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von
Erik Hasselberg

Zelgstrasse 11, 8134 Adliswil
Schweiz

July 30, 2014

mailto:erik.hasselberg@uzh.ch




Contents

1 Introduction 1

2 Granularities 2

3 Time management 3
3.1 Defintion of the med function . . . . . . . . . . . . . . . . . . . . . 3

3.1.1 Definition of overlapping . . . . . . . . . . . . . . . . . . . . 3
3.1.2 med function . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.3 Properties of the med function . . . . . . . . . . . . . . . . . . . . . 6
3.4 Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 The Algorithm 9
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.3 State Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.4 Initialize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.5 Next Inner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.6 Next Partition Inner . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.7 Join Tuples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.8 Next Outer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.9 Next Partition Outer . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.10 Rescan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 Experiments 20
5.1 Random distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2 Clustered distribution . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.3 Totally unclustered distribution . . . . . . . . . . . . . . . . . . . . 23

6 Conclusion 25





Facharbeit TNNJ Operator

1 Introduction

In this report we will investigate the temporal nearest neighbor join (TNNJ) with

multiple time granularities. Given an outer relation r of schema R = [E,G, T ]

and an inner relation s of schema S = [E,G, T,M ] the TNNJ operator computes

an equijoin on E and G, and a nearest neighbor join on T with group G for the

tuples of the outer relation without equijoin. A timestamp T is an interval with

a starting point TS and an ending point TE. Both, TS and TE and the granularity

gran itself are stored in a tuple of r and s. So we say that T = [label, TS, TE, gran],

for example [Summer2013, 20130621, 20130921, 2].

r

T

label TS TE gran

20120705 20120705 20120705 0

June 2013 20130601 20130630 1

20140228 20140228 20140228 0

August 2014 20140801 20140831 1

s

T

label TS TE gran

2011 20110101 20111231 3

July 2011 20110701 20110731 1

20120721 20120721 20120721 0

2013 20130101 20131231 3

20130207 20130207 20130207 0

April 2013 20130401 20130430 1

Summer 2013 20130621 20130921 2

20131230 20131230 20131230 0

Spring 2014 20140320 20140620 2

April 2014 20140401 20140430 1

20140429 20140429 20140429 0

October 2014 20141001 20141031 1

2015 20150101 20151231 3

Figure 1: Input relations r and s sorted by TS

The goal of this report is to design, define and implement an extension to the

TNNJ operator that deals with relations having a muligranular timestamp. This

includes to define a function name that calculates the distance between a r and a

s tuple. Finally a new algorithm will be implemented, using the defined distance

function, in the kernel of PostgreSQL to find the nearest neighbors for r in s.

An example data set has already been introduced in fig.1. Afterwards in this

report we introduce the granularity. Then the multigranular distance function

will be introduced and also two examples are given to explain the calculation.

After checking the properties of the introduced multigranular distance function

we propose a new order of the tables. Afterwards the procedure of the algorithm

will be explained before discussing the algorithm itself in pseudocode. In the last

section some experiments will be run to test and compare the runtime of the TNNJ

algorithm.
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2 Granularities

r and s are the two given input relations. Both store tuples, which consist as

described above of a muligranular timestamp T = [label, TS, TE, gran]. We define

the granualarity gran as an integer such that:

∀T1, T2 ∈ 4(t)(T2.gran < T1.gran)→ (T2.TE − T2.TS < T1.TE − T1.TS)

where 4(t) it the time domain. If there are two timestamps T1 and T2 so that

the granularity of T2 is smaller than the granularity of T1, the length of the interval

of T2 is also smaller than the length of the interval of T1.

T1

T2

Figure 2: Definition of gran

In the tables of fig.1 we can see some examples of different timestamps. A

timestamp can be a year, a season, a month or a day. A graphical representation

of timestamps with different granularities is shown below.

2013-12-30

Dec. 2013

2013

Winter 2014

2014-04-29

Spring 2014

Time

Figure 3: Example Granularities: year, season, month, day

To these timestamps now the granularity is associated so they can be differenti-

ated. The year (365 ≤ length ≤ 366) gets gran = 3, the season (87 ≤ length ≤ 95)

gran = 2 , month (28 ≤ length ≤ 31) granularity is gran = 1 and the day

(length=0) is gran = 0. The timpestamp with the longest interval, i.e. the largest
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granulartiy, preserves the biggest granularity value (which is 3), while the times-

tamp with the shortest interval, i.e. the finest granularity, obtains the smallest

granularity value (which is 0). Since the euclidean distance cannot be applied to

intervals, how do we calculate now the distance between the tuples in r and s?

3 Time management

In this section we give a definition of the distance function and explain how we

calculate the distance in different cases. Also we give two examples for a better

understanding of the calculation.

