
The aggregate and buffer effect in
the Robust Nearest Neighbor Join
operator

Facharbeit im Fach Informatik,
vorgelegt von
Urs Vögeli, Rümlang, Zürich, Schweiz
Matrikelnummer 09-704-404

Angefertigt am
Institut für Informatik
der Universitt Zürich
Prof. Dr. M. Böhlen

Betreuer: Francesco Cafagna
Abgabe der Arbeit: 03.04.2014

1

Contents

1. Introduction 2
2. Problem Definition And Preliminaries 2
2.1. Preliminaries 3
3. Algorithm 3
3.1. Initialization 3
3.2. Next Outer 3
3.3. Next Inner 4
3.4. Join Tuples 5
4. Implementation 6
4.1. gram.y 6
4.2. execProcnode.c 7
4.3. parse clause.c 8
4.4. nodeRNNJwoAGG.c 10
5. Implementation with backtracking 15
5.1. Initialize 16
5.2. Next Inner 17
5.3. Join Tuples 18
5.4. Next Outer 19
6. Manual 20
6.1. Requirements 20
6.2. Compilation and installation 21
6.3. Debugging 21
7. Example queries 21
8. Experiments 23
8.1. No aggregation 23
8.2. Aggregation 24
9. Conclusion 25

2

1. Introduction

In this report we will have a look at the robust nearest neighbor join. Given an outer
table r[G,T,E] and an inner table s[G,T,E,M], the rnn-join operator computes
an equijoin on E and a nearest neighbor join on T for the tuples of the outer table
without an equijoin match. In the case of a nearest neighbor join the aggregation
function Φ aggregates multiple nearest neighbors. The goal of this report is to build
an extension to the RNNJ operator that does not aggregate the attribute M for the
nearest neighbor join but returns tuples with the M value of every nearest neighbor
of the outer tuple. This extension was implemented in the kernel of PostgreSQL
and we are now able to query the server as follows:

SELECT *

FROM R RNNJ S EQUAL ON E NN BY G USING T [AGG M]

Where the omission of AGG M results in the output not being aggregated. We will
introduce two ways of implementing the rnn-join without aggregation, one is an
implementation with the use of buffers and nearest neighbor sets and the other is
an implementation with the use of backtracking and without the use of any buffers
and nearest neighbor sets. In the introduction of the first implementation we will
give an overview of the algorithm with the help of pseudocode and will show how
it was implemented in the kernel of PostgreSQL in the C programming language.
In the description of the implementation with backtracking we will focus on the
algorithm that was used to realize it and explain it with a running example. We
then give an overview of how to compile, install and debug PostgreSQL on the
Ubuntu operating system and rum some experiments.

2. Problem Definition And Preliminaries

Definition 1. Given an outer relation r of schema R = [E,G, T] and an inner
relation s of schema S = [E,G, T,M] the rnn-join operator is defined as follows:

r
NN(T),Φ

./
EQ(E)

s =

r ./E,G s ∪ ((rBE,G s)
NN(T)
./G s), if Φ = ∅.

s.∗ϑΦ(s.M)(r ./E,G s ∪ ((rBE,G s)
NN(T)
./G s)), otherwise.

where ./E,G is th equijoin operator on E and G, BE,G the antijoin operator on E

and G, ϑ the aggregation operator and
NN(T)
./G is the nearest neighbor operator on T

with group G.

The following definitions will be used in the pseudocode of the next chapters:

Definition 2. Given a tuple of the outer relation r and a tuple of the inner relation
s we define the temporal distance d(r, s) as follows:

d(r, s) = |r.T − s.T |

Definition 3. Given a tuple of the outer relation r and a tuple of the inner relation
s we define the combination r ◦ s as a copy of s with the values of r in E, G and T
for the RNNJ with Φ = avg or as a tuple with the E,G and T values of r and the
E,G,T and M values of s for the RNNJ with Φ = ∅.

3

2.1. Preliminaries. In order for the algorithm to work, we have to set some con-
ditions on the two relations. They have to be sorted by (G,T,E) where G and T
are the group and the distance attribute in the nearest neighbor join and E is used
for the equijoin. Given ri ∈ r, sorting the two input relations by (G,T,E) ensures
that:

• all tuples s ∈ s with s.G = ri.G will be adjacent elements in s
• all nearest neighbors on T of ri will be adjacent elements in s
• if an equijoin match for ri on E exists, then the tuple is also a nearest

neighbor on T for ri
• the nearest neighbor on T of ri+1 will always be at the same or at a position

following those of ri

3. Algorithm

The algorithm has been implemented inside the kernel of PostgreSQL. The algo-
rithm is split in four main states which we will describe in the following sections.

3.1. Initialization. We start the scan of the two relations by initializing r with
the first r tuple and sp, sc, sn with the first s tuple. The algorithm will set, during
its iterations, sc to the current s tuple, sp to the last fetched tuple with previous T
value, and sn to the next s tuple. Nearest neighbor sets NL and N store respectively
all outer tuples with T = sc.T and G = sc.G and all tuples with T ∈ {sp.T, sc.T}
and G = sc.G.

State 1: Initialize

1begin
2r ←− fetchRow(r)

3sc ←− fetchRow(s)

4sn ←− sc
5sp ←− sc
6N ←− ∅
7NL ←− ∅
8Go to NextOuter

9end

3.2. Next Outer. In this state we scan the outer relation r until an equijoin match
on E is found for sc: since the tuples are sorted, we can predict that the outer tuple
(if any) holding the equality on E with sc can only be r or a tuple following r. There
are three possible cases where the next outer tuple must be fetched:

(1) An equijoin match for sc exists, therefore we scan r until the equijoin match
is found.

