
Department of Informatics, University of Zürich

BSc Thesis

Query Compilation of Statement
Modifiers

Oliver Leumann
Email: oliver.leumann@uzh.ch

September 14, 2013

supervised by Prof. Dr. M. Böhlen and A. Dignös

Contents

1 Introduction 5

2 Background and Related Work 9
2.1 General Preliminaries . 9
2.2 Reduction Rules . 9
2.3 The Alignment Operator . 11
2.4 The Normalization Operator . 13
2.5 Timestamp Propagation . 14

3 Definition of an SQL Language with Statement Modifiers 15
3.1 Basic Definition for Temporal Statement Modifiers 15
3.2 Scope of Statement Modifiers . 17
3.3 Supporting Statement Modifiers for Set Operations 17
3.4 Additional Parameters for Statement Modifiers 21
3.5 Allowing the Scaling of Attribute Values . 22

4 The SQL mapping 25
4.1 Implementation of the Temporal Primitives 25
4.2 The Mapping of Queries with Statement Modifiers to Queries with Temporal

Primitives over Algebraic Expressions . 27
4.3 The Mapping of Queries with Statement Modifiers to Queries with Temporal

Primitives over SQL Expressions . 30
4.3.1 Preliminaries for the actual Mapping 30
4.3.2 Reducing Temporal Join-Expressions 33
4.3.3 Reducing Temporal Projection and Temporal Aggregation 34

5 Implementation 37
5.1 Preliminaries . 37
5.2 Determining the Scope of the Statement Modifier 38
5.3 The Reduction of Temporal Joins . 39

5.3.1 Preventing Endless Reductions on Join-Expressions 39
5.3.2 Removing Duplicate Interval Timestamps 40

5.4 The Reduction of the Explicit Cartesian Product 43
5.5 The Reduction of Projection and Aggregation 44

6 Conclusion 46

2

Abstract

For the querying of temporal relations statement modifiers have been proposed in the past.
Statement modifiers can be prepended to an SQL query to indicate if the given query should be
evaluated non-temporal or temporal by the database system. For the processing and evaluation
of temporal database operators, such as aggregation and joins, reduction rules using temporal
primitives have been proposed. The shortcoming of these approaches is that they are not yet
combined. On one side a query language is defined that has not been implemented, and on the
other side an evaluation mechanism for database operators based on relation algebra exists,
that requires large and cumbersome SQL queries to express temporal statements. The focus
of this thesis is to first provide the basis to smoothly combine the two approaches, i.e., to
compile queries with statement modifiers to statements with temporal primitives, and then to
implement the compilation mechanism into the database system PostgreSQL whose kernel
has already been extended with the temporal primitives. For the compilation mechanism we
have to ensure that the scaling of attribute values at query time is still possible.

Abstract

Für das Abfragen temporaler Relationen wurde in der Vergangenheit Statement Modi-
fiers vorgestellt. Statement Modifiers können an eine SQL-Abfrage vorangestellt werden um
anzugeben, ob diese Abfrage auf nicht-temporale oder temporale Weise vom Datenbanksys-
tem ausgewertet werden soll. Für das Ausführen und Auswerten von temporalen Datenbank-
operatoren wurden Reduktions Regeln eingeführt, welche auf temporale Primitiven zurück-
greifen. Das Manko bei diesen Ansätzen ist, dass sie bis jetzt noch nicht kombiniert wurden.
Das Hauptaugenmerk dieser Bachelorarbeit liegt auf der Kombination dieser beiden Ansätze,
das heisst das Datenbankabfragen mit vorangestellten Statement Modifiers zu Abfragen mit
temporalen Primitiven kompiliert werden sollen. Dabei soll der Kompilierungsmechanismus
in das Datenbanksystem PostgreSQL implementiert werden, dessen Kernel bereits mit den
temporalen Primitiven erweitert wurde.

1 Introduction

To make the support of temporal queries available, a lot of things have to be considered. Group
based operators like projection, aggregation, union, difference and intersection as well as the
tuple based operators selection, Cartesian product, inner join, left outer join, right outer join,
full outer join and anti join need to be transformed appropriately. If interval timestamps of
the argument relations are used in predicates and functions, this must be supported as well.
Also some attribute values may not stay valid if the associated timestamps change and it is
necessary that the scaling of such attributes are possible. Solutions to these topics have been
proposed [1, 5] but to make all of them work with respect to temporal statement modifiers [2]
new challenges result from such an attempt. The timestamp propagation and scaling of at-
tributes need to be executed in the right place inside the order of reducing temporal operators.
Also the determination of the timestamps as well as the scope of temporal statement modifiers
have to be chosen wisely.

Example 1 Consider the two non-temporal relations E and M shown in Figure 1.1(a). Re-
lation E records employees with name n working for department d. For instance, tuple e1

records that employee Amber works for department 1. Similarly, relation M records man-
agers with name mgr responsible for department dep. For instance, tuple m1 records that
manager Xavier is responsible for department 1.

E

n d

e1 Amber 1

e2 Billy 2

e3 Chelsea 1

M

mgr dep

m1 Xavier 1

m2 Yvonne 2

(a) non-temporal Relations

Z

mgr count

z1 Xavier 2

z2 Yvonne 1

(b) Result

Figure 1.1: Non-Temporal Example.