3.1 Defintion of the med function

As we have seen before a table stores timestamps of different granularities. For

computing the distance between two tuples we introduce the function med(r,s,p),

i.e. Multigranular Euclidean Distance, that returns the distance from r to s where

a value 0 ≤ p ≤ 1 specifies which distance should be considered. For example as

you can see in fig.4, for p = 0 we take the shortest possible distance between r

and s, for p = 1 we calculate the longest distance between r and s; for p = 0.5 we

look at the intermediate distance, i.e. the distance between the shortest and the

longest; etc. In the three examples in the figure we can see that if p < 0.5 we are

looking at a case which is closer to the shortest possible distance and if p > 0.5

we consider a case closer to the furthermost distance between r and s.

Since the timestamp of a tuple is an interval, r and s can overlap each other. We

first need to define what overlapping means so we can afterwards distinguish better

between more possible cases in calculating the distance between r and s.

3.1.1 Definition of overlapping

r ≺≺ s⇔ r.TE < s.TS, left disjoint (1)

r ≺ s⇔ r.TS < s.TS ∧ s.TS < r.TE ∧ r.TE < s.TE left overlapping (2)

r ⊂ s⇔ s.TS < r.TS ∧ s.TE > r.TE left containing (3)

3
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In the definition there are three different cases from which we can distinguish

shown in fig.4. Right disjoint (r �� s), right overlapping (r � s) and right

contained (r ⊃ s) are defined symmetrically.

r

r.TS r.TE

s

s.TS s.TE

p=0
p=0.5
p=1

(a) r ≺≺ s

r

r.TS r.TE

s

s.TS s.TE

p=0
p=0.5
p=1

(b) r ≺ s

r

r.TS r.TE

s

s.TS s.TE

p=0
p=0.5
p=1

(c) r ⊂ s

Figure 4: Different examples of r and s regarding overlapping

3.1.2 med function

med(r, s, p) =



d
(
r.TE − p(r.TE − r.TS), s.TS + p(s.TE − s.TS)

)
r ≺≺ s

d
(
r.TS + p(r.TE − r.TS), s.TE − p(s.TE − s.TS)

)
r �� s

d
(

0, p(s.TE − r.TS)
)

r ≺ s

d
(

0,−p(r.TE − s.TS)
)

r � s

max

(
d
(

0, p(s.TE − r.TS)
)
, d
(

0,−p(r.TE − s.TS)
))

else

The med functions uses the euclidean distance function d to calculate the distance be-

tween two time points. d is defined as the absolute value of the numerical difference of

two points on the real line. Thus if x and y are two points on the real line, the distance

d between them is given by: √
(x− y)2 = |x− y|

Finally it has to be said that the med function returns the distance always in the smallest

granularity.

The formulas for calculating the med when r and s are disjoined derive from the figure 4a.

For the case when r ≺ s the formula we give is the short form of d
(

0, p(s.TE − r.TS)
)

=

4
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d
(
r.TE − p(r.TE − r.TS), r.TE − p(r.TE − r.TS) + p(s.TE − r.TS)

)
. The given formula for

r � s has the same short form. The ”else” case represents the situations when r ⊂ s or

r ⊃ s.

3.2 Examples

The examples below show for two cases, r ≺≺ s and r ≺ s, the results of the med

function for three values of p (0, 0.5, 1), one step-by-step calculation and a graphic of

the situation.

Disjoint

1. med(August2014, October2014, p = 0) = 31 days

2. med(August2014, October2014, p = 0.5) = 61 days

3. med(August2014, October2014, p = 1) = 91 days

med(August2014, October2014, 0.5) =

d(2014.08.31− 15days, 2014.10.01 + 15days) =

d(2014.08.16, 2014.10.16) = 61 days

August 2014

2013-08-01 2013-08-31

October 2014

2013-10-01 2013-10-31

Time

Figure 5: Example r ≺≺ s with real dates

As it can be seen in figure 5 the case above describes the case r ≺≺ s because August

2014 starts and ends before October 2014. So the first formula is applied to calculate the

distance. We see that in the case for p = 0 the shortest possible distance is between the

ending point of August 2014 and the starting point of October 2014 which corresponds

to the length of a month (September 2014).

5
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Overlapping

1. med(June2013, Summer2013, p = 0) = 0 days

2. med(June2013, Summer2013, p = 0.5) = 56 days

3. med(June2013, Summer2013, p = 1) = 112 days

med(June2013, Summer2013, 1) =

d(2013.06.01, 2013.06.01 + 1 ∗ (2013.09.21− 2013.06.01)) =

d(2013.06.01, 2013.06.01 + 112days) =

d(2013.06.01, 2013.09.21) = 112 days

June 2013

2013-06-01 2013-06-30

Summer 2013

2013-06-21 2013-09-21

Time

Figure 6: Example r ≺ s with real dates

In this example where r ≺ s, the shortest distance in the case for p = 0 is 0 days.

This is because June 2013 is a summer month.

3.3 Properties of the med function

Since the sort merge NNJ works with metric, we check if med is a metric. Per definition

a metric on a set X is a function d : X ×X → R (where R is the set of real numbers).