(2) An equijoin match does not exist and all tuples for which sc is a nearest
neighbor must be fetched.

(3) If r has a smaller G than sc, then no equijoin or nearest neighbor join
matches exist for r (since the join matches must belong to the same group
G), therefore we keep on scanning r.

4

If there is equality we produce an output tuple (line 3-5), otherwise we add r to
the buffer Br, which is a small sized buffer storing all and only all outer tuples for
which sc is a nearest neighbor (line 7).

State 2: NextOuter

1begin
2while

(r.G = sc.G∧(

1︷ ︸︸ ︷
(r.T ≤ sc.T ∧ r.E ≤ sc.E)∨

2︷ ︸︸ ︷
d(r, sc) < d(r, sn)))∨

3︷ ︸︸ ︷
r.G < sc.G

do
3if r.G = sc.G then
4if r.E = sc.E then
5z ←− z ∪ (r ◦ sc.M)

6else
7append(Br, r)

8r ←− fetchRow(r)

9Go to JoinTuples

3.3. Next Inner. In this state we initially set/reset the nearest neighbor sets (lines
3-9), then we fetch a new inner tuple (lines 10-11). The local nearest neighbor set
NL stores the local nearest neighbors, i.e. the set of all inner tuples with T = sc.T ,
therefore it is reset if and only if the next inner tuple sn has a different T value
than sc (line 3). The nearest neighbor set N stores the global nearest neighbors,
i.e. the set of all inner tuples in s with T ∈ {sc.T, sn.T}, therefore if sn is closer to
r than sc it is reset otherwise it is set to the old local nearest neighbor set in order
to contain all the nearest neighbors of r with T = r.T − ∆T and T = r.T + ∆T
(line 5). The sets are then updated with the new inner tuple (lines 12-13).

5

State 3: NextInner

1begin
2if !Null(sn) then
3if sc.T 6= sn.T ∨ sc.G < sn.G then
4if d(r, sc) = d(r, sn) ∧ sn.G = sc.G then
5N ←− NL

6else
7N ←− ∅
8sp ←− sc
9NL ←− ∅

10sc ←− sn
11sn ←− fetchRow(s)

12append(N, sc)

13append(NL, sc)

14if !Null(r) then
15Go to NextOuter

16else
17Go to JoinTuples

3.4. Join Tuples. In this state we join each tuple br in the buffer Br with the
set of all its nearest neighbors. The buffer is scanned and, for each element br, if
its distance to sn is greater than the one to sc then we are sure that no nearest
neighbour for br exists any more: output tuples are produced and br is removed
from the buffer (lines 5-13). The set NL is used when the nearest neighbors of r
have all the same timestamp (lines 10-12) and N is used when r has two nearest
neighbours: one for r.T −∆T and one for r.T + ∆T (lines 6-8).
The algorithm ends in the state Join Tuples when no outer tuple to process are left.

6

State 4: JoinTuples

1begin
2br ←− first from Br

3while !Null(br) do
4if Null(sn) ∨ d(br, sn) < d(br, sc) ∨ (br.G = sc.G ∧ br.G 6= sn.G) then
5if d(br, sp) = d(br, sc) ∧ sp.G = sc.G then
6tem ←− first from N

7while !Null(tem) do
8z ←− z ∪ br◦ tem

9else
10tem ←− first from NL

11while !Null(tem) do
12z ←− z ∪ br◦ tem

13remove br from Br

14br ←− next from Br

15if !Null(r) ∨ len(Br) > 0 then
16Go to NextInner

4. Implementation

In this chapter we will show the most important steps taken to implement the
algorithm presented in the last chapter.

4.1. gram.y . The first file to alter was /src/backend/parser/gram.y, which is where
one defines grammar rules for queries on a PostgreSQL server. We had to define the
syntax for a query using the RNNJ operator so we could query it on a PostgreSQL
server as:

SELECT *

FROM R RNNJ S EQUAL ON E NN BY G USING T [AGG M]

We therefore set the boolean aggOff to FALSE if we want to aggregate the result
and to TRUE if we do not. The variable aggOff was defined in /src/include/n-
odes/primnodes.h, where definitions for primitive node types are made. The first
19 lines of the snippet code from gram.y show the syntax for the RNNJ with
Φ = avg with aggOff being set to false on line 16. The second part of the snippet
shows the syntax for the RNNJ with Φ = ∅ with aggOff being set to true on line 331.

1 . . .
t a b l e r e f RNNJ t a b l e r e f EQUAL ON name l i s t NN BY name l i s t USING

name AGG name // query pattern

3 {
JoinExpr ∗n = makeNode(JoinExpr) ;

5 n−>j o i n type = JOIN LEFT ;
n−>l a r g = $1 ;

7 n−>rarg = $3 ;

n−>equalOnClause = $6 ;
9 n−>nnByClause = $9 ;

n−>us ingClause = l i s t make1 (makeString ($11)) ;

7

11 n−>aggClause = l i s t make1 (makeString ($13)) ;
n−>a l i a s = NULL;

13 n−>qua l s = NULL;
. . .

15 n−>pos M=−1;
n−>aggOff=FALSE;

17 $$ = (Node ∗) n ;
}

19 | t a b l e r e f RNNJ t a b l e r e f EQUAL ON name l i s t NN BY
name l i s t USING name

{
21 JoinExpr ∗n = makeNode(JoinExpr) ;

n−>j o i n type = JOIN LEFT ;
23 n−>l a r g = $1 ;

n−>rarg = $3 ;

25 n−>equalOnClause = $6 ;
n−>nnByClause = $9 ;

27 n−>us ingClause = l i s t make1 (makeString ($11)) ;
n−>aggClause = NIL ;

29 . . .
n−>aggOff=TRUE;

31 $$ = (Node ∗) n ;

}
33 . . .