To retrieve the number of employees each manager is responsible for, we formulate a query
Q that first joins relations E and M on the department attribute, and second groups the inter-
mediate result by the attribute-values ofmgr and aggregates each group using the aggregation
function count. In all probability, query Q is formulated as follows:

SELECT mgr, count(*)
FROM M JOIN E ON M.dep = E.d
GROUP BY mgr;

5

The result relation Z of query Q is shown in Figure 1.1(b). Employees Amber (e1) and
Chelsea (e3) work for department 1, thus manager Xavier (m1) has an employee count of two
which is represented by the result tuple z1. Employee Billy (e2) works for department 2, so
manager Yvonne (m2) has an employee count of one which is shown in the second result tuple
z2.

In Example 1 we only store the latest snapshot of a modelled reality. For all practical
purposes, it is often desired to know the history of a modelled reality. The people in a company
may quit working, new employees or managers start working for the company or they could
probably change the departments during time. To keep track of such changes, the recorded
facts in a database are timestamped with intervals to indicate their valid time, i.e., the time
periods these facts hold true.

Example 2 In our next example, we extend both of the sample relations from the first example
with interval timestamps. For each tuple, the recorded fact is true over its time interval [ts, te),
where ts is the inclusive start point and te the exclusive end point. For instance, as it is visible
in tuple e3, Chelsea is working at department 1 from the beginning of July until the end of
November. The extended relations are shown in Figure 1.2 and as you can see, we have added
one new tuple to each of the the relations E and M. The newly added tuple e4 in the employee
relation represents in connection with tuple e1 the fact that Amber switches departments at
the last third of the year. On the other hand, we have added tuple m3 to the manager relation
which together with tuple m2, describes a change of managers in department 2 after the first
quarter.

E

n d ts te

e1 Amber 1 2012/01/01 2012/09/01

e2 Billy 2 2012/01/01 2013/01/01

e3 Chelsea 1 2012/07/01 2012/12/01

e4 Amber 2 2012/09/01 2013/01/01

M

mgr dep ts te

m1 Xavier 1 2012/01/01 2013/01/01

m2 Yvonne 2 2012/01/01 2012/04/01

m3 Zoe 2 2012/04/01 2013/01/01

Figure 1.2: Temporal Relations

By time-stamping the tuples of our relations, we can now express questions about the
changes of facts in our sample database. Accordingly, we can run a temporal counterpart
of query Q, from Example 1, over the temporal relations. This means in detail, that it is pos-
sible to determine the number of employees each manager has at each point in time. To mark
our new query QT as a temporal query, we prepend a fixed text string SEQVT as statement
modifier for sequenced queries to our query Q from the previous example.

SEQVT
SELECT mgr, count(*)
FROM M JOIN E ON M.dep = E.d
GROUP BY mgr;

6

For better a visualization, we illustrate the relations graphically in Figure 1.3. The tuples
from the relations E and M are drawn as horizontal lines above the underlying time line and
have its start and end points set accordingly to their valid time intervals. Taking the change
of managers in department 2 as an example, the horizontal line of Yvonne (m2) is drawn from
January until the end of March and with the beginning of April the horizontal line of Zoe (m3)
starts and proceeds until the end of December.

2012/1 2012/2 2012/3 2012/4 2012/5 2012/6 2012/7 2012/8 2012/9 2012/10 2012/11 2012/12

M

m1 = (Xavier, 1)

m2 = (Yvonne, 2)

m3 = (Zoe, 2)

E

e1 = (Amber, 1)

e2 = (Billy, 2)

e3 = (Chelsea, 1)

e4 = (Amber, 2)

Figure 1.3: Graphical Representation of the Temporal Relations

Having in Figure 1.3 the graphical representation of our example relations at hand, we
might easily derive the result of the temporal query QT . To get the number of employees per
manager at each point in time, we have to look up the time intervals of the managers. For each
of them we check which and how many time intervals of its associated employees overlap this
managers time interval. For example Zoe (m2), which is the manager of department 2 since
April, has one employee (Billy: e1) from the beginning of April until the end of August. After
that, Amber moves to Zoes department (e4), so that Zoe is then supervising two employees from
the beginning of September until the end of the year. This two facts are recorded separately as
the tuples z5 and z6 and they are shown in Figure 1.4 where the whole result of query QT is
stored in the temporal relation Z.

Z

mgr count ts te

z1 Xavier 1 2012/01/01 2012/07/01

z2 Xavier 2 2012/07/01 2012/09/01

z3 Xavier 1 2012/09/01 2012/12/01

z4 Yvonne 1 2012/01/01 2012/04/01

z5 Zoe 1 2012/04/01 2012/09/01

z6 Zoe 2 2012/09/01 2013/01/01

Figure 1.4: Result of the Temporal Query QT .

7

The contributions of this thesis are as follows:

• I show a proposal of an SQL language using temporal statement modifiers for the query-
ing of temporal data.

• I give a mechanism to compile queries with statement modifiers to statements with tem-
poral primitives ALIGN and NORMALIZE.

• I show how the mechanism can be implemented by changing only the parser of the
DBMs and leveraging the implementation of temporal primitives.

• I show and implementation into the database management system PostgreSQL.

The rest of this thesis is organized as follows. Chapter 2 discusses the reduction rules
as well as the alignment operator, the normalization operator and some special cases. In
chapter 3 we propose the definition of an SQL language with statement modifiers. Chapter 4
shows the mapping of queries with statement modifiers to queries with temporal primitives in
algebraic expressions. Furthermore we propose the main idea how the mapping is basically
implemented in the PostgreSQL parser. After that, Chapter 5 gives some insights about the
implementation, clarifies some concepts of the translation algorithm proposed in Chapter 4
and points out some particular challenges.