For all x, y, z in X, this function is required to satisfy the following conditions:

1. d(x, y) ≥ 0 (non-negativity)

2. d(x, y) = 0 if and only if x = y (identity)

3. d(x, y) = d(y, x) (symmetry)

4. d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality)

Hereafter every single condition needs to be checked if it can hold for med.

6
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First condition

The distance between two tuples can never be smaller than zero. If you look at ex-

ample 2, where r starts after s and so the distance on the time axis could be

negative, the d function takes the absolute value.

1. med(2013, 2015, p = 0) = 366 days

2. med(2016, 2014, p = 1) = 1095 days

Second condition

For the second condition, which says that the distance is only equal to zero when

the two tuples are equivalent, we give two counter examples to show, that this

condition doesn’t hold for med. In the first example, where r = s we see that the

distance is not zero when p = 1. As we see in the second example for p = 0 and

r 6= s the distance instead is zero.

1. med(2013, 2013, p = 1) = 364 days

2. med(20130101, 2013, p = 0) = 0 days

Third condition

The symmetry condition for the med function holds. The proof is given afterwards.

First we look at the case when r1 ≺≺ s1 and see thatmed(r1, s1, p) = med(s1, r1, p).

1. med(r1, s2, p)
?
= med(s1, r1, p)

d
(
r1.TE − p(r1.TE − r1.TS), s1.TS + p(s1.TE − s1.TS)

)
?
=

d
(
s1.TE − p(s1.TE − s1.TS), r1.TS + p(r1.TE − r1.TS)

)
⇒

d
(
r.TS + p(r.TE − r.TS), s.TE − p(s.TE − s.TS)

)
Thereafter we look at the case when r2 ≺ s2 and also note here thatmed(r2, s2, p) =

med(s2, r2, p).

2. med(r2, s2, p)
?
= med(s2, r2, p)

d
(

0, p(s2.TE − r2.TS)
)

?
= d
(

0, p(r2.TE − s2.TS)
)
⇒

d
(

0,−p(r.TE − s.TS)
)

Completing we look at the case when r3 ⊂ s3 and can observe also here that

med(r3, s3, p) = med(s3, r3, p).

7
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3. med(r3, s3, p)
?
= med(s3, r3, p)

max

(
d
(

0, p(s3.TE − r3.TS)
)
, d
(

0,−p(r3.TE − s3.TS)
))

?
=

max

(
d
(

0, p(r3.TE − s3.TS)
)
, d
(

0,−p(s3.TE − r3.TS)
))
⇒

max

(
d
(

0, p(s3.TE − r3.TS)
)
, d
(

0,−p(r3.TE − s3.TS)
))

For the cases where r1 �� s1, r2 � s2, r3 ⊃ s3 the procedure is analogus. So we

can say, that the symmetry condition holds for the med function.

Fourth condition

For the fourth condition the counter example given below shows, that med doesn’t

hold the triangle inequality.

1. med(2013, 2015, p = 1)
?
=

med(2013, 2014, p = 1) +med(2014, 2015, p = 1)⇒
1094 days 6= 729 days+729 days

In the example for p = 1 we consider the greatest possible distance between the

two tuples. So we count the length of the interval of the tuple 2014 twice because

primarily we calculate the distance between 2013 and 2014, what means for p = 1

we consider the dates 2013-01-01 and 2014-12-31. For the second subtotal we

calculate the distance from 2014-01-01 to 2015-12-31. So in total the sum of the

two distances is four years and not three as it had to be to fulfill the fourth

condition of a metric.

3.4 Implications

With multigranular timestamps there doesn’t exist a total order on T because we cannot

sort the tuples so that all nearest neighbors (NN ) are one after the other. To demonstrate

this we introduce two example relations r and s, shown in fig.7.

r

T

label TS TE gran

r1 20140228 20140228 20140228 0

r2 2014 20140101 20141231 3

s

T

label TS TE gran

s1 20131230 20131230 20131230 0

s2 Winter 2013 20131221 20140319 2

s3 December 2013 20131201 20131231 1

s4 2014 20140101 20141231 3

s5 March 2014 20140301 20140331 1

s6 Spring 2014 20140320 20140620 2

s7 20140429 20140429 20140429 0

Figure 7: r and s

8
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The tuples overlap each other: In fig.8 below we illustrate that when we sort s by TS

or by TE the order of the tuples is a total different one.

2013

Dec. 2013

Winter 2013

2013-12-30

Mar. 2014

Spring 2014

2014-04-29

Time

(a) ordered by TS

2013-12-30

Dec. 2013

2013

Winter 2013

Mar. 2014

2014-04-29

Spring 2014

Time

(b) ordered by TE

Figure 8: No total order exists

If you consider r1, after fetching its first nearest neighbor s1 we need to scan a lot of

tuples before fetching the second nearest neighbor, i.e. s7. Then we need to go back at

the beginning of s for fetching the nearest neighbors of r2 (s2, s4, s5, s6, s7): We want to

avoid to refetch tuples that are not nearest neighbors and we want the nearest neighbors

being always one after the other.

