
Facharbeit im Nebenfach Informatik

Multiple linear regression in databases

Sophie Leuenberger

08-926-362

Supervised by Prof. Dr. M. Böhlen and O. Dolmatova
Department of Informatics, University of Zurich

23.07.2014

Abstract

Multidimensional statistical models such as multiple linear regression models are
usually computed outside a data base management system (DBMS). In this report,
we study how a multiple linear regression model can be computed inside a DBMS.
The concept of “summary matrices”, which was introduced by Ordonez[5] as a
tool to compute statistical models inside a DBMS, is presented and adapted for
the case of multiple linear regression. We will consider two different approaches of
implementation, study the performance of both of the alternatives, and figure out
which one is better suited in which situation.

Zusammenfassung

Multidimensionale statistische Modelle werden gewöhnlich ausserhalb eines Daten-
bankmanagementsystems (DBMS) berechnet. In diesem Bericht untersuchen wir,
wie man ein multiples lineares Regressionsmodell innerhalb eines DBMS berechnen
kann. Das Konzept von “summary matrices”, das von Ordonez[5] als Werkzeug
zur Berechnung von statistischen Modellen in Datenbanken eingeführt wurde, wird
vorgestellt und für das Problem der linearen Regression angepasst. Wir wer-
den zwei verschiedene Varianten der Implementierung betrachten, deren Leistung
analysieren und erläutern, welche Variante in welcher Situation bessser geeignet
ist.

Contents

1 Introduction 3

2 Preliminaries 3
2.1 Multiple linear regression . 3
2.2 Terminology . 5

3 Multiple linear regression in databases 6
3.1 Summary matrices . 6

4 Implementation 7
4.1 Sparse matrix representation . 7
4.2 Implementation of a User-Defined Aggregate (UDA) 8

4.2.1 Complexity analysis . 10
4.3 Implementation of a User-Defined Function (UDF) 11

4.3.1 Complexity analysis . 12

5 Tests and Results 13
5.1 Tests on a random data set . 13
5.2 Tests on a constructed data set . 16

6 Conclusion and future work 16

A R Code 17

B SQL Code 17
B.1 Initialization, data set creation and auxiliary functions 17
B.2 SQL Codes for the UDA . 22
B.3 SQL Codes for the UDF . 24
B.4 Codes for β = 1 Tests . 27

C Matlab Code 28

1

List of Figures

1 Linear regression example for d = 1 and n = 4 4
2 Sparse matrix representation . 8
3 Table of run times of the User-Defined Function for d = 8, 16, 32, 64 14
4 Run time plots of the User-Defined Function for d = 8 and d = 16,

varying sample size n . 14
5 Run time plots of the User-Defined Function for d = 32 and d = 64,

varying sample size n . 15
6 Time-consumption of the LU -part of the algorithm 15
7 Table of average maximal deviations for d = 8, 16, 32 and 64, re-

spectively . 16

List of Tables

1 Data set for multiple linear regression analysis 3
2 Terminology . 5

2

1 Introduction

Multidimensional statistical models describe relationships between variables by mathe-
matical equations, which often can be reduced to linear algebra expressions over matri-
ces. These models are usually computed outside a DBMS, by exporting the data to some
statistical tool and then importing the results back to the DBMS. This is due to the fact
that SQL, the standard language to process data inside a DBMS, has some limitations to
perform complex matrix operations (see [5]). SQL does not naturally provide data types
such as vectors or matrices, nor provide interfaces for linear algebra expressions (cf. [3]).
The integration of statistical techniques into a DBMS is a very up-to-date subject, and
will be studied in this report for a technique called multiple linear regression.

2 Preliminaries

2.1 Multiple linear regression

Multiple linear regression is a statistical technique that studies the relation between d
independent numeric variables X1, X2, .., Xd and a single dependent variable y. The vari-
ables X1, X2, .., Xd are usually called predictor variables, while the variable y is called
response variable.
To study the relation between the predictor variables and the response variable, data are
measured and collected from n observations. We will use the following notation:

xik denotes the measured value of the k-th observation for predictor Xi

yk denotes the measured value of the k-th observation for the response y

The data set then forms the following (d+ 1)× n array:

Case Number
1 2 . . . n

X1 x11 x12 . . . x1n
X2 x21 x22 . . . x2n
...

...
...

...
...

Xd xd1 xd2 . . . xdn
y y1 y2 . . . yn

Table 1: Data set for multiple linear regression analysis

Given a data set as in Table 1, the multiple linear regression model assumes the relation
between the response and the predictor variables to be linear, i.e. to satisfy the linear
equations

yi = β0 + β1x1i + β2x2i + ...+ βdxdi + ei (1)

3

for i = 1, ..., n and unknown parameters β0, β1, ..., βd. The term β0 is called intercept,
the unknown parameters β0, β1, ..., βd are called regression coefficients and the term ei
measures the statistical error.

Matrix notation will simplify the computations used for regression analysis:
For

X :=


1 1 . . . 1
x11 x12 . . . x1n
x21 x22 . . . x2n
...

...
. . .

...
xd1 xd2 . . . xdn

 , β :=


β0
β1
β2
...
βd

 , y :=


y1
y2
...
yn

 and e :=


e1
e2
...
en


the model equation becomes

y = XTβ + e.

In linear regression analysis, the number of observations n is typically much bigger than
the number of predictors d. Thus, the system of equations (1) is over-determined, i.e.
has more equations than unknowns. Therefore, the regression coefficients need to be
estimated from the empirical data. By Gauss-Markov theorem (cf. Weisberg[8], page 14),
the best possible estimate for the regression coefficients is the so-called Ordinary Least
Squares estimator

β̂ := (β̂0, β̂1, ..., β̂d)
T = (XXT)−1Xy,

providing that (XXT)−1 exists.

Example 1. We consider a very small example with one single predictor variable and
n = 4 observations. In practice, the sample sizes of course are much bigger.
We are interested in the relation between the body height and the weight of women. Let
X1 be the predictor variable measuring the body height and y be the response variable
measuring the weight.

Case Number
1 2 3 4

X1 170 154 164 158
y 69 57 65 62

Figure 1: Linear regression example for d = 1 and n = 4

4

In Figure 1, a data set table1 and the corresponding scatter plot are shown. For d = 1,
fitting a linear regression model means nothing else than laying a straight line through the
data points. The red line represents the fitted regression line y = β̂0 + β̂1x, where the
regression coefficients are computed as shown below. The row of ones in the matrix X
serves for the integration of the intercept term β̂0 into the equation.