8

2 Background and Related Work

2.1 General Preliminaries
In the scope of this project, we assume a linearly ordered, discrete time domain, ΩT . A time
interval is represented as a pair T = [ts, te) ∈ ΩT × ΩT and is a contiguous set of time
points, where ts is the inclusive start point and te is the exclusive end point. The time interval
that is associated with each tuple represents the tuple’s valid time for which the recorded
fact is true in the modeled reality. The schema of a temporal relation is denoted as R =
(A1, ..., Am, T), where the non-temporal attributes are represented as A1, ..., Am and the time
interval is represented as T . To shorten notations we use the abbreviation A = A1, ..., Am
for all non-temporal attributes of a relation. For r.A1 = s.A1 ∧ ... ∧ r.Am = s.Am we write
the abbreviated version r.A = s.A and similarly for r.ts = s.ts ∧ r.te = s.te we use the
abbreviation r.T = s.T .

We write Qra to denote an SQL query Q in equivalent relational algebra. For instance given
SQL query Q from Example 1 Qra is as follows:

Qra = mgrϑcount(∗)(M ./M.dep=E.d E)

Similar, for temporal SQL queries QT we use QT
ra to denote its equivalent temporal rela-

tional algebra expression, and we use T to indicate a temporal relational algebra operator, i.e.,
ϑT is the temporal aggregation operator and ./T the temporal join operation. The relational
algebra expression QT

ra equivalent to the temporal SQL query QT of Example 2 is as follows:

QT
ra = mgrϑ

T
count(∗)(M ./TM.dep=E.d E)

Besides the temporal operators ϑT and ./T , the other operators of the temporal relational
algebra are selection σT , projection πT , difference −T , union ∪T , intersection ∩T , Cartesian
product ×T , left outer join ./T , right outer join ./ T , full outer join ./ T , and antijoin .T . For
the temporal projection πTB(r) and the temporal aggregation Bϑ

T
F (r) we require B ⊆ A. To

denote a general relational algebra operator we use ψ, and ψT for its corresponding operator
in the temporal relational algebra.

2.2 Reduction Rules
Dignös et al. [1] introduced a mechanism for the reduction of temporal operators to non-
temporal operators with the use of temporal primitives, and we will use this reduction rules
for the mapping of statement modifiers later on in this thesis. The main intuition behind the

9

temporal primitives is that they transform two relations with arbitrarily overlapping intervals
into two relation where equality can be used to find overlapping intervals. The primitives and
their parameters are specific for temporal operators and allow to use non-temporal operators
with equality on timestamps after the primitive has been applied. The rules on how temporal
primitives are used to reduce temporal operations are defined by so-called reduction rules
shown in Table 2.1. More specifically the temporal primitives are the temporal alignment
operator Φ and the temporal normalization operator N . Additionally the so called absorb
operator α is needed after joining the results of temporal alignments.

Operator Reduction

Selection σTθ (r) = σθ(r)

Projection πTB(r) = πB,T (NB(r; r))

Aggregation Bϑ
T
F (r) = B,TϑF (NA(r; r))

Difference r −T s = NA(r; s)−NA(s; r)

Union r ∪T s = NA(r; s) ∪NA(s; r)

Intersection r ∩T s = NA(r; s) ∩NA(s; r)

Cart. Prod. r ×Tθ s = α((rΦtrues) ./r.T=s.T (sΦtruer))

Inner Join r ./Tθ s = α((rΦθs) ./θ∧r.T=s.T (sΦθr))

Left O. Join r ./Tθ s = α((rΦθs) ./θ∧r.T=s.T (sΦθr))

Right O. Join r ./ Tθ s = α((rΦθs) ./ θ∧r.T=s.T (sΦθr))

Full O. Join r ./ Tθ s = α((rΦθs) ./ θ∧r.T=s.T (sΦθr))

Anti Join r .Tθ s = (rΦθs) .θ∧r.T=s.T (sΦθr)

Table 2.1: Reduction Rules

We now proceed by illustrating the reduction rules on our running example query QT
ra. For

a better visualization we may split up the query into two parts, the temporal inner join ./T and
the temporal aggregation ϑT . By doing so, we get the following two algebraic expressions
QT
ra1

and QT
ra2

where X stores the result relation of query QT
ra1

:

QT
ra1

= X←M ./TM.dep=E.d E

QT
ra2

= mgrϑ
T
count(∗)(X)

By applying the reduction rules of Table 2.1 to the two temporal queries QT
ra1

and QT
ra2

, we
get the two reduced expressionsQT

rared1
andQT

rared2
, respectively. As before we label the result

of query QT
rared1

as result relation X:

QT
rared1

= X← α((MΦM.dep=E.dE) ./M.dep=E.d∧M.T=E.T (EΦM.dep=E.dM))

QT
rared2

= mgr,Tϑcount(∗)(Nmgr(X;X))

Note that QT
rared1

and QT
rared2

due to the reduction, now do not contain temporal operators,
only the non-temporal operators join ./ and aggregation ϑ, and temporal primitives. The next
sections of this chapter investigate the temporal primitives rΦθs and NB(r; s), where for the
former primitive we will also quickly explain the absorb operator α.

10

2.3 The Alignment Operator
In our first reduced relational algebra expression QT

rared1
the temporal alignment occurs twice.