4 The Algorithm

4.1 Introduction

Our idea is to sort the input tables also by the granularity gran and not just TS . In

such a case we achieve that there can’t be any additional tuples between two nearest

neighbors of the same granularity in s. We first define ri and sj sucht that:

ri = σgran=i(r)

sj = σgran=j(s)

9
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r

T

label TS TE gran

r0 20120705 20120705 20120705 0

20140228 20140228 20140228 0

r1 June 2013 20130601 20130630 1

August 2014 20140801 20140831 1

r3 2012 20120101 20121231 3

2014 20140101 20141231 3

s

T

label TS TE gran

20120721 20120721 20120721 0

s0 20131230 20131230 20131230 0

20140429 20140429 20140429 0

July 2011 20110701 20110731 1

s1 April 2013 20130401 20130430 1

April 2014 20140401 20140430 1

s2 Spring 2014 20140320 20140620 2

2011 20110101 20111231 3

s3 2013 20130101 20131231 3

2015 20150101 20151231 3

Figure 9: Input relations r and s sorted by granularity, TS: the sorting on
granulartiy allows to build the partitions ri and sj

For example now, for the tuple 2014 in r0 no other tuple can be between its nearest

neighbors in s0, i.e. 2013, 2015. The following figure is nearly the same as fig.8, with

the difference that the tuples are now sorted by the granularity gran and TS . So we

achieve that there is now a total order between all tuples of the same granularity, i.e.

tuples of different years will come one after the other, tuples of different seasons will

come consecutively etc.

2013

Winter 2014 Spring 2014

Dec. 2013 Mar. 2014

2013-12-30 2014-04-29

Time

Figure 10: Total order between tuples of same granularity

Since in every partition sj there now exists a total order on T , the nearest neighbors

of every r tuple are always one after the other. Therefore we join each tuple in ri with

its local nearest neighbors, i.e. the nearest neighbors in every sj . At the end, once all

local nearest neighbors have been found, we select as nearest neighbors only the tuples

with the smallest distance.

10
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Algorithm 1: TNNJ

1 begin
2 foreach ri ∈ r do
3 foreach sj ∈ s do

4 z← z ∪ΠR,S,med(R,S,p)(ri
NN(T)

|><|
EQ(G)

G sj)

5 return ( RϑMIN(d))(z) |><| z

4.2 Procedure

We see looking at line 4 of the algorithm 1 that we can fetch ri and sj using two different

ways.

The first uses an index on the granularity gran to fetch ri and sj without a scan of

the relation (monogranular version). This approach has two disadvantages:

1. Blocks storing tuples of different granularitites have to be fetched multiple times

2. An index scan on a complete relation (all tuples are needed) is always slower than
a sequential scan

The second approach is to implement an efficient procedure using sort merge (multi-

granular version), that fetches all tuples once at the beginning. This implementation

will be described herafter:

We continuously scan r0 to fetch its nearest neighbors in s0. When we reach a new

partition in r (i.e. r1), we do a restore in r (go to first tuple of r0) and scan s0 until we

reach s1. We then repeat the process. As soon as we have joined r0 with all s partitions,

we go to the first tuple of r1 and rescan s.

Since the various partitions ri, sj are not stored in different tables, we can’t just run line

4 of Algorithm 1, i.e at every step we would need to fully scan r and s for fetching ri

and sj . Since r and s are sorted by gran, we always know when ri and sj start and

finish. Now we present the join result between relations r and s of fig.9 with p = 0. The

following table in fig.11 shows all local nearest neighbors for every ri in every sj .

11
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z

r s

label TS TE gran label TS TE gran d

20120705 20120705 20120705 0 20120721 20120721 20120721 0 16

20140228 20140228 20140228 0 20131230 20131230 20131230 0 60

20140228 20140228 20140228 0 20140429 20140429 20140429 0 60

20120705 20120705 20120705 0 April 2013 20130401 20130430 1 270

r0 20140228 20140228 20140228 0 April 2014 20140401 20140430 1 32

20120705 20120705 20120705 0 Spring 2014 20140320 20140620 2 632

20140228 20140228 20140228 0 Spring 2014 20140320 20140620 2 20

20120705 20120705 20120705 0 2013 20130101 20131231 3 180

20140228 20140228 20140228 0 2013 20130101 20131231 3 180

June 2013 20130601 20130630 1 20131230 20131230 20131230 0 183

August 2014 20140801 20140831 1 20140429 20140429 20140429 0 94

June 2013 20130601 20130630 1 April 2013 20130401 20130430 1 32

r1 August 2014 20140801 20140831 1 April 2014 20140401 20140430 1 93

June 2013 20130601 20130630 1 Spring 2014 20140320 20140620 2 263

August 2014 20140801 20140831 1 Spring 2014 20140320 20140620 2 42

June 2013 20130601 20130630 1 2013 20130101 20131231 3 0

August 2014 20140801 20140831 1 2015 20150101 20151231 3 123

2012 20120101 20121231 3 20120721 20120721 20120721 0 0

2014 20140101 20141231 3 20140429 20140429 20140429 0 0

2012 20120101 20121231 3 April 2013 20130401 20130430 1 91

2014 20140101 20141231 3 April 2014 20140401 20140430 1 0

r3 2012 20120101 20121231 3 Spring 2014 20140320 20140620 2 444

2014 20140101 20141231 3 Spring 2014 20140320 20140620 2 0

2012 20120101 20121231 3 2011 20110101 20111231 3 1

2012 20120101 20121231 3 2013 20130101 20131231 3 1

2014 20140101 20141231 3 2013 20130101 20131231 3 1

2014 20140101 20141231 3 2015 20150101 20151231 3 1

Figure 11: Output table with all local nearest neighbors: ∪
i,j
ri

NN(T)

