
Department of Informatics, University of Zürich

MSc Thesis

A dynamic website for a Temporal
Probabilistic Database Implementation

Martin Leimer
Olten, SO, Switzerland

Matriculation number: 09-728-569

Email: martin.leimer@uzh.ch

August 18th, 2014
supervised by Prof. Dr. M. Böhlen and K. Papaioannou



Acknowledgements

I would like to express my sincere gratitude to Aikaterini Papaioannou, who has supported me
through the whole development of the application as well as the thesis. However, all this would
not have been possible without the consent of the head of the database technology group. There-
fore, I would like to appreciate Prof. Dr. Michael Böhlen, without whom I would not have been
able to develop such a tool in such an interesting subject. In addition, many thanks to Ramo-
na Wyss and Andrin Betschart for carefully counter-checking this thesis. Furthermore, sincere
thanks to all other people, who have supported and guided me in any way through this thesis.



Abstract

Temporal probabilistic databases are a field of interest in recent research. In this thesis, we in-
troduce a straightforward and user-friendly web application, which allows performing queries in
a temporal probabilistic extension of PostgreSQL. Moreover, we propose algorithms and tech-
niques to develop interesting visualisation tools that allow the user to analyse and understand the
results of the algebra operations performed. Tree-like structures illustrate how and from which
base tuples a result tuple is derived from, while bubble charts describe the impact of each base
tuple on a specific result tuple. Predefined datasets and queries are provided to accelerate ac-
quaintance with this web application whereas interactive features make it suitable for all users,
regardless of their level of experience.



Zusammenfassung

Temporal probabilistische Datenbanken sind grosse Interessensgebiete in der heutigen Forschung.
In dieser Arbeit führen wir eine übersichtliche und benutzerfreundliche Web-Applikation ein,
welche die Ausführung von Abfragen auf einer temporal probabilistischen Erweiterung von
PostgreSQL ermöglicht. Im Übrigen schlagen wir Algorithmen und Techniken vor um inter-
essante Visualisierungen zu entwickeln. Diese ermöglichen dem Benutzer die Resultate der aus-
geführten algebraischen Operationen zu analysieren und zu verstehen. Baum ähnliche Strukturen
illustrieren wie und von welchen Basis-Tupeln ein Resultat-Tupel abgeleitet wurde, während-
dessen Blasendiagramme den Einfluss jedes Basis-Tupels auf ein bestimmtes Resultat-Tupel
aufzeigen. Im Weiteren eignet sich die Applikation für jeden Benutzer, unabhängig seines Er-
fahrungsstandes. Dies dank vordefinierten Datensets und Abfragen, sowie weiteren interaktiven
Funktionalitäten.



Contents

Contents

Introduction 6

1 Temporal Probabilistic Databases 7
1.1 Temporal operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 Reduction Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.1 Selection and Projection . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.2 Join operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.3 Set operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Confidence and Effect Computation 12
2.1 Reduced truth table of a boolean expression . . . . . . . . . . . . . . . . . . . 13
2.2 Confidence computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Impact of the probability of a base tuple on a specific result tuple . . . . . . . . 15

3 The application 20
3.1 Independent workspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Executor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Bubble chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 Lineage tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.5 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.6 Account and Help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Implementation 29
4.1 PL/pgSQL Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2 Server setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3 Independent workspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.4 Result table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.5 Visualisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Evaluation and Future Work 39
5.1 Detailed runtime evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

References 42



Introduction

Introduction

In this work, we develop a web application with analytical features for temporal probabilistic
databases. One of those features is a tree representation which serves the need to understand
how and which tuples influence the result probability, as well as if there are any dependencies
between the tuples. Secondly, we introduce an algorithm to compute how big a result confidence
is influenced by the probability of each base tuple. In this sense, we also provide a calculation
method to compute the new result confidence given a probability change in one of its base tuples.
Eventually, we show all this analysis in a clearly arranged bubble chart.

In Section 1, we introduce temporal probabilistic databases and provide the necessary reduc-
tion rules for all basic relational algebra operators. In this section, we also introduce the concept
of lineage, which contributes to the correct computation of the confidence of a result tuple. The
actual result confidence computation given lineage will be handled in Section 2. On top of that,
we introduce a cutting-edge algorithm, with which we can calculate the effect of the probability
of each base tuple on the confidence of the analysed result tuple.

In Section 3, we explain the features of our application in detail. In this regard, we also
provide instructions on how to use it.

In Section 4, we describe how our concept was implemented in a web-application. This
includes a description of which web techniques and libraries we used, as well as an explanation
of the main algorithms.

In Section 5, we evaluate our application, draw concrete conclusions and propose ideas for
future work.

6



1 Temporal Probabilistic Databases

1 Temporal Probabilistic Databases

Temporal Probabilistic Databases (TPDBs) enhance standard databases with temporal proba-
bilistic relations and operators. Focussing on the relations first, temporal probabilistic relations
always feature a time interval T and a probabilistic attribute p in addition to any other kind of
attributes the relation has. While the time interval specifies from when to when a tuple will be
valid, the probabilistic attribute specifies how certain it is that the corresponding event will occur
at any time point during the specified time interval.

In order to perform query operations and calculate result confidences, we use lineage (λ)
according to Sarma et al. [3]. Lineage is a boolean expression, which keeps track of the base
tuples from which a result tuple is derived from. A base tuple is a tuple which is not derived
from any other tuple.

Initially, each base tuple has a lineage expression (λ) which corresponds to the unique key (k)
of that tuple. However, as soon as query operation produces a tuple which is made of more than
one tuple, e.g. in an aggregation or a join, the lineage of both input tuples is combined using
boolean operators like ∧,∨,¬. In this regard, the actual boolean operator is chosen according to
the relational algebra operation performed.

Temporal probabilistic relations consists always of three different kind of attributes:

• Temporal attributes (T )
The temporal attribute consists of two timestamps, e.g. [2014-09-01, 2014-09-30). It
describes from when (including) to when (excluding) an event described by the tuple
and relation will take place. Thus, we can indirectly compute the events’ duration by
subtracting both timestamps.

• Probabilistic attribute (p)
The probabilistic attribute defines the certainty that the event described by the tuple and
relation will actually take place. It can be anything between [0, 1], where 1 means that the
event will take place for sure. In contrast, 0 means that the event is cancelled for sure.

• Non-temporal and non-probabilistic attributes
This includes all attributes that are neither temporal nor probabilistic. In fact, this at-
tributes are those which we find in a relation of a standard database, e.g. the name of a
person, its id and so on.

Figure 1.1 shows an example of three temporal probabilistic relations. The first relation A
(Availability) describes with which likelihood a person is available in the given time interval. For
example, Ann from the computer science department is likely to be available with a probability
of 95% from August, 1st to the end of August, 29th.

Secondly, relation I (Interest) gathers information from previous analysis about how likely
it is that a certain person is interested in a topic in a specific time interval in the future. For
example Janine is likely to be interested in TPDBs in September, 2014, whereas Ann has only a
minor interest in it.

7



1 Temporal Probabilistic Databases

A (Availability)
k pid firstname department T p λ
A1 1 Ann Computer Science [2014-09-01, 2014-09-30) 0.95 A1

A2 2 Janine Computer Science [2014-08-26, 2014-09-08) 0.40 A2

I (Interests)
k iid pid_fkey topic T p λ
I1 1 1 TPDB [2014-09-01, 2014-10-01) 0.40 I1
I2 1 2 TPDB [2014-09-01, 2014-10-01) 0.95 I2

E (Events)
k eid iid_fkey speaker T p λ
E1 1 1 Andrin [2014-09-01, 2014-09-08) 0.90 I1

Figure 1.1: Temporal probabilistic relations

Eventually, relation E (Events) lists all events which might be held during a specific time
interval. Each event has a speaker as well as foreign key to the I (Interest) relation, which
describes the topic of the event. For example Andrin is likely to hold an event about TPDBs in
the first week of September, 2014.

1.1 Temporal operators

Temporal databases do not only impose a time interval attribute on their relations, yet they also
define temporal operators in order to query temporal probabilistic relations. The approach we
use is based on Dignös et al. [1], who introduced three temporal operators called Normalization,
Alignment and Absorption. While Absorption is essential within temporal databases, up to date
there is no definition how to use it within temporal probabilistic databases. This as tuples with
coinciding non-temporal attributes and a time interval that is equal or a subset of the time interval
of the non-temporal matching tuple, may still have different lineages. Thus, as there exists no
definition of how to combine those lineages when Absorption is applied, if at all, we put up with
the fact that we might have duplicates of this kind.

On the other hand, Normalization (N ) and Alignment (Φ) may still be applied accordingly in
temporal probabilistic database. However, this depends on how the event is defined. Assuming
that the event will take place at any time point during the whole time interval with the same
probability, no changes need to be made when time intervals are split into sub time intervals.
In contrast, if the time interval had specified between which time points the event is likely to
occur, additional constraints would have to be made. This, given that the duration of the event
remains constant, it might be more likely that an event will occur, the longer the time interval is.
However, as we specify the event duration with the given time interval, no overhead need to be
made.