(XXT)−1(Xy) =

[1 1 1 1
170 154 164 158

]
1 170
1 154
1 164
1 158



−1[1 1 1 1

170 154 164 158

]
69
57
65
62




=

[
4 646

646 104476

]−1 [
253

40964

]
=

[
−51.5578

0.7109

]
=

[
β̂0
β̂1

]
= β̂

2.2 Terminology

Let us briefly summarize the terminology we will use in this report:

X (d+ 1)× n matrix which contains the observed data for the predictors, plus an
additional row of ones to integrate the intercept

Xi The i-th row vector of X, Xi = (xi1, xi2, ..., xin) for i = 1, ..., d

y The response variable

β̂ Vector of size (d + 1), its coefficients are the best possible estimate for the
unknowns in equation (1)

Xy Vector of size (d+1), its coefficients will be denoted by (Xy)i for i = 1, ..., (d+1)

xj The j-th column vector of X, xj = (1, x1j, x2j, ..., xdj)
T for j = 1, ..., n

xj is also called point.

X̂ A (d + 2) × n matrix which contains the complete data set, i.e. a row of ones
plus both the values for the predictors and for the response.

X̂ :=


1 1 . . . 1
x11 x12 . . . x1n
x21 x22 . . . x2n
...

...
. . .

...
xd1 xd2 . . . xdn
y1 y2 . . . yn



X̂X̂T Matrix of size (d+ 2)× (d+ 2), the product of X̂ with its transposed

Table 2: Terminology

1The data set is totally fabricated.

5

3 Multiple linear regression in databases

3.1 Summary matrices

The main issue when building statistical models in databases is to perform complex ma-
trix operations for matrices representing big data sets.

Ordonez[5] introduced two so-called summary matrices L and Q, which compress the
data given by X, but store all the information needed to build statistical models and
score data. He defines the linear sum of points

L :=
n∑

i=1

xi

and the quadratic sum of points

Q :=
n∑

i=1

xix
T
i

Assuming we have d predictors, L is a (d+1)×1, Q is a (d+1)×(d+1) matrix. These ma-
trices are much smaller than X when n� d, but they summarize a lot of properties of X
which can be exploited by statistical techniques such as linear regression or factor analysis.

Example 2. For X :=

[
1 1 1
2 3 4

]
we have x1 =

[
1
2

]
, x2 =

[
1
3

]
and x3 =

[
1
4

]
. Then

L =

[
1
2

]
+

[
1
3

]
+

[
1
4

]
=

[
3
9

]
,

Q =

[
1
2

] [
1, 2
]

+

[
1
3

] [
1, 3
]

+

[
1
4

] [
1, 4
]

=

[
1 2
2 4

]
+

[
1 3
3 9

]
+

[
1 4
4 16

]
=

[
3 9
9 29

]

We will adapt the idea of summary matrices, but alter it a bit since we are only interested
in building linear regression models for this report. For this case, we can exploit the fact
that the first row of X only contains ones: As we can see in example 2, L is already
contained in Q. Therefore, a single summary matrix can be computed, containing both
the linear sum of points and the quadratic sum of points. Furthermore, we will include
the response vector y into the summary matrix. Let X̂ denote the matrix obtained from

6

X by extending it with yT , X̂ :=

[
X
yT

]
(see Table 2). Then we define

Q′ := X̂X̂T =

n
n∑

i=1

x1i
n∑

i=1

x2i . . .
n∑

i=1

xdi (Xy)1

n∑
i=1

x1i
n∑

i=1

x21i
n∑

i=1

x1ix2i . . .
n∑

i=1

x1ixdi (Xy)2

...
...

...
...

...
...

n∑
i=1

xdi
n∑

i=1

xdix1i
n∑

i=1

xdix2i . . .
n∑

i=1

x2di (Xy)d+1

(Xy)1 (Xy)2 . . . yTy





Q Xy

Everything needed to construct the linear regression model from the summary matrix Q′

are the two submatrices Q and Xy, which are highlighted above:

β̂ = Q−1(Xy)

4 Implementation

In this section, two different approaches of computing the linear regression model are
presented. The first approach is to implement a User-Defined Aggregate to compute the
summary matrix, as Ordonez[5] suggests.
An aggregate function in SQL is a function that calls a transition function for each tuple
of the table on which it is called. After processing every tuple, an optional final function
can be called to compute the final results (see [6]).
The second approach is to implement a User-Defined Function. Both alternatives are
written in PL/pgSQL.

First of all, let us define how matrices will be stored in the database.

4.1 Sparse matrix representation

A widely used way to represent matrices in databases is sparse matrix representation. A
table corresponding to a matrix M = (mij) has three attributes, the first one storing the
row number i, the second one storing the column number j and the third one storing the
value mij. A vector, which is a matrix with only one column, can also be stored in sparse
representation, by omitting the attribute storing the column number.

7

For example, the matrix M and the vector v

M =

[
1 2 3
4 5 6

]
, v =

7
8
9


are stored as illustrated in figure 2.

rownumber | colnumber | val

-----------+-----------+-----

1 | 1 | 1

1 | 2 | 2

1 | 3 | 3

2 | 1 | 4

2 | 2 | 5

2 | 3 | 6

(6 rows)

Representation of matrix M

rownumber | val

-----------+-----

1 | 7

2 | 8

3 | 9

(3 rows)

Representation of vector v

Figure 2: Sparse matrix representation

We will use this kind of matrix representation for this project. The advantages are that it
is easy to process individual cells, and the number of both rows and columns can efficiently
be increased without changing the whole structure of a table.

4.2 Implementation of a User-Defined Aggregate (UDA)

In this section, the first approach, implementing a User-Defined Aggregate, is presented.
In a first step, all tables used in the algorithms are initialized, in particular the tables
storing the values of the data set X̂ and the table storing the values of the summary
matrix Q′. These tables are created outside the linear regression aggregate, such that
they are accessible within every algorithm that is part of the aggregate.

We then define a transition function that is called for every tuple in the table corre-
sponding to the data set X̂. Let us denote the access to a value in a table with square
brackets, for example the value of Q′ with row number i and column number j will be
denoted by Q′[i][j] in the pseudo code.

