normalization should be performed (using recorded data from the second part of the mind
relaxation phase/fish tank phase). This normalization is done by subtracting the mean value of
the task phase from the mean value of the corresponding mind relaxation phase. Interestingly,
participant-specific differences were found regarding the variation of attention data in the said
phases. Figure 7.8, however, illustrates that regardless of the task, only three participants (P04,
P10 and P11) show consistently higher mean attention during the task phase compared to the
mind relaxation phase. For participants P01, P02, P09 and P13, the attention while watching the
fish tank video is on average higher than while working on the tasks. This implies that these
participants strongly focused on the fish tank video without having wandering thoughts.
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Figure 7.8: Bar chart representing mean attention level per task (normalized), grouped by participant.



54 Chapter 7. Data Analysis and Pattern Finding

7.3.2 Skin- and Eye related Data

Visual inspection of the individual Timeline Views indicated that two of the participants tend to
provide an extraordinary large number of EDA peak occurrences per time unit (P08 and P11).
A sample Timeline View for participant P11 is given in Figure 7.9. Apart from the high number
of EDA peak occurrences, participant P11 also provides an extraordinary high number of pupil
diameter peaks per time unit.

Figure 7.9: Extract of Timeline View with high number of eyeblinks, EDA- & pupil size peaks (A2, P11).

The aggregated results of skin- and eye related measures (time normalized per task) are shown
in Figure 7.10 as bubble charts. The chart in Figure 7.10a shows that especially for the participants
P08 and P11 a high number of EDA peaks is detected. A large number of pupil size outliers per
time unit, visible in Figure 7.10b, is provided by participant P11 in three tasks. For the metrics
fixation- and eyeblink rate, significant participant-specific differences can be found for partici-
pants P14 and P15 (fixation rate) and participants P01 and P06 (eyeblink rate) respectively.
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Figure 7.10: Bubble charts representing (a) EDA peaks, (b) pupil size, (c) fixations, (d) eyeblinks per time.
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7.4 Time-related Insights

7.4.1 Rising Attention
The Aggregated Timeline View allows to analyze how the aggregated attention level as well as the
aggregated meditation level vary during a specific task. In a time series analysis of attention data
it was found that in 2 of 8 tasks relatively high aggregagted attention values can be observed
after about 16-19 seconds. A similar tendency but less clear can be found for two further tasks.
In Figure 7.11, the Aggregated Timeline View of task A2 that show this phenomena most clearly is
illustrated. Note that the more intense the red appears, the higher the mean attention at a given
time interval (1s time interval).

Figure 7.11: Aggregated Timeline View for task A2 representing rising attention.

The line chart in Figure 7.12 shows the attention level during the first 30 seconds for all the
participants who completed task A2. It shows a clear tendency of increasing values but it also
shows that the mean attention value is strongly influenced in the start phase by two participants
who provided extraordinary low attention values. In summary, although a general tendency of
increasing attention is visible in this case, some aspects argue against speaking in terms of patterns
in this case.
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Figure 7.12: Line chart representing participants’ varying attention level (first 30s of task A2).
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7.4.2 Electrodermal Activity and Pupillometry

An analysis of each single Timeline View has shown that in some of the tasks an accumulation of
EDA phasic peaks can be found in the last quarter of the task with respect to the time duration.
Out of total 60 tasks (where an EDA signal was recorded and the participant took more than 60
seconds), this finding was found in only 10 cases. Six of these are illustrated in Figure 7.13. In
additional six cases it was partly shown whereas in rest of the tasks no increase regarding EDA
peaks could be observed at the end of the task.

Figure 7.13: Phasic EDA peak locations on timeline show time-related similarities.

Although the Aggregated Timeline View seems not to be suitable for a detailed analysis, it can
be helpful to prove the described finding. In the scaled mode, it can be analyzed whether for a
relatively high number of participants EDA peaks can be noticed in the last quarter of the indi-
vidual task duration. The larger the drop icons appear on the screen for a given time interval, the
more participants provided EDA peaks (which can be related to the corresponding AOI and the
specific time interval). An analysis using the Aggregated Timeline Views (example in Figure 7.14)
for all the tasks suggests that there is no significant time-related difference.

Figure 7.14: Extract of Aggregated Timeline View for task B11 (size of drop icons = no. of participants that
might have encountered a stimuli that can be related to a phasic EDA peak, size of pupil icons = no. of
participants that provided pupil diameter outliers).
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7.5 Comparable Task Pair Analysis

7.5.1 Overview of Comparable Task Pairs
Table 7.1 gives an overview of all comparable task pairs and highlights the main differences. In
the sections that follow this table, the results of the task pair analysis are presented. For that,
similarities or tendencies between multiple participants are elaborated. To clarify the findings
visually, sample timeline views are shown for each task pair.

Tasks Task differences Description and expected observations

A1 vs. A2 Order of field
assignments

In task A1, the fields are assigned in a sequential order
whereas the field assignments in task A2 are done ran-
domly. Because of code structure reasons, more fixations
are expected for task A2.

B1 vs. B2 Mnemonic vs.
generic variable
names

For task B2 that involves the generic variable names, a
higher number of eye movements between the object def-
inition and the method call is expected because of the
vague variable naming.

B1 vs. B3 Use of an array In task B3, an array is used to store the shape objects. The
objects are then drawn by iterating over that array which
makes it more complex.

B3 vs. B6 Loop complexity The loop statement in B6 can be rated as more complex
than the one in task B3.

B3 vs. B9 Swap method In task B9, a swap method is defined that changes the po-
sition of the shape objects within the array. Multiple fixa-
tions between method call and definition are expected.

B3 vs. B11 Easy loop vs.
complex obj. init

In task B11, a very complex line precedes the loop state-
ment. In addition to that, the boundaries of the loop in
task B11 can be rated as more complex.

B6 vs. B11 Swap method vs.
complex obj. init

The loop statement in task B11 is easier than in B6, but in
task B11 there exists a complex line before the loop.

B9 vs. B11 Moderate loop vs.
complex obj. init

The loop statement in task B11 is much easier than in B9,
but there exists a complex line before the loop.

Table 7.1: Overview of comparable task pairs and expected fixation differences.
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7.5.2 A1 vs. A2: Order of Field Assignments

Both tasks, A1 and A2 are about figuring out whether rectangles that are drawn on the screen
overlap or not. The rectangles are specified by their coordinates. Figure 7.15 and Figure 7.16
show the Timeline Views of the tasks under consideration for a sample participant. In the easier
variant of the task (A1), the field assignments are done in a logical order such that the participant
can understand quite well which coordinate values correspond to the first rectangle and which
belong to the second rectangle. In task A2, the field assignments are mixed up and do not follow
any logical order. Because of that, this task is considered to be more difficult and it is expected
that the participant takes more time for completing the task. In the visualizations below, the
highlighted areas of interest are the coordinate assignments that are crucial to figure out whether
there exists an overlap or not.

Figure 7.15: Task A1 (participant P09)

Task Duration: 110s
Fixations: 306
NASA TLX: 4.6
Diff. Ranking: 4
Correct: YES

Peaks in the phasic part of EDA signal
are more or less equally distributed over
the complete task duration. No pupil di-
ameter outliers are recognized.

Figure 7.16: Task A2 (participant P09)

Task Duration: 177s
Fixations: 432
NASA TLX: 6.1
Diff. Ranking: 7
Correct: YES

High number of pupil diameter outliers
can be noticed at the beginning and in
the last quarter of the task. Two rel-
atively sharp EDA peaks appear in the
first 40 seconds. Task duration is in-
creased by 41% compared to task A1.
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Table 7.2 provides mean metric values for the task pair
A1-A2. It was found that metrics such as eyeblink rate,
fixation rate as well as mean attention and mean medi-
tation do not differ clearly in this task pair. As shown in
the illustrated example for participant P09, the number
of fixation is increased enormously for task A2. A t-Test
was conducted to verify whether the number of required
fixations to complete the task is significantly higher if the
field assignments follow a logical order. A significant
difference was found [t(13) = -2.634, p = 0.021]; see box
on the right.

T-Test (paired):
H0: The number of fixation is the same
regardless whether the field assignments
follow a logical order or not.

There was a significant difference in the
number of required fixations for the task
where the field assignments follow a
logical order (M=267.8, SD=188.1) and the
task with field assignments that follow a
random order (M=429.6, SD=182.7);
t(13) = -2.634, p = 0.021.
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A1 2 106 8.5 4.4 263 367 2.8 0.45 10.1 3.9 50 54 -1 7
A2 1 166 10.4 6.3 430 587 2.7 0.42 8.6 2.4 49 49 -2 8

Table 7.2: Mean metric values over all the participants who completed task A1 and task A2 respectively.