8



1 Temporal Probabilistic Databases

Apart from that, we need to show that each tuple produced by such a temporal operation is
not derived from more than one input tuple. Indeed, Normalization (N ) and Alignment (Φ) do
only create a set of output tuples for each input tuple, but no output tuple is derived from more
than one input tuple. This even holds when the temporal operation is made against a different
relation, as the splitting of a time interval does not need to be taken into consideration under the
assumptions we imply. Thus, we can simply set the lineage of each output tuple to the lineage
of its input tuple. Moreover, Normalization (N ) and Alignment (Φ) may be applied accordingly
as they would in temporal databases.

πpid_fkey ,topic,T,λ(IΦtrueA)

pid_fkey topic T λ
1 TPDB [2014-09-01, 2014-09-08) I1
1 TPDB [2014-09-01, 2014-09-30) I1
1 TPDB [2014-09-30, 2014-10-01) I1
2 TPDB [2014-09-01, 2014-09-08) I2
2 TPDB [2014-09-01, 2014-09-30) I2
2 TPDB [2014-09-30, 2014-10-01) I2

Figure 1.2: Temporal prob. alignment

πfirstname,T,λ(NA.pid=B.pid(A; ρB(A)))
firstname T λ

Ann [2014-09-01, 2014-09-08) A1

Ann [2014-09-08, 2014-09-30) A1

Janine [2014-08-26, 2014-09-01) A2

Janine [2014-09-01, 2014-09-08) A2

Figure 1.3: Temporal prob. normalization

Example 1 Figure 1.2 shows a temporal alignment of the relation I (Interests) against A (Avail-
ability) on no common attribute. As we will see in section 1.2, this might be a use case for a
later Cartesian product between those two relations. The input tuple I1 is split into three tuples.
The first time interval arises from Janine, who has a time interval of [2014-08-26, 2014-09-08),
thus, the overlapping time interval is [2014-09-01, 2014-09-08). The second time interval arises
from Ann, who has a time interval of [2014-09-01, 2014-09-30), therefore, the overlapping time
interval is [2014-09-01, 2014-09-30). Finally, the third sub time interval is the remaining time
interval of I1 not covered by any tuple in the relation A (Availability) and therefore [2014-09-
030, 2014-10-01).

Example 2 Figure 1.3 shows a temporal normalization of the relation A (Availability) on itself.
This could be a step towards the aggregation on some attribute of that relation for example. The
time interval of tuple A1 is split into [2014-09-01, 2014-09-08) because of tuple A2, as this is
the sub time interval during which both tuples hold. Then, the second tuple for A1 is produced
because of tuple A1 itself.

1.2 Reduction Rules

Given this findings we adapt the reduction rules [1] for temporal probabilistic databases. In
detail, we specify for each relational algebra operator, how the lineage expressions of the input
tuples must be transformed into a lineage for the output tuple and how the time intervals should
be adapted. For this, we distinguish between join operators (><, |><|, d|><|, |><|d, d|><|d), each set operator
(∪,∩,−) as well as selections and projections (σ, π).

Let r and s be temporal probabilistic relations over schema RTP , θ be a predicate, F be a
set of aggregation functions over r.A, B ⊆ A be a set of attributes and OR, AND and NOT

9



1 Temporal Probabilistic Databases

functions respectively aggregation functions that combine the given lineage expressions with
the defined connective. Then the reduction rules define a temporal probabilistic algebra with
sequenced semantics as shown in Figure 1.4. [2]

Operator Reduction

Selection σTP
θ (r) = σθ(r)

Projection πTP
B (r) = B,TϑOR(λ)(NTP

B (r; r))

High Aggregation Bϑ
TP
F (r) = B,TϑF,AND(λ)(NTP

B (r; r))

Difference r−TP s = r.A,r.TϑOR(AND(r.λ,NOT (s.λ)))((NTP
A (r;NTP

A (r; s))) d|><| r.A=s.A∧r.T=s.T (NTP
A (s;NTP

A (s; r))))

Union r ∪TP s = r.A,r.TϑOR(r.λ)(NTP
A (r;NTP

A (r; s)) ∪NTP
A (s;NTP

A (s; r)))

Intersection r ∩TP s = r.A,r.TϑOR(AND(r.λ,s.λ))((NTP
A (r;NTP

A (r; s))) |><| r.A=s.A∧r.T=s.T (NTP
A (s;NTP

A (s; r))))

Cartesian Product r×TP s = πr.A,r.T,s.A,s.T,AND(r.λ,s.λ)((rΦTP
trues) |><| r.T=s.T (sΦTP

truer))

Inner Join r |><|
TP
θ s = πr.A,r.T,s.A,s.T,AND(r.λ,s.λ)((rΦTP

θ s) |><| θ∧r.T=s.T (sΦTP
θ r))

Left Outer Join r d|><|
TP
θ s = πr.A,r.T,s.A,s.T,AND(r.λ,s.λ)((rΦTP

θ s) d|><| θ∧r.T=s.T (sΦTP
θ r))

Right Outer Join r |><|d
TP
θ s = πr.A,r.T,s.A,s.T,AND(r.λ,s.λ)((rΦTP

θ s) |><|d θ∧r.T=s.T (sΦTP
θ r))

Full Outer Join r d|><|d
TP
θ s = πr.A,r.T,s.A,s.T,AND(r.λ,s.λ)((rΦTP

θ s) d|><|d θ∧r.T=s.T (sΦTP
θ r))

Figure 1.4: Reduction Rules

1.2.1 Selection and Projection

For selection and projection, the lineage of the output tuple usually corresponds to the lineage
of the input tuple, as no input tuple has any influence on any other output tuple. However, as
relational algebra operators are defined as duplicate eliminating, a projection might result in
duplicates. In this event, the lineages of the similar tuples are combined with ∨-operators into
one output tuple, such that the remaining output tuples can be removed.

σTP
pid_fkey=1(I)
iid pid_fkey topic T λ
1 1 TPDB [2014-09-01, 2014-10-01) I1

Figure 1.5: Selection

πTP
Department(A)

department T λ
Computer Science [2014-08-26, 2014-09-01) A2

Computer Science [2014-09-01, 2014-09-08) A1 ∨A2

Computer Science [2014-09-08, 2014-09-30) A1

Figure 1.6: Projection

Example 3 Figure 1.5 shows all interests of the user with the pid_fkey = 1. In contrast, Figure
1.6 shows a temporal probabilistic projection of the relation A (Availability) on its department.
If the relational algebra operator would not be duplicate eliminating, there would be four result
tuples. However, as the tuple {’Computer Science’, [2014-09-01, 2014-09-08)} occurs twice,
the lineage of both tuples are combined with the ∨-operator into one result tuple with only one
lineage expression (A1 ∨A2).

1.2.2 Join operators

For the join operators (><, |><|, d|><|, |><|d, d|><|d) the lineage of an output tuple is defined as the∧-combination
of the corresponding lineage of the input tuples.

10



1 Temporal Probabilistic Databases

A d|><|
TP
pid=pid_fkey

I
pid firstname department T iid pid_fkey topic T λ
1 Ann Computer Science [2014-09-01, 2014-09-30) 1 1 TPDB [2014-09-01, 2014-09-30) A1 ∧ I1
2 Janine Computer Science [2014-08-26, 2014-09-01) - - - - A2

2 Janine Computer Science [2014-09-01, 2014-09-08) 1 2 TPDB [2014-09-01, 2014-09-30) A2 ∧ I2

Figure 1.7: Left outer join

Example 4 Figure 1.7 shows a temporal probabilistic left outer join of relation A (Availability)
with relation I (Interests) on the person id. Firstly, a temporal probabilistic join involves the
alignment of the two relations against each other on the common attribute - the person id.
Thus, the initial time interval of tuple A1, which is [2014-09-01, 2014-09-30] is aligned into
a set of time intervals corresponding to {[2014-09-01, 2014-09-30)}, whereas the set for A2

is {[2014-08-26, 2014-09-01), [2014-09-01, 2014-09-08)}. Given that, we make the alignment
for the Interests tuples, which results in a set of time intervals corresponding to {[2014-09-01,
2014-09-30), [2014-09-30, 2014-10-01)} for I1 and {[2014-09-01, 2014-09-08), [2014-09-08,
2014-10-01)} for I2 respectively. Finally, a left outer join on the common attribute as well as
the time interval is done, which results as shown in Figure 1.7.

1.2.3 Set operators

For the set operators ∩,∪,−, lineage is handled independently for each operator. However, they
all have in common that once the operation is executed, all duplicates are eliminated. In terms
of lineage, we simply concatenate the lineage of each duplicate with the ∨-operator and set it as
the lineage of the remaining output tuple, as we did for projection in section 1.2.1. But first, the
set operation itself must be executed, which imposes the following lineage concatenation:

• Union (∪)
For the Union set operator, each output tuple corresponds to exactly one input tuple and
all input tuples are present exactly once in the output. Thus, the lineage of the output tuple
corresponds to the lineage of the input tuple.

• Intersect (∩)
For the Intersect set operator, each tuple of the first relation is matched against duplicates
in the second relation. If there is no duplicate, the tuple is not present in the output. If
there is a duplicate, the lineage of the tuple of the first relation is concatenated with all
corresponding duplicates from the second relation using the ∧-operator. All other values
of the tuple remain as is.