The first time on the left side of the join as MΦM.dep=E.dE and the second time similarly
on the right side of the join as EΦM.dep=E.dM. The theta condition θ ≡ M.dep = E.d is
the same for both alignment operations, but the inverted input arguments relation M and E
indicate the difference between them. One time it means that M is aligned with respect to E
and the second time that E is aligned with respect to M. For the first occurrence it says in
detail that for each tuple in M, we search all tuples in E that intersect with its time interval and
simultaneously satisfy the theta condition θ ≡M.dep = E.d. For each match we get a result
tuple with the non-temporal attributes of M and an adjusted time interval [ts, te) resulting
from the intersection of the intervals. Each time gap of an M-tuple that is not covered by an
appropriate E-tuple is also producing a result-tuple, having its timestamp interval [ts, te) set
to the start and end point of the uncovered gap.

Example 3 The alignment of MΦM.dep=E.dE is shown in Figure 2.1(a). For instance, the first
result tuple m̃1 = (Xavier, 1, [2012/1/1, 2012/9/1)) is derived from m1 and e1, which are
fulfilling the theta condition M.dep = E.d and having an intersection of their time intervals.
The second result tuple m̃2 = (Xavier, 1, [2012/9/1, 2012/12/1)) is derived from m1 and e2

and their time intersections. The third result tuple is derived from m1 and its time interval
[2012/12/1, 2013/1/1) which has no corresponding match in any employee-tuple from relation
E that fulfills the theta condition θ.

The second alignment EΦM.dep=E.dM is shown in Figure 2.1(b). Keep in mind that this
time, the argument relations are swapped so that the relation E is aligned with respect to
M. The theta condition θ in contrast stays the same. For instance, the second result tuple
ẽ2 = (Billy, 2, [2012/1/1, 2012/4/1)) is derived from the tuples e2 and m2 and the third
result tuple ẽ3 = (Billy, 2, [2012/4/1, 2013/1/1)) results from e2 and the intersection of its
time interval and the time interval of m3.

2012/1 2012/2 2012/3 2012/4 2012/5 2012/6 2012/7 2012/8 2012/9 2012/10 2012/11 2012/12

M

m1 = (Xavier, 1)

m2 = (Yvonne, 2)

m3 = (Zoe, 2)

E

e1 = (Amber, 1)

e2 = (Billy, 2)

e3 = (Chelsea, 1)

e4 = (Amber, 2)

M̃

m̃1 = (Xavier, 1)

m̃2 = (Xavier, 1)

m̃3 = (Xavier, 1)

m̃4 = (Yvonne, 2)

m̃5 = (Zoe, 2)

m̃6 = (Zoe, 2)

(a) Alignment of M

2012/1 2012/2 2012/3 2012/4 2012/5 2012/6 2012/7 2012/8 2012/9 2012/10 2012/11 2012/12

E

e1 = (Amber, 1)

e2 = (Billy, 2)

e3 = (Chelsea, 1)

e4 = (Amber, 2)

M

m1 = (Xavier, 1)

m2 = (Yvonne, 2)

m3 = (Zoe, 2)

Ẽ

ẽ1 = (Amber, 1)

ẽ2 = (Billy, 2)

ẽ3 = (Billy, 2)

ẽ4 = (Chelsea, 1)

ẽ5 = (Amber, 2)

(b) Alignment of E

Figure 2.1: Temporal Alignments

11

We can see that now in the place where before we had arbitrary overlapping time intervals
for the join, we now have equal timestamps. For instance, tuple m2 and e2 are overlapping
and satisfy the join condition θ, after alignment we have tuple m̃4 and ẽ2 with equal interval
timestamps corresponding to the common interval timestamps of m2 and e2.

For all of the temporal operators ψT ∈ {×T , ./T , ./T , ./ T , ./ T , .T} the temporal align-
ment operator is used to adjust the timestamps of the argument relations as shown in Exam-
ple 3. After that the corresponding non-temporal operator ψ is applied in order to join the
adjusted relations together. Hence we have the desired equal timestamps now, we can extend
the qualifiers on joins with an equality comparison between interval timestamps. Example 4
shows a sample of an inner join on the previously aligned relations.

Example 4 After processing the alignment operations and therefore having the aligned re-
lations M̃ and Ẽ at hand, we are now able to perform the actual inner join. As the reduc-
tion rule for inner joins in Table 2.1 have the form α((rΦθs) ./θ∧r.T=s.T (sΦθr)) , the join
conditions for our example turn out to be a conjunction of the well known theta condition
θ ≡ (M.dep = E.d) and equality comparison of the interval timestamps from M̃ and Ẽ, so
in this case: M̃.T = Ẽ.T . The resulting relation X after the inner join is shown graphically
in Figure 2.2.

2012/1 2012/2 2012/3 2012/4 2012/5 2012/6 2012/7 2012/8 2012/9 2012/10 2012/11 2012/12

X

x1 = (Xavier,Amber, 1)

x2 = (Xavier,Chelsea, 1)

x3 = (Yvonne,Billy, 2)

x4 = (Zoe,Billy, 2)

x5 = (Zoe,Amber, 2)

Figure 2.2: Result after Inner Join

The absorb operator α(r) has to be performed as last operation of the reduction rules of any
temporal join (except the anti join). As proposed by Dignös et al. [1], the operator eliminates
temporal duplicates over non-maximal time intervals. That means that the operator searches
for tuples from the argument relation that have equal non-temporal attributes. If one of those
tuples time interval is a proper subset of another ones interval, we remove it from the argument
relation. Applying this operator to our result relation X does no lead to any changes, since
such temporal duplicates do not exist in our example.