As seen in the illustrated example in Figure 7.15 and Figure 7.16, participant P09 provided
only pupil diameter outliers while working on task A2. But by considering Table 7.2 a higher
corresponding mean value (pupil diameter outliers per time unit) can be noticed for task A1. As
shown in the bubble chart in Figure 7.17, this difference can be explained by participant P11 who
provided a huge number of pupil diameter peaks per time unit. However, a participant specific
analysis based on the metric pupil diameter outliers per time unit has found that no implications are
possible for this task pair. The same applies regarding the metric EDA peaks per time unit.
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Figure 7.17: Bubble chart representing pupil diameter outliers per second (task pair A1-A2).
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7.5.3 B1 vs. B2: Mnemonic vs. Generic Variable Names
In the code comprehension tasks B1 and B2, four geometrical objects are drawn on the screen in a
specific order. In task B1, where mnemonic variable names1 are used, lower perceived difficulty is
expected. In Figure 7.18 and Figure 7.19, the Timeline Views of the two tasks under consideration
are shown for a sample participant. In both visualization, the area of interest that contains the
object initialization part is highlighted using the implemented highlighting feature.

Figure 7.18: Task B1 (participant 13)

Task Duration: 42s
Fixations: 128
NASA TLX: 5.2
Diff. Ranking: 2
Correct: YES

Fixation duration when participant first
focuses the object Initialization segment
is about 5 seconds. Participant fixates
that AOI a few more times, but all these
additional fixations on this segment took
less than 1 second each. A pupil diam-
eter peak at the beginning of the task is
recognized.

Figure 7.19: Task B2 (participant 13)

Task Duration: 37s
Fixations: 112
NASA TLX: 4.3
Diff. Ranking: 1
Correct: YES

The time period where the participant fo-
cuses on the object initialization part is
twice as long compared to task B1. In
addition to that, more fixation hits in the
AOI that contains the object initialization
part are recognized in the last few sec-
onds of the task.

1names that help to remember what the variable stands for
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Analysis of AOI Measurements. For most of the participants, the comparison of fixation data
between task B1 and task B2 show a similar picture as in the illustrated example in Figure 7.18 and
7.19. For 12 of 13 participants, there were clearly more (and also longer) fixation hits recognized in
the object initialization segment of task B2 compared to the corresponding code block containing
mnemonic variable definitions in task B1.

To compare pyscho-physiological data that is measured while the participant focused on the
object initialization, the Grid View can be used in addition to highlighting segments in the Time-
line View. As already seen in the tool feature description, the visualization approach of the Grid
View provides AOI-specific data. Extracts of the display output for task B1 and task B2 are given
in Figure 7.20, whereas the columns show computed values for the following metrics: ∆Median
Attention, ∆Median Meditation, Mean Fixation Duration (LTR). Because of the coloring scale which
is computed by task, the background colors of the cells do not allow direct comparison between
multiple tasks in relation to difficulty.

However, the cell data can be used to compare the object
initialization areas. Comparing the values of the object
initialization segment in the first column (∆Median At-
tention), a higher value for task B1 can be noticed (13.54
to 7.38). Because this value represents the attention dif-
ference between the baseline and the task, it can be said
that for the comparable AOI relatively lower attention
values are measured during task B1 compared to task
B2. The lower median attention value corresponds to
the expected task differences regarding the concentra-
tion level. However, the results of a paired t-Test has
shown that there was no significant difference; see box
on the right. The same applies for the other two metrics
shown in Figure 7.20.

T-Test (paired samples):
H0: AOI measurement values (∆Median
Attention) of the comparable object initial-
ization part in task B1 and in task B2 are
the same, regardless of using mnemonic
variables.

There was not a significant difference
in the ∆Median Attention for the object
initialization AOI in task B1 (M=13.5,
SD=17.5) and the object initialization AOI
in task B2 (M=8.2, SD=14.4);
t(11)=1.182, p = 0.262

Cannot Reject H0

Figure 7.20: Extracts of Grid Views for task B1 and task B2. Metrics in columns: ∆Median Attention,
∆Median Meditation, Mean Fix. Duration (LTR); all participants selected.
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Analysis regarding Retrace Declaration Patterns. In a next step, an investigation regarding
retrace declaration patterns is performed for the task pair under consideration. As mnemonic vari-
ables are used for easy remembering of a variables’ meaning, an investigation whether there is a
significant effect on the number of retrace actions seems to be appropriate. For that, the number
of observed retrace declaration patterns is counted for each participant using the Timeline View.

The results are plotted in Figure 7.21. Based on this plot,
a tendency to more pattern instances and a longer task
duration can be identified for task B2 that makes use of
generic variable names.
A t-Test was conducted to compare the effect of
mnemonic variables on the number of retrace declara-
tion pattern occurrences. The results of the test support
the visual conclusion made based on Figure 7.21: There
was a significant effect of using mnemonic variables (in-
stead of generic ones) on the number of retrace declara-
tion patterns at the p<.05 level; see box on the right.

T-Test (independent samples):
H0: The number of retrace declaration
pattern instances is the same regardless of
using mnemonic variable names.

There was a significant difference in the
number of retrace declaration patterns
for the task B1 (mnemonic variable
names) (M=4.07, SD=2.4) and task B2
(generic variable names) (M=7.4, SD=4.55);
t(28)=-2.5, p = 0.018
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Figure 7.21: Number of Retrace Declaration Patterns for task pair B1-B2 (dot label specifies the participant).
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Aggregated Metric Values. Table 7.3 provides mean metric values for the task pair B1-B2. It
can be stated that the task duration in case of task B1 is lowered by 24%. Moreover, the task
pair B1-B2 shows a noticeable difference regarding mean attention data, but both values are on a
relatively low level. This can be explained by the short mean task duration of these tasks and the
relatively low attention level that is often noticed in the first few seconds of a task.

Furthermore, the mean number of peak occurrences in the phasic EDA signal per time unit as
well as the number of pupil diameter outliers per time unit is much higher for task B2. Although
this difference seems to be significant, no significant difference was found. This implies that the
metrics EDA peaks per time unit and pupil diameter outliers per time unit does not yield new results.
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B1 0 31 4.2 1.5 95 127 3.1 0.60 10.5 1.4 39 53 11 8
B2 1 41 5.0 1.9 126 219 2.9 0.47 20.7 2.2 44 50 7 4

Table 7.3: Mean metric values over all the participants who completed task B1 and task B2 respectively.

Attention/Meditation Analysis. Based on the relatively high difference in the mean ∆Attention-
value, further investigations are performed. For that, participant-specific data is plotted in Fig-
ure 7.22. The dot plot shows the metric values ∆Meditation and ∆Attention for each participant.
Because the ∆-value is calculated by subtracting the mean value of the task phase from the mean
value of the fish tank phase, a negative value indicates an increase in the particular metric. It can
be stated that for 7 participants a larger attention increase can be identified for task B2 compared
to task B1. Especially for participant P08 and P13 the difference in the ∆Attention-value between
task B1 and B2 is quite high (>20). For 5 participants, task B1 provided a larger mean attention
increase (no EEG data for P05/P07, P06 did not solve B1). In summary, although there exists a
relatively high difference in the mean ∆Attention-value presented in Table 7.3, no clear trend can
be found in the participant-by-participant consideration.
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Figure 7.22: Dot plots representing norm. MindBand data (task pair B1-B2).
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7.5.4 B1 vs. B3: Use of an Array
As for task B1, mnemonic variables are used in task B3 as well. But in task B, the shape objects
are drawn by iterating over an array variable in which the shape objects are stored. It is expected
that the participant has to switch multiple times between the object initialization area and the
for loop to make sure in which order the shape objects are inserted into the array. Below, the
corresponding timeline visualizations for a sample participant (P04) are shown. Again, the object
initialization part is highlighted.

Figure 7.23: Task B1 (participant P04)

Task Duration: 35s
Fixations: 98
NASA TLX: 4.13
Diff. Ranking: 2
Correct: YES

Attention level remains on a relatively
low level over the complete task dura-
tion. A few pupil diameter outliers can
be identified in the first 10s of the task.
No EDA peak appears on the timeline.

Figure 7.24: Task B3 (participant P04)

Task Duration: 75s
Fixations: 194
NASA TLX: 5.53
Diff. Ranking: 3
Correct: YES

A high number of switches between the
object initialization area, the array inser-
tion and the for clause can be noticed.
Also for this task, a few pupil diameter
outliers can be observed at the begin-
ning of the task. Additionally two EDA
peaks appear on the timeline.
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The Timeline View of other participants show a similar picture as in the illustrated example:
The higher difficulty level of task B3 is reflected by a higher number of fixations and longer task
completion time. Considering time normalized data for each participant, i.e. fixations per time
unit, show interesting insights: A clearly lower fixation rate was observed for task B3 in compar-
ison with task B1. The dot plot in Figure 7.25 illustrates this.
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Figure 7.25: Dot plot representing fixation-/eyeblink occurrences per second (task pair B1-B3).