• Difference (−)
For the Difference set operator, each tuple of the first relation is matched against duplicates
in the second relation. If there is no duplicate, the tuple is taken with the given lineage
into the output of the operation. However, if there is at least one duplicate, the lineage of
the corresponding duplicate is negated. Then, the lineage of the tuple of the first relation
is concatenated with the negated lineage of the corresponding duplicates using the ∧-
operator.

11



2 Confidence and Effect Computation

2 Confidence and Effect Computation

The confidence of a result tuple gives us an indication of the probability with which the resulting
event is going to happen. The effect of a base tuple on the investigated result tuple describes
with which intensity and within which range the result confidence can be altered, by changing
the probability of the corresponding base tuple.

Given lineage, we can clearly identify from which base tuples a result tuple is derived from.
Furthermore, given a probability for each base tuple, we have certainly enough to compute the
result confidence by evaluating lineage.

One approach to achieve this is by identifying all base tuples that occur in the lineage expres-
sion. Then, by creating a truth table using those base tuples, we are able to evaluate the set of
Boolean values for which lineage evaluates to true. Given this set, we can finally compute the
result confidence and hence, the effect each base tuple has on it.

By applying this process for each result tuples recursively, we eventually end up a result
confidence for each result tuple.

A (Availability)
k pid firstname department T p λ
A1 1 Ann Computer Science [2014-09-01, 2014-09-30) 0.95 A1

A2 2 Janine Computer Science [2014-08-26, 2014-09-08) 0.40 A2

I (Interests)
k iid pid_fkey topic T p λ
I1 1 1 TPDB [2014-09-01, 2014-10-01) 0.40 I1
I2 1 2 TPDB [2014-09-01, 2014-10-01) 0.95 I2

E (Events)
k eid iid_fkey speaker T p λ
E1 1 1 Andrin [2014-09-01, 2014-09-08) 0.90 I1

Figure 2.1: Temporal probabilistic relations

In the following subsections, we are going to explain those steps in detail reusing our familiar
example relations from section 1 as shown in Figure 2.1. Moreover, in order to compute any
result confidences, we impose the following query:

πfirstname,topic,speaker,E.T (A |><|
TP
pid=pid_fkey

(I |><|
TP
iid=iid_fkey

E))

In natural language, this query corresponds to the likelihood that a person will attend an event.
This itself is depending on the probability that a person is available during the time interval the
event takes place, that she or he is interested in the topic of the event, as well as that the event

12



2 Confidence and Effect Computation

actually takes place. Thus, the query is a temporal probabilistic join of the three relations, whose
non-evaluated result can be seen in Figure 2.2.

πfirstname,topic,speaker,E.T (A |><|
TP
pid=pid_fkey

(I |><|
TP
iid=iid_fkey

E))

firstname topic speaker T λ
Ann TPDB Andrin [2014-09-01, 2014-09-08) A1 ∧ I1 ∧ E1

Janine TPDB Andrin [2014-09-01, 2014-09-08) A2 ∧ I2 ∧ E1

Figure 2.2: Example query

Example 5 Figure 2.2 describes that Ann and Janine may attend the event about TPDBs held
by Andrin from September, 1st up to the end of September, 6th.

2.1 Reduced truth table of a boolean expression

In order to compute the result confidence for a lineage expression, one approach is to create a
truth table. For this, we first need to identify all base tuples of the given lineage expression.
Then, by assigning to each base tuple a Boolean variable, we are able to create a truth table by
considering all possible permutations of the Boolean values the Boolean variables can have.

Mathematically speaking, given n distinct base tuples, we can create 2n combinations, as
each Boolean variable can be either true or false. Therefore, we define the truth table as
T [1..2n][1..(n+ 1)].

Example 6 Given lineage A1 ∧ I1 ∧ E1 from the first row in Figure 2.2, the truth table is as
shown in Figure 2.3. It consists of exactly 8 = 23 rows, as the lineage has exactly three different
base tuples. Moreover, since the lineage consists of ∧-operators only, it should be obvious that
a row of a truth table only evaluates to true, if and only if all Boolean values of that row are set
to true.

Analogously, the process would be repeated for any other lineage. On that account, the truth
table for lineage A2 ∧ I2 ∧ E1 would be symmetric.

In order to enhance understanding how to compute final result confidence, we propose the
creation of a reduced truth table. In detail, we drop all rows of the truth table that we do not need
any more. Consequently, the reduced truth table only contains the rows of the truth table which
evaluated to true. Thus, the reduced truth table can be defined as R[1..m][1..(n+ 1)], where m
represents the number of permutations that evaluated to true while n is the number of distinct
base tuples.

13



2 Confidence and Effect Computation

A1 I1 E1 A1 ∧ I1 ∧ E1

True True True True
True True False False
True False True False
True False False False
False True True False
False True False False
False False True False
False False False False

Figure 2.3: Truth table

A1 I1 E1 A1 ∧ I1 ∧ E1

True True True True

Figure 2.4: Reduced truth table

Example 7 Figure 2.4 shows the reduced truth table derived from the truth table being repre-
sented in Figure 2.3.

2.2 Confidence computation

Reconsider the reduced truth table R[1..m][1..(n+ 1)], where m represents the number of per-
mutations which evaluated to true, n the number of distinct base tuples and where rij represents
the Boolean value stored in row i and column j. In addition, consider that bj represents the base
tuple of column j of the truth table T , while bj .p is its probability. Then, algorithm 1 computes
the probabilities for the probability table P [1..m][1..n], where pij represents the probability of
row i and column j.

Algorithm 1 Computing the probability table P based on the reduced truth table R
1: for all i in 1 to m do
2: for all j in 1 to n do
3: if rij = true then
4: pij ← bj .p
5: else
6: pij ← 1− bj .p
7: end if
8: end for
9: end for

The probability table P is of the same size as the reduced truth tableR, except for one column.
Basically, each Boolean value of the reduced truth table R is replaced with the probability or
the complement of the probability of the event described by the base tuple of the corresponding
column.

14



2 Confidence and Effect Computation

A1 I1 E1

0.95 0.40 0.90

Figure 2.5: Probability table for A1 ∧ I1 ∧ E1

Example 8 Figure 2.5 shows an example of the probability table after having applied algorithm
1. p11 equals to 0.95, because r11 equals to true in Figure 2.4 and b1.p = 0.95. Similarly, p12
equals to 0.40, because r11 = true and b1.p = 0.95.

Example 9 Consider the reduced truth R as shown in Figure 2.4. Moreover, assume that r13 =
false. Then, p13 of Figure 2.5 would equal to 0.10, as we have to take the complement of the
probability (1− b3.p) of the event described by base tuple b3.

Having obtained the probability table P , we can compute the result confidence c. Firstly, for
each row, we multiply the corresponding row-cells together. Then, by summing up over the m
products, we are eventually left with the result confidence c for the given lineage expression, as
shown in formula 1.

c(P ) =

m∑
i=1

( n∏
j=1

pij

)
(1)

where pij represents the probability of row i and column j in the probability table.

A1 I1 E1 Π
0.95 0.40 0.90 0.342

Σ 0.342

Figure 2.6: Result confidence computation for A1 ∧ I1 ∧ E1

Example 10 Figure 2.6 shows an example of how to compute the result confidence given the
probability table as shown in 2.5 and formula 1. Thus, Ann (A1) is going to attend the event
with a probability of 34.2%.

2.3 Impact of the probability of a base tuple on a specific result tuple

In this section, we are going to describe how intense and within which range the probability of
a result tuple can be changed, by changing the probability of an appearing base tuple.

In detail, we focus on a randomly selected base tuple being present in the corresponding lin-
eage expression, from now on referred as the focused tuple. Then, by altering its probability and
re-computing the resulting confidence, we are looking on what the lower and upper probability
of the corresponding result tuple is. Given those two boundaries, we are able to compute how
much the probability of a result tuple is influenced by the probability of the focused tuple. In

15



2 Confidence and Effect Computation

fact, the higher the difference between the lower and upper probability of the result tuple, the
more is the result confidence influenced by the probability of the focused tuple. Finally, by doing
this computation for all base tuples, we get the influence of each base tuple on the investigated
result tuple.

In order to calculate the lower and upper bounds the result confidence can obtain, we set the
probability of the focused tuple once to zero and once to one, the minimum and maximum values
a probability can have. This is sufficient, as the result confidence is linear in the probability of a
base tuple. Thus, the minimum and maximum value of a linear function are its boundaries.

Before going into detail how to compute those boundaries, we first proof that the result con-
fidence computation is indeed linear in the manipulated probability of the focused tuple. In this
regard, consider that bk, k ∈ N|1 ≤ k ≤ n is the focused tuple. Then, instead of taking the prob-
ability pik which is derived from bk.p, we override bk.p with x ∈ [0, 1] and thus use f(x, rik)
instead of pik. On this account, f(x, rik) either equals the new probability x of the focused tuple
or its complement, depending on whether the truth value rik equals true or false.