|><|∅
EQ(∅)

sj

After founding all local nearest neighbors for every ri, we can rescan the result in

order to select the closest local nearest neighbors. The table in fig.12 shows the final

output result.

y

r s

label TS TE gran label TS TE gran d

20120705 20120705 20120705 0 20120721 20120721 20120721 0 16

20140228 20140228 20140228 0 Spring 2014 20140320 20140620 2 20

June 2013 20130601 20130630 1 2013 20130101 20131231 3 0

August 2014 20140801 20140831 1 Spring 2014 20140320 20140620 2 42

2012 20120101 20121231 3 20120721 20120721 20120721 0 0

2014 20140101 20141231 3 April 2014 20140401 20140430 1 0

2014 20140101 20141231 3 20140429 20140429 20140429 0 0

2014 20140101 20141231 3 Spring 2014 20140320 20140620 2 0

Figure 12: Final output table with the closest local nearest neighbors: r |><|s

The total runtime of the algorithm therefore can be expressed as:

G ∗ (r + s)

12
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No additional costs for calculating TS , TE , gran starting from its label have to be added

because this ”exctractions” process can be done offline. For example to set the granu-

larity of all timestamps with a day or year label we can run the following PostgreSQL

commands:

UPDATE S SET GRAN=0 WHERE LENGTH(LABEL)=8; // dd granularity

UPDATE S SET GRAN=3 WHERE LENGTH(LABEL)=4; // yy granularity

4.3 State Machine

The algorithm is implemented extending the routine (i.e. a set of states) for traditional

Sort MergeJoin; the algorithm is composed by 7 main states, each of those will be

described in the following subsections.

Next InnerJoin Tuples

×Next Outer

Initialize

Rescan

Next Part Inner

Next Part Outer

look for n.n.
of first r

No n.n. exists

n.n. found sj+1 is reached, restore ri

else

No tuples to process

fetch all n.neighbors

no more n.n. exist

else

!Null(rc)

look for n.n.

No tuples
to process

no tuple with
same group exists

ri+1 is reached, rescan s

finished

finished

Figure 13: State Diagram: TNNJ

We start with the Initialize and look then for the nearest neighbors of the first tuple

in r0 in NextInner. We stay so long in NextInner until we have found a nearest neighbor

and go to JoinTuples. After joining the r0 tuple with its nearest neighbor(s) from s0

we fetch the next tuple in NextOuter. For this tuple we look again for its nearest

neigbor(s) as described above. When we reach the next partition in s (i.e. s1), we go to

NextPartitionInner where we reinitialize r with the first tuple of the current partition

13
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(i.e. r0) and initialize s with the first tuple of the next partition s1. Again, in NextInner

we look for the neareast neigbors for the r0 tuples in s1. This procedure is repeated for

every partition of s.

Once all s partitions have been processed for r0, we go in NextPartitionOuter. In this

state we reach the next partition of r (i.e. r1) and rescan s (fetching again s0). Like this

we’re running the algorithm until we reach the end of r and s, i.e. the last partitions and

there are no tuples left to process. We then rescan the result to select only the closest

nearest neighbors.

4.4 Initialize

This state is the first to be executed. We sort the outer relation r and the inner relation

s by (gran,K1,K3,K2)1. We start the scan of the two relations initializing r with the

first r tuple, and sc, sn, and sp with the first s tuple. The algorithm will set, during

its iteration sc to the current, sn to the next and sp to the previous s tuple. Needed

flags are initialzied with 0. Before changing the state and going to NextInner, we mark

the first position in r and s since we work with backtracking and need to restore the

positions of both in some cases we’ll describe later in detail.

State 1: Initialize
Input: r, s,K1,K2,K3, gran

1 begin

2 Sort(r); Sort(s)

3 r ← fetchRow(r) // Current r tuple

4 markPosition(r)

5 sc ← fetchRow(s // Current s tuple

6 markPosition(s)

7 sn ← sc // Next s tuple

8 sp ← sc // Previous s tuple

9 goToEndInner ← 0 // Set flags

10 holdOuter ← 0

11 go to NextInner

1K2 stands for the identifier E where K3 stands for the time T .
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4.5 Next Inner

In this state we fetch the next s tuple. In lines 4-7 we check if an inner tuple with the

same group of the actual outer tuple exists at all: if not, no join match for it exists and

we go directly to the state NextOuter to fetch a new row in r.