A lower fixation rate implies longer fixations. However, the Grid View can be used to retrieve
AOI specific data, e.g., the mean fixation duration. This could help to locate code segments with
relatively long fixation durations. In Figure 7.26 extracts of the corresponding Grid Views are
shown. In task B3 on the right hand side, relatively short fixations were recognized for the content
of the loop statement (median: 195 ms). Relatively long fixations were measured for statements
that add shape objects to the array (median: 331/329 ms). However, it is unlikely that these lines
of code are the reason for the said difference in the fixation rate.

Figure 7.26: Extracts of Grid Views for task B1 and task B3. Metrics in columns: Mean Fixation Duration,
Median Fixation Duration, Std. Fixation Duration (LTR); all participants are selected.
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7.5.5 B3 vs. B6: Loop Complexity
Task B6 corresponds in its basic structure to task B3, but with the difference of a more complex
loop drawing the shape objects on the screen. In Figure 7.27 and Figure 7.28, the corresponding
visualizations with highlighted loop segments are shown for participant P02.

Figure 7.27: Task B3 (participant P02)

Task Duration: 46s
Fixations: 122
NASA TLX: 6.13
Diff. Ranking: 3
Correct: NO

No peaks in phasic component of the
EDA signal are recognized. An attention
increase can be identified after about
10 seconds. A few seconds earlier,
a sharp pupil diameter peak (>0.4mm
above mean size) can be identified, in-
dicated by the pupil icon on the timeline.

Figure 7.28: Task B6 (participant P02)

Task Duration: 291s
Fixations: 600
NASA TLX: 5.73
Diff. Ranking: 6
Correct: NO

An accumulation of EDA peaks is recog-
nized after about 2 minutes before the
end of the task. After 3 minutes, a strong
decrease of the attention level can be
noticed. More than 80 percent of the fix-
ations can be located in the while loop.
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As the example for participant P02 in Figure 7.27 and Figure 7.28 already indicated, the par-
ticipants took on average much more time to complete task B6 compared to task B3. Because of
that, the mean number of fixations differ similarly. The corresponding numbers can be found
in Table 7.4. In addition to that, a difference regarding the EDA peak occurrences (normalised
by time) can be identified. On average, 1.3 EDA peaks were identified per minute for task B3,
whereas the corresponding value for task B6 is more than 2.5 times greater.
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B3 7 57 5.6 3.4 161 277 2.5 0.40 10.3 1.3 49 51 0 7
B6 9 231 10.1 7.0 554 891 2.8 0.34 5.4 3.4 46 51 7 7

Table 7.4: Mean metric values over all the participants who completed task B3 and task B6 respectively.

A more closer investigation regarding EDA peaks has shown that except of participant P09
for all participants more EDA peaks per time unit were observed for task B6 compared to B3; see
Figure 7.29. However, it must be mentioned that the measure of electrodermal activity seems to
be a measure that is strongly time-related. This means that the time that the participant already
spent on the task has a strong influence on the measure. That suggests that occurrences of EDA
peaks are not directly related to the difficulty of the task as such, although the difficulty of the
task is closely related with the time the participant needs to complete the task.
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Figure 7.29: Bubble chart representing EDA peaks per second for task pair B3-B6.
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7.5.6 B3 vs. B9: Additional Swap Method
In task B9, a swap method is defined that changes the position of the shape objects within the
array. Multiple fixations between method call and method definition are expected. In case of par-
ticipant P14 nearly 50 percent of the fixations are recognized in the swap method; see Figure 7.31.

Figure 7.30: Task B3 (participant P14)

Task Duration: 39s
Fixations: 104
NASA TLX: 7.0
Diff. Ranking: 3
Correct: NO

The participant took about 50 seconds
for this task whereas only a few short fix-
ations were recognized in the loop state-
ment. Only one phasic EDA peak is no-
ticed (about 7 seconds after the begin-
ning of the task). Additionally, six pupil
diameter peaks (>0.2mm above mean
pupil size) can be observed.

Figure 7.31: Task B9 (participant P14)

Task Duration: 164s
Fixations: 475
NASA TLX: 14.4
Diff. Ranking: 7
Correct: NO

Nearly 50 percent of the fixations can be
assigned to the swap method. The pha-
sic EDA peaks are equally distributed
over the task. The attention level at the
end of the task (last 70s) is relatively
high. No pupil diameter peaks appear
on the timeline.
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It is interesting to see that the number of fixations as well as the task duration is on average
twice as long for task B9 than for task B3, but two participants completed task B9 with less than
100 fixations whereas for task B3 this is only one participant (Note, that nobody was able to solve
task B9 correctly); see Figure 7.32. A high variance regarding the number of fixations can be
recognized for task B9.
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Figure 7.32: Scatter plot representing fixations and perceived difficulty (task pair B3-B9).

Furthermore, Table 7.5 shows that the mean attention value for task B9 is more than 10 per-
cent lower than for task B3. The tendency of relatively low attention data for task B9 could be
mentioned as an explanation for the low success rate of this task (14 wrong answers).
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B3 7 57 5.6 3.4 161 277 2.5 0.40 10.3 1.3 49 51 0 7
B9 14 108 7.4 5.3 293 462 3.0 - - 2.7 44 48 6 6

Table 7.5: Mean metric values over all the participants who completed task B3 and task B9 respectively.
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7.5.7 B3 vs. B11: Easy Loop vs. Complex Object Init
In comparison to task B3, task B11 consists of a very complex object initialization line. The corre-
sponding Timeline Views for participant P10 are shown below:

Figure 7.33: Task B3 (participant P10)

Task Duration: 49s
Fixations: 137
NASA TLX: 2.1
Diff. Ranking: 2
Correct: YES

Most of the fixations can be assigned to
the object initialization part. No pupil di-
ameter outliers were observed and only
two small EDA peaks appear on the
timeline. Varying meditation data indi-
cated by the wave form of the corre-
sponding line chart is shown.

Figure 7.34: Task B11 (participant P10)

Task Duration: 95s
Fixations: 291
NASA TLX: 7.0
Diff. Ranking: 5
Correct: NO

An accumulation of phasic EDA peaks is
recognized (mainly while participant fo-
cused on the complex object initializa-
tion line). The pupil diameter peaks are
more or less equally distributed over the
complete task.
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Table 7.6 provides some additional comparison data and gives an overview of task specific
mean values over all the participants. Apart from the differences regarding the completion time
and the perceived difficulty also disparities in psycho-physiological measures can be observed.
For example the fixation rate seems to differ between the two tasks B3 and B11. Actually, for all
15 participants a higher fixation rate can be identified for task B11 in comparison to task B3. The
low fixation rate in task B3 could be explained by the simple structure of the code and the use
of mnemonic variables that prevents a high number of retrace fixations. This leads to a lower
number of short fixations.
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B3 7 57 5.6 3.4 161 277 2.5 0.40 10.3 1.3 49 51 0 7
B11 4 168 9.8 6.0 522 774 3.1 0.28 6.3 3.4 46 52 7 6

Table 7.6: Mean metric values over all the participants who completed task B3 and task B11 respectively.

Also the number of EDA peak occurrences per time unit is on average more than 2.5 times
higher for task B11 (3.4 to 1.3 per min); see Table 7.6. A detailed overview of the number of EDA
peaks per time unit for each participant is given in Figure 7.35. For 9 participants a higher number
of EDA peaks per time unit appear on the timeline of task B11 compared to that of task B3.

EDA peaks per minute

Patricipant

B
11

   
  B

3

0 0 0 1.6 0 0.86 0 2.18 7.18 2.45 2.56 0 0 1.54 1.88

3.95 1.3 0 0 0 2.3 0 8.93 5.74 7.58 8.45 0 1 6.14 5.05

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 7.35: Bubble chart representing EDA peaks per time unit for task pair B3-B11.
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7.5.8 B6 vs. B11: Moderate Loop vs. Complex Object Init
In Figure 7.36 and Figure 7.37, the timeline visualizations of participant P06 are depicted for task
B6 and task B11. The loop statement is highlighted in both cases.

Figure 7.36: Task B6 (participant P06)

Task Duration: 422s
Fixations: 875
NASA TLX: 13.2
Diff. Ranking: 7
Correct: NO

A tendency of a higher number of pupil
diameter peaks can be recognized to-
wards the end of the task. In addition
to that, a strongly time-varying attention
level can be identified. The fixations
can be assigned to the loop statement
in ∼90% of the time.

Figure 7.37: Task B11 (participant P06)

Task Duration: 313s
Fixations: 573
NASA TLX: 10.1
Diff. Ranking: 6
Correct: NO

Decreasing attention values while partic-
ipant focuses on the loop segment at the
beginning of the task can be observed.
As soon as the participant keeps the fo-
cus on the complex object initialization
line, a few pupil diameter peaks are rec-
ognized as well as a number of phasic
EDA peaks.
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As Table 7.7 indicates, there are no significant differences between the two tasks regarding the
psycho-physiological metrics.
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B6 9 231 10.1 7.0 554 891 2.8 0.34 5.4 3.4 46 51 7 7
B11 4 168 9.8 6.0 522 774 3.1 0.28 6.3 3.4 46 52 7 6

Table 7.7: Mean metric values over all the participants who completed task B6 and task B11 respectively.