Algorithm 1 Transition function of the User-Defined Aggregate

Input: i: current row of X̂, j: current column of X̂, val: value at X̂[i][j]
table temp(rowNumber, value)← (1, X̂[1][j]), (2, X̂[2][j]), ..., ((d+ 2), X̂[d+ 2][j])
for all k = 1, 2, ..., (d+ 2) do
Q′[i][k] = Q′[i][k] + val ∗ temp[k]

end for

8

With this transition function, the entries of the summary matrix Q′ are updated incremen-
tally. Assume the data set X̂ is called dataSet and (currentRow, currentCol, val)

denotes the tuple of X̂ which is currently given as an input parameter to the transition
function. Then the query in SQL to update Q′ would look like this:

Listing 1 SQL query to update the summary matrix Q′

-- Compute entries of the summary matrix

FOR multVal, tempCol IN (SELECT dataSet.val, rowNumber FROM dataSet

WHERE colNumber = currentCol)

LOOP

IF currentCol = 1 THEN

INSERT INTO summaryMatrix VALUES (currentRow, tempCol, val*multVal);

ELSE

UPDATE summaryMatrix SET s_val = s_val+(val*multVal)

WHERE (s_row=currentRow AND s_col=tempCol);

END IF;

END LOOP;

This query is quite time-consuming, since every time it gets called, the whole data set
table has to be read to create a temporary table which stores the d+ 2 values we need to
update Q′. We will analyze this problem further in section 4.2.1.

Once the transition function processed every row of X̂, a final function is called to com-
pute the regression coefficients vector β̂. This computation consist of two steps: First, an
LU-Decomposition (see Sauter[7]) is applied to the submatrix Q of the summary matrix.
We get

Q = LU

for a left lower triangular matrix L and a right upper triangular matrix U .
In a second step, β̂ can easily be computed from L and U solving the following system of
equations: {

Lv = (Xy)

Uβ̂ = v
(2)

where v is an auxiliary vector which is only used to find β̂.
The algorithms for LU-Decomposition and for solving (2) are given in Algorithm 2 and
Algorithm 3. The tables storing the values for L, U , v and β̂ are initialized before and
are accessible in both of the algorithms.
The access to values in a table representing a vector will be denoted in the same manner
as for matrices, but with only one square bracket. For example, the value of v with row
number i will be denoted by v[i].

9

Algorithm 2 LU-Decomposition

Input: d: number of predictors
for all k = 1 to d+ 1 do
L[k][k]← 1.0
U [k][k]← Q′[k][k]
for all i = k + 1 to d+ 1 do
L[i][k]← Q′[i][k]÷ U [k][k]
U [k][i]← Q′[k][i]

end for
for all i = k + 1 to d+ 1 do

for all j = k + 1 to d+ 1 do
Q′[i][j]← Q′[i][j]− L[i][k] ∗ U [k][j]

end for
end for

end for

Algorithm 3 Solve system of equations for β̂

Input: d: number of predictors
v[1] = Q′[1][d+ 2]
for all k = 2 to d+ 1 do

v[k]← Q′[k][d+ 2]−
k−1∑
i=1

(v[i] ∗ L[k][i])

end for
β̂[d+ 1]← v[d+ 1] ÷ U [d+ 1][d+ 1]

for all k = d to 1 do

β̂[k]← {v[k]−
d+1∑

i=k+1

(U [k][i] ∗ β̂[i])} ÷ U [k][k]

end for

4.2.1 Complexity analysis

Testing the algorithm on pseudo random created data sets (see section 5) demonstrated,
that even for small data sets, the run time is very high. A possible reason could be that
we store matrices in a completely different way than Ordonez[5] proposes.

Ordonez[5] suggests to store matrices not in sparse representation, but either using a
string or a lists containing the elements of one column vector per tuple. The resulting
data set table contains n tuples, thus the transition function of a User-Defined Aggregate
is called exactly n times. In every step, the entries of the summary matrix can be updated
using only values which are given as an input parameter to the function. In summary, for

10

the computation of the summary matrix, n times d2 products are computed and updated.
Hence, time to compute the summary matrix is O(nd2).

In our case, using sparse matrix representation and including the response vector y into
the data set, the table representing the data set contains n(d+ 2) tuples. Therefore, the
transition function is called n(d + 2) times, where in every step, only one single value of
the matrix is provided as an input parameter. Consequently, in every step, we first have
to select d+2 additional values, which are needed to update Q′. For the selection of these
(d+ 2) values, we have to read the complete data set table, i.e. we have to read n(d+ 2)
values. Assuming the worst case scenario that for every read or write operation we have
to access the disk, we can summarize the complexity analysis as following:

Number of transition function calls n(d+ 2)

Number of I/O operations (Read)

(per step)

Read n(d+ 2) values from the data set ta-
ble to create temporary table

Read (d+2) values from current summary
matrix table

Number of arithmetic operations (d+2) multiplications and (d+2) additions

Number of I/O operations (Write)

(per step)

Write (d+ 2) values into temporary table

Write (d + 2) values to update summary
matrix table

We need n(d+ 2){n(d+ 2) + (d+ 2) + (d+ 2) + (d+ 2)} I/O operations, and the time to
compute the summary matrix Q′ therefore is in O(n2d2).
Time to compute the LU -Decomposition matrices L and U is O(d3), and to solve the
system of equations (2) for β̂ is O(d2).
Since typically n � d, the term n2d2 is dominating the term d3. So we have a total
runtime complexity of the User-Defined Aggregate lying in O(n2d2).

This result is very bad, since we know from Ordonez[5] on the one hand, as from Markus
Neumanns report[4] on the other hand, that it is possible to implement the computa-
tion of a linear regression model in O(nd2). Therefore, I would not suggest to use this
code. The implementation of a User-Defined Aggregate is only reasonable if the values of
the data set are present in form of column vectors, but not in form of sparse representation.

4.3 Implementation of a User-Defined Function (UDF)

In order to improve results, it might be better to abandon the User-Defined Aggregate,
and instead implement a User-Defined Function which is better suited for matrices given

11

in sparse representation. We will rely on the following statement from Cohen et al.[1]:

“[...] for example a sparse representation of the form (row number, column
number, value). An advantage to this approach is that the SQL is much easier
to construct for multiplication of matrices AB

SELECT A.row_number, B.column_number, SUM(A.value * B.value)

FROM A, B

WHERE A.column_number = B.row_number

GROUP BY A.row_number, B.column_number

This query is very efficient on sparse matrices [...]”