In lines 8-16 we fetch a new inner tuple. Before actually fetching a new row we check

if r and sn belong to the same group, if sc and sn have the same granularity and if r is

closer to sn than to sc, then sn may be its first nearest neighbor. Therefore we mark

its position in line 11, before the previous and the current tuple are updated. We mark

the position too when a new partition sj+1 is reached (line 15). Then we check if we

have reached a new partition in s (line 19): If so, we go to the State NextPartitionInner.

When the init is done and we come back again to NextInner, we fetch a new row.

In lines 24-27 we check if r and sc are an equijoin on K1 and K2. After returning the

equijoin match we check if there doesn’t exist a further equijoin and if this is the case

we change the state and go to NextOuter.

In lines 28-32, as soon as the distance grows, we reached the end of s, a different group

tuple or a tuple with a new granularity is fetched, we are sure that the previously marked

tuple is its first nearest neighbor (the tuple marked in line 11), therefore we restore its

position and we go to the state JoinTuples.

The next if statement we only check when a new partition ri+1 (there the goToEndInner

flag has been set) in r has been reached and we’ve reached the end of s.2 We change the

value of goToEndInner to set the second flag holdOuter which we need to ensure not

fetching a next tuple in ri+1. If rn and sn are both not null we go again to NextInner.

In line 18 we now set holdOuter, in line 22 we reset goToEndInner and after staying

once more in NextInner we enter the first if statement and go afterwards to the state

NextOuter.

As is has been said before, when there are no tuples in r and s left to proceed, we

change the state and go to Rescan to fetch only the nearest neighbors with the smallest

temporal distance from the output z.

2Compare state NextOuter, lines 11-13, for more details.
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State 2: NextInner
1 begin
2 if holdOuter = 1 ∧ goToEndInner = 0 then
3 go to NextOuter

4 if !Null(r) ∧ r.K1 < sc.K1 ∧ goToEndInner = 0 then
5 go to NextOuter // No NN exists

6 if !Null(r) ∧Null(sn) ∧ r.K1 > sc.K1 ∧ goToEndInner = 0 then
7 go to NextOuter // No NN exists

8 if !Null(sn) then

9 if !Null(r) ∧ r.K1 = sn.K1 ∧ sc.gran = sn.gran ∧ goToEndInner = 0 ∧
(

10 d(r, sc) > d(r, sn) ∨ r.K1 6= sc.K1
)
then

11 markPosition(s) // Mark first NN

12 sp ← sc
13 sc ← sn
14 if sc.gran > sp.gran then
15 markPosition(s) // Mark first tuple of new partition sj+1

16 sn ← fetchRow(s)

17 if goToEndInner = −1 then
18 holdOuter ← 1 // Last tuple in ri has been reached

19 if sc.gran > sp.gran ∨ goToEndInner = −1 then
20 if holdOuter = 0 then
21 go to NextPartitionInner // restore r, initialize sj+1

22 goToEndInner ← 0
23 go to NextInner

24 if !Null(r) ∧ r.K1 = sc.K1 ∧ r.K2 = sc.K2 ∧ goToEndInner = 0 then
25 z← z ∪ (r ◦ sc) // Equijoin match

26 if Null(sn)∨ ! (r.K1 = sn.K1 ∧ r.K2 = sn.K2) then
27 go to NextOuter

28 if !Null(r) ∧ r.K1 = sc.K1 ∧ goToEndInner = 0 ∧
(

29 Null(sn) ∨ d(r, sc) < d(r, sn) ∨ r.K1 6= sn.K1 ∨ sc.gran 6= sn.gran
)
then

30 sc ← restorePosition(s) // Fetch first NN

31 sn ← fetchRow(s)
32 go to JoinTuples

33 if Null(sn) ∧ goToEndInner = 1 then
34 goToEndInner ← −1 // When in the last partition of s

35 if Null(r) ∧Null(sn) then
36 Sort(z) by r.gran, r.K1, r.K3, r.K2, d
37 go to Rescan // Both relations are empty, select closest NN

38 go to NextInner
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4.6 Next Partition Inner

In this state a new sj needs to be initialized. When a new partition sj+1 has been

reached we restore r to the first tuple of ri and initialize s to the first tuple of the next

partition sj+1. sp, sn are both set to this tuple. Afterwards we reset the goToEndInner

flag and go back again to NextInner.

State 3: NextPartitionInner

1 begin

2 r ← restorePosition(r) // first ri tuple

3 sc ← restorePosition(s) // first sj+1 tuple

4 sp ← sc

5 sn ← sc

6 goToEndInner ← 0

7 go to NextInner

4.7 Join Tuples

In this state we join r with all its nearest neighbors. We do this in line 2 and store r,

its neareast neighbor sc and the distance d between them in z. Since the distance is a

metric, as soon as the distance grows, the groups of the outer and the next inner tuple

are different or we reach a new partition in s we are sure that no nearest neighbor for

r exists anymore and we go to NextOuter. If there are still some nearest neighbors to

fetch we remain in the state JoinTuples.