Therefore the result confidence computation formula in dependency of the probability table
P , the new probability x for the focused tuple bk and the reduced truth table R is as shown in
formula 2.

c(P,R, x, k) =

m∑
i=1

(
f(x, rik)︸ ︷︷ ︸

linear

·
n∏
j=1
j 6=k

pij

︸ ︷︷ ︸
constant

)

︸ ︷︷ ︸
linear

=

m∑
i=1

(
f(x, rik) ·

n∏
j=1
j 6=k

pij

︸ ︷︷ ︸
linear

)
(2)

where f(x, rik) =

{
x, if rik = true

1− x, otherwise

Formula 2 shows that the result confidence computation is indeed linear in the new probability
x with which we override the probability bk.p of the focused tuple. This as f(x, rik) is a linear
function in xwhether rik = true or rik = false. Furthermore, the probabilities of all other base
tuples pij where i 6= k are fixed and thus constant. Therefore, the product of a linear function
and constant variables is again linear. Similarly, the summation over a linear function is again
linear and thus, the formula is linear in the overridden probability x of the focused tuple bk.

Thus, given this findings, we can compute those two boundaries by reapplying the steps from
section 2.2. Reconsider that we override bk.p with x = 1 for the first boundary and x = 0 for the
second boundary. Then, the first and second boundary corresponds to the equations as shown in
3.

16



2 Confidence and Effect Computation

first boundary =
m∑
i=1

(
f(1, rik) ·

n∏
j=1
j 6=k

pij

)
(3a)

second boundary =
m∑
i=1

(
f(0, rik) ·

n∏
j=1
j 6=k

pij

)
(3b)

It remains to note, that the first boundary does not necessarily need to be the upper boundary.
In fact, the formula for the result confidence is linear, but with increasing x, it can well be
negative. This factor is completely depending on the lineage expression and thus the truth table.
Unless the lineage expression contains no Boolean negations, it is not sufficient to say that the
first boundary is the upper boundary.

A1 I1 E1 eval
True True True True

Figure 2.7: Reduced truth table for lineage A1 ∧ I1 ∧ E1

A1 I1 E1 Π
1.00 0.40 0.90 0.360

Σ 0.360

Figure 2.8: 1st boundary for lineage A1 ∧ I1 ∧ E1 and focused tuple A1

A1 I1 E1 Π
0.00 0.40 0.90 0.000

Σ 0.000

Figure 2.9: 2nd boundary for lineage A1 ∧ I1 ∧ E1 and focused tuple A1

Example 11 Figure 2.8 shows the first and Figure 2.9 the second boundary of the corresponding
result confidence by adjusting the probability of the focused tuple A1. They are based on the
equation 3 as well as the reduced truth table for lineage A1 ∧ I1 ∧ E1 as shown in Figure 2.7.

In this case, the first boundary (0.360) actually corresponds to the upper boundary, while the
second boundary (0.000) represents the lower boundary. Thus, we can increase the likelihood
that Ann (A1) will attend the event up to 36%, given that we can make sure that she will be
available. On the other hand, if she will not be available, she surely cannot attend the event.
Thus, the resulting probability is 0.000 which corresponds with the lower boundary we just
calculated.

17



2 Confidence and Effect Computation

Example 12 Consider that we created a truth table and probability table for the second lineage
A2 ∧ I2 ∧ E1 in Figure 2.2 as well. Moreover, consider that we computed the first and second
boundary for this lineage expression, given that the availability of Janine (A2) is the focused
tuple. Then, the first and upper boundary is 0.855, while the second and lower boundary is
0.000.

Given that this computation would reveal that the truth tables are almost identical and that
their standard result confidence is equal, it might be surprising that their boundaries do not
coincide at all. This fact can be explained that the multiplication of something big with an
arbitrary chosen probability x is always higher than the multiplication with something small.
Thus, knowing the two lineage expressions and that the probabilities of I1, I2 and E1 are fixed,
the upper boundary for lineage A2 ∧ I2 ∧E1 is higher, as Janine is much more interested in the
topic than Ann (I2 > I1).

Example 13 Consider lineage a1 ∧ ¬a1. Both, the upper and lower boundaries of the result
confidence equate to zero, as no set of boolean values equates to true in the truth table. Thus,
we cannot increase the probability of this result tuple in any way.

Given those two boundaries, it is left to show how intense a change in the probability of a base
tuple is. This can be done by computing the marginal rate of the result confidence computation
function, which is its first derivative. Thus, given formula 2, its first derivative is constant for
any x.

In natural language, this implies that the absolute delta with which the result confidence
changes is the same, whether we increase the overriden probability of the focused tuple from
20% to 30%, or 50% to 60%. Moreover, since the probability interval is restricted by the bound-
aries zero and one, whose delta is 1− 0 = 1, we can simply subtract the second boundary from
the first boundary, which returns us the marginal rate of the focused tuple without the need of
any division.

marginal rate = first boundary− second boundary (4)

Depending whether the first boundary was actually the upper boundary, the marginal rate is
increasing or not. This means that a higher probability of the focused tuple results in a higher
probability of the result tuple if and only if the first boundary is the upper boundary. In contrast,
if the first boundary is the lower boundary, the confidence of the result tuple decreases with a
higher probability of the focused tuple.

The marginal rate itself has always to be understood as how much a change from 0% to
100% in the probability of the focused tuple would increase or decrease the result probability.
However, by dividing it by 100, we are also able to compute how much an increase of 1% in the
probability of the focused tuple has on the probability of the result tuple.

18



2 Confidence and Effect Computation

Example 14 Given the upper and lower boundaries for the focused tuple A1 and lineage A1 ∧
I1 ∧ E1, as well as A2 and lineage A2 ∧ I2 ∧ E1 respectively, the marginal rate corresponds
to 0.360 − 0.000 = 0.360 and 0.855 − 0.000 = 0.855 respectively. Thus, given that we want
that people attend the event E1 and that we can somehow change the availability of a person,
it is best to give Janine (A2) more free time as the marginal rate is higher for her than for Ann
(0.855 > 0.360). This can be explained with the fact, that Janine is much more interested in the
topic of the event. In contrast, even if Ann (A1) had been available for sure, it is still unlikely
(36%) that she would attend the event.

It remains to note that the marginal rate as shown in equation 4 can never go beyond 100%,
neither positive nor negative. If this had not been the case, we would end up with an invalid
result probability being bigger than 1 = 100% or lower than 0 = 0%. However, since both
boundaries always lie between 0 = 0% and 1 = 100%, their delta can never exceed 1 = 100%.
Thus, the probability constraints are satisfied.

19



3 The application

3 The application

Our implementation result is a website, which is accessible using the following hyperlink:
http://peter.ifi.uzh.ch/kat/. However, due to server security properties, access
is only permitted within or by VPN to the network of the University of Zurich.

The application itself features numerous utilities, which are not present in an application like
pgAdmin. Thus, we will explain them in-depth in the following subsections. First, we show the
benefit of a unique account, before going to explain each of the four tabs: Executor, Datasets,
Help and Account as well as the visualisation of the result.

3.1 Independent workspaces

First of all, a user has to create a unique account in order to access the web application in full.
After having signed up, each user is being presented with an independent workspace. Thus, only
the user itself, or anyone who knows his login informations, has access to his own workspace.
Therefore, the user can load and unload any relations and tuples according to his needs, without
having to fear that another user will alter or delete them. In addition, the user could also store
safety-critical data, as other default users cannot read them out.

Apart from that, we automatically load some predefined datasets into the users workspace,
such that he can begin querying immediately. On this account, the user can either write his own
query, or select a dataset and a relational algebra operator or a nested operation. Those feature
will be explained in-depth in section 3.2 and 3.5.

For users being new to the application, we automatically launch a short tour, which describes
the features of the application in detail by highlighting the different elements. It also simulates
the selection of a predefined query as well as its execution. The tour explains the result table,
as well as how result tuples can be further investigated. This includes explanations about the
appearing graphs, which will be discussed in section 3.3 and 3.4 more precisely.

3.2 Executor

The executor features numerous functionalities, as shown in Figure 3.1. On the left hand side, a
user has an overview over all relations that are currently loaded into his workspace. Moreover,
by clicking on one of the relations, the user is being presented with their attributes and their type.

On the right hand side, the user can either write his own query or select one. For former, the
user can write his query into the input area on the top right corner, before clicking on Execute
query. Alternatively, he might choose a predefined dataset and a relational algebra operator or
a nested operation with the two selectors shown in the middle. Given a user’s selection, the
corresponding PL/pgSQL-query including a natural language equivalent is being requested and
loaded into the editable input area above. Thus the user does now not only understand what the
query will do, but he is also being offered with the possibility to alter the query to his own needs,
e.g. to other relations.

20

http://peter.ifi.uzh.ch/kat/


3 The application

Figure 3.1: Screenshot of the executor

Apart from that, the user may select one of his 10 lastly executed queries in the list below. It
serves the need of resuming the work after a break, or to revise an earlier result. By clicking on
one of them, the query is re-executed instantly and copied into the editable input area for further
alteration.

After having executed a query, a message will appear whether the query has executed suc-
cessfully, or if there had been any errors. In the event that everything went smoothly and that
the result is not empty, a result table will be shown like on the bottom of Figure 3.1. The result
table itself is highly flexible and features some functionalities not being present in pgAdmin,
a well-known standalone application to connect to PostgreSQL-servers and query them. The
features are:

• Full text search
On the top right corner of the table, there is a small search box. On typing any characters
in it, all result tuples will be removed which do not contain the character sequenced in any
of their attributes.