12

2.4 The Normalization Operator
The second part of our temporal Query is QT

rared2
= mgr,Tϑcount(∗)(Nmgr(X;X)), thus the

temporal normalization operator NA(r; r) is the next temporal primitive that has to be pro-
cessed in our example. The expression Nmgr(X;X) indicates that the relation X will be
normalized with respect to itself X and the Attribute mgr. That means in detail that we get
the normalized result tuples if we adjust the intervals of each tuple in X by the start and end
point of all the tuples of X in the same group. In our example, X is grouped by the attribute
mgr into the three groups with mgr = Xavier, mgr = Y vonne and mgr = Zoe. Similarly
to the alignment operator, each gap in the interval of a X-tuple, that is not covered by any
X-tuple in the same group, produces a result-tuple as well.

Example 5 The normalization of the relation X with respect to itself, having the attribute
mgr to be used for grouping, is shown in Figure 2.3. For instance, the first result tu-
ple y1 = (Xavier, Amber, 1, [2012/1/1, 2012/7/1)) and the the second result tuple y2 =
(Xavier, Amber, 1, [2012/7/1, 2012/9/1)) are derived from x1 which is split up by the start
point ts = 2012/7/1 of x2 since x1 and x2 have both the same value Xavier in their mgr at-
tribute. Likewise, the third result tuple y3 = (Xavier, Chelsea, 1, [2012/7/1, 2012/9/1)) as
well as the fourth result tuple y4 = (Xavier, Chelsea, 1, [2012/9/1, 2012/12/1)) are derived
from x2 which is split up by the end point te = 2012/9/1 of x1.

2012/1 2012/2 2012/3 2012/4 2012/5 2012/6 2012/7 2012/8 2012/9 2012/10 2012/11 2012/12

Y

y1 = (Xavier,Amber, 1)

y2 = (Xavier,Amber, 1)

y3 = (Xavier,Chelsea, 1)

y4 = (Xavier,Chelsea, 1)

y5 = (Yvonne,Billy, 2)

y6 = (Zoe,Billy, 2)

y7 = (Zoe,Billy, 2)

y8 = (Zoe,Amber, 2)

Figure 2.3: Temporal Normalization

After the temporal normalization, it is now possible to make the non-temporal aggrega-
tion mgr,Tϑcount(∗)Y over the result relation Y, we can use T in the grouping, since inter-
val timestamps belonging to the same group mgr are now either equal or disjoint. Fig-
ure 2.4 shows the result of this aggregation, which is equal to the assumed result of the query
QT = mgrϑ

T
count(∗)(M ./TM.dep=E.d E) shown in Figure 1.4.

13

2012/1 2012/2 2012/3 2012/4 2012/5 2012/6 2012/7 2012/8 2012/9 2012/10 2012/11 2012/12

Z

z1 = (Xavier, 1)

z2 = (Xavier, 2)

z3 = (Xavier, 1)

z4 = (Yvonne, 1)

z5 = (Zoe, 1)

z6 = (Zoe, 2)

Figure 2.4: Aggregation

2.5 Timestamp Propagation
As previously described, it is sometimes necessary to propagate timestamps when reduction
rules are applied. As explained by Dignös et al. [1], this has to be done when interval times-
tamps are used in predicates and functions of temporal operators ψT . If such a case occurs,
we apply the timestamp propagating operator εU(r) by propagating interval timestamps as
non-temporal attributes. That means that we add attributes with name U = [us, ue) to the
schema of the argument relation which are identical to the interval timestamps T = [ts, te).
The temporal primitives won’t adjust the non-temporal interval U so that U stores the original
interval timestamps and can be used instead of T in the predicates and/or functions.

Example 6 We do not use predicates or function on timestamps in our running example, thus
timestamp propagation is not required. But to illustrate the behavior of the timestamp propa-
gation operator, we show in Figure 2.5 with εU(M) the propagation of the timestamps for the
manager relation M. For instance, when we are applying the normalization primitive for a
subsequent aggregation on the relation M, we can still use the original timestamp U (that is
not adjusted) in aggregation functions to, e.g., get the average duration of manager contracts.

M

mgr dep us ue ts te

m1 Xavier 1 2012/01/01 2013/01/01 2012/01/01 2013/01/01

m2 Yvonne 2 2012/01/01 2012/04/01 2012/01/01 2012/04/01

m3 Zoe 2 2012/04/01 2013/01/01 2012/04/01 2013/01/01

Figure 2.5: Timestamp Propagation of Relation M

14

3 Definition of an SQL Language with
Statement Modifiers

This chapter introduces an SQL language that supports temporal statement modifiers and it
describes how statement modifiers can still allow to scale attribute values at query time. In the
first section we will look at the basic definition of a simple select statement of the PostgreSQL
parser [3] and how it has to be modified in order to support temporal statement modifiers. In
the second section we will determine the scope of such modifiers and show the advantages as
well as the limitations that come along with our chosen scope. After that we will show why and
how the support for set operations with statement modifiers differs from the way that statement
modifiers are supported for usual select statements. In the fourth section we will describe some
additional parameters for statement modifiers and we will define an appropriate grammar for
the SQL language. In the last section we will have a look at the scaling of attribute values.
We will show the need of such scaling functions and we will describe how the scaling is still
allowed in our new modified SQL.

3.1 Basic Definition for Temporal Statement Modifiers
Figure 3.1 shows the form of a general and well known SQL select statement. As for natural
languages, SQL has a grammar that defines the language in terms of syntax, i.e., determines
whether a query is syntactically correct. The syntax of the SQL language in PostgeSQL is
ensured by defining rules in the grammar-file gram.y (src/backend/parser/gram.y1). The gram-
mar is highly similar to the Extended Backus–Naur Form syntax and thus can be read likewise.
Terminal symbols are written in CAPITALS and non-capitals are used for non-terminals, i.e.,
recursive rules. A simplified version of the basic grammar rule for a select statement is shown
on the right side in Figure 3.1. Curly brackets enclose c-code which is performed if a grammar
rule holds true. The c-code of each grammar rule is used to build up a raw parse-tree and in
this case it is used to create a c-struct representing a select statement. The c-code is omitted in
the figure.