State 4: JoinTuples

1 begin

2 z← z ∪ r ◦ sc ◦ d(r, sc)

3 if Null(sn) ∨ d(r, sn) > d(r, sc) ∨ r.K1 6= sn.K1 ∨ sc.gran 6= sn.gran then

4 go to NextOuter // No further NNs

5 else

6 sc ← sn

7 sn ← fetchRow(s)

8 go to JoinTuples // Still NNs to fetch
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4.8 Next Outer

In this state, if the flag holdOuter is not set, we fetch a new r tuple rc. If rc corresponds

to a new partition ri+1 and s has been scanned until the end, the join between ri and

all partitions of s has been completed. Therefore we go to the state NextPartitionOuter

where we will reinitialize r with ri+1 and s with r0.

To ensure that when coming from the state NextInner, where the holdOuter flag3 is set,

we don’t fetch a new r tuple at the beginning we reset the flag in line 9 (when coming

the next time to NextOuter we are sure to fetch a new row at the beginning) and remain

in the state NextOuter where we fetch then a new r tuple.

If we reached a new partition ri+1 in r but we haven’t looked for the local neareast

neighbors in all partitions of s for the tuples of ri, we need to scan s until we reach a

new partition sj+1 and can restore r to the marked tuple (in line 6, NextPartitionOuter).

So we set the flag goToEndInner and go to the state NextInner to fetch a new s tuple

as long as a new partition sj+1 or the end of s has been reached.

We restore the s to its last marked position to fetch the nearest neigbor of rc in the

following cases:

1. rc and rn share the same nearest neighbors

2. we reached the end of s (last tuple of last partition

3. a new partition ri+1 has been reached

If we have reached the end of the last partition of r (i.e. rc is null), but sj isn’t the

last partition of s we go to NextInner for fetching sj+1. There as soon as sj+1 has been

reached, we go to NextPartInner where we restore r to the first tuple of the last partition

and s with sj+1. When we’ve reached the end of the last partition in both relations, we

go to Rescan to select for each r ∈ r the closest among its local nearest neighbors.

3The holdOuter and also the goToEndInner flag are used when a new partition ri+1 has been
reached but in s are still tuples to process. We want to be sure to not process ri+1 until all
local nearest neighbors for ri have been produced. So we do not fetch a new r tuple and we
scan s until:

1. a new partition sj+1 is reached: we restore r to the first tuple of ri and join ri with sj+1

2. the end of s is reached: we rescan s and join ri+1 with s0
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State 5: NextOuter
1 begin
2 if holdOuter 6= 1 then
3 rp ← rc
4 rc ← fetchRow(r)

5 if !Null(rc) then
6 if Null(sn) ∧ rc.gran > rp.gran then
7 go to NextPartitionOuter

8 if holdOuter = 1 then
9 holdOuter ← 0

10 go to NextOuter

11 if !Null(sn) ∧ rc.gran > rp.gran then
12 goToEndInner ← 1 // Scan inner until new partition

13 go to NextInner

14 if
(
d(rc, sc) ≤ d(rc, sn) ∧ rc.K1 = sc.K1

)
∨Null(sn) ∨ sc.gran 6= sn.gran then

15 sn ← restorePosition(s) // rc has the same NN of rp

16 go to NextInner

17 else if Null(rc)∧ !Null(sn) then
18 go to NextInner // still some tuples in s

19 else
20 Sort(z) by r.gran, r.K1, r.K3, r.K2, d
21 go to Rescan // no tuples left to process, select closest NN

4.9 Next Partition Outer

This state will be executed when we have fetched all local nearest neighbors for ri in

every sj . In this state we rescan s what means we reinitialize s to s0 and set sp, sc, sn to

the first tuple of this partition again. We mark in both relations the position, in r the

first tuple of the new partition ri+1, in s the first tuple in s0 again. Afterwards we go

to the state NextInner.

State 6: NextPartitionOuter

1 begin

2 rescan(s) // initialize s to the first partition s0 again

3 sc ← fetchRow(s) sp ← sc

4 sn ← sc

5 markPosition(s)

6 markPosition(r) // first tuple of new partition ri+1

7 go to NextInner
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4.10 Rescan

This is the last state to be executed. We first fetch a new z tuple zc
4. In the Rescan we

just print for r the closest among all its local nearest neighbors sj . Since z is ordered

by (r.gran, r.K1, r.K3, r.K2, d) we are sure that the first local nearest neighbor of r is

always the closest. So we return the current tuple as a join match every time it is not

identical to the previous one (a new r is fetched) or if it has the same distance and

is identical to the previous one (multiple nearest neighbors have occured for r). The

algorithm ends in the state Rescan when no tuples to process are left.

State 7: Rescan

1 begin

2 zc ← fetchRow(z)

3 if Null(zc) then

4 End

5 if Null(zp) ∨ zp.K1 6= zc.K1 ∨ zp.K2 6= zc.K2 ∨ zp.K3 6= zc.K3 ∨ zp.d = zc.d then

6 zp ← zc

7 y← y ∪ zc

8 go to Rescan

5 Experiments

In this section we test the implementation of our version, a multigranular, versus a

monogranular algorithm and compare the runtime of both versions.