21



3 The application

• Sorting
The result is automatically sorted according the first column in a lexicographic increasing
order. Moreover, by clicking on a column title, the sorting can be made for any other
column too. In addition, by clicking on the same column again, the ordering of the tuples
can be reversed. Thus, there is no need to write any ordering attributes in the query, unless
required for selections.

• Result tuple arrangement
Queries which result in a huge set of result tuples are often hard to understand, if all result
tuples have to be investigated manually. It is likely that a result tuple is either investigated
more than once or forgotten at all, especially if scrolling is indispensable. Therefore, we
only list 10 result tuples per page, such that it is easier to go through all the result tuples.
However, the user has the opportunity to see up to 100 result tuples per page, depending
on his own preferences. This can be accomplished, by selecting the corresponding number
of result tuples in the selector on the top left of the result table.

• On click investigation
Given that the user has specified the keyword LINEAGE in his query, a click on a result
tuple allows for further investigation of it in form of two visualisations as discussed in
section 3.3 and 3.4.

3.3 Bubble chart

When the user clicks on a result tuple, a bubble chart is being computed. Its utility is that we
can see how big the impact of a certain probability of a base tuple on the result confidence is
and how they compare to each other. In fact, there is a bubble for each base tuple contributing
to the corresponding result tuple having different colours and sizes as well as being differently
allocated.

• Allocation
The allocation of a bubble describes how significant it is for the result confidence compu-
tation. In fact, the higher the bubble is allocated on the screen, the higher is its impact.
Thus, if we can somehow change the probability of the corresponding base tuple, we can
dramatically change the confidence of the corresponding result tuple given that the bubble
is high up in the graph.

• Colour
There are three different colours defined, ranging from light blue to dark blue. Its meaning
is whether the impact of a probability change in the base tuple is positive (light blue),
neutral (blue) or negative (dark blue). In other words, if a bubble has a high allocation and
is dark blue, an increase in the probability of the corresponding base tuple will result in a
sharp decrease of the result confidence.

• Size
The size of the bubbles tells us how high the probability of the given base tuple is. The
bigger the bubble, the higher the probability. Thus, even if the bubble is light blue and

22



3 The application

highly allocated, we cannot really increase the result confidence, as the corresponding has
already a high probability. On the other hand, if it is our goal to minimize the result con-
fidence, such a tuple should be our primary focus for changing its probability somehow.

Apart from that, by clicking on a bubble, we also list the attributes and values of the corre-
sponding base tuple. This is essential, as each bubble is only labelled with an abstract identifier,
containing the relation name and a result wide unique index for the tuple. Thus, given this
feature, we exactly now, which tuple has which impact on the result.

Moreover, by hovering a bubble, the user is being presented with some key attributes, like
the current probability of the result tuple, the marginal rate and within which range the result
confidence could be altered by changing the probability of the investigated base tuple.

In general, we are interested in two kind of bubbles and their base tuples. Firstly, those which
have a high impact and where we have a lot of room to change the result confidence. Secondly,
those which have nearly no impact on the result. For the latter, we have to look for bubbles
being allocated very low or having a blue colour independent of their size. For the former, we
are only interested in the bubbles being high-up. However, we still have to distinguish four cases
as shown in Figure 3.2.

Light blue (+) (-)
Dark blue (-) (+)

Small (and high up) Big (and high up)

Figure 3.2: Type of impact in a positive probability change in the base tuple

The (+) symbol in Figure 3.2 describes that we can significantly increase the result confidence
by adjusting the probability of the base tuple. In contrast, the (-) symbol just describes the oppo-
site, i.e. that we can significantly decrease the result confidence. Thus, depending, whether we
are interested in increasing or decreasing the result probability, we do not only have to consider
the size of a bubble, but also its colour. A light blue but small bubble gives us a lot of room
for increasing the result probability, whereas a light blue but big small bubble only has room to
decrease it.

Apart from that, any other bubble might still be interesting as well, though we have less room
to increase or decrease the result confidence.

Example 15 Consider that we want to know how likely it is that somebody attends an event.
Under consideration of the reduction rules from section 1.2, we first have to make a join between
the relations availabilities and interests on their common key. However, this requires that we
temporarily align each relation with each other on the common key first. Having done the first
join, we continue analogously for the second join with the relation events. The corresponding
PL/pgSQL-query is as follows:

23



3 The application

1 −− How l i k e l y i s i t t h a t someone a t t e n d s an e v e n t ?
2 WITH a v a i l a b i l i t i e s J O I N i n t e r e s t s AS (
3 SELECT LINEAGE CONF f i r s t n a m e , depar tmen t , y .∗ FROM
4 ( a v a i l a b i l i t i e s ALIGN i n t e r e s t s ON p_ id = p _ i d _ f k e y ) x
5 JOIN
6 ( i n t e r e s t s ALIGN a v a i l a b i l i t i e s ON p_ id = p _ i d _ f k e y ) y
7 ON x . t s = y . t s AND x . t e = y . t e AND p_ id = p _ i d _ f k e y )
8 SELECT LINEAGE CONF f i r s t n a m e , depar tmen t , t o p i c , speaker , y . t s , y . t e FROM
9 ( a v a i l a b i l i t i e s J O I N i n t e r e s t s ALIGN e v e n t s ON i _ i d = i _ i d _ f k e y ) x

10 JOIN
11 ( e v e n t s ALIGN a v a i l a b i l i t i e s J O I N i n t e r e s t s ON i _ i d = i _ i d _ f k e y ) y
12 ON x . t s = y . t s AND x . t e = y . t e AND i _ i d = i _ i d _ f k e y ;

Given that, an extract of the result is shown in Figure 3.3, where the result tuple {Janine,
Computer Science, TPDB, Andrin, 2014-09-01, 2014-09-08, 0.342000} is being further inves-
tigated. In Figure 3.3, we can clearly identify three bubbles. Therefore, the result confidence
computation of the investigated result tuple is dependent on three different base tuples: avail-
abilities.1, events.1 and interests.1, where the name corresponds to the relation name and the id

Figure 3.3: Query example: How likely is it that someone attends an event?

24



3 The application

to an arbitrary chosen but result wide unique id.

Assuming that we are interested in having as many people possible attending an event, our
view immediately falls to the first bubble {availabilities.2}, representing base tuple {2, Janine,
Computer Science, 2014-08-26, 2014-09-08, 0.40}. The reason for this is that her bubble is high
up, small and light blue. Therefore, if we can somehow increase the chance of her availability,
currently being 40%, it significantly increases the result confidence up to a probability of 85.5%.

3.4 Lineage tree

The lineage tree is being presented on click on the corresponding button appearing together with
the bubble chart. It shows how and from which base tuples the result tuple is derived from.
Usually, each non-leaf node is the result of exactly one relational algebra operation, except
for duplicate elimination and the difference operator. For duplicate eliminating operators like
Union, Intersection or Difference, there might be also a ∨-node as a parent of multiple ∧-nodes,
supposing that there exists at least one duplicate. On the other hand, for Difference, also the ¬
nodes belong to their parent ∧-nodes.

Given that a certain node has more than three children, we only show three of them at once.
This makes it easier to understand and navigate through the tree. However, if someone wants to
explore the hidden children, he simply has to click on the yellow triangle pointing up or down.
A click on those triangles will result in the loading of the next three children in the selected
direction. Once all children are traversed, the triangle disappears and only the triangle for the
other direction remains visible.

Apart from that, the non-leaf nodes are expandable and collapsible by clicking on them. In
addition, the tree can also be enlarged and scaled down by holding the mouse pointer onto
the tree and turning the mouse wheel. Moreover, by clicking on a leaf node, the corresponding
attributes and values of the base tuple will be shown. Furthermore, a message appears describing
how many times this tuple is being present in the lineage tree. If any base tuple is more than once
present, some subtrees are depended of each other, and thus some result confidence computation
algorithms may no longer be adequate. In addition to showing a message, we also highlight and
underline all those duplicates in the lineage tree as long as their corresponding parent nodes are
fully expanded.

Example 16 Figure 3.4 shows an example of the lineage tree of the investigated result tuple in
Figure 3.3 with lineage A1 ∧ I1 ∧ E1. By expanding all nodes, we can identify three leaf nodes
and two ∧-nodes. Reconsidering our query, we know that we have made two joins. Firstly, a
join between availabilities and interests and then all together with events. By considering the
lineage tree now, we can clearly identify that those two joins have been mapped into ∧-operators
in the same way, as we formulated the query.

Given that, we can now look for any duplicates, which are obviously not present. Thus,
algorithms that are more efficient could be used to compute the result confidence for this tuple.
However, this is going beyond the scope of this thesis.

25



3 The application

Figure 3.4: Lineage tree for the 2nd result tuple of Figure 3.3

3.5 Datasets

The Datasets tab lists all datasets that can be loaded into the current workspace. It does not only
allow renewing the dataset after having altered it, but also gives a description of the relations
and tuples it contains.