Differences regarding the fixation rate can be elaborated
as the dot chart in Figure 7.38 illustrates. In 11 cases,
the participant provided a higher fixation rate for task
B11 compared to task B6. An analysis using the Grid
View to locate code segments with relatively long fixa-
tions but . Because the loop statements of the tasks B3, B6
and B11 seems to be comparable AOIs, a investigation of
AOI measurements using the Grid View was performed.
However, no significant results were found. The results
for the AOI metric ∆Attention are given in the box on
the right.

ANOVA-Test:
H0: AOI measurement values (i.e., ∆Median
Attention) of comparable loop statements in
task B3, B6, B11 are the same regardless of
the perceived task difficulty.

There was a not a significant effect of
loop complexity on the corresponding
AOI measurement values (∆Median
Attention) at the p<.05 level for the three
tasks [F(2,32) = 2.51, p = 0.096].

Cannot Reject H0
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Figure 7.38: Dot plot representing fixation-/eyeblink occurrences per second (task pair B6-B11).
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7.5.9 B9 vs. B11: Swap Method vs. Complex Object Init

Figure 7.39 and Figure 7.40 show the timeline visualizations of task B9 and B11 for participant
P06. Again, the loop statement is highlighted in each task. Mainly due to the high number of
fixations in the complex object initialization segment, this participant took about 4 times longer
for task B11 than for B9.

Figure 7.39: Task B9 (participant P06)

Task Duration: 80s
Fixations: 154
NASA TLX: 4.4
Diff. Ranking: 4
Correct: NO

No pupil diameter peaks as well as pha-
sic EDA peaks recognized during the
complete task. The participant worked
only 80 seconds on this code compre-
hension task and was not able to pro-
vide the correct answer (like all other
participants).

Figure 7.40: Task B11 (participant P06)

Task Duration: 313s
Fixations: 573
NASA TLX: 10.1
Diff. Ranking: 6
Correct: NO

A few pupil diameter peaks as well as
a number of phasic EDA peaks are rec-
ognized for this task. Especially at the
end of the tasks an accumulation of pupil
diameter outliers (>0.4mm above mean
pupil size) can be observed. In addi-
tion, a decrease in the attention is identi-
fied while the participant initially focuses
on the loop statement for a longer time
period.
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Some comparison data for the task pair B9-B11 is given in the table below:
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B9 14 108 7.4 5.3 293 462 3.0 - - 2.7 44 48 6 6
B11 4 168 9.8 6.0 522 774 3.1 0.28 6.3 3.4 46 52 7 6

Table 7.8: Mean metric values over all the participants who completed task B9 and task B11 respectively.

The sample timeline visualizations in Figure 7.39 and Figure 7.40 indicate significant differ-
ences regarding the electrodermal activity (EDA). Time normalized EDA peak data is given for
each participant in the bubble chart depicted in Figure 7.41. Based on the low number of partic-
ipants that provide EDA peaks in this task pair, it is not possible to reliably tell how this metric
differs in this task pair.

EDA peaks per minute

Patricipant

B
11

   
  B

9

0 0 0 5.45 0 0 0 4.29 4.5 4.4 11.72 0 1.33 5.85 2.31

3.95 1.3 0 0 0 2.3 0 8.93 5.74 7.58 8.45 0 1 6.14 5.05

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 7.41: Bubble chart representing EDA peaks per time unit for task pair B3-B11.
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7.6 Task-property specific Data Insights
In a further approach, all 116 individual tasks of the experimental study are categorized based
on various properties. For example, the tasks are grouped into two different groups based on
their NASA TLX score or the perceived difficulty ranking. The threshold of each metric is defined
based on its median value, such that both groups consists more or less of the same amount of
tasks. In addition to aggregated task metrics (e.g., mean attention, mean attention), data is col-
lected from the visualization outputs (e.g., no. of pupil diameter peaks in the first 20 seconds of
task time, first scan time, no. of scans, etc.). It is then elaborated what kind of differences between
the two groups exist. The resulted mean values of this categorization approach are listed in Ta-
ble 7.9. Note that tasks with missing/trunked data are omitted. Table 7.9 provides the following
insights:

• The duration of the first scan is is twice as long for
the group with tasks that are ranked as more dif-
ficult. The results of an independent t-Test for the
groups task difficulty ranked > 4 and task difficulty
ranked ≤ 4 show that there is a significant differ-
ence; see 1st box on the right.

• A slightly higher mean attention value can be rec-
ognized for the tasks that were not solved correctly
compared to the ones that are solved correctly; see
2nd box on the right.

• The average number of EDA peaks in the first
10/20/60 seconds of a task is considerably higher
for tasks that are ranked as more difficult; see 3th
box on the right.

• Mean attention for tasks that are rated as more dif-
ficult (difficulty rating > 4) is not higher than for
tasks that are ranked easier relatively to the rest.

• No significant difference between number of pupil
diameter peaks for the two difficulty level groups
is recognized.

• No participant performed more than one scan for
a task of type B.

• No significant difference in mean attention be-
tween long tasks (> 60s) and short tasks (≤ 60s).

• No significant difference in the number of pupil di-
ameter peaks in the first 60s for task that are per-
ceived as relatively easy (perceived difficulty rating
≤ 4) and tasks that are perceived as relatively dif-
ficult (perceived difficulty rating > 4).

T-Test (independent samples):
H0: The first scan time is the same regardless
whether the participants perceives the task
as relatively easy (value ≤ 4) or relatively
difficult (value > 4).

There was a significant difference in the
first scan time for the group of tasks that
are perceived as relatively easy (value
≤ 4) (M=14.6, SD=10.0) and the group
of tasks that are perceived as relatively
difficult (value > 4) (M=30.6, SD=20.4);
t(89)=13.84, p < 0.001.

Reject H0

T-Test (independent samples):
H0: The mean attention of a task is the same
regardless whether the task is solved correctly
or not.

There was not a significant difference
in the for the group of tasks that were
solved correctly (M=44.2, SD=11.92) and
the group of tasks that are were not
solved correctly (M=46.3, SD=9.18);
t(89)=0.283, p = 0.77.

Cannot Reject H0

T-Test (independent samples):
H0: The number of EDA peak occurrences in
the start phase of a task (first 20s) is the same
regardless of participants perceived difficulty
ranking (Note that duration of some of the
tasks is less than 20s).

There was not a significant difference in
number of EDA peaks for tasks that are
perceived as relatively easy (value ≤ 4)
(M20s=0.68, SD20s=0.85) and for tasks
that are perceived as relatively difficult
(value > 4) (M20s=1.17, SD20s=1.2);
p10s = 0.033, p20s = 0.051.

Cannot Reject H0
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Kind of Task NASA TLX Difficulty Duration Correctness
Metric A B < 6.0 > 6.0 < 4 > 4 < 60 s > 60 s NO YES
NASA TLX 8.9 6.0 3.7 9.8 4.8 9.6 5.0 8.5 8.2 6.4
Duration 124.2 86.2 65.0 127.9 46.5 165.7 39.2 149.9 133.4 86.3
Attention 44.8 44.6 44.3 45.0 45.1 44.1 44.4 44.9 46.3 44.2
Meditation 51.1 50.2 51.5 49.4 51.4 49.2 52.1 48.9 49.8 50.6
Fixations 289.2 239.4 258.9 248.0 248.7 259.8 211.8 291.6 297.6 240.5
Saccades 411.1 391.6 465.0 331.0 394.7 400.3 346.8 443.3 453.1 380.8
Scans 2.5 1.0 1.1 1.8 1.2 1.8 1.2 1.6 1.3 1.5
1st Scan Time 20.7 21.7 16.7 25.9 14.6 30.6 13.4 28.7 23.8 20.7
EP in first 10 s 0.4 0.5 0.5 0.4 0.3 0.6 0.2 0.6 0.4 0.4
EP in first 20 s 0.6 1.0 1.1 0.7 0.7 1.2 0.6 1.2 0.9 0.9
EP in first 60 s 1.8 1.9 1.8 1.9 1.2 2.8 1.0 2.7 1.8 1.9
Total EP 4.4 4.1 3.2 5.2 1.3 8.1 1.2 7.0 5.4 3.8
PP in first 10 s 1.3 1.9 2.0 1.4 1.9 1.5 1.8 1.7 1.4 1.8
PP in first 20 s 3.0 3.0 3.6 2.4 3.1 2.9 3.0 3.0 2.3 3.2
PP in first 60 s 6.8 4.6 5.8 4.6 5.0 5.5 4.4 6.0 4.3 5.5
Total PP 11.1 7.5 8.0 9.0 5.9 12.0 4.9 11.8 10.1 8.0
EP / min 1.1 1.6 1.9 1.1 1.5 1.4 1.5 1.4 1.2 1.6
PP / min 5.3 5.7 7.7 3.5 7.6 2.9 7.8 3.5 3.6 6.2

Table 7.9: Mean metric values for task-property groups (EP = EDA peaks, PP = pupil diameter peaks).