Listing 1. The altered part of gram.y

4.2. execProcnode.c. The next file to discuss is /src/backend/executor/execProc-
node.c, which contains dispatch functions which call the appropriate ”initialize”
(ExecInitNode), ”get a tuple” (ExecProcNode), and ”cleanup” (ExecEndNode)
routines for a given node type (e.g. ExecInitIndexScan for an index scan or
ExecEndSeqScan for a sequential scan). In the case of the RNNJ operator we tell the
program to execute the function ExecInitRNNJoinWoAgg (lines 2-22), ExecRNNJoinWoAgg
(lines 23-38) and ExecEndRNNJoinWoAgg (lines 39-48)from the file /src/backend/ex-
ecutor/nodeRNNJwoAGG.c if we do not want to aggregate. The value of aggOff

is transferred here from the primnodes.h file via the following files:

• /src/include/nodes/relation.h (contains definitions for planner’s internal
data structures) through /src/backend/optimizer/plan/initsplan.c (contains
target lists, qualifications and joininfo initialization routines)
• /src/include/nodes/plannodes.h (contains definitions for query plan nodes)

through /src/backend/optimizer/plan/createplan.c (contains routines to cre-
ate the desired plan for processing a query.)

1 . . .
PlanState ∗

3 ExecInitNode (Plan ∗node , EState ∗ e s ta t e , i n t e f l a g s)

{
5 . . .

switch (nodeTag (node))
7 {

. . .

9 // j o i n nodes
. . .

11 case T MergeJoin :

8

i f ((((MergeJoin ∗) node)−>sample pos oute r) && (((MergeJoin ∗)
node)−>aggOff))

13 r e s u l t = (PlanState ∗) ExecInitRNNJoinWoAgg ((MergeJoin ∗) node ,
e s ta t e , e f l a g s) ;

15 e l s e i f (((MergeJoin ∗) node)−>sample pos oute r)

r e s u l t = (PlanState ∗) ExecInitRNNJoin ((MergeJoin ∗) node ,
17 e s ta t e , e f l a g s) ;

e l s e

19 r e s u l t = (PlanState ∗) ExecInitMergeJoin ((MergeJoin ∗) node ,
e s ta t e , e f l a g s) ;

21 break ;
. . .

23 TupleTableSlot ∗
ExecProcNode (PlanState ∗node)

25 {
. . .

27 switch (nodeTag (node))
{

29 . . .

case T RNNJoinState :
31 i f (((RNNJoinState ∗) node)−>aggOff) {

r e s u l t = ExecRNNJoinWoAgg ((RNNJoinState ∗) node) ;

33 }
e l s e {

35 r e s u l t = ExecRNNJoin ((RNNJoinState ∗) node) ;
}

37 break ;

. . .
39 void

ExecEndNode (PlanState ∗node)
41 {

. . .
43 case T RNNJoinState :

i f (((MergeJoin ∗) node)−>aggOff)
45 ExecEndRNNJoinWoAgg ((RNNJoinState ∗) node) ;

e l s e
47 ExecEndRNNJoin ((RNJoinState ∗) node) ;

break ;
49 . . .

Listing 2. The altered part of execProcnode.c

4.3. parse clause.c. In /src/backend/parser/parse clause.c, which handles SQL
clauses in the parser, we find the positions of G (j->usingClause), T (j->nnByClause)
and E (j->equalOnClause) in the schemas of the outer and the inner tables.

1 . . .

/∗ get p o s i t i o n o f T in inner and outer input ∗/
3 i f (j−>nnByClause)

{
5 L i s t ∗ uco l s = j−>nnByClause ;

L i s tC e l l ∗ uco l ;
7 f o r each (ucol , u co l s)

{
9 char ∗u colname = st rVa l (l f i r s t (uco l)) ;

L i s tC e l l ∗ c o l ;
11 i n t ndx ;

i n t l i n d e x = −1;

9

13 i n t r i ndex = −1;
Var ∗ l c o l v a r ,

15 ∗ r c o l v a r ;
f o r each (co l , r e s co lnames)

17 {
char ∗ res co lname = st rVa l (l f i r s t (c o l)) ;

19 . . .
/∗ Find i t in l e f t input ∗/

21 ndx = 0 ;
f o r each (co l , l co lnames)

23 {
char ∗ l co lname = st rVa l (l f i r s t (c o l)) ;

25 i f (strcmp (l colname , u colname) == 0)
{

27 . . .

l i n d e x = ndx ;
29 j−>group pos oute r=lappend in t (j−>group pos outer , l i n d e x

+1) ;
}

31 ndx++;
}

33 . . .

/∗ Find i t in r i g h t input same as l i n e s s−d with r co lnames
and r index ∗/

35 . . .
l c o l v a r = l i s t n t h (l c o l v a r s , l i n d e x) ;

37 l u s i n g v a r s = lappend (l u s i ngva r s , l c o l v a r) ;

r c o l v a r = l i s t n t h (r c o l v a r s , r i ndex) ;
39 r u s i n gva r s = lappend (r u s ingva r s , r c o l v a r) ;

41 r e s co lnames = lappend (res co lnames , l f i r s t (uco l)) ;
r e s c o l v a r s = lappend (r e s c o l v a r s ,

43 buildMergedJoinVar (pstate ,

j−>j o intype ,
45 l c o l v a r ,

r c o l v a r)) ;
47 }

/∗ r epeat f o r G and E ∗/
49 . . .