On that account, we provide the following two temporal probabilistic datasets:

• Availabilities & Interests & Events
This datasets consits of four relations called Availabilities, Availabilities2, Interests and
Events:

– Availabilities
People, who are likely to be available during some specific time interval. Its at-
tributes are:

∗ p_id - the unique id of a person

∗ firstname - the first name of a person

∗ department - the department to whom someone belongs

∗ ts, te - the time interval of the availability

∗ p - the probability that somebody is available

– Availabilities2
A similar relation to Availabilities, but with less tuples

– Interests
Based on data from previous analysis, how likely is it that a person will be interested

26



3 The application

in a certain topic during a specific time interval. Its attributes are:

∗ i_id - the unique id of an interest

∗ p_id_fkey - the person which is interested in this topic

∗ topic - the topic of the interest

∗ ts, te - the time interval when somebody might be interested

∗ p - the probability that somebody is interested in this topic

– Events
Events, which might be held on a certain topic during a specific time interval. Its
attributes are:

∗ e_id - the unique id of an event

∗ i_id_fkey - the interest on which an event is hold

∗ speaker - the speaker of the event

∗ ts, te - the time interval when the event might take place

∗ p - the probability that the event will take place

By joining all three relations together on their keys and foreign keys, we can answer
questions like: "How likely is it that someone attends an event?" Another query could
be which date we shall choose if at least one person of each department shall attend it,
while we are flexible when to hold the event. Thus, this dataset is best for novices, as it
is straightforward and allows querying interesting questions. Moreover, lineage might not
necessarily be very complex.

• Duplicate paradise
This datasets consist of two relations called Students and Courses:

– Students
For each student, we list all the courses he might attended in the future. Its attributes
are:

∗ name - the name of the student

∗ course - the course name a student attends might attend

∗ ts, te - the time interval when the student wants to take the course

∗ p - the probability that the student books this course

– Courses
For each semester, we list all courses, which might be offered. Its attributes are:

∗ course - the name of the course

∗ location - the location where the course might take place

∗ ts, te - the time interval when the course might take place

27



3 The application

∗ p - the probability that the course will actually be held

As we list for each student all courses he might attend, we have a 1:N-relation. Therefore,
if we project on the students names we are left with a huge amount of duplicates. This
offers us the opportunity to execute queries that result in more complex lineage expres-
sions and therefore bigger lineage trees. Moreover, one might also try to understand the
difference between doing a projection followed by a duplicate elimination and a simple
aggregation. While the aggregation will result that lineage expressions will be concate-
nated with ∧-operators, there will be ∨-operators for projection followed by a duplicate
elimination.

Apart from that, we also provide some sample queries for those datasets, which are selectable
in the corresponding selector in the Executor tab. One can choose between a relational algebra
operator and a nested operation. If a user chooses a relational algebra operator, a query will
be chosen which maps the operator in PL/pgSQL and which is suitable for the selected dataset.
Otherwise, we show a meaningful query with nested operations or a query which results in
interesting visualisations.

The advantage of predefined queries is significant, not least because of the constraints of
sequenced semantics as well as the temporal probabilistic PL/pgSQL-keywords like LINEAGE,
CONF, NORMALIZE and ALIGN, which were introduced in the PostgreSQL-implementation
we use.

Given those predefined queries, we dis-burden the user as much as possible, such that he can
immediately focus on the results the query produces. In the event that the user has loaded his
own dataset, he can easily adapt a predefined query to his own needs, allowing for efficient and
less error-prone query writing.

Note: A temporal probabilistic query might be executable even if it is not correctly written.
The possibly most common error is that a user does not specify all necessary time adjustments
and thus violating the concept of sequenced semantics which we use. This sort of error cannot
be detected automatically, as it might be done on purpose, e.g. if a user is sure, that no time
adjustments are needed. Therefore, there will be a result in either case; however, it might be
false and not necessarily recognizable as such.

3.6 Account and Help

In the Account tab it is possible to change the password without having to do a new registration
or losing any data. Moreover, an account can be safely removed, by clicking the corresponding
button in the same tab. This however has to be reconfirmed by entering the current password of
that account, in order to prevent accidental deletion.

The Help tab lists a brief review about temporal probabilistic databases and its queries. It
contains the reduction rules, which describe how to write temporal probabilistic queries as well
as a button to restart the tour that was shown when the user first logged in to his account.

28



4 Implementation

4 Implementation

The implementation is based on the following technologies:

• HTML (Hyper Text Markup Language)
HTML defines the structure of a website by setting up elements. In addition, those ele-
ments may or may not contain any content like text for example.

• CSS (Cascading Style Sheets)
CSS defines where these elements shall be placed on the screen and what they shall look
like. In addition, definitions about whether elements shall be hidden or brought into the
front can be made.

• JavaScript (JS)
Javascript is a web language to alter elements and their content dynamically. Either by
executing local functions, or by sending and retrieving data to and from a server, which is
also known as XMLHttpRequest.

• PHP
PHP is a server-side scripting language, meaning that unlike JavaScript, it is not executed
on the clients computer, but on the server itself. Thus, it not only allows connections to
other server interfaces as a PostgreSQL-Server for example, but can also hide and store
algorithm details and credentials securely from the user.

• PostgreSQL
PostgreSQL, also known as Postgres, is an object-relational database management sys-
tem. We use it in altered version of Postges 9.2.4, which supports temporal probabilistic
databases.

• PL/pgSQL (Procedural Language/PostgreSQL Structured Query Language)
The queries are written in PL/pgSQL, a procedural language belonging to PostgreSQL.

Moreover, we make us of the following JavaScript libraries:

• jQuery
Library to easier access and modify elements; "Write less, Do More"

• DataTables
A jQuery Plugin to create flexible and interactive tables, e.g. the result table

• Data Driven Documents
Library for creating dynamic charts, e.g. the bubble chart or the lineage tree representation

• jMenu
A jQuery Plugin to generate beautiful navigation bars

• Smallipop
A jQuery Plugin to create tours, e.g. the introduction tour when a new user signs up

In general, the web application we created is rather flexible on the PostgreSQL implementa-
tion we use, meaning that the PostgreSQL implementation is exchangeable. This as most of the

29



4 Implementation

code written is independent, only the interface has its dependencies on the actual PostgreSQL
implementation. Those are:

• PL/pgSQL Synopsis
We require that the PL/pgSQL Synopsis is according to Figure 4.1.

• Lineage
We require that lineage returns a boolean expression in form of a string without white-
spaces. Moreover, each base tuple must be of the structure tableoid.oid. Furthermore, chil-
dren of boolean operators must be enclosed within parentheses and siblings of a boolean
operator must always represent the same boolean operator. Eventually, the ¬ operator
must be represented with the character −, ∧ with ∗ and ∨ with +.

Example 17 A valid string would be (30001.10001) + (30001.10002) + (30001.10003).
In contrast, 30001.10001+30001.10002∧(30001.10003) would not satisfy this condition,
as the children 30001.10001 and 30001.10002 of the ∨-operator are not enclosed within
parentheses and as ∧ is a different operator than ∨ but a sibling of him.

If those requirements are not satisfied, the interface has to be altered correspondingly.

In section 4.1, we describe the PL/pgSQL synopsis we use more thoroughly. Then, we de-
scribe what needs to be considered when setting up a server in section 4.2, before we explain how
we achieved implementing independent workspaces in section 4.3. Eventually, we describe two
of the main algorithms of our web application in section 4.4 and 4.5. For further documentation,
we refer to the source code directly.

4.1 PL/pgSQL Synopsis

An extract of the PL/pgSQL synopsis of the used PostgreSQL 9.2.4 implementations, corre-
sponds to Figure 4.1.

• LINEAGE
The keyword LINEAGE tracks from which base tuples the result tuple is derived from,
which is essential to obtain the lineage tree and compute the bubble chart.

• CONF
If the keyword CONF is specified, the confidence for all result tuples are computed. How-
ever, due to exponential complexity in the number of different base tuples from which the
result tuple was derived from, we suggest not to use it. Instead, the result confidence of a
result tuple can be compute more efficiently by clicking on a result tuple and looking up
its value in the bubble chart.

• NORMALIZE
The keyword NORMALIZE is used to execute a temporal normalization on the specified
relations. For this, we firstly specify the relation or subquery which shall be normalized
against another one. Then, secondly the keyword NORMALIZE goes, before thirdly the
relation or subquery against we do the normalization is specified. Afterwards, we de-

30



4 Implementation

fine the common attributes, which are at least always the timestamps. Finally, the whole
operation must be enclosed with parentheses and renamed with some identifier.

• ALIGN
The keyword ALIGN is used to execute a temporal alignment on the query. For this, we
firstly specify the relation or subquery which shall be aligned against another one. Then,
secondly the keyword ALIGN goes, before thirdly the relation or subquery against we do
the alignment is specified. Afterwards, we define the common attributes, which are at least
always the timestamps. Finally, the whole expression must be enclosed with parentheses
and renamed with some identifier.