5.1 Random distribution

First we compare the runtime of the two algorithms on tables |r|= 31000 and |s|= 31000

where both tables contain tuples of all granularities (|dd|= 10000 , |mm|= 10000 ,

|ss|= 10000 , |yy|= 1000). All tables are generated and also distributed randomly on

the disk, as fig.14 illustrates below for example for s. A block can contain tuples of all

granularities, just two, once or three.

4Remember that zc = r ◦ sj ◦ d(r, sj).
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Figure 14: Random distribution of tuples on the disk: a block can contain tuples
of all granularities, just two, once or three

In fig.15 the average run time of the multi- and the monogranular algorithm is shown.

We can see, that the runtime for the mulitgranular algorithm with 3045ms is about 1.5

times faster than the monogranular version with a runtime of 5032ms.

Figure 15: Runtime comparison for relation size=31000

In a second run, we increase the size of the tables r and s so that |r|= 301000 and

|s|= 301000. So the size of all granularities except the year granularity is multiplied by

ten, compared to the first run. The creation and distribution of the tables is also here

done randomly.

In fig.16 we can see that the runtime of the multigranular algorithm is about 10 times

faster than the monogranular version. The average runtime for the multigranular version

is 110 seconds and for the monogranular version 1109 seconds.
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Figure 16: Runtime comparison for relation size=301000

The reason for the slow runtime of the monogranular algorithm can be found in the

random distribution of the tuples. While the multigranular algorithm just fetchs all

blocks once at the beginning, the monogranular version instead has to jump from block

to block multiple times to fetch all tuples of different granularities.

5.2 Clustered distribution

In a second experiment we change the distribution of the tuples on the disk. The

tuples are now clustered, which means that a block now only stores tuples of the same

granularity. Fig.17 below shows this procedure. The size of the both relations r and s

remains 301000.

Figure 17: Clustered distribution of tuples on the disk: a block contains tuples of
one granularity
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In fig.18 we see that the runtime of the monogranular algorithm is about 7 times

slower than the multigranular version. So the meassured runtime of the multigranular

version is 111 seconds, of the monogranular version instead 740 seconds. The slowness

of the monogranular algorithm can be explained based on the scan it uses. While the

multigranular algorithm uses an sequential scan, which is faster when all tuples are

needed, the monogranular version uses an index scan on the granularity. The costs for

traversing the search three for every single tuple to look up which granularity it stores

are so high, that a lot of calculation time on the CPU is needed: a sequential scan on a

table is always faster than an index scan when all tuples are needed.

Figure 18: Runtime comparison clustered distribution

5.3 Totally unclustered distribution

Now we want to compare the runtime when the distribution of the tuples is totally

unclustered, which means that every block now stores tuples of every granularity, as

illustrated in fig.19. The size of both tables remains at 301000.
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Figure 19: Totally unclustered distribution of tuples on the disk: a block contains
tuples of all granularities

In fig.20 we see that the runtime for both versions is nearly exactly the same as in the

clustered distribution. So here we can explain the slower runtime of the monogranular

version again with the index scan it uses. The fact, that the runtime in both experiments

are nearly identical (and not greater as expected) can be ascribed to the fact that when

doing an analyze on the query we see, the tables are kept in main memory.

Figure 20: Runtime comparison unclustered distribution
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6 Conclusion

In this report an extension of the nearest neighbor join operator has been implemented

for dealing with similarity on timestamps. The TNNJ (temporal nearest neighbor join)

operator computes an equijoin for two given relations r of schema R = [E,G, T ] and s

of schema S = [E,G, T,M ] on E,G and a nearest neighbor join on T with group G for

the tuples of the outer relation r without equijoin.

Since the tuples stored in r and s consist of multigranular timestamps we first gave a

definition of the granularity, saying that for two tuples with timestamps T1 and T2 the tu-

ple with the smaller granularity has the shortest intervall. Afterwards we introduced the

Mulitgranular Euclidean Distance function for calculating the distance between multi-

granular timestamps, i.e. intervals.

By introducing partitions we achieved a total order of the tuples in r and s (inside one

partition there exist a total order for the tuples) and a sort merge algorithm can then

be run. We built the partitions by sorting the relations r and s by the granularity gran:

the nearest neighbors for the tuples in r are always consecutive in a partition sj ⊆ s.

The algorithm itself now joins every tuple in r with its local nearest neighbors, i.e. the

nearest neighbors in every partition sj . At the end, once all local nearest neighbors have

been found in every sj , we select as nearest neighbors only the tuples with the smallest

distance.

In the experiment we show that computing a (multigranular) TNNJ using sort merge

is faster than computing many (monogranular) joins between singular partitions. This

is because our sort merge algorithm performs a sequential scan to fetch all tuples once

at the beginning, while the monogranular algorithm has to jump from block to block

multiple times to fetch the tuples of all partitions.
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