One of the main tasks within this project is to integrate statement modifiers into the Post-
greSQL parser, so that it is possible do distinguish which statements need to be translated to
SQL queries with temporal primitives. Böhlen et al. [2] introduced such temporal statement
modifiers to provide temporal support to an existing query language. Statement modifiers are
designed to be prepended to queries, and a whole grammar that supports many temporal fea-
tures has been proposed. In the case of the reduction rules, we are dealing with sequenced

1http://www.ifi.uzh.ch/dbtg/research/align.html

15

SELECT clause
FROM clause
WHERE clause
GROUP clause
HAVING clause

simple_select:
SELECT target_list
from_clause
where_clause
group_clause
having_clause
{
// create select statement

}

Figure 3.1: SQL (l.) and Grammar Definition in PostreSQL (r.) of common Select Statements.

queries and valid time timestamps so we take as temporal statement modifier the fixed text
string SEQVT as already denoted in Chapter 1. Prepending this modifier to a query lets us
know that the statement has to be processed with a modified behavior, that means in our case,
to apply reduction rules. To define it appropriately in the grammar, the additional non-terminal
modifiers has to be added to the simple-select rule as well as an appropriate rule to this
non-terminal. The newly created rule means nothing more than returning false or true to the
appropriate attribute of the select statement. The modified SQL and its grammar are shown in
Figure 3.2.

SEQVT
SELECT clause
FROM clause
WHERE clause
GROUP clause
HAVING clause

simple_select:
modifiers
SELECT target_list
from_clause
where_clause
group_clause
having_clause
{
// create select statement and
// mark it appropriate if seqvt

}

modifiers:
SEQVT {
// return some true value

}
| /*EMPTY*/ {
// return some false value

}

Figure 3.2: SQL (l.) and Grammar (r.) of Select Statements with a Statement Modifier.

16

3.2 Scope of Statement Modifiers
An important aspect of temporal statement modifiers is to define their scope. There are basi-
cally two variants. Either the statement modifier affects only the statement at the current level,
or it affects also the deeper nested statements like query expressions inside the from clause.
Assume we have a statement we want to be processed in a temporal manner, but the statement
itself has another statement in its from clause that we want to be processed in the usual non-
temporal manner. If we decide for the latter of the above mentioned variants, we wouldn’t
have the possibility to query usual non-temporal select statements inside the from clause and
therefore patronize the user and downgrade the user experience. One alternative to avoid such
a problem would be to create a second statement modifier like NOSEQVT. This modifier could
be used to cancel the handed down temporal behavior from on the statement it is attached to,
see left side in Figure 3.3. Besides that the implementation effort would increase with this
approach it seems a bit cumbersome to mark select statements only that they are processed
in their usual non-temporal behaviour. The basic principle of statement modifiers would be
missed since they should generally be used to modify the ordinary behaviour of statements [2]
rather than countermand a modified behaviour. On these grounds we choose to stay with the
non-inheritable Modifier as it is shown on the right side of Figure 3.3.

SEQVT SELECT count(*)
FROM (

NOSEQVT SELECT mgr
FROM M

) m;

SEQVT SELECT count(*)
FROM (

SELECT mgr
FROM M
) m;

Figure 3.3: Additional Modifier (l.) vs. non-inheritable Modifier (r.)

3.3 Supporting Statement Modifiers for Set Operations
Next we need to determine how temporal statement modifiers may support the set operations
difference r − s, union r ∪ s and intersection r ∩ s properly. A set operation has two input
arguments, usually select statements to the left and the right of the operation. Until now, the
modified grammar allows us to prepend statement modifiers to both of the select statements. In
Figure 3.4 we see the approximate form of SQL queries for set operations that have statement
modifiers prepended in front of their select statements.

SEQVT SELECT clause FROM clause ...
[UNION|INTERSECT|EXCEPT]
SEQVT SELECT clause FROM clause ...

Figure 3.4: Wrong SQL for Statement Modifiers prepended to Set Operations.

17

Unfortunately, such a query is not sufficient enough to mark the set operation appropri-
ately so that it is treated as a temporal operation. Instead each select statement is processed
separately in a temporal manner and after that the set operation itself is still processed in a
non-temporal manner.

In order to achieve our desired temporal behavior for set operations we need to modify the
PostgreSQL grammar again. If we think back to the reduction rules in Table 2.1 we see that
the set operations must be affected on the whole by a single statement modifier. One might
also still remember that in SQL a set operation is said to be one whole query expression. That
is one reason why the PostgreSQL grammar defines that a select statement is either one single
select statement, or in case of set operations, it is a tree of select statements. Assuming a
UNION operation with two select statements as arguments, the UNION operator would be a
select statement itself as the root node in the tree. It would have set an attribute to a value
which identifies itself as a UNION operation. Additionally this root select statement would
have set the two argument select statements as child nodes. Looking at Figure 3.5 it is clear
that we only have to attach the temporal statement modifier to the root select statement, so that
the temporal query can be appropriately translated to its query with temporal primitives.