According to this code, the summary matrix can be computed by one single, nested
SELECT clause:

Listing 2 Query to compute Q′

-- Compute entries of the summary matrix

INSERT INTO summaryMatrix

SELECT dataSet.rowNumber, transposed.rowNumber,

SUM(dataSet.val * transposed.val)

FROM dataSet, (SELECT colNumber, rowNumber, val FROM dataSet) AS transposed

WHERE dataSet.colNumber = transposed.colNumber

GROUP BY dataSet.rowNumber, transposed.rowNumber;

The steps for computing β̂ are implemented the same way as showed in section 4.2. A
summary of the steps executed by the User-Defined Function is given by

Algorithm 4 Linear regression function (UDF)

Input: d: number of predictors
Compute Q′ = X̂X̂T according to Listing 2
L,U ← LU Decomposition(d)
Solve Lv = (Xy) for v
Solve Uβ̂ = v for β̂

4.3.1 Complexity analysis

Again, we assume the worst case scenario, that for every read or write operation, we have
to access the disk. We need to read n(d + 2) values from the data set table to create a
table storing the entries of X̂T :

12

Number of I/O operations (Read) Read n(d+ 2) values from the data set ta-
ble

Number of I/O operations (Write) Write n(d+ 2) values to create X̂T -table

Then, for every of the (d + 2)2 new tuples in the summary matrix table, we need to
perform the following operations:

Number of I/O operations (Read) Read 2n values from the data set table and
the X̂T -table

Number of arithmetic operations n multiplications and n− 1 additions

Number of I/O operations (Write) Write one value to the summary matrix
table

In summary, we have n(d+2)+n(d+2)+2n(d+1)2 I/O operations, so time to compute
the summary matrix is in O(nd2). Time to compute the LU -Decomposition is O(d3), and
for finding β̂ is O(d2). Since n� d, the term nd2 dominates the term d3, hence the total
run time complexity is O(nd2).

With the implementation using a User-Defined Function, we reach the same complex-
ity as given by Ordonez[5]. Therefore, we can say that this implementation is a much
more appropriate way to build the linear regression model when matrices are given in
sparse representation.

5 Tests and Results

This section presents tests performed in PostgreSQL 9.3.4 running on a virtual Ubuntu
14.04 server. We used a virtual machine with two 2.4GHz dual core CPU’s (QEMU
Virtual CPU), 4 MB CPU cache and 8 GB RAM.

5.1 Tests on a random data set

The data sets used for testing were tables filled with pseudo random numbers in the in-
terval (0, 1], generated by the Random() function provided by PostgreSQL.

As mentioned in section 4.2, the implementation using User-Defined Aggregate leads
to very poor results regarding the run time. Even for a small data set with a size of
n = 10′000 and with number of predictors d = 8, the total time to compute the linear
regression model was more than six hours.

The run time of the User-Defined Function turned out to be much smaller. Pseudo

13

random data sets were generated with sample sizes n = 10e for e = 2, ..., 6, and number
of predictors d = 8, 16, 32, 64.
The average run times are given in Figure 3. The total time is denoted by “avg totaltime”,
the time used for the LU -Decomposition and for finding β̂ is denoted by “avg lutime”.

r_samplesize | r_dimension | avg_lutime | avg_totaltime

--------------+-------------+-----------------+-----------------

100 | 8 | 00:00:00.024769 | 00:00:00.034662

1000 | 8 | 00:00:00.023375 | 00:00:00.206945

10000 | 8 | 00:00:00.0244 | 00:00:02.587617

100000 | 8 | 00:00:00.022922 | 00:00:30.135406

1000000 | 8 | 00:00:00.047442 | 00:06:43.134087

100 | 16 | 00:00:00.306391 | 00:00:00.357453

1000 | 16 | 00:00:00.305108 | 00:00:01.014177

10000 | 16 | 00:00:00.279736 | 00:00:09.246475

100000 | 16 | 00:00:00.279783 | 00:01:52.660503

1000000 | 16 | 00:00:00.493563 | 00:43:55.148666

100 | 32 | 00:00:08.558576 | 00:00:08.752854

1000 | 32 | 00:00:08.174326 | 00:00:10.819981

10000 | 32 | 00:00:08.217107 | 00:00:40.413402

100000 | 32 | 00:00:08.629885 | 00:07:08.099398

1000000 | 32 | 00:00:11.138697 | 13:55:47.760526

100 | 64 | 00:06:04.531662 | 00:06:05.36333

1000 | 64 | 00:06:01.448873 | 00:06:11.951281

10000 | 64 | 00:06:11.347915 | 00:08:38.589029

100000 | 64 | 00:06:33.676965 | 01:26:50.43616

(18 rows)

Figure 3: Table of run times of the User-Defined Function for d = 8, 16, 32, 64

Figure 4: Run time plots of the User-Defined Function for d = 8 and d = 16,
varying sample size n

14

Figure 5: Run time plots of the User-Defined Function for d = 32 and d = 64,
varying sample size n

The run time for both LU-Decomposition and solving the system of equations (2) for β̂
only depends on the number of predictor variables d, it does not depend on the sample
size n. This can be seen nicely in the following plot comparing the run time for these two
parts of the algorithm for different values of d:

Figure 6: Time-consumption of the LU -part of the algorithm

Note that for n = 1′000′000 and d = 64, no tests were performed.

15

5.2 Tests on a constructed data set

To test both the correctness of the algorithm and the precision of the computer, we also
tested the algorithm (UDF) for a constructed data set: Let

yi = 1 + x1i + x2i + ...+ xdi

for all i ∈ {1, 2, ..., n}, where xji are randomly chosen for all j ∈ {1, 2, ..., d}. When we
build the multiple linear regression model for this data set, we expect the coefficients of
β̂ all to be equal to 1.
Testing this for a sample size of n = 100 and number of predictors d = 8, the average of
maximal deviation from 1 of the coefficients is in the area of 10−13, where the average is
taken over ten runs. For d = 16, we have an average maximal deviation in the area of
10−12, for d = 32 near 10−11 and for d = 64 in the area of 10−10. These differences are
probably due to the fact that βi is depending on βi−1 for all i ∈ {1, 2, ..., d}. Hence, the
more predictors we have, the more the deviation can grow.

b1_samplesize | b1_dimension | avg_maxerror

---------------+--------------+----------------------

100 | 8 | 3.41981998275287e-13

100 | 16 | 1.20776721956872e-12

100 | 32 | 1.3533274501043e-11

100 | 64 | 1.47207168676999e-10

(4 rows)

Figure 7: Table of average maximal deviations for d = 8, 16, 32 and 64, respectively

The deviations from 1 are very small, so we can be sure that the algorithms to build the
multiple linear regression model are correct, and that the errors are due to the limited
precision of the computer.