7.7 Metric Dependency Analysis
Another analysis approach focuses on correlations between multiple measurements within task
data. For that, the Timeline View is used. A sample question would be: Does the attention level
correlates with pupil peak occurrences? In this case, the Timeline View is used to identify in how
many cases that a high attention level goes with pupil diameter outliers. In a first step, the analysis
is done by visual inspection of single tasks. If a probable correlation is identified, an evaluation is
conducted. In the following, the results are summarized:

Eyeblinks - Attention Level. Considering eyeblink data (displayed as dashed lines in the Time-
line View), it was found that in a number of cases an accumulation of eyeblinks correlates with
a relatively low attention level. Figure 7.42 illustrates that. To verify this finding, a time series
analysis would be needed which is beyond the scope of this thesis.

Figure 7.42: Probable correlation between attention and eyeblinks (task B11, participant P06).
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Eyeblinks - EDA Peaks. In related work, it was found
that the eyeblink rate can be used as an indicator for
arousal [DJM90]. The same applies for the measure of
electrodermal activity [Bou12, DSF07]. In some of the
timeline visualizations it can be found, that an accumu-
lation of eyeblinks goes with a peak in the phasic EDA
signal; see Figure 7.42. However, a Pearson correlation
coefficient was computed to assess the relationship be-
tween the fixation rate and the number of EDA peak oc-
currences per time unit. The results show that there was
no significant correlation; see box on the right.

Pearson’s Test:
H0: Eyeblink rate is regardless of the number
of EDA peak occurrences per time unit.

There was no correlation between the
two variables eyeblink rate and number
of EDA peaks per time unit [r = -0.08, n =
114, p = 0.391].

Cannot Reject H0

Fixation Rate - Eyeblink Rate. A participant-specific
data inspection has indicated a correlation between fixa-
tion rate and eyeblink rate. Eyeblink rate and fixation
rate are plotted in Figure 7.43. As the scatter plot il-
lustrates, the data for participant P01 show clear corre-
lation tendencies whereas for participant P06 the mea-
sures under consideration do not correlate at all. How-
ever, a Pearson’s test that was conducted on the com-
plete dataset show low presumption against the null hy-
pothesis; see box on the right.

T-Test (independent samples):
H0: The number of eyeblink occurrences per
time unit is the same regardless how many
fixations occurred.

There was no correlation between the
two variables fixation rate of a task and
eyeblink rate of task [r = 0.208, n = 85, p
= 0.053].

Cannot Reject H0
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Figure 7.43: Scatterplot representing fixation rate and eyeblink rate for each of the task.
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EDA Phasic Peaks - Attention Level. It was found that in some cases EDA phasic peaks were
recognized on the timeline where a local minimum of attention is noticed. Figure 7.44 shows an
example where in four cases the occurrence of an EDA peak correlates with a relatively low at-
tention value, followed by an attention increase (illustrated by arrows).

Figure 7.44: Probable correlation between EDA and attention data (task B6, participant P11).

An investigation whether the described correlation can be verified is performed over some
other tasks. The highest percentage of EDA peaks that go with a relatively low attention level
was found for participant P15: On average for 85% of all the EDA peak of a task, low attention
can be observed (Note that task A2, B1, B6, B11 were considered only based on number of EDA
peaks). For the other participants considerably lower values were computed. As participant
P11 (task B6 depicted in Figure 7.44) provides only for two tasks EDA data with an appropriate
number of peaks, it could not be proven as a participant specific correlation pattern.

Pupil Diameter Peaks - EDA Peaks. The measure of
electrodermal activity can be used as an indicator for
arousal or fear, whereas pupil dilation indicates high
cognitive load [Ax53,BI08]. Nevertheless, in some cases,
as for example for the task given in Figure 7.45, slightly
time-shifted correlation tendencies can be identified.
However, there is no significant amount of similar
tendencies. A further investigation was performed to
prove the correlation between these to measures in the
start phase of a task: A correlation test was conducted
to prove whether there was a correlation between the
number of pupil diameter outliers (after 10/20s) and the
number of EDA peak occurrences (after 10s/20s). The
results of this test are shown in the box on the right.

Pearson’s Test):
H0: The number of phasic signal peak
occurrences is the same regardless how many
pupil diameter peaks that can be noticed in
the same time period (No. of peaks after
10s/20s; Note that duration of some tasks is
less than 20s).

There was no correlation between the
two variables [r10s = 0.152, n = 70, p10s =
0.202].
There was no correlation between the
two variables [r20s = 0.101, n = 70, p20s =
0.400].

Cannot Reject H0

Figure 7.45: EDA phasic peak and pupil diameter peaks on timeline (task B11, participant P06).
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7.8 Summary
Below, statistical test results are summarized. Significant results are underlined.

Category Description and Null Hypothesis Sign. Test Result

Eye
movements

First Scan Time - Task Performance
H0: Task performance (correct/false an-
swer) is regardless of scan time (Note: per-
formed for task B3 and B11 only)

T-Test:
(For Tasks B3/B11)
t(12) = 0.195/0.081
p = 0.848/0.937

Cannot
Reject H0

First Scan Time - Perceived Difficulty
H0: Scan time is regardless of perceived
difficulty ranking.

Pearson’s Test:
r = 0.393,
n = 106,
p = < 0.001

Reject H0

Retrace Declaration/Reference Pattern
see "Effect of Mnemonic Variables".

Multiple Scan Pattern
H0: The number of scans is regardless of
the task performance (correct/false, con-
sidering tasks A1/A2 only).

T-Test:
t(27) = 2.908
p = 0.007

Reject H0

Comparable
Task Pair
Analysis

Effect of Mnemonic Variables (B1-B2)
H0: The number of retrace declaration
pattern instances is the same regardless of
using mnemonic variable names.

T-Test:
t(28)=-2.503
p=0.0184

Reject H0

AOI Measurements (B1-B2)
H0: AOI measurement values (i.e.,
∆Median Attention) of the comparable
object initialization part in task B1 and B2
are the same.

Paired T-Test:
t(11) = 1.182
p = 0.262

Cannot
Reject H0

AOI Measurements (B3-B6-B11)
H0: AOI measurement values (i.e.,
∆Median Attention) of comparable loop
statements in task B3, B6, B11 are the
same regardless of the perceived task
difficulty.

ANOVA Test:
F(2,32)=2.51
p=0.096

Cannot
Reject H0

B11: M=9.318
B3: M=-6.682
B6: M=8.615

Order of Field Assignments (A1-A2)
H0: The number of fixation is the same
regardless whether the field assignments
follow a logical order or not.

Paired T-Test:
t(13) = -2.634
p = 0.021

Reject H0
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Time-related
Insights

Rising Attention
No test was conducted (Requires time
series analysis which would be beyond
the scope of this thesis).

Electrodermal Activity & Pupillometry
No test was conducted (Requires time
series analysis).

Pupillometry
H0: The number of pupil diameter
peak occurrences in the start phase of
a task (first 20s) is the same regardless
of participants perceived difficulty.

Pearson’s Test:
r = -0.089,
n = 71,
p = 0.463

Cannot
Reject H0

Task-property
specific
Insights

Difficulty Rating vs. First Scan Time
H0: The first scan time is the same re-
gardless of participants perceived dif-
ficulty ranking.

T-Test:
F(1,89) = 13.840
p = < 0.001

Reject H0

Difficulty Rating vs. No. of EDA peaks
H0: The number of EDA peak occur-
rences in the start phase of a task (first
10/20/60s) is the same regardless of
participants perceived difficulty rank-
ing (Note that duration of some of the
tasks is less than 60s).

T-Test:
(after 10s/20s/60s)
F(1,89) = 4.7/3.9/11.3
p10s = 0.033
p20s = 0.051
p60s = 0.001

Cannot
Reject H0

Metric
Dependency
Insights

Fixation Rate - Eyeblink Rate
H0: The number of eyeblink occur-
rences per time unit is the same regard-
less how many fixations occurred.

Pearson’s Test:
r = 0.208
n = 85
p = 0.053

Cannot
Reject H0

Pupil Diameter Peaks - EDA peaks
H0: The number of phasic signal peak
occurrences is the same regardless how
many pupil diameter peaks that can be
noticed in the same time period (No.
of peaks after 10s/20s/60s; Note that
duration of some tasks is less than 60s).

Pearson’s Test:
(after 10s/20s/60s)
r = 0.152/0.101/0.013
n = 70
p = 0.202/0.400/0.913

Cannot
Reject H0

Eye blinks - Attention
No test was conducted (Requires time
series analysis).

Table 7.10: Overview of statistical test results.