UNION Select Statement

Left Argument Select Statement Right Argument Select Statement

Figure 3.5: Tree of Select Statements

To distinguish in SQL that the temporal statement modifier should be applied to the set
operation and not to the first argument of the operation, we need to make use of parentheses.
After the statement modifier we would write a left parenthesis followed by the set operation
and conclude the expression with a right parenthesis. Figure 3.6 shows the form of such an
SQL expression.

SEQVT (
SELECT clause FROM clause ...
[UNION|INTERSECT|EXCEPT]
SELECT clause FROM clause ...

)

Figure 3.6: Correct SQL for Statement Modifiers prepended to Set Operations.

To integrate this into the PostgreSQL grammar, we need to modify the rules for set op-
erations. Currently this rules are alternative rules for the simple_select non-terminal.
In Figure 3.7 we see the simplified versions of the original set operation rules on the left
side. We now have to replace this three rules with a reference to the new non-terminal
set_operation_modifiers. This non-terminal contains two different rules. In the first
rule it checks whether a temporal statement modifier is set and if the set operation expression

18

is properly embraced by parentheses. The second rule is needed if no statement modifier is
at hand and nothing special has to be done. Both rules hold a reference to a second new non-
terminal set_operation. As the name denotes, the set_operation-grammar contains
the original three set operation rules.

simple_select:
...
| select_clause UNION select_clause
{

// create select statement,
// id it as UNION statement
// and add child statements

}
| select_clause INTERSECT select_clause
{

// create select statement,
// id it as INTERSECT statement
// and add child statements

}
| select_clause EXCEPT select_clause
{

// create select statement,
// id it as EXCEPT statement
// and add child statements

}
...

simple_select:
...
| set_operation_modifiers
{
// return set operation including
// the statement modifier if needed

}
...

;

set_operation_modifiers:
modifiers ’(’ set_operation ’)’
{
// append the statement modifier
// to the set operation statement

}
| set_operation
{
// return just the set operation

}
;

set_operation:
select_clause UNION select_clause
{
// original behavior

}
| select_clause INTERSECT select_clause
{
// original behavior

}
| select_clause EXCEPT select_clause
{
// original behavior

}
;

Figure 3.7: Original (l.) vs. Modified (r.) Grammar for Set Operations

At the moment, the set_operation_modifiers:-grammar in combination with the
modifiers:-grammar will produce some so called shift/reduce-conflicts. Such conflicts oc-
cur when the parser has two or more possible ways to traverse through the grammar verifying
the syntax of a statement as correct. To visualize the problem for our approach we show two
different ways to parse a set operation that is embraced with parentheses and has no keyword
SEQVT prepended to it, e.g., the statement (SELECT * FROM M UNION SELECT *
FROM E). The two traversals are shown in Figure 3.8. On the right side we can parse the state-
ment by following the rules SelectStmt, select_no_parens, simple_select,
set_operation_modifiers, modifiers ’(’ set_operation ’)’, /*
EMPTY */. On the left side we can parse the statement differently by following the
rules SelectStmt, select_with_parens, ’(’ select_no_parens ’)’,
simple_select, set_operation_modifiers, set_operation.

19

SelectStmt:
select_no_parens
...

;

select_no_parens:
simple_select
...

;

simple_select:
...
| set_operation_modifiers
...

;

set_operation_modifiers:
modifiers ’(’ set_operation ’)’
...

;

modifiers:
...
| /*EMPTY*/
...

;

SelectStmt:
...
| select_with_parens
...

;

select_with_parens:
’(’ select_no_parens ’)’
...

;

select_no_parens:
simple_select
...

;

simple_select:
...
| set_operation_modifiers
...

;

set_operation_modifiers:
...
| set_operation
...

;

Figure 3.8: Shift/Reduce-Conflict for non-temporal Set Operations

To get rid of the errors we have to delete the alternative rule /*EMPTY*/ in the
modifiers:-grammar. After that we have to give back the possibility that common se-
lect statements may exist without statement modifiers. We solve this by adding the original
rule for usual select statements as an alternative to our modified rule. The changes that are
needed in the grammar are shown in Figure 3.9.

simple_select:
modifiers
SELECT target_list from_clause
where_clause group_clause having_clause
{
// create select statement with statement modifier
}
| SELECT target_list from_clause
where_clause group_clause having_clause
{
// or create statement without statement modifier
}
...

;

modifiers:
SEQVT {
// return some true value
}

;

Figure 3.9: Changes needed to prevent Errors in the Grammar

20

3.4 Additional Parameters for Statement Modifiers
The translation of the queries with statement modifiers to queries with temporal primitives
must be executed if the corresponding temporal statement modifier is prepended. Considering
our running examples in Chapter 1 and the reduction rules in Chapter 2, it would be favorable
to be able to specify the names of the timestamp attributes. Otherwise names of the timestamp
attributes need to be hard coded into the translation algorithm of the parser and that would
lead to a bad user experience. Either the relations which the user is using must have exactly
the timestamp names we allow, or the user needs to perform a renaming for each relation he
intends to use in a temporal query.

A way to improve this, is to pass along the names of the timestamp columns together with
the temporal statement modifier. With that we are able to determine the timestamp columns
of a statement when it comes to the translation algorithm. Applying this to our rule of the
modifiers nonterminal leads to the conclusion that we rather have to create a statement
modifier object than only setting a simple flag to true. The modifier object then holds the
names of the timestamp columns as shown in the first modifiers-rule in Figure 3.10.

SEQVT ts te
SELECT clause
FROM clause
WHERE clause
GROUP clause
HAVING clause

simple_select:
modifiers
SELECT target_list
from_clause
where_clause
group_clause
having_clause
{

// create select statement and
// append seqvt object if desired

}
...