6 Conclusion and future work

Given a data set presented in sparse representation, we saw that implementing a User-
Defined Aggregate does not make much sense, because the run time complexity is very
high. The implementation of a User-Defined Function on the other hand turned out to
be a reasonable way to compute a multiple linear regression model.
There are still possibilities to improve the algorithms. For example, one could exploit the
fact that the summary matrix Q′ is symmetric. Based on this fact, only around half of
the entries of the summary matrix really need to be computed.
A topic for future research could be the implementation of methods which, based on the
computed model, score the data, for example simulate statistical tests or variable selection
(for further information, see [8]).

16

A R Code

The scatter plot shown in Example 1 was created in RStudio, Version 0.98.507.

X1 <- c(170, 154, 164, 158) # predictor

y <- c(69, 57, 65, 62) # response

plot(X1, y, main="Linear regression example", xlab="Height in cm",

ylab="Weight in kg")

abline(lm(y~X1), col="red") # regression line (weight~height)

lm(y~X1) # show OLS estimator

Listing 3: RstudioRegExa.R

B SQL Code

B.1 Initialization, data set creation and auxiliary functions

CREATE OR REPLACE FUNCTION CreateTables()

RETURNS void AS

$$

/*

* Create all tables used in the algorithm.

*

*/

BEGIN

DROP TABLE IF EXISTS dataSet;

DROP TABLE IF EXISTS summaryMatrix;

DROP TABLE IF EXISTS LU_Dec_L;

DROP TABLE IF EXISTS LU_Dec_U;

DROP TABLE IF EXISTS v_vec;

DROP TABLE IF EXISTS beta;

CREATE TABLE dataSet (rowNumber INTEGER, colNumber INTEGER, val DOUBLE PRECISION);

CREATE TABLE summaryMatrix (s_row INTEGER, s_col INTEGER, s_val DOUBLE PRECISION);

CREATE TABLE LU_Dec_L (l_row INTEGER, l_col INTEGER, l_val DOUBLE PRECISION);

CREATE TABLE LU_Dec_U (u_row INTEGER, u_col INTEGER, u_val DOUBLE PRECISION);

CREATE TABLE v_vec (v_vec_row INTEGER, v_vec_val DOUBLE PRECISION);

CREATE TABLE beta(beta_row INTEGER, beta_val DOUBLE PRECISION);

END;

$$ LANGUAGE plpgsql;

Listing 4: createTables.sql

17

CREATE OR REPLACE FUNCTION createRandomTable(sampleSize INTEGER, dimension INTEGER,

distribution INTEGER DEFAULT 1, minValue DOUBLE PRECISION DEFAULT 0.0,

maxValue DOUBLE PRECISION DEFAULT 1.0)

RETURNS void AS $$

/*

* Create a table representing a data set

* Distribution: 1 Uniform

* 2 Constructed (beta=1)

*/

DECLARE

maxMinusMin DOUBLE PRECISION;

maxMinusMinI INTEGER;

tempY DOUBLE PRECISION;

BEGIN

DELETE FROM dataSet;

IF distribution = 1 THEN

-- uniform distribution

maxMinusMin := maxValue-minValue;

FOR colNumber in 1..sampleSize

LOOP

-- Insert values belonging to the intercept beta_0:

INSERT INTO dataSet VALUES (1, colNumber, 1.0);

FOR rowNumber in 2..dimension+1

LOOP

--Insert values belonging to the regressors x1, x2, ... , xd:

INSERT INTO dataSet

VALUES (rowNumber, colNumber, minValue + maxMinusMin * Random());

END LOOP;

-- Insert values belonging to y:

INSERT INTO dataSet

VALUES (dimension+2, colNumber, minValue + maxMinusMin * Random());

END LOOP;

ELSIF distribution = 2 THEN

-- Constructed data set (beta=1)

maxMinusMinI := floor(maxValue)-ceil(minValue);

FOR rNum in 2..dimension+1

LOOP

FOR cNum in 1..sampleSize

LOOP

INSERT INTO dataSet

18

--Insert values belonging to the regressors x1, x2, ... , xd:

VALUES (rNum, cNum, ceil(minValue + maxMinusMinI * Random()));

END LOOP;

END LOOP;

FOR cNum in 1..sampleSize

LOOP

-- Insert values belonging to the intercept beta_0:

INSERT INTO dataSet VALUES (1, cNum, 1);

SELECT SUM(dataSet.val) INTO tempY

FROM dataSet where dataSet.colNumber = cNum;

-- Insert values belonging to y:

INSERT INTO dataSet VALUES (dimension+2, cNum, tempY);

END LOOP;

END IF;

END;

$$ LANGUAGE plpgsql;

Listing 5: CreateRandomDataSet.sql

CREATE OR REPLACE FUNCTION saveCSV(sampleSize INTEGER, dimension INTEGER,

distribution INTEGER, counter INTEGER DEFAULT 1)

RETURNS void AS $$

/*

* Save the tested data set in a CVS

* Distribution: 1 Uniform, 2 Constructed (beta=1)

*/

DECLARE

qry TEXT;

filename TEXT;

BEGIN

filename := format(’/tmp/test_%s_%s_%s_%s_dataSet.csv’, sampleSize,

dimension, distribution, counter);

qry := FORMAT(’COPY (select * from dataSet ORDER BY rowNumber, colNumber)

TO %L CSV HEADER’, filename);

EXECUTE qry;

filename := format(’/tmp/test_%s_%s_%s_%s_beta.csv’, sampleSize,

dimension, distribution, counter);

qry := FORMAT(’COPY (select * from beta ORDER BY beta_row)

TO %L CSV HEADER’, filename);

EXECUTE qry;

END;

$$ LANGUAGE plpgsql;

19

Listing 6: saveCSV.sql

CREATE OR REPLACE FUNCTION LUDecomposition(dimension INTEGER)

RETURNS void AS $$

/*

* LU Decomposition factors matrix Q into a left lower triangular matrix L

* and a right upper triangular matrix U. LU Decomposition matrices are used to

* solve the linear system of equations (XX^t) * beta = (XY^t) for beta.