Listing 3. The altered part of parse clause.c (part 1)

Then we decide how we want to print the output tuples: if aggOff is true (i.e.
RNNJ with Φ = ∅) we print the G, T and E values of the inner and the outer
tuples (lines 3-10), else we only print G, T and E of the outer tuple because we
aggregated the M value and do not have a unique value for the T and E entries
(line 11-21) .

1

. . .

3 i f (j−>aggOff) { // d i sp l ay G,T and E o f f both r e l a t i o n s
i f (j−>a l i a s)

5 {
∗namespace = l i s t make1 (makeDefaultNSItem (r t e)) ;

7 l i s t f r e e (my relnamespace) ;

}
9 e l s e

∗namespace = my relnamespace ;

10

11 } e l s e { // d i sp l ay G,T and E o f f outer r e l a t i o n s
i f (j−>a l i a s != NULL)

13 my relnamespace = NIL ;
e l s e

15 setNamespaceColumnVis ib i l i ty (my relnamespace , f a l s e) ;

∗namespace = lappend (my relnamespace ,
17 makeNamespaceItem (rte ,

(j−>a l i a s != NULL) ,

19 true ,
f a l s e ,

21 t rue)) ;
}

Listing 4. The altered part of parse clause.c (part 2)

4.4. nodeRNNJwoAGG.c. This is the file where we implement the algorithm.
We describe the code by looking at the different states and how we implemented
them.

4.4.1. Initialize. The initialization is split in two states: one is initialize outer und
one is initialize inner. In the initialize outer state we set the current outer tuple
(node->mj OuterTupleSlot, line 4) and then go to the initialize inner state where
we set the current inner (node->mj CurrInnerTupleSlot, line 11), the previous
inner (node->mj PrevInnerTupleSlot, line 12-13) and the next inner tuple slot
(node->mj InnerTupleSlot, line 14). We also initialize the nearest neighbor sets
(node->NNSet, node->localNNSet, lines 17-18).

case EXEC MJ INITIALIZE OUTER :

2

outerTupleS lot = ExecProcNode (outerPlan) ;
4 node−>mj OuterTupleSlot = outerTupleS lot ;

node−>mj Jo inState = EXEC MJ INITIALIZE INNER ;
6 break ;

8 case EXEC MJ INITIALIZE INNER :

10 i nnerTup leS lo t = ExecProcNode (innerPlan) ;

ExecCopySlot (node−>mj CurrInnerTupleSlot , innerTup leS lo t) ;
12 ExecCopySlot (node−>mj PrevInnerTupleSlot ,

node−>mj CurrInnerTupleSlot) ;

14 node−>mj InnerTupleS lot = innerTup leS lo t ;

16 i f (! TupIsNull (node−>mj CurrInnerTupleSlot)) {
node−>NNSet=NIL ;

18 node−>localNNSet=NIL ;

}
20 node−>mj Jo inState = EXECMJNEXTOUTER;

break ;

Listing 5. The initialize part of nodeNNJwoAGG.c

4.4.2. Next Outer. In this state we first return a tuple if there exists an equijoin
on G and E as in line 7 of State 2. We do this with the help of the function
ExecProject, which stores a tuple in a specified tuple table slot (lines 4-24). On
lines 14 and 15 we get the tuples for the join and on line 17 we then create the
join based upon the schema we decided on in the parse clause.c file. We then get

11

the next outer tuple with the help of ExecProcNode, which gets the next tuple of
a table (lines 25-26).

1 case EXECMJNEXTOUTER:

3 whi le (/∗ l i n e 2−3 o f State 2∗/) {
i f (RNNJWoAggCompareGroup(node , outerTupleS lot ,

5 node−>mj CurrInnerTupleSlot) == 0) {
i f (RNNJWoAggCompareSample(node , node−>mj OuterTupleSlot ,

7 node−>mj CurrInnerTupleSlot)==0){
MemoryContext oldContext ;

9 TupleTableSlot ∗ r e s u l t ;
ExprDoneCond isDone ;

11 oldContext = MemoryContextSwitchTo (

node−>mj OuterTupleSlot−>t t s mcxt) ;
13 MemoryContextSwitchTo (oldContext) ;

econtext−>e c x t ou t e r t up l e = node−>mj OuterTupleSlot ;
15 econtext−>e c x t i nn e r t up l e = node−>mj CurrInnerTupleSlot ;

17 r e s u l t = ExecProject (node−>j s . ps . p s Pro j In fo , &isDone) ;

19 i f (isDone != ExprEndResult) {
node−>j s . ps . ps TupFromTlist = (isDone

21 == ExprMult ip leResult) ;
i f (! TupIsNull (innerTup leS lo t) && RNNJWoAggCompareSample(

node , node−>mj OuterTupleSlot , node−>mj InnerTupleS lot)==0)
23 node−>mj Jo inState = EXEC MJ NEXTINNER;

e l s e {
25 outerTupleS lot = ExecProcNode (outerPlan) ;

node−>mj OuterTupleSlot = outerTupleS lot ;
27 }

r e turn r e s u l t ;
29 }

}
31 . . .

Listing 6. Lines 2-5 of State 2 in nodeRNNJwoAGG.c

If we add an outer tuple to the buffer, this is done with a copy of the tuple. For this
we use the command ExecCopySlotTuple, which obtains a copy of a specific tuple
(lines 3-4). Finally we point to the first elements of Br (node->outertupsBuffer),
N (node->NNSet) and NL (node->localNNSet) (lines 11-16).