;

modifiers:
SEQVT ColId ColId }

// return object with the column names
}
| SEQVT {

// return object with default names
}

;

Figure 3.10: SQL (l.) and the Grammar (r.) for the extended Statement Modifier.

We can still define the grammar of the parser in such a way, that omitting the timestamp
names is allowed and some default names, for example ts and te, are stored in the statement
modifier object and will be used for the processing of the reduction rules. This alternative rule

21

is shown as the second modifiers-rule in Figure 3.10
Nevertheless, one could argue that it would be probably better if we are allowed to pass

the names of each relations timestamps. On one side, the whole statement modifier extension
would become very flexible for databases with relations having different timestamp names.
On the other side, more complex queries which cover multiple relations, could become almost
impossible to read and the implementation will surely become way harder to accomplish. So
again, in terms of keeping things simple, we leave it the way that we pass only a single column
name for the starting point of the time interval and a second column name for the end point
of the interval. Besides favoring simplicity, these design decision would constrain the users to
have a constant naming convention for columns that have the same duty, so in our case these
are the interval timestamps columns.

3.5 Allowing the Scaling of Attribute Values
As described earlier, the alignment operator Φ and the normalization operator N adjust inter-
val timestamps. The scaling of attribute values becomes necessary because not all attribute
values may remain valid if the associated interval timestamps change due to the temporal ad-
justments [4]. Dignös et al. [5] have proposed how such a scaling can be supported in SQL at
query time. The final step of defining the SQL language with temporal statement modifiers is
to ensure, that the scaling of attribute values is still supported in queries with such statement
modifiers.

Example 7 Figure 3.11 shows an example for which the scaling of attribute values is required.
Relation L in Figure 3.11(a) is the employee relation E with an additional column l that
records the loan that each employee earns during the associated interval [ts, te). For instance,
tuple l1 records that Amber works at department 1 from the beginning of the year until the end
of August and earns in this period a total of 244K. To query the time-varying sum of the
employees loan we use the query Z = ϑTSUM(scale(l))(L). We have a temporal aggregation ϑT

and the function scale(l) inside the aggregation function SUM() that indicates that the value
of attribute l has to be scaled before the actual aggregation function is performed. The result
of this query is shown in Figure 3.11(b).

L

n d l ts te

l1 Amber 1 244K 2012/01/01 2012/09/01

l2 Billy 2 366K 2012/01/01 2013/01/01

l3 Chelsea 1 184K 2012/07/01 2012/12/01

l4 Amber 2 122K 2012/09/01 2013/01/01

(a) New Temporal Relation L

Z

sum ts te

z1 364K 2012/01/01 2012/07/01

z2 186K 2012/07/01 2012/09/01

z3 273K 2012/09/01 2012/12/01

z4 62K 2012/12/01 2013/01/01

(b) ϑTSUM(scale(l))(L)

Figure 3.11: Scaling of Attribute Values.

With the graphical representation in Figure 3.12 it is easy to understand the results without
knowing the exact mechanics of the scaling. We can see that each employee has a loan of 1K

22

per day. Knowing that fact lets us easily derive the result tuples from relation Z. For instance
the first result tuple z1 = (364K, [2012/01/01, 2012/07/01) is derived from the employee-
loans of l1 and l2. For each employee we add up 1K per day until the beginning of July, when
the new employees loan l3 changes the sum per day leading to the starting point of the second
result tuple z2.

To understand the detailed approach to get that result relation, the query needs to be reduced
with respect to the reduction rule for temporal aggregations shown in Table 2.1. As it is
explained in detail later on, also a timestamp propagation has to be performed on the employee
relation L. Applying this two steps to our original query leads us to the expression Z =
ϑSUM(scale(l))(N (εU(L); εU(L)). After propagating the timestamps and having the relation
L normalized with respect to itself, the original loan values must be scaled to the adjusted
intervals of the normalized tuples. For the final step, the non-temporal aggregation function
ϑSUM() needs to be performed to deliver us the time-varying sum of employee-loans as shown
in Figure 3.11(b) and in Figure 3.12.

2012/1 2012/2 2012/3 2012/4 2012/5 2012/6 2012/7 2012/8 2012/9 2012/10 2012/11 2012/12

L

l1 = (Amber, 1, 224K)

l2 = (Billy, 2, 366K)

l3 = (Chelsea, 1, 184K)

l4 = (Amber, 2, 122K)

Z

z1 = (364K)

z2 = (186K)

z3 = (273K)

z4 = (62K)

Figure 3.12: Graphical Representation of Scaling Attribute Values.

As proposed by Dignös et al. [5] there exist different possible scaling functions, namely
Uniform Scaling, Atomic Scaling and Trend Scaling. All of them have in common that the
scaling functions do not only need as input parameter the attribute that should be scaled.
As already denoted in the example, it is also necessary that the adjusted timestamps as well
as the original timestamps are passed as parameters to the function. So that is why all the
scaling methods appear with a function header that have approximately a form that looks
like scale(x, Ts, Te, Us, Ue). As an example, we show a function in Figure 3.13 that scales
attribute values proportionally to the length of the new adjusted timestamps. This Uniform
Scaling is also the scaling function that is needed to get the appropriate results in our example
above.

23

CREATE OR REPLACE FUNCTION
scaleU(x FLOAT, ts_new DATE, te_new DATE, ts_old DATE, te_old DATE)
RETURNS FLOAT AS $$
BEGIN
RETURN x * (te_new - ts