Chapter 8

Recap

In this chapter, the contributions of the thesis are summarized and the research questions are an-
swered. Additionally, limitations concerning the data visualization approaches and the computed
metrics as well as aspects of future work are given.

8.1 Summary of Contributions
This thesis provides the following contributions:

• Definition of a visualization concept to inspect psycho-physiological data recorded from developers
working on code comprehension tasks: A design and interaction concept for the visualization
prototype is elaborated. A set of potential visualization approaches that could support the
pattern identification process is given.

• Providing AOI (area of interest) measurement computations to classify specific parts of the code:
Based on the eye-tracking data, measured psycho-pyhsiological data can be assigned to
specific code segments/areas of interest (AOIs). Matlab scripts are provided to compute
AOI-specific metric values. In total, 45 metrics were defined. The computation of each
metric is performed for all the segments of all the tasks, participant by participant. Finally,
the computed AOI measurements are used for the visualization approach.

• Implementation of a JavaScript web application that visualizes psycho-physiological data along with
the corresponding code analysis tasks: The implemented visualization prototype consists of
three different views whereas each focuses on a different data analysis technique. Using the
highlighting feature, psycho-physiological data can be related to specific lines of code. In
addition to that, code segments can be selected to mark up the EDA, EEG and pupillometry
data that was measured while the participant has focused on that code segment. Apart
from the Timeline View, two other views named as Grid View and Aggregated Timeline View
were implemented. Using these views, aggregated data for multiple participants can be
visualized.

• Conducting a visual analysis of EDA, EEG and eye-tracking data that was recorded for eight different
code comprehension tasks of varying difficulty level: For all the 116 individual data recordings in
the given dataset, the output visualizations are analyzed. Various analysis approaches are
used to discover insights. This includes analyses that focuses on the identification of code
reading patterns, the elaboration of differences in comparable task pairs, the identification
of metric correlation within tasks as well as the detection of task-, time- and participant-
related patterns.
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• Evaluating the findings of visual inspection by performing statistical significance tests: Based on
the findings of the visual inspection, statistical significance tests were conducted. Below, the
patterns that were verified by significant results are listed:

– It was found that there is a correlation between the first scan time and the perceived difficulty
specified by the participant (first scan time = initial reading of the code until 80% of the
lines are reached). The participants took significantly longer for the first scan if the task
is perceived as more difficult.

– Comparing the fixation data of correctly solved tasks with the fixation data of tasks
where the participant was not able to find the correct answer has shown that there is
a relationship between the number of scans and the task performance. It was found
that in fixation data that is related to tasks that were not solved correctly a significant
higher number of scans can be observed. This pattern is named in the work at hand as
Multiple Scan Pattern and can be interpreted as a cognitive action of reading the code
multiple times without recognizing the crucial parts of the task.

– In the task pair analysis, it was found that the use of mnemonic variable names leads to a
significant lower number of retrace declaration pattern occurrences.

– Based on task pair A1-A2 it was found that order of the field assignments has a signfi-
cant effect on the total number of fixations: If the field assignment are ordered in such
a way that they follow a logical order instead of a random order, a significantly lower
number of fixations is required to complete the task.

8.2 Conclusions
The purpose of this thesis was to discover patterns in psycho-physiological data that was recorded
while software developers were working on code comprehension tasks. The dataset used in this
project consists of eye-tracking-, EEG- and EDA data. Additionally, general task information data
as for example the task duration or the perceived difficulty is provided. Although multiple visu-
alization approaches were elaborated, only one of them has proven to be suitable for a detailed
analysis of the given dataset. In the following, the research questions that focus on the visual-
ization approaches (RQ1), the pattern finding process (RQ2) and the use of code segment specific
data (RQ3) are revised and reflected upon:

(RQ1) How can psycho-physiological measurements be visualized to support the analysis of patterns
in the data that can be related to difficulties a software developer might have experienced while
working on a specific part of the code?

Various approaches that visualize biometric data along with the corresponding code compre-
hension task are presented in this work. It was found, that the Timeline View is best suited for a
detailed data analysis, but does not allow to show data for multiple participants at once. To com-
pare multiple participants with each other, storing the visualization outputs as images is required.
Using the highlighting feature that is integrated into the Timeline View, psycho-physiological data
can be related to specific lines of code. Additionally, the prototype allows for the detection of
difficult code segments based on psycho-physiological measurements (e.g., indicated by peaks in
the phasic component of the EDA signal). Also aggregated data visualization approaches were
taken into account. However, the approaches named Grid View and Aggregated Timeline View did
not seem to be useful for a detailed data analysis.
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(RQ2) Which reoccurring patterns within code comprehension tasks can be identified in psycho-
physiological data using visual inspection?

Code reading patterns as for example the scan pattern, the retrace declaration pattern as well
as the retrace declaration pattern that are all defined by Uwano et al. were also found in the
dataset used in this project [UNMM06]. An analysis that aims at investigating the effect of using
mnemonic variable names in relation to the number of retrace declaration patterns has shown a
significant result. Additionally, correlation between the first scan time and the perceived difficulty
of a task was found. Moreover, a relationship between the task performance and the number
of scans was observed (Multiple Scan Pattern). Apart from the code reading patterns, findings
related to psycho-phyisological measures such as electrodermal activity or the EEG signal were
found (e.g., time related findings: rising attention level, sharp EDA peaks in the last phase of a
task). Based on the findings of the visual inspection, a set of patterns was suggested. Although
some of the findings seemed to be promising, no significant test results were found. Because of
that, it is misleading to speak in these cases in terms of patterns.

(RQ3) Given a pair of tasks that have been specifically designed to provide two different difficulty
levels, can we explain the difference in difficulty by the AOI measurements?

The table like approach named Grid View presents several AOI metrics which allow to in-
spect psycho-physiological data that can be related to specific code segments. However, it was
found that the values presented in the Grid View, called AOI measurements, should be treated
with caution. Only the metrics related to eye-tracking data have shown reliable information (e.g.,
Mean Fixation Duration within AOI). Nevertheless, an analysis for comparable code segments was
performed. The results have indicated that there is no significant difference. Based on the low
number of comparable areas of interest that are of large enough size (to ensure a reliable number
of fixation hits), the use of AOI measurements to explain the difference in the difficulty for task
pairs cannot be evaluated in more detail with the given dataset.

8.3 Limitations and Threats to Validity
Limitations of the visualization approaches. Some key limitations of the implemented visu-
alization approaches are summarized below:

• The aggregated data visualization approach Aggregated Timeline View lacks of detailed anal-
ysis. The fact that the task completion time strongly varies between the participants makes
meaningful aggregated data analysis for multiple participants difficult. This is especially
true for the identification of an aggregated fixation path. Although the Aggregated Timeline
View includes such an approach in form of a heat map like visualization, it cannot be used
to identify patterns that can be related e.g., to the mean number of scans or the first scan time.

• Also the Grid View that was designed to analyze code segment specific measurements seems
not to be a suitable approach. Especially for areas of interest (AOIs) where only a few hits
were recognized, the computed metric values that correspond to specific code segments are
not representative. This applies especially to small code segments (single lines of code). It
was shown that the variance of measurements that are related to specific AOIs is in most of
the cases quite high.

• The Timeline View does not allow the comparison of multiple participants at once. Compar-
ing the display outputs of multiple visualization requests is required instead. In addition to
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that, it is quite inconvenient to identify metric information such as the first scan time or the
number of retrace patterns from the individual Timeline Views.

Data Limitations. Limitations concerning the used data and the computed metrics are listed
below:

• Out of the 15 participants, no EDA data is provided for three participants (P05, P07 and
P12). In addition to that, a few participants provided rarely EDA peaks. To make reliable
statements how electrodermal activity can be related with the difficulty of specific code
segments requires much more data.

• For the metric representing the number of pupil diameter peaks per time unit, participant-
related differences were found (e.g., P11 provides for three tasks extraordinary large values)
which actually strongly influences the mean value. However, task-specific findings related
to time normalized pupil diameter outliers fail to appear.

External Validity. In this section, it is described to which extent the results of the pattern finding
analysis can be held to be valid for other code comprehension tasks. All the code comprehension
tasks for the given dataset are quite short and contain a maximum of 29 lines of code. To prove
whether the findings of this thesis can be held to be valid for longer tasks, additional lab experi-
ments have to be conducted. Since all the participants that took part in the lab experiment were
professional software developers it can be assumed that the findings can be generalized to other
people that have to deal with code comprehension activities.

Internal Validity. In internal validity, the main question for the thesis is whether the findings
(e.g., effect of mnemonic variables on the number of retrace declaration pattern occurrences) are
based on the difference in the task difficulty and not because of other possible causes. Due to
the similarity of some of the tasks, a learning effect is possible. To counter-act this, the task order
for each participant is randomized. Additionally, the task order could also have an influence on
the measured psycho-physiological data. Although there is a break of two minutes between each
of the tasks (mind relaxation phase), influences due to high mental load in preceding tasks are
possible and could lead to concentration difficulties. This is especially true for the later tasks
in the task order (total duration to complete the experiment: 1.5 h). Since the experiment has
been conducted in a lab environment, it is possible that the participants may have performed
differently than at their own work place.