1 . . .

e l s e {
3 node−>oute r tupsBu f f e r = lappend (node−>outer tupsBuf f e r ,

ExecCopySlotTuple (outerTupleS lot)) ;

5 }
}

7 outerTupleS lot = ExecProcNode (outerPlan) ;

node−>mj OuterTupleSlot = outerTupleS lot ;
9 }

11 node−>cont = l i s t h e a d (node−>oute r tupsBu f f e r) ;
node−>prev cont = NULL;

13 node−>nnCont=l i s t h e a d (node−>NNSet) ;

12

node−>prev nnCont=NULL;
15 node−>l oca lCont=l i s t h e a d (node−>localNNSet) ;

node−>prev loca lCont=NULL;
17

node−>mj Jo inState = EXEC MJ JOINTUPLES;

19

break ;

Listing 7. Lines 6-9 of State 2 in nodeRNNJwoAGG.c

4.4.3. Next Inner. Here we set or reset the nearest neighbor sets and set the pre-
vious inner tuple with the help of the following commands:

• list copy, which returns a copy of a given list
• list free, which frees a given list and all of its cells
• ExecCopySlot, which obtains a copy of a specific tuple

case EXEC MJ NEXTINNER:
2

i f (/∗ l i n e 2 o f State 3∗/) {
4 bool i sNu l l ;

i f (/∗ l i n e 3 o f State 3∗/) {
6 i f (/∗ l i n e 4 o f State 3∗/) {

node−>NNSet = l i s t c o p y (node−>localNNSet) ;

8 } e l s e {
l i s t f r e e (node−>NNSet) ;

10 node−>NNSet = NIL ;

}
12 l i s t f r e e (node−>localNNSet) ;

node−>localNNSet=NIL ;

14 ExecCopySlot (node−>mj PrevInnerTupleSlot ,
node−>mj CurrInnerTupleSlot) ;

16 }
. . .

Listing 8. Lines 2-9 of State 3 in nodeRNNJwoAGG.c

We then set the new values for the current and next inner tuple and add them to
the nearest neighbor sets with the help of the following commands:

• ExecProcNode, which gets the next tuple of a table
• ExecCopySlot, which obtains a copy of a specific tuple
• lappend, which adds a given item to a specified list

1 . . .

ExecCopySlot (node−>mj CurrInnerTupleSlot ,
3 node−>mj InnerTupleS lot) ;

innerTup leS lo t = ExecProcNode (innerPlan) ;

5 node−>mj InnerTupleS lot = innerTup leS lo t ;

7 i f (TupIsNull (node−>mj OuterTupleSlot) | | (

RNNJWoAggCompareGroup(node , node−>mj OuterTupleSlot , node−>
mj CurrInnerTupleSlot)==0)) {

HeapTuple sampleTupleSlot ;
9 sampleTupleSlot = ExecCopySlotTuple (node−>

mj CurrInnerTupleSlot) ;

node−>NNSet = lappend (node−>NNSet , sampleTupleSlot) ;
11 node−>localNNSet = lappend (node−>localNNSet ,

sampleTupleSlot) ;

13

13 }
i f (! TupIsNull (node−>mj OuterTupleSlot) &&

RNNJWoAggCompareGroup(node , node−>mj OuterTupleSlot , node−>
mj CurrInnerTupleSlot)<=0)

15 node−>mj Jo inState = EXECMJNEXTOUTER;

e l s e
17 node−>mj Jo inState = EXEC MJ JOINTUPLES;

} e l s e

19 r e turn NULL;
break ;

Listing 9. Lines 10-17 of State 3 in nodeRNNJwoAGG.c

4.4.4. Join Tuples. In this state we create the output tuples. With ExecStoreTuple

we store a new tuple into a specified slot in the tuple table (node->mj InnerTempTupleSlot,
lines 20-21, node->mj OuterTempTupleSlot, lines 26-27) and then we print the
output tuple with the help of ExecProject (lines 31 and 40-43).Depending on the
conditions this is done for the tuples in the local nearest neighbor set or the nearest
neighbor set.

case EXEC MJ JOINTUPLES:
2 whi le (node−>cont) { /∗ l i n e 3 o f State 4∗/

i f (/∗ l i n e 4 in State 4∗/) {
4

MemoryContext oldContext ;
6 TupleTableSlot ∗ r e s u l t ;

ExprDoneCond isDone ;
8 HeapTuple new tup ;

10 ExecCopySlot (node−>mj InnerTempTupleSlot ,
node−>mj CurrInnerTupleSlot) ;

12

i f (/∗ l i n e 5 o f State 4∗/) {
14 bool i sNu l l ;

16 whi le (node−>nnCont) { /∗ l i n e 7 o f State 4∗/
oldContext = MemoryContextSwitchTo (

18 node−>mj InnerTempTupleSlot−>t t s mcxt) ;
HeapTuple temp = heap copytuple (l f i r s t (node−>nnCont)) ;

20 ExecStoreTuple (temp , node−>mj InnerTempTupleSlot ,

Inva l i dBu f f e r , t rue) ;
22 MemoryContextSwitchTo (oldContext) ;

oldContext = MemoryContextSwitchTo (

24 node−>mj OuterTempTupleSlot−>t t s mcxt) ;
HeapTuple temporary =heap copytuple (l f i r s t (node−>cont)) ;

26 ExecStoreTuple (temporary ,

node−>mj OuterTempTupleSlot , I nva l i dBu f f e r , t rue) ;
28 MemoryContextSwitchTo (oldContext) ;

econtext−>e c x t ou t e r t up l e = node−>mj OuterTempTupleSlot ;

30 econtext−>e c x t i nn e r t up l e = node−>mj InnerTempTupleSlot ;
r e s u l t = ExecProject (node−>j s . ps . p s Pro j In fo , &isDone) ;

32

i f ((node−>nnSamples−>t a i l == node−>nnCont)) {
34 node−>nnCont = NULL;

}
36 e l s e {

node−>prev nnCont=node−>nnCont ;

14

38 node−>nnCont = node−>prev nnCont−>next ;
}

40 i f (isDone != ExprEndResult) {
node−>j s . ps . ps TupFromTlist = (isDone

42 == ExprMult ip leResult) ;

r e turn r e s u l t ;
44 }

}
46 } e l s e {

bool i sNu l l ;
48 whi le (node−>l oca lCont) {

. . .