*/

DECLARE

-- Declare variables to store temporary results:

tempS DOUBLE PRECISION;

tempL DOUBLE PRECISION;

tempU DOUBLE PRECISION;

tempBeta DOUBLE PRECISION;

tempSum DOUBLE PRECISION;

tempV DOUBLE PRECISION;

tempRow INTEGER;

tempCol INTEGER;

tempVal DOUBLE PRECISION;

BEGIN

-- Compute entries of L and U:

FOR k IN 1..dimension+1

LOOP

INSERT INTO LU_Dec_L VALUES (k,k,1.0);

SELECT s_val INTO tempS FROM summaryMatrix WHERE s_row = k AND s_col = k;

INSERT INTO LU_Dec_U VALUES(k,k, tempS);

SELECT u_val INTO tempU FROM LU_Dec_U WHERE u_row = k AND u_col = k;

FOR i IN k+1..dimension+1

LOOP

SELECT s_val INTO tempS FROM summaryMatrix WHERE s_row = i AND s_col = k;

INSERT INTO LU_Dec_L VALUES (i, k, tempS / tempU);

SELECT s_val INTO tempS FROM summaryMatrix WHERE s_row = k AND s_col = i;

INSERT INTO LU_Dec_U VALUES (k, i, tempS);

END LOOP;

FOR i IN k+1..dimension+1

LOOP

SELECT l_val INTO tempL FROM LU_Dec_L WHERE l_row=i AND l_col = k;

FOR j IN k+1..dimension+1

LOOP

SELECT s_val INTO tempS FROM summaryMatrix

WHERE s_row = i AND s_col = j;

SELECT u_val INTO tempU FROM LU_Dec_U

20

WHERE u_row = k AND u_col = j ;

UPDATE summaryMatrix SET s_val = s_val-(tempU * tempL)

WHERE s_row = i AND s_col = j;

END LOOP;

END LOOP;

END LOOP;

-- Solve system of linear equations to get beta vector:

SELECT s_val INTO tempS FROM summaryMatrix

WHERE s_row = 1 AND s_col = dimension+2;

INSERT INTO v_vec VALUES(1, tempS);

-- Compute v_vec where L * v_vec = XY^t:

FOR k IN 2..dimension+1

LOOP

tempSum:=0;

FOR i IN 1..k-1

LOOP

SELECT l_val INTO tempL FROM LU_Dec_L WHERE l_row=k AND l_col = i;

SELECT v_vec_val INTO tempV FROM v_vec WHERE v_vec_row = i;

tempSum := tempSum + (tempV * tempL);

END LOOP;

SELECT s_val INTO tempS FROM summaryMatrix

WHERE s_row = k AND s_col = dimension+2;

INSERT INTO v_vec VALUES(k, tempS - tempSum);

END LOOP;

-- Compute beta where U * beta = v_vec:

SELECT v_vec_val INTO tempV FROM v_vec WHERE v_vec_row=dimension+1;

SELECT u_val INTO tempU FROM LU_Dec_U

WHERE u_row=dimension+1 AND u_col=dimension+1;

INSERT INTO beta VALUES(dimension+1, tempV / tempU);

FOR k IN REVERSE dimension..1

LOOP

tempSum:=0;

FOR i IN k+1..dimension+1

LOOP

SELECT u_val INTO tempU FROM LU_Dec_U WHERE u_row = k AND u_col = i;

SELECT beta_val INTO tempBeta FROM beta WHERE beta_row = i;

tempSum := tempSum + tempBeta * tempU;

END LOOP;

SELECT u_val INTO tempU FROM LU_Dec_U WHERE u_row = k AND u_col = k;

SELECT v_vec_val INTO tempV FROM v_vec WHERE v_vec_row=k;

21

INSERT INTO beta VALUES (k, (tempV - tempSum)/ tempU);

END LOOP;

END;

$$ LANGUAGE plpgsql;

Listing 7: LU Decomposition.sql

B.2 SQL Codes for the UDA

CREATE AGGREGATE LinReg(INTEGER, INTEGER, DOUBLE PRECISION)(

STYPE = INTEGER,

SFUNC = LinRegStep,

FINALFUNC = LinRegFinal

);

Listing 8: aggragate.sql

CREATE OR REPLACE FUNCTION LinRegStep(aggregateState INTEGER, currentRow INTEGER,

currentCol INTEGER, val DOUBLE PRECISION)

RETURNS INTEGER AS $$

/*

* Stepfunction of the aggregate function.

* Entries of the summary matrix Q’ are incrementally updated.

*/

DECLARE

multVal DOUBLE PRECISION;

tempCol INTEGER;

BEGIN

-- Compute entries of the summary matrix

FOR multVal, tempCol IN

(SELECT dataSet.val, rowNumber FROM dataSet WHERE colNumber = currentCol)

LOOP

IF currentCol = 1 THEN

INSERT INTO summaryMatrix VALUES (currentRow, tempCol, val*multVal);

ELSE

UPDATE summaryMatrix SET s_val = s_val+(val*multVal)

WHERE (s_row=currentRow AND s_col=tempCol);

END IF;

END LOOP;

RETURN currentRow;

END;

$$ LANGUAGE plpgsql;

22

Listing 9: stepfunction.sql

CREATE OR REPLACE FUNCTION LinRegFinal(dimension INTEGER)

RETURNS INTERVAL AS $$

/*

* The final function of the aggragate function.

* The entries of the summary matrix are used to find a solution beta

* for the multiple linear regression equation y = beta^t * X.

*/

DECLARE

time1 TIMESTAMP;

time2 TIMESTAMP;

LU_executionTime INTERVAL;

BEGIN

time1 := clock_timestamp();

PERFORM LU_Decomposition(dimension-2);

time2 := clock_timestamp();

LU_executionTime = time2-time1;

RETURN LU_executionTime;

END;

$$ LANGUAGE plpgsql;

Listing 10: finalfunction.sql

CREATE OR REPLACE FUNCTION testFunc(sampleSize INTEGER, dimension INTEGER,

distribution INTEGER, minValue DOUBLE PRECISION DEFAULT 0.0,

maxValue DOUBLE PRECISION DEFAULT 1.0)

RETURNS void AS $$

/*

* Function to test the aggregate function LinReg(INTEGER, INTEGER, DOUBLE PRECISION).