Construct Validity. A threat to the experimental study is that there exist apart from the diffi-
culty of a task or the complexity of certain parts of the code other factors that might influence
psycho-physiological measures (e.g., stress, personality, health status).
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8.4 Future Work
More research in this field is needed for a better understanding of psycho-physiological measures
in relation with a software developers’ coding activities. Begel, co-author of the work this thesis
is based on, said recently: "We are still at the experimental stage, learning to understand what all
these sensors are telling us about the software developers" [Cur14]. To learn how software devel-
opers read software code and how they react in specific parts of coding activities, considerably
more work will need to be done.

Further research in that field with special focus on code comprehension activities might ex-
plore the potential of the presented visualization approach for other code comprehension studies
that make use of psycho-physiological measures. A future study with the same experimental set
up but with considerably longer tasks would be very interesting. In addition to that, studies that
make use of code comprehension tasks in other programming languages could asses whether
there are any language-related differences (e.g., regarding code reading patterns). The investiga-
tion in this thesis has shown that an even higher number of study subjects is required to reliably
discover patterns. It was shown that psycho-physiological sensor data differ clearly between
some of the participants. It would be interesting to compare groups of participants with similar
data. However, in the study this thesis is based on, the number of participants is too small to
reliably tell how such groups differ.

It was shown that the implemented visualization solution has some limitations regarding the
comparison of data from multiple participants. The Timeline View currently does not support dis-
playing multiple timelines at once. In the thesis at hand, screenshots are captured for each single
timeline visualization output to guarantee a systematic analysis. In studies with high number
of participants such an analysis approach would be inconvenient. However, an approach that
allows to compare psycho-physiological data over multiple participants is desirable to discover
patterns more easily. A possible solution to this problem would be an additional feature that al-
lows to arrange multiple timeline visualization outputs in a table-like structure. To facilitate the
data analysis further, supporting features that automatically calculate and visually highlight pat-
tern related measures is desired. For instance, an algorithm that automatically computes the first
scan time could be implemented. Moreover, the number of retrace declaration pattern occurrences
could be computed by considering fixation path data. Based on the resulting fixation related mea-
sures (i.e., scans, retrace declaration/reference patterns) highlighting on the timeline visualization
could appear accordingly to improve the data analysis process further.

However, considerably more work will need to be done to reliably determine patterns using
psycho-physiological sensors that can be used to develop novel programming support tools.
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Visualization Screens
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A.1 Timeline View Screens
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A.2 Aggregated Timeline View Screens

First 20s Scaled View

A1

A2
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First 20s Scaled View

B1

B2

B3
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First 20s Scaled View

B6

B9

B11



Appendix B

Web Services

In this chapter, all the implemented web service operations that are used by the visualization ap-
plication are listed. The string that has to be appended to the URI is specified in the tables for
each web service operation. A complete URI of a sample web service call (Load fixation data for
a specific participant and a specific AOI) is shown below:

Example: http://{server-address}/fixations/A1_AOILine8Hit/P04

B.1 Used by Grid View
Web services used by visualization module Grid View:

Operation Retrieve AOI measurments for Grid View

HTTP Method GET
URI /features/{aoiName}/{participant(s)}
Request Example http://localhost:8888/features/A1_AOILine8Hit/P06,P07
Request Body None
Response Body JSON representation of AOI measurement values
Description Loads the AOI measurements (feature values) that are computed using Mat-

lab. If in the Grid View multiple participants are selected, the all the metric
values for all the participants are retrieved by one web service request. For
that, the participant IDs are separated by commas. For each area of interest
(AOI) that appears on the screen a web service request is required.

Table B.1: Web services that are used for the Grid View.



104 Chapter B. Web Services

B.2 Used by (Aggregated) Timeline View
Web services used by the visualization module Timline View and Aggregated Timline View:

Operation Load fixation data

HTTP Method GET
URI /fixations/{aoiName}/{participant}
Request Example http://localhost:8888/fixations/A1_AOILine8Hit/P04
Request Body None
Response Body JSON representation of fixation data
Description Loads a participants fixation data for a given area of interest. Returned are

timestamp data for fixations that were recognized in a given area of interest.
In addition to that, the gaze event duration is returned. Both information is
used for the fixation bars and the fixation paths.

Operation Load eyeblink data

HTTP Method GET
URI /eyeblinks/{task}/{participant}
Request Example http://localhost:8888/eyeblinks/B1/P03
Request Body None
Response Body JSON representation of eyeblink data
Description Loads timestamps that indicate when a eye blink has happened during the

task. These timestamps are computed based on the EEG data using Matlab.
In the visualization module, the eye blinks appear as dotted vertical lines on
the timeline.

Operation Load Mindband data

HTTP Method GET
URI /mindband/{task}/{participant}
Request Example http://localhost:8888/mindband/A1/P01
Request Body None
Response Body JSON representation of attention and meditation values
Description Loads the Attention and Meditation data that is displayed as a line chart inte-

grated into the timeline visualization module.

Operation Load Pupil Peaks Data

HTTP Method GET
URI /pupilPeaks/{task}/{participant}
Request Example http://localhost:8888/pupilPeaks/B2/P10
Request Body None
Response Body JSON representation of pupil diameter peak data
Description Loads timestamps of pupil peaks along with addition information about the

peak (i.e. pupil size of dominant eye, size of peak, etc.)
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Operation Load EDA data

HTTP Method GET
URI /gsrTonicPhasic/{task}/{participant}
Request Example http://localhost:8888/gsrTonicPhasic/A1/P01
Request Body None
Response Body JSON representation of phasic and tonic component of the EDA signal
Description Loads the phasic- and tonic signal data that is displayed as a line chart inte-

grated into the timeline visualization module.

Operation Load Phasic Peak Locations

HTTP Method GET
URI /edaPeaks/{task}/{participant}
Request Example http://localhost:8888/edaPeaks/B2/P10
Request Body None
Response Body JSON representation of the phasic peak locations
Description Loads timestamps that indicate the location of the peaks on the timeline. In the

timeline visualization, this data is used to highlight the peaks in the linechart.

Table B.2: Web services that are used for the Timeline View.

B.3 Used by Information Bar
Web services used by the information module:

Operation Retrieve data for information module

HTTP Method GET
URI /info/{participant(s)}/{task(s)}
Request Example http://localhost:8888/info/P01/all
Request Body None
Response Body JSON representation of task information facts
Description Loads task information data such as NASA TLX values, task order, informa-

tion whether a specific task was solved correctly or not. The keyword "all" can
be used to retrieve i.e. all the statistical task information for a specific partic-
ipant. To retrieve data about multiple participants, the participant IDs can be
separated by commas.

Table B.3: Web services that are used for the Information Bar.
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Difficulty indicated by
ID Category AOI Metric Name High val. Low val. High abs. val.
1 EDA ∆ Mean tonic x
2 EDA ∆ Number of phasic peaks per s x
3 EDA ∆ Mean phasic peak slope x
4 EDA ∆ Mean phasic peak amplitude x
5 EDA Min phasic peak amplitude x
6 EDA Max phasic peak amplitude x
7 EDA ∆ Sum phasic peak ampl. per s x

10 Mindband Min attention x
11 Mindband ∆ Median attention x
12 Mindband Max attention x
13 Mindband ∆ Mean attention x
14 Mindband ∆ Stdev attention
15 Mindband Min meditation x
16 Mindband ∆ Median meditation x
17 Mindband Max meditation x
18 Mindband ∆ Mean meditation x
19 Mindband ∆ Stdev meditation
20 EEG ∆ Alpha/Beta x
21 EEG ∆ Alpha/Gamma x
22 EEG ∆ Alpha/Delta x
23 EEG ∆ Alpha/Theta x
24 EEG ∆ Beta/Alpha x
25 EEG ∆ Beta/Gamma x
26 EEG ∆ Beta/Delta x
27 EEG ∆ Beta/Theta x
28 EEG ∆ Gamma/Alpha x
29 EEG ∆ Gamma/Beta x
30 EEG ∆ Gamma/Delta x
31 EEG ∆ Gamma/Theta x
32 EEG ∆ Delta/Alpha x
33 EEG ∆ Delta/Beta x
34 EEG ∆ Delta/Gamma x
35 EEG ∆ Delta/Theta x
36 EEG ∆Theta/Alpha x
37 EEG ∆Theta/Beta x
38 EEG ∆Theta/Gamma x
39 EEG ∆Theta/Delta x
40 EEG ∆(Theta/Alpha)+Beta
41 EEG ∆(Beta/Alpha)+Theta x
50 Eyeblinks ∆ Eyeblinks per second x
60 Eyetracking Fixations per second x x
61 Eyetracking Sum of fixation durations per s x
62 Eyetracking Mean fixation duration x
63 Eyetracking Median fixation duration x
64 Eyetracking Stdev fixation duration
70 Eyetracking Min pupil size x
71 Eyetracking ∆ Median pupil size x
72 Eyetracking Max pupil size x