50 /∗ the same code as in l i n e s 14−45 , only with the l o c a l
v a r i a b l e s as in l i n e s 9−12 from State 4∗/

. . .

52 }

Listing 10. Lines 3-12 of State 4 in nodeRNNJwoAGG.c

We then remove the outer tuple form the buffer with list delete cell, which
frees a cell from a list. If the buffer is not empty we fetch the next tuple from the
buffer, otherwise we go to the next state. If the outer relation is empty we do not
go to the next state, but stop processing tuples.

. . .
2 node−>oute r tupsBu f f e r = l i s t d e l e t e c e l l (

node−>outer tupsBuf f e r , node−>cont , node−>prev cont) ;
4 i f (l i s t l e n g t h (node−>oute r tupsBu f f e r) == 0) {

node−>cont = NULL;

6 }
e l s e i f (node−>prev cont == NULL) {

8 node−>cont = l i s t h e a d (node−>oute r tupsBu f f e r) ;

node−>nnCont=l i s t h e a d (node−>NNSamples) ;
10 node−>prev nnCont=NULL;

node−>l oca lCont=l i s t h e a d (node−>localNNSamples) ;

12 node−>prev loca lCont=NULL;
}

14 e l s e {
node−>cont = node−>prev cont−>next ;

16 node−>nnCont=l i s t h e a d (node−>nnSamples) ;

node−>prev nnCont=NULL;
18 node−>l oca lCont=l i s t h e a d (node−>localNNSamples) ;

node−>prev loca lCont=NULL;

20 }

22 } e l s e {
node−>prev cont = node−>cont ;

24 node−>cont = node−>cont−>next ;

}
26 }

28 i f (l i s t l e n g t h (node−>oute r tupsBu f f e r) == 0
&& TupIsNull (node−>mj OuterTupleSlot))

30 r e turn NULL;

e l s e
32 node−>mj Jo inState = EXEC MJ NEXTINNER;

node−>cont = l i s t h e a d (node−>oute r tupsBu f f e r) ;

15

34 node−>prev cont = NULL;
node−>nnCont =l i s t h e a d (node−>nnSamples) ;

36 node−>prev nnCont = NULL;
node−>l oca lCont =l i s t h e a d (node−>localNNSamples) ;

38 node−>prev loca lCont = NULL;

40 break ;

Listing 11. Lines 13-16 of State 4 in nodeRNNJwoAGG.c

5. Implementation with backtracking

In a second approach we describe the previous algorithm without the use of buffering
and aggregation. We will be able to query the PostgreSQL server as follows:

SELECT *

FROM R RNNJ S EQUAL ON E NN BY G USING T BACKTRACK

In order to do that, we use backtracking. Backtracking is the process of storing the
position of a specific tuple and then returning to that position when needed. The
algorithm is again split up in the four different states from the previous chapter,
but they all behave differently. We use a running example to help understand the
different steps in the algorithm.

Figure 1. State diagram with backtracking

5.0.5. Example 1. In this example we have two tables, one is the outer table r and
the inner table s.

16

Table 1. Example tables

r
G T E
Corn 9 18
Corn 13 27

s
G T E M
Corn 4 10 7
Corn 8 14 11
Corn 8 17 9
Corn 10 20 6
Corn 13 24 10
Corn 13 27 8

Implementation of backtracking
The implementation of backtracking is done with the functions ExecMarkPos and
ExecRestrPos. ExecMarkPos marks the position, that ExecRestrPos later returns
to. Since ExecRestrPos does not return a tuple but only goes to the previously
marked position, the first call of ExecProcNode returns the tuple after the one we
wanted get. That is why we store a copy of the marked tuple every time we call
ExecMarkPos and set sc to said copy after the call of ExecRestrPos and sn to the
next tuple of the ExecProcNode function.

. . .
2 ExecCopySlot (node−>mj MarkedTempTupleSlot , node−>mj CurrInnerTupleSlot

) ;
ExecMarkPos (innerPlan) ;

4 . . .

ExecRestrPos (innerPlan) ;
6 ExecCopySlot (node−>mj CurrInnerTupleSlot , node−>mj MarkedTempTupleSlot

) ;

. . .

Listing 12. Example of backtracking in nodeRNNJwoBUFF.c

5.1. Initialize. In this state, we initialize r with the first tuple of r and sc with the
first tuple of s and sn with the second tuple of s. We also mark the first position
in order to be able to backtrack to it later.

State 5: Initialize

1Input: outer relation r, a set of inner partitions s

2begin
3r ←− fetchRow(r)

4sc ←− fetchRow(s)

5markposition(sc)

6sn ←− fetchRow(s)

7Go to NextInner

8end

5.1.1. Example 2. In our example we initialize the different tuples: r is the first
tuple in r and sc and sn are the first and second tuple of s. We also mark the
position of the first tuple, which is sc.

17

Table 2. Example tables after Initialize

r
G T E
Corn 9 18 r
Corn 13 27

s
G T E M
Corn 4 10 7 marked,sc
Corn 8 14 11 sn
Corn 8 17 9
Corn 10 20 6
Corn 13 24 10
Corn 13 27 8

5.2. Next Inner. In this state, we see which tuples to match with the selected
outer tuple in the following order:

• Check if we have an equijoin match for the tuple sc with r on E and G.
If so we print an output tuple and go to the NextOuter state (lines 2-4 of
State 6)
• If there is no equijoin match we search for the nearest neighbors of r.