1 SELECT [ALL | DISTINCT [ ON ( e x p r e s s i o n [ , . . . ] ) ] ]
2 [ [ ] | CONF | LINEAGE | LINEAGE CONF | CONF LINEAGE ] −− CONFIDENCE

COMPUTATION
3 ∗ | e x p r e s s i o n [ [ AS ] ou tpu tname ] [ , . . . ] −−SELECTION (AS DEFAULT)
4 [ FROM
5 [ −− NORMALIZATION
6 ( f rom_i tem1 NORMALIZE from_i tem2 ON
7 f rom_i tem1 . t s = f rom_i tem2 . t s AND from_i tem1 . t e = f rom_i tem2 . t e [

AND . . . ] ) renamed_i tem
8 ] | [ −− ALIGNMENT
9 ( f rom_i tem1 ALIGN from_i tem2 ON

10 f rom_i tem1 . t s = f rom_i tem2 . t s AND from_i tem1 . t e = f rom_i tem2 . t e [
AND . . . ] ) renamed_i tem

11 ] | [ −− NO TEMPORAL OPERATION (AS DEFAULT)
12 f rom_i tem
13 ]
14 [ , . . . ]
15 ]
16 [ WHERE c o n d i t i o n ]
17 . . .

Figure 4.1: PL/pgSQL Synopsis

4.2 Server setup

First of all, a web server had to be established, such that people could use the website after its
release. Moreover, the web server had to allow the installation of a specifically modified version
of PostgreSQL, a well-known object-relational database management system (ORDBMS). This
was required, as temporal probabilistic databases are not yet part of the current PostgreSQL
release. Thus, the setup of a web server with web languages and scripts like PHP for server-side
processing, HTML, JavaScript and CSS for client-side processing. In addition, the installation of
a PostgreSQL-Version with temporal probabilistic database support developed at the Department
of Informatics at the University of Zurich was indisputable.

By default, a website with PHP, HTML, JavaScript and CSS can be run as soon as the server
is configured as a webserver and the installation of PHP is completed. Yet, Linux servers do
not allow for any kind of connection to any PostgreSQL-Server on the same server by default.

31



4 Implementation

According to questions and answers found online, this is due to a bug in the Linux kernel se-
curity module called Security-Enhanced Linux or short SELinux. The only solution found to
overcome this problem was the disabling of this feature (SELinux). Thereupon, connections
to the PostgreSQL-Server could be made without any problems after having set the settings in
the postgresql.conf file. In this file, specifications about who is allowed, e.g. users of the same
network, to establish a connection of which type, e.g. only with login and password, to the
PostgreSQL-Server.

4.3 Independent workspaces

As described in section 3.1, our application features independent workspaces. This does not only
allow a user to store safety-critical data, but this approach is also more secure against malicious
attacks, which could be executed by sending scripts through a query.

In terms of implementation, this is achieved by creating a new login role on the PostgreSQL-
server on registration. By default, those login roles are unique and have no permission to create
or amend further roles, databases, replications or PostgreSQL-settings. Thus, a user can only
create, access and modify the relations, functions and tuples the user creates himself.

Apart from creating a login role for each user, the registration script also creates a unique
database for it. This does not only improve the general overview for an administrator to see
which data belongs to whom, but users are also less restricted by the names they choose for their
functions and relations. Therefore, it cannot occur that another user already blocks a certain
relation name, as each user works on his own database.

4.4 Result table

Assuming that the keyword LINEAGE is specified in the query, a summarized extract of the
algorithm which creates the result table is shown in Figure 4.2. Firstly, the query must be written
or selected, before it can be sent to the server. There, we connect to the PostgreSQL database
and store the query in the database, before we actually execute the query itself. We then process
the process the result before we send it back to the client, where we finally set up the DataTable.

In order to create a DataTable with the DataTables-library, we either need the table content
as a JSON-object or an HTML table. As we do not need to make further computations with the
result table itself apart from reading out lineage, we decided to parse the query result into an
HTML table, which will be transmitted as a string to the client’s computer. As a rule of thumb,
the same content can be more efficiently transmitted between a server and a client if it is a string
rather than a JSON-object due to its size. On the other hand, JSON-objects are very handy, if
further computation needs to be made, as they allow for easy access and modifications of their
attributes and values. Therefore, given that the DataTables-library supports both approaches,
we retrieve the result as an HTML table in order to decrease the amount of data that has to be
transmitted and thus time.

32



4 Implementation

Figure 4.2: Algorithm to create the result table

33



4 Implementation

In the same go, we also retrieve the base tuples as JSON-objects, as we will need them for
several occasions:

• In order to compute the range and marginal rates for the bubble chart

• In the bubble chart, when a user clicks on a bubble

• In the lineage tree, when a user clicks on a leaf node

Therefore, instead of connecting to the server, re-querying a base tuple and retrieve the result,
we just query all base tuples at once, as we need them all either way, in order to create the bubble
chart.

The most efficient approach we have found for this was to parse the lineage expression of
every result tuple when parsing it into the HTML table. By analysing the lineage expression, we
looked for each base tuple that we found whether it was already stored in our previously created
hash map or not. If not, we queried its attributes and values and added it to the hash map.
Once having analysed all lineage expressions, we encoded the hash map into a JSON-object and
returned it together with the HTML table to the client.

4.5 Visualisation

Assuming that the keyword LINEAGE is specified in the query, result tuples can be further
investigated by clicking on them. The creation of the bubble chart as well as the lineage tree is
summarized in Figure 4.3.

In order to create a lineage tree using the Data-Driven Documents-library, we need to have
the Boolean expression (lineage) in form of a JSON-object. For this, we gather for each result
tuple the lineage string, which is currently being stored in a hidden column of the displayed
DataTable.

The implementation is a recursive function that takes as input a Boolean expression in form of
a string and returns a JSON object. However, it remains to note that there are several constraints
on the representation of lineage. First of all, all constraints mentioned in the introduction to this
section still apply. They are:

• Each child of a Boolean operator must be within parentheses

• No white-spaces

• Siblings may not represent another boolean operator

• ¬ is represented by −, ∧ by ∗ and ∨ by +

In addition to those constraints, each base tuple must be followed by the character ’;’. In
order to guarantee those constraints, we already made some slight changes to the lineage string
we receive from the PostgreSQL-server when having parsed it into the resulting HTML table.
The benefits of these constraints are that we can parse lineage writing less complex and thus
more maintainable source code.

34



4 Implementation

Figure 4.3: Algorithm which creates the bubble chart and the lineage tree

35



4 Implementation

Example 18 A string according to "(A.1;)+(A.2;)+(A.3;)" would be valid, while "A.1;+A.2;*(A.3;)"
is invalid due to lacking parentheses and siblings which represent a different Boolean operator.

In detail, we analyse each character of the string. If it is an opening parenthesis, we look for
its corresponding closing parentheses and recursively call the function on their content. In this
case, we will store its result as a child of the current node of the JSON-object. However, if the
character represents a Boolean operator, we set the name of the current node of the JSON-object
to its symbol. Otherwise, if it is the first character of a base tuple, we create a child of the current
node of the JSON-object and set its name to the name of the base tuple reference. The creation
of a child for a base tuple is essential, as we otherwise might overwrite the name of an operator.

Example 19 Consider that the algorithm would not create a new child for a base tuple. Then,
parsing lineage "A.1;+A.2;" would result in setting the name of the corresponding node object
first to A.1, before it will be overwritten with + and eventually set to A.2.

Once having parsed the whole (sub)string, we look whether we created any children for the
current node. If so, we investigate whether there are more children than we specified in the
threshold, currently being set to 3. If this is the case, too, we add any but three children to one of
the two further array objects, which are annotated to the current node in the JSON-object. Their
function is to hide any child of a node going beyond the threshold, such that the tree remains
straightforward and navigable. In detail, a node will be annotated with at least one triangle,
whenever not all children will be displayed in the lineage tree. By clicking on it, the previous or
next children will be loaded, whereas the children that disappear will be added to one of the two
object arrays we just mentioned before, depending in which direction the user loaded further
children.

Apart from that, we also translate the +, ∗ and − operands back to ∨, ∧ and ¬, but represent
them in the HTML format. Moreover, we add an attribute pos to a node, such that we can keep
track at which child index we are, when traversing the children from one array into another.

Example 20 Consider lineage "((A.1;)+(A.2;+(A.3;)+(A.4;))*(B.1;)". Then, the corresponding
JSON-object is as shown in Figure 4.4.

The children of the "*" operand are "(B.1;)" and "((A.1;)+(A.2;+(A.3;)+(A.4;))". Thus, we
set the name of the root node to ’&and;’, before recursively analysing its children. For child
"((A.1;)+(A.2;+(A.3;)+(A.4;))", the operands are "+", thus we assign ’&or;’ as the name of
this child node. Then, by temporarily storing the four children A.1, A.2, A.3 and A.4., we find
out that we have more than 3 children. Thus, one child is added to the ’hiddenBelow’ array. The
other array remains empty and the variable ’pos’ will be initialised to 0. Afterwards, we do the
same for the other child "(B.1;)" of the root node.

Given that, we are now able to draw the lineage tree using the Data-Driven Documents-library.
Moreover, by analysing how many different base tuples we have in the current lineage, we can
make an estimation how long it will take to create the truth table and thus the bubble chart.