Table C.1: List of AOI Metrics with corresponding implications regarding difficulty.
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Experimental Study Tasks

D.1 Task A1

1 using Graphics;

2

3 namespace Study {

4

5 public class Drawing {

6

7 public static void Main(string[] args) {

8 Rectangle t = new Rectangle();

9 t.leftBottom = new Point(2,2);

10 t.leftTop = new Point(2,6);

11 t.rightTop = new Point(6,6);

12 t.rightBottom = new Point(6,2);

13 Graphics.draw(t);

14

15 Rectangle s = new Rectangle();

16 s.leftTop = new Point(11,5);

17 s.leftBottom = new Point(5,5);

18 s.rightBottom = new Point(5,9);

19 s.rightTop = new Point(11,9);

20 Graphics.draw(s);

21

22 }

23 }}

24

25 Will the two drawn rectangles overlap? yes / no

Listing D.1: Study Task A1.
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D.2 Task A2

1 using Graphics;

2

3 namespace Study {

4

5 public class Drawing {

6

7 public static void Main(string[] args) {

8 Rectangle v = new Rectangle();

9 v.leftTop = new Point(1,8);

10 Rectangle x = new Rectangle();

11 x.rightBottom = new Point(13,3);

12 x.rightTop = new Point(13,10);

13 x.leftBottom = new Point(7,3);

14 v.rightTop = new Point(3,8);

15 x.leftTop = new Point(7,10);

16 v.rightBottom = new Point(3,5);

17 Graphics.draw(x);

18 v.leftBottom = new Point(1,5);

19 Graphics.draw(v);

20 }

21 }}

22

23 Will the two drawn rectangles overlap? yes / no

Listing D.2: Study Task A2.
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D.3 Task B1

1 using Graphics;

2

3 namespace Study {

4

5 public class Drawing {

6

7 public static void Main(string[] args) {

8

9 Circle c = new Circle();

10 Triangle t1 = new Triangle();

11 Square s = new Square();

12 Triangle t2 = new Triangle();

13

14 Graphics.draw(t2);

15 Graphics.draw(t1);

16 Graphics.draw(c);

17 Graphics.draw(s);

18

19 }

20 }}

21

22

23 /*
24 *
25 * What are the last three shape objects drawn by Main()?

26 *
27 * (a) circle, triangle, square

28 * (b) triangle, square, circle

29 * (c) circle, triangle, triangle

30 * (d) triangle, circle, square

31 * (e) triangle, triangle, square

32 *
33 */

Listing D.3: Study Task B1.
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D.4 Task B2

1 using Graphics;

2

3 namespace Study {

4

5 public class Drawing {

6

7 public static void Main(string[] args) {

8

9 Object objectA = new Circle();

10 Object objectK = new Circle();

11 Object objectX = new Square();

12 Object objectB = new Triangle();

13

14 Graphics.draw(objectX);

15 Graphics.draw(objectA);

16 Graphics.draw(objectB);

17 Graphics.draw(objectK);

18

19 }

20 }}

21

22

23 /*
24 *
25 * What are the last three shape objects drawn by Main()?

26 *
27 * (a) circle, triangle, circle

28 * (b) circle, triangle, square

29 * (c) triangle, circle, circle

30 * (d) triangle, square, circle

31 * (e) triangle, circle, square

32 *
33 */

Listing D.4: Study Task B2.
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D.5 Task B3

1

2

3 using Graphics;

4

5 namespace Study {

6

7 public class Drawing {

8

9 public static void Main(string[] args) {

10 Object[] array = new Object[10];

11

12 Circle c = new Circle();

13 Triangle t1 = new Triangle();

14 Square s = new Square();

15 Triangle t2 = new Triangle();

16 array.add(t1);

17 array.add(c);

18 array.add(s);

19 array.add(t2);

20

21 for (int i=0; i<3; i++) {

22 Graphics.draw(array[i]);

23 }

24 }

25 }}

26

27

28 /*
29 *
30 * What are the last three shape objects drawn by Main()?

31 *
32 * (a) circle, triangle, square

33 * (b) triangle, square, triangle

34 * (c) triangle, circle, square

35 * (d) circle, square, triangle

36 * (e) none of the above

37 *
38 */

Listing D.5: Study Task B3.
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D.6 Task B6

1 using Graphics;

2

3 namespace Study {

4

5 public class Drawing {

6

7 public static void Main(string[] args) {

8 Object[] array = new Object[10];

9

10 Object o = new Circle();

11 array.add(o);

12 o = new Square();

13 array.add(o);

14 o = new Triangle();

15 array.add(o);

16 o = new Square();

17 array.add(o);

18

19 int i = 1;

20 int temp = 10;

21

22 while (i < 5) {

23 temp = temp % 3;

24 Graphics.draw(array[temp]);

25 temp = temp + 2;

26 i++;

27 }

28 }

29 }}

30

31 /*
32 *
33 * What are the last three shape objects drawn by Main()?

34 *
35 * (a) triangle, square, circle

36 * (b) square, square, triangle

37 * (c) square, circle, square

38 * (d) circle, triangle, square

39 * (e) circle, square, triangle

40 *
41 */

Listing D.6: Study Task B6.
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D.7 Task B9

1 using Graphics;

2

3 namespace Study {

4

5 public class Drawing {

6

7 public static void Main(string[] args) {

8 Object[] array = new Object[10];

9

10 array.add(new Triangle());

11 array.add(new Circle());

12 array.add(new Square());

13 array.add(new Circle());

14

15 swap(array, 3, 2);

16

17 for (int l=0; l<3; l++) {

18 Graphics.draw(array[l]);

19 }

20 }

21

22 public static void swap(Object[] array, int i, int j) {

23 Object temp = array[j];

24 array[i] = array[j];

25 array[j] = temp;

26 }

27 }}

28

29 /*
30 *
31 * What are the last three shape objects drawn by Main()?

32 *
33 * (a) triangle, circle, circle

34 * (b) circle, square, triangle

35 * (c) triangle, circle, square

36 * (d) circle, circle, square

37 * (e) square, circle, triangle

38 *
39 */

Listing D.7: Study Task B9.
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D.8 Task B11

1 using Graphics;

2

3 namespace Study {

4

5 public class Drawing {

6

7 public static void Main(string[] args) {

8 Object[] array = new Object[10];

9

10 int temp1 = 21;

11 int temp2 = 11;

12

13 array.add(new Triangle());

14 array.add(new Square());

15 array.add(new Triangle());

16 Object o = (17 >= temp1) ? ((temp2 > 17) ? new Trian Object o = (17 >= temp1) ? ((

temp2 > 17) ? new Triangle() : new Square()) : ((temp1 < temp2) ? new Circle()

: new Square());

17 array.add(o);

18

19 for (int i=1; i<4; i++) {

20 Graphics.draw(array[i]);

21 }

22 }

23 }}

24

25 /*
26 *
27 * What are the last three shape objects drawn by Main()?

28 *
29 * (a) triangle, square, triangle

30 * (b) circle, square, circle

31 * (c) square, triangle, triangle

32 * (d) square, triangle, square

33 * (e) square, triangle, circle

34 *
35 */

Listing D.8: Study Task B11.
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Used Libraries and Tools

E.1 JavaScript Libraries
Below, a selection of the most important JavaScript libraries that are used for the front-end imple-
mentation:

• Visualization:
http://d3js.org/
https://github.com/Caged/d3-tip

• UI Elements:
https://github.com/davidstutz/bootstrap-multiselect
http://bootstrapformhelpers.com/
http://bootstrap-switch.org

E.2 NodeJS Modules
NodeJS modules that are used to manage the database access are listed below:

• node-mysql:
https://npmjs.org/package/node-mysql

• mongodb:
https://npmjs.org/package/mongodb

E.3 Matlab Tools and Algorithms
Used Toolboxes and predefined algorithms are listed below:

• Peak finder algorithm:
http://mathworks.ch/matlabcentral/fileexchange/25500-peakfinder/content/peakfinder.m

• EDA Toolbox:
https://github.com/mateusjoffily/EDA/wiki

• Database Toolbox:
http://mathworks.ch/products/database/
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Contents of the CD-Rom

The following files can be found on the CD-ROM:

• Zusfsg.txt
German version of the abstract of this thesis

• Abstract.txt
English version of the abstract of this thesis

• Masterarbeit.pdf
Copy of this thesis

• VisApp.zip
The visualization prototype described in this thesis
(includes front-end implementation and back-end implementation)

• DataProcessing.zip
Matlab M-Files and SQL-scripts

• VisualizationOutputs.zip
Screenshot collection of visualization outputs
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