* Distribution: 1 Uniform

* 2 Constructed (beta=1)

* minValue, maxValue: Define interval for random numbers

*/

DECLARE

tempCounter INTEGER;

startTime TIMESTAMP;

endTime TIMESTAMP;

LU_executionTime INTERVAL;

total_executionTime INTERVAL;

filename TEXT;

qry TEXT;

23

tempInt INTEGER;

BEGIN

PERFORM CreateTables();

PERFORM createRandomTable(sampleSize, dimension, minValue, maxValue);

startTime = clock_timestamp();

SELECT linReg(rowNumber, colNumber, val) INTO LU_executionTime from dataSet;

endTime = clock_timestamp();

total_executionTime := endTime - startTime;

SELECT count(*) INTO tempCounter FROM resultTable

WHERE R_sampleSize = sampleSize AND R_dimension = dimension

AND R_distribution = distribution;

PERFORM saveCSV(sampleSize, dimension, distribution, tempCounter+1);

INSERT INTO resultTable

VALUES (sampleSize, dimension, distribution, tempCounter+1,

total_executionTime, LU_executionTime);

filename := format(’/tmp/test_%s_%s_%s_%s_tableSizes.csv’, sampleSize,

dimension, distribution, tempCounter+1);

qry := FORMAT(’COPY (SELECT * FROM

(SELECT

relname as "Table",

pg_size_pretty(pg_total_relation_size(relid)) As "Size",

pg_size_pretty(pg_total_relation_size(relid) - pg_relation_size(relid))

as "External Size"

FROM pg_catalog.pg_statio_user_tables ORDER BY pg_total_relation_size(relid) DESC)

AS tempInt) TO %L CSV HEADER’, filename);

EXECUTE qry;

END;

$$ LANGUAGE plpgsql;

Listing 11: testFunc.sql

B.3 SQL Codes for the UDF

CREATE OR REPLACE FUNCTION linReg(dimension INTEGER)

RETURNS INTERVAL AS $$

/*

* Compute the linear regression coefficients beta={beta_0, beta_1,..., beta_d}

* for a multiple linear regression model y = beta * X

*/

DECLARE

24

LUtime_start TIMESTAMP;

LUtime_end TIMESTAMP;

LUtime INTERVAL;

BEGIN

-- Compute entries of the summary matrix

INSERT INTO summaryMatrix

SELECT dataSet.rowNumber, transposed.rowNumber,

SUM(dataSet.val * transposed.val)

FROM dataSet, (SELECT colNumber, rowNumber, val FROM dataSet) AS transposed

WHERE dataSet.colNumber = transposed.colNumber

GROUP BY dataSet.rowNumber, transposed.rowNumber;

-- Compute the linear regression coefficients vector

-- beta = {beta_0, beta_1,..., beta_d} using LU_decomposition

LUtime_start := clock_timestamp();

PERFORM LUDecomposition(dimension);

LUtime_end := clock_timestamp();

LUtime = LUtime_end-LUtime_start;

RETURN LUtime;

END;

$$ LANGUAGE plpgsql;

Listing 12: LinReg.sql

CREATE OR REPLACE FUNCTION testFunc(sampleSize INTEGER, dimension INTEGER,

distribution INTEGER DEFAULT 1, minValue DOUBLE PRECISION DEFAULT 0.0,

maxValue DOUBLE PRECISION DEFAULT 1.0)

RETURNS void AS $$

/*

* Function to test the linear regression function

* Distribution: 1 Uniform

* 2 Constructed (beta=1)

* minValue, maxValue: Define interval for random numbers

*/

DECLARE

tempCounter INTEGER;

linReg_start TIMESTAMP;

linReg_end TIMESTAMP;

LU_time INTERVAL;

total_time INTERVAL;

filename TEXT;

qry TEXT;

25

tempAlias INTEGER;

BEGIN

-- Initialization:

PERFORM CreateTables();

PERFORM createRandomTable(sampleSize, dimension,

distribution, minValue, maxValue);

-- Find linear regression coefficients:

linReg_start = clock_timestamp();

select linReg(dimension) INTO LU_time from dataSet;

linReg_end = clock_timestamp();

total_time := linReg_end - linReg_start;

-- Save dataSet and result vector to a file:

SELECT count(*) INTO tempCounter FROM resultTable

WHERE R_sampleSize = sampleSize AND R_dimension = dimension

AND R_distribution = distribution;

PERFORM saveCSV(sampleSize, dimension, distribution, tempCounter+1);

-- Store performance information:

INSERT INTO resultTable VALUES (sampleSize, dimension, distribution,

tempCounter+1, total_time, LU_time);

filename := format(’/tmp/test_%s_%s_%s_%s_tableSizes.csv’, sampleSize,

dimension, distribution, tempCounter+1);

qry := FORMAT(’COPY (SELECT * FROM

(SELECT

relname as "Table",

pg_size_pretty(pg_total_relation_size(relid)) As "Size",

pg_size_pretty(pg_total_relation_size(relid) - pg_relation_size(relid))

as "External Size"

FROM pg_catalog.pg_statio_user_tables

ORDER BY pg_total_relation_size(relid) DESC)

AS tempAlias) TO %L CSV HEADER’, filename);

EXECUTE qry;

END;

$$ LANGUAGE plpgsql;

Listing 13: testFunc.sql

CREATE OR REPLACE FUNCTION test1Code3()

RETURNS void AS $$

26

BEGIN

FOR i in 1..3 -- make 3 tests

LOOP

FOR expN in 2..6

LOOP

PERFORM testfunc(1000000,8);

END LOOP;

END LOOP;

END;

$$ LANGUAGE plpgsql;

Listing 14: test1Code3.sql

B.4 Codes for β = 1 Tests

CREATE OR REPLACE FUNCTION testBeta1(sampleSize INTEGER, dimension INTEGER)

RETURNS void AS $$

/*

* Function to test correctness of the algorithm and computer precision

*/

DECLARE

tempBeta DOUBLE PRECISION;

tempError DOUBLE PRECISION;

maxError DOUBLE PRECISION;

tempCounter INTEGER;

BEGIN

perform testFuncBeta(sampleSize, dimension, 2, 1, 100);

maxError:=0.0;

for i in 1..dimension+1

LOOP

SELECT beta_val INTO tempBeta FROM beta WHERE beta_row=i;

tempError := ABS(1-tempBeta);

IF tempError > maxError THEN

maxError := tempError;

END IF;

END LOOP;

SELECT count(*) INTO tempCounter FROM betaequals1error

WHERE b1_sampleSize = sampleSize AND b1_dimension = dimension;

INSERT INTO betaequals1error

VALUES(sampleSize, dimension, tempCounter, maxError);

END;

$$ LANGUAGE plpgsql;