36



4 Implementation

1 {
2 " name " : "&and ; " ,
3 " c h i l d r e n " :
4 [
5 {
6 " name " : "&or ; " ,
7 " c h i l d r e n " :
8 [
9 { " name " : "A. 1 " } ,

10 { " name " : "A. 2 " } ,
11 { " name " : "A. 3 " }
12 ] ,
13 " hiddenAbove " : [ ] ,
14 " hiddenBelow " :
15 [
16 { " name " : "A. 4 " }
17 ] ,
18 " pos " : 0
19 } ,
20 { " name " : "B. 1 " }
21 ] ,
22 " hiddenAbove " : [ ] ,
23 " hiddenBelow " : [ ] ,
24 " pos " : 0
25 }

Figure 4.4: JSON-object equivalent to "((A.1;)+(A.2;+(A.3;)+(A.4;))*(B.1;)"

If there are less than 13 different base tuples present or if the user wants to compute the
bubble chart either way, we create a truth table according to section 2.1. In this regard, as we
have lineage now as a JSON-object, we are able to evaluate a set of Boolean values for the
JSON-object more efficiently. This as we do not necessarily need to explore each child of the
JSON-object. For example, if a node of the JSON-object represents an ∧-operator and if the
first child evaluates to false, it does not matter to what the other children would evaluate, as the
corresponding node will evaluate to false anyway. Similarly for the ∨-operator, where we only
need at least one child which evaluates to true.

This is a major improvement to the PostgreSQL implementation we use, as we will see in
Figure 5.1 in section 5.1. In fact, since the version on which we enhanced PostgreSQL with
the support for temporal probabilistic databases did not support JSON-objects or something
similar to it, the evaluation must be done by transforming lineage into a postfix notation. This
in return means that we cannot leave out some children as in the JSON-object in order to get
a correct result. Apart from that, due to the lack of accessing an element at a certain position
in an array directly, further iterations need to be made, which all significantly increases the
runtime. Therefore, we propose to avoid the keyword CONF in queries that generate large
lineage expressions, as the result confidence can be computed more efficiently by clicking on
a result tuple afterwards. Moreover, by computing the result confidence afterwards we do not
need to make it for all result tuples together, but only for the investigated one.

37



4 Implementation

Given the truth table, we proceed with the confidence computation similarly to 2.2. However,
we merge it together with the marginal rate and range computation as discussed in section 2.3
in order to avoid further overhead. In detail, we iterate over each base tuple and override its
probability with zero and one respectively in order to get the first and second boundary. Then,
by further calculations according to section 2.3, we eventually can compute everything we need
in order to create the bubble chart using the Data-Driven Documents-library again.

38



5 Evaluation and Future Work

5 Evaluation and Future Work

In section 5.1, we make a detailed runtime evaluation, while we draw concrete conclusions and
propose ideas for future work in section 5.2.

5.1 Detailed runtime evaluation

Reconsidering section 4.4 and 4.5, our implementation consist of two main algorithms: One that
computes the result table with its lineage and another that creates the visualisation of a result
tuple.

Previous analysis have shown that the performance of the result confidence computation can
be vastly improved by using another algorithm than creating and evaluating a truth table. How-
ever, the given PostgreSQL-implementation did not feature those improved algorithms at this
stage. Apart from that, there is further overhead when executing a query as we have discussed
in section 4.4.

Earlier evaluations have shown that the runtime of a query on a PostgreSQL server depends
on the number of input tuples as well as the operations it contains. However, since our visuali-
sation is made on demand per result tuple, we would rather look on the complexity of a lineage
expression than on the number of input tuples. The reason being that many input tuples do not
necessarily imply complex lineage expression. For example, a selection will produce many re-
sult tuples with simple lineages, whereas a duplicate elimination will produce few result tuples
with complex lineages.

In general, the duration of the result confidence computation can be measured in the number
of different base tuples the corresponding lineage expression contains. While the length of the
lineage expression has an impact on the runtime too, a natural language query is likely to have its
bottleneck in the number of different base tuples per lineage expression, due to the exponential
algorithm.

Indeed, by looking at Figure 5.1, we can clearly identify that the bubble chart generation as
well as the result confidence computation within a query is exponential. Unfortunately, already
10 or more different base tuples in a lineage expression might significantly increase the execu-
tion time for both the query execution and the bubble chart generation. Such an event is likely
to occur when using duplicate elimination over many duplicates for example or an aggregation
that aggregates many tuples together. Under some circumstances, the difference and intersec-
tion operators might produce this dilemma as well given that the relations consit of numerous
duplicates.

In Figure 5.1, we see that the keyword LINEAGE has nearly no impact on the execution time
of a query. This as we do not need to create any time-consuming truth table. However, this
is only true in the case that each base tuple occurs only exactly once in a lineage expression.
Given that a base tuple might be present more than once, the lineage expression gets longer
and more characters have to be transmitted from the server back to the client. In general, the
more characters we have to transmit, which might be due to long lineage expressions, many

39



5 Evaluation and Future Work

1 5 10 15 19

0
5

10

25

55

80

120

# of different base tuples in the lineage expression of the result tuple

ru
nt

im
e

pe
rr

es
ul

tt
up

le
[s

ec
]

LINEAGE
CONF

Bubble chart

Figure 5.1: Minimum runtime per result tuple

result columns or many result tuples, the longer it takes to receive the result and to generate the
DataTable. Thus, apart from choosing a data type which represents as much with as few bytes
as possible, we cannot really omit anything. However, research could be done how to rewrite
the Boolean expression of rewrite into a shorter format.

It remains to explain why the result confidence computation per result tuple on the Post-
greSQL server is worse than when generating a bubble chart and why this algorithm is imple-
mented twice. First of all, reasoning why the algorithm in our web application is quicker al-
though being of the same kind has already been described extensively in section 4.5. Secondly,
the algorithm is implemented twice, because the result confidence and the lineage expression
is not sufficient to compute the marginal rate of each base tuple on the corresponding result tu-
ple. Therefore, since the PostgreSQL implementation is not yet extended with the calculation
of those properties, we need to recreate the truth table and evaluate it. However, it remains
questionable whether the implementation of these calculations in PostgreSQL would actually be
aspiring, even if the implementation would be updated to a newer version where JSON-objects
are supported. This in regard to an approach to compute the impact of a probability change in
the focused tuple on all instead of only the corresponding result tuple.

40



5 Evaluation and Future Work

Reconsidering Figure 5.1, it remains to note that creation time of the lineage tree is tremen-
dously fast. Even if the lineage tree consists of 1000 children or more, it is being generated
within less than a second. This as we do not have any result confidence computation overhead
and so on. That is also the reason why we are able to show the lineage tree at any time, even if
the bubble chart generation would take too long.

5.2 Conclusion and Future Work

Our web application allows to represent any natural language query in PL/pgSQL and the exe-
cution of it. The result can easily be further investigated and understood due to the interactive
result table, the bubble chart and the lineage tree visualisation. Given the predefined datasets and
queries, the application also suits to less experienced users and users who want to enhance their
understanding of lineage and the impact of the probability of a base tuple on the corresponding
result tuple. This however might be improved in the way that we not only compute how the con-
fidence of the corresponding result tuple could be changed, but how it affects the confidences of
all other result tuples, which were derived from the focused tuple as well.

A further advantage of our application is that result confidences can be computed on a per
result tuple basis, which means that the keyword CONF must not be specified unless an overview
over the result confidences over all result tuples is wished. Furthermore, our visualisations
also handle large lineage expressions without any problem. No matter how many distinct base
tuples there are and how long lineage is, we are able to compute the visualisation of the lineage
tree efficiently, which itself remains straightforward and navigable due to the collapsible and
expandable nodes. Moreover, using a threshold of three children per node, we guarantee that a
node expansion will not result in a chaos nobody can understand.

Assuming that a lineage contains many different base tuples a warning will be shown about
how long it might approximately take to compute the bubble chart on a normal computer. There-
upon the user can either accept or deny the computation. Thus, we avoid that the browser of the
user unintentionally gets stuck during the computation of the bubble chart.

Apart from implementing more efficient algorithms to compute exact or approximate result
confidence computation algorithms, an interesting feature would be a mask, where user can write
their query by clicking on relations and relational algebra operators, without having to actually
think how to map that into PL/pgSQL.

41



References

References

[1] Anton Dignös, Michael H Böhlen, and Johann Gamper. Temporal alignment. In ACM
SIGMOD 2012 international conference on Management of Data, SIGMOD ’12, pages 433–
444, New York, NY, USA, MAY 2012. ACM.

[2] Robert Fink, Dan Olteanu, and Swaroop Rath. Providing support for full relational algebra
in probabilistic databases. In Proceedings of the 2011 IEEE 27th International Conference
on Data Engineering, ICDE ’11, pages 315–326, Washington, DC, USA, 2011. IEEE Com-
puter Society.

[3] Anish Das Sarma, Martin Theobald, and Jennifer Widom. Exploiting lineage for confidence
computation in uncertain and probabilistic databases. Technical Report 2007-15, Stanford
InfoLab, March 2007.

42


	Introduction
	Temporal Probabilistic Databases
	Temporal operators
	Reduction Rules
	Selection and Projection
	Join operators
	Set operators


	Confidence and Effect Computation
	Reduced truth table of a boolean expression
	Confidence computation
	Impact of the probability of a base tuple on a specific result tuple

	The application
	Independent workspaces
	Executor
	Bubble chart
	Lineage tree
	Datasets
	Account and Help

	Implementation
	PL/pgSQL Synopsis
	Server setup
	Independent workspaces
	Result table
	Visualisation

	Evaluation and Future Work
	Detailed runtime evaluation
	Conclusion and Future Work

	References