Whenever sn is closer to r than sc we mark the position of sn, since sc
cannot be a nearest neighbor (lines 5-9 of State 6).
• Once the temporal distance between sn and r is larger than between sc and
r we know all nearest neighbors are found and can restore the position of
the first nearest neighbor and go to the next state (lines 10-19) of State6.
• For the case that there exists an equijoin with the last tuple of a subgroup

of s with s.T equal for all elements of the subgroup we check for an equijoin
on sc if sn is null (lines 11-13 of State 6).

State 6: NextInner

1begin
2if sc.E = r.E ∧ sc.G = r.G ∧ sc.T = r.T then
3z ←− z ∪ r ◦ sc
4Go to NextOuter

5if !Null(sn) then
6if d(r, sc) > d(r, sn) ∧ rGg = sn.G then
7markposition(sn)

8sc ←− sn
9sn ←− fetchRow(s)

10if Null(sn) ∨ d(r, sc) < d(r, sn) ∨ (r.G = sc.G ∧ sc.G 6= sn.G) then
11if sc.E = r.E ∧ sc.G = r.G ∧ sc.T = r.T then
12z ←− z ∪ r ◦ sc
13Go to NextOuter

14else
15sc ←− restoreposition(s)

16sn ←− fetchRow(s)

17Go to JoinTuples

18else
19Go to NextInner

18

5.2.1. Example 3. In the NextInner state we first check for an equijoin match be-
tween sc and r without success. After that we go and compare the temporal distance
between sc and r and between sn and r. Since sn is closer than sc we mark the
position of sn and then update sc and sn. Because the temporal distance between
r and the next two tuples of s is also 1 we stay in NextInner until sc.E = 20 and
sn.E = 27. Because d(r, sn) is larger than d(r, sc) we restore the marked position,
update sc and sn and go to the JoinTuples state.

Table 3. Example tables after NextInner

r
G T E
Corn 9 18 r
Corn 13 27

s
G T E M
Corn 4 10 7
Corn 8 14 11 marked,sc
Corn 8 17 9 sn
Corn 10 20 6
Corn 13 24 10
Corn 13 27 8

5.3. Join Tuples. In this state we join the outer tuple r with all of its nearest
neighbors. We know that we already restored the inner table to the first nearest
neighbor and hence return r joined with sc. After we return the tuple we check if
sn is also a nearest neighbor, if so we update sc and sn and stay in the JoinTuples
state (lines 5-8 of State 7). If sn is not a nearest neighbor we are done joining the
tuples for r and go to the NextOuter state to get the next tuple from the outer
table (lines 3-4 of State 7).

State 7: JoinTuples

1begin
2z ←− z ∪ r ◦ sc
3if Null(sn) ∨ d(r, sc) < d(r, sn) ∨ ((r.G = sc.G) ∧ (sc.G 6= sn.G)) then
4Go to NextOuter

5else
6sc ←− sn
7sn ←− fetchRow(s)

8Go to JoinTuples

5.3.1. Example 4. We now create the output tuples using the E, G and T values
of r and the E, G, T and M values of sc. Since we have three nearest neighbors
we repeat JoinTuples twice and then go to the NextOuter state.

19

Table 4. Example tables after JoinTuples

r
G T E
Corn 9 18 r
Corn 13 27

s
G T E M
Corn 4 10 7
Corn 8 14 11 marked
Corn 8 17 9
Corn 10 20 6 sc
Corn 13 24 10 sn
Corn 13 27 8

output
G T E G T E M
Corn 9 18 Corn 8 14 11
Corn 9 18 Corn 8 17 9
Corn 9 18 Corn 10 20 6

5.4. Next Outer. In this state we just get the next tuple from the outer table
(line 2) and then check if the temporal distance to r of the current inner tuple is
closer than the temporal distance to r of the next inner tuple (line 3-4 of State 8).
If it is closer, we restore the inner table to the marked tuple and then go to the
NextInner state (lines 5-6 of State8), if not we go directly to the NextInner state.

State 8: NextOuter

1begin
2r ←− fetchRow(r)

3if !Null(r) then
4if Null(sn) ∨ d(r, sc) ≤ d(r, sn) then
5sc ←− restoreposition(s)

6sn ←− fetchRow(s)

7Go to NextInner

5.4.1. Example 5. First we fetch the next tuple from r and then go directly to
NextInner, since we do not have to restore the marked position.

20

Table 5. Example tables after NextOuter

r
G T E
Corn 9 18
Corn 13 27 r

s
G T E M
Corn 4 10 7
Corn 8 14 11 marked
Corn 8 17 9
Corn 10 20 6 sc
Corn 13 24 10 sn
Corn 13 27 8

output
G T E G T E M
Corn 9 18 Corn 8 14 11
Corn 9 18 Corn 8 17 9
Corn 9 18 Corn 10 20 6

In the NextInner State we mark sn and then update sc and sn, since sc.T = sn.T
we return to the NextInner state. There is no equijoin match on sc, so we update
sc and sn again with sn being null. We then check for an equijoin match and since
it exists we print the output tuple and then go to the NextOuter state. Since r is
finished we are done.

Table 6. Example tables after NextInner

r
G T E
Corn 9 18
Corn 13 27 r

s
G T E M
Corn 4 10 7
Corn 8 14 11
Corn 8 17 9
Corn 10 20 6 marked
Corn 13 27 8 sc

output
G T E G T E M
Corn 9 18 Corn 8 14 11
Corn 9 18 Corn 8 17 9
Corn 9 18 Corn 10 20 6
Corn 13 27 Corn 13 27 8

6. Manual

In the following section we will have a look at how to compile, install and de-
bug PostgreSQL on the Ubuntu operating system. The operation are working on
PosgreSQL version 9.3.4.