27

Listing 15: testBeta1.sql

CREATE OR REPLACE FUNCTION testFuncBeta(sampleSize INTEGER, dimension INTEGER,

distribution INTEGER DEFAULT 1, minValue DOUBLE PRECISION DEFAULT 0.0,

maxValue DOUBLE PRECISION DEFAULT 1.0)

RETURNS void AS $$

/*

* Function to test correctness of the algorithm and computer precision

* Distribution: 1 Uniform, 2 Constructed (beta=1)

* minValue, maxValue: Define interval for random numbers

*/

DECLARE

tempCounter INTEGER;

LU_time INTERVAL;

BEGIN

-- Initialization:

PERFORM CreateTables();

PERFORM createRandomTable(sampleSize, dimension,

distribution, minValue, maxValue);

-- Find linear regression coefficients:

select linReg(dimension) INTO LU_time from dataSet;

END;

$$ LANGUAGE plpgsql;

Listing 16: testFuncBeta1.sql

CREATE OR REPLACE FUNCTION runBeta1Test()

RETURNS void AS $$

BEGIN

FOR i in 1..10

LOOP

PERFORM testBeta1(100, 32);

END LOOP;

END;

$$ LANGUAGE plpgsql;

Listing 17: runbeta.sql

C Matlab Code

The plots shown in Figure 4, Figure 5 and Figure 6 were created in MATLAB, R2014a
(8.3.0.532).

28

[~, ~, ~, ~, lu_h, ~, lu_m, ~, lu_s, ~, tot_h, ~, tot_m, ~, tot_s] =

textread(’/tmp/resTable20140609.txt’, ’%f%c%f%c%f%c%f%c%f%c%f%c%f%c%f’, -1);

cnt=1;

totaltime = zeros(6, 4);

for i = 1:6

totaltime(i,1) = tot_h(cnt)*3600 + tot_m(cnt)*60 + tot_s(cnt);

cnt=cnt+1;

end

for i = 1:6

totaltime(i,2) = tot_h(cnt)*3600 + tot_m(cnt)*60 + tot_s(cnt);

cnt=cnt+1;

end

for i = 1:6

totaltime(i,3) = tot_h(cnt)*3600 + tot_m(cnt)*60 + tot_s(cnt);

cnt=cnt+1;

end

for i = 1:6

totaltime(i,4) = tot_h(cnt)*3600 + tot_m(cnt)*60 + tot_s(cnt);

cnt=cnt+1;

end

lutime = zeros(6, 4);

cnt=1;

for i = 1:6

lutime(i,1) = lu_h(cnt)*3600 + lu_m(cnt)*60 + lu_s(cnt);

cnt=cnt+1;

end

for i = 1:6

lutime(i,2) = lu_h(cnt)*3600 + lu_m(cnt)*60 + lu_s(cnt);

cnt=cnt+1;

end

for i = 1:6

lutime(i,3) = lu_h(cnt)*3600 + lu_m(cnt)*60 + lu_s(cnt);

cnt=cnt+1;

end

for i = 1:6

lutime(i,4) = lu_h(cnt)*3600 + lu_m(cnt)*60 + lu_s(cnt);

cnt=cnt+1;

end

% ---

% bar plot 2d lu time

% ---

figure;

29

bar2d = transpose(lutime(2:6,:)).^(1/3);

hBar=bar(bar2d, ’grouped’);

grid on;

colormap(summer);

set(gca, ’XTickLabel’, {’8’,’16’,’32’,’64’});

xlabel(’Dimension d’);

ylabel(’Time in (sec\^(1/3))’);

title(’Time-consumption for LU-part’);

legend(’n=1.0e+02’,’n=1.0e+03’,’n=1.0e+04’,’n=1.0e+05’,’n=1.0e+06’,

’Location’, ’NorthWest’);

% ---

% balkendiagramm total time einzeln, fix d

% ---

t = transpose(totaltime);

figure;

hBar=bar(t(1,2:6).^(1/3));

set(gca, ’XTickLabel’, {’2’, ’3’, ’4’, ’5’, ’6’});

xlabel(’Sample size log_{10}(n)’);

ylabel(’Total time (sec\^(1/3))’);

title(’Total time-consumption for d=8’);

colormap(summer);

grid on;

hold on;

figure;

hBar=bar(t(2,2:6).^(1/3));

set(gca, ’XTickLabel’, {’2’, ’3’, ’4’, ’5’, ’6’});

xlabel(’Sample size log_{10}(n)’);

ylabel(’Total time (sec\^(1/3))’);

title(’Total time-consumption for d=16’);

grid on;

colormap(summer);

figure;

hBar=bar(t(3,2:6).^(1/3));

set(gca, ’XTickLabel’, { ’2’, ’3’, ’4’, ’5’, ’6’});

xlabel(’Sample size log_{10}(n)’);

ylabel(’Total time (sec\^(1/3))’);

title(’Total time-consumption for d=32’);

grid on;

colormap(summer);

figure;

30

hBar=bar(t(4,2:5).^(1/3));

set(gca, ’XTickLabel’, {’2’, ’3’, ’4’, ’5’});

xlabel(’Sample size log_{10}(n)’);

ylabel(’Total time (sec\^(1/3))’);

title(’Total time-consumption for d=64’);

grid on;

colormap(summer);

Listing 18: plots.m

31

References

[1] Jeffrey Cohen, Brian Dolan, Mark Dunlap, Joseph M Hellerstein, and Caleb Welton. MAD
Skills : New Analysis Practices for Big Data. 2009.

[2] Marcel Dettling. Applied statistical regression. (Lecture notes for ’Applied Statistical
Regression’, ETH Zurich, AS 2013), 2013.

[3] David Kernert, Frank Köhler, and Wolfgang Lehner. Bringing Linear Algebra Objects to
Life in a Column-Oriented In-Memory Database. pages 1–4, n.d.

[4] Markus Neumann. Multiple linear regression in databases. (Facharbeit im Nebenfach In-
formatik, Departement of Informatics, University of Zurich), 2014.

[5] Carlos Ordonez. Building statistical models and scoring with UDFs. Proceedings of the
2007 ACM SIGMOD international conference on Management of data, pages 1005–1016,
2007.

[6] PostgreSQL. Postgresql manual 9.3 user-defined aggregates, 2014. [Online; accessed 9-July-
2014].

[7] Stefan Sauter. Numerische lineare algebra. (Lecture notes for ’Numerische Lineare Algebra’,
University of Zurich, FS 2014), 2014.

[8] S. Weisberg. Applied Linear Regression. Wiley Series in Probability and Statistics. Wiley,
2nd edition, 1985.

32