6.1. Requirements. The following packages are required in order for PostgreSQL
to run on Ubuntu and can be installed via the apt-get install command in the
terminal:

• libreadline-dev
• zlib1g-dev

21

• bison
• flex

6.2. Compilation and installation. The compilation and the installation is also
done in the terminal, after navigating to the folder with the source code, with the
following commands:

• ./configure --prefix=<PATH TO FOLDER>/server --enable debug, where
<PATH TO FOLDER> is the path name of the folder. The --enable debug

option is needed to debug the program
• make, which compiles the programm
• make install, which installs the program

We have to set up a database in order to query it. This is done with the following
commands:

• ./server/bin/initdb -D dbname, where dbname can be changed to a de-
sired database name
• ./server/bin/pg ctl -D dbname -o "-F -i -p 5400" start, which starts

the server and where -p 5400 can be changed to a free port
• ./server/bin/createdb -p 5400 dbname

• ./server/bin/pg ctl -D dbname -o "-F -i -p 5400" stop, which stops
the server

The database can now be started with the ./server/bin/psql -p 5400 dbname

command, once the server is running.

6.3. Debugging. To debug PostgreSQL we use the GNU debugger (gdb), which
can be started in the terminal with gdb. We then have to find the process id (PID) of
the PostgreSQL database running on Ubuntu. The quickest way to find it is to use
the command ps -ef | grep postgres, ps -ef shows all processes running on
the computer and grep postgres filters them to the processes containing postgres
in the name. The output of the previous command gives us the specific PID of the
database and we can now attach gdb to the database with attach PID, where PID
is the process id of the database. Once we attached gdb to the programm we can
now execute queries on the database and if a query causes the database to crash,
we can see which functions were called and where they were called from with the
help of the continue and backtrace commands.

7. Example queries

We now show the output of our queries on the following tables:

22

Table 7. Tables used for the queries

r
G T E
A 10 1
A 10 2
A 10 6
A 11 3
A 12 8
A 12 9
B 4 4

s
G T E M
A 9 0 7
A 10 0 9
A 10 2 5
A 10 6 7
A 12 8 100
A 12 8 200
B 3 0 7
B 5 5 9

First the RNNJ operator with Φ = avg:

G T E M
A 10 2 5
A 10 6 7
A 10 1 7
A 12 8 100
A 11 3 64.2
A 12 9 150
B 5 5 9
B 4 4 8

Figure 2. SELECT * FROM R RNNJ S EQUAL ON E NN BY G

USING T AGG M

The RNNJ operator with Φ = ∅:

23

G T E G T E M
A 10 2 A 10 2 5
A 10 6 A 10 6 7
A 10 1 A 10 0 9
A 10 1 A 10 2 5
A 10 1 A 10 6 7
A 12 8 A 12 8 100
A 11 3 A 10 0 9
A 11 3 A 10 2 5
A 11 3 A 10 6 7
A 11 3 A 12 13 200
A 11 3 A 12 8 100
A 12 9 A 12 13 200
A 12 9 A 12 8 100
B 5 5 B 5 5 9
B 4 4 B 3 0 7
B 4 4 B 5 5 9

Figure 3. SELECT * FROM R RNNJ S EQUAL ON E NN BY G

USING T [BACKTRACK]

8. Experiments

In this chapter we test the different implementations of the RNNJ operator and
compare their computation times on tables of different sizes. First we compare the
two implementations covered in this report without any aggregation, then we will
compare the RNNJ with Φ = avg operator to the RNNJ operator with Φ = ∅. The
tests were run on eleven different outer tables (r100, r1000, r2000, . . . , r10000)
where the number in the name indicates the size of the table.

8.1. RNNJ with Φ = ∅. The results are shown in Figure 2. For |r| = 100
the runtime of the different implementations are the same but the slope of the
implementation with backtracking is higher,so the bigger r gets, the larger the time
difference between the two implementation gets. For |r| = 10000 we have a time
difference of approximately 2.7 seconds, so the buffered implementation takes less
than half the time than the one with backtracking.

24

Figure 4. Runtime of r ./E,G s ∪ ((r BE,G s)
NN(T)
./G s) using a

buffferd implementation and one with backtracking

8.2. RNNJ with Φ = avg. The results are shown in Figure 3. For |r| = 100
the runtime of the different implementations are the same. The the slope of the
implementation with backtracking is steeper than the slope of the implementation
without backtracking. At |r| = 7000 the time difference between the two implemen-
tations is approximately 2 seconds at |r| = 8000 there is a large increase in runtime
of the implementation with backtracking. The time difference at |r| = 10000 is
approximately 17 seconds. This difference occurs because at |r| = 8000 the Post-
greSQL server changes from hash aggregation, which sorts the tuples in the main
memory, to group aggregation which sorts the tuples in the hard disk.

25

Figure 5. Runtime of s.∗ϑΦ(s.M)(r ./E,G s∪ ((rBE,G s)
NN(T)
./G s)

using a buffferd implementation and one with backtracking

9. Conclusion

In this report we had a look at two different implementations of the robust nearest
neighbor join without aggregation. The first used the help of buffer and aggregation
sets and was closely related to the original robust nearest neighbor join. We showed
how we implemented the operator inside the kernel of PostgreSQL and which files
we had to change in order for it to work. The second implementation used back-
tracking and the states were redefined in order to accomodate the challanges of
the backtracking mechanism. The testing of the implementations showed that the
implementation with backtracking needed more runtime calculate the joins if the
size of the outer table was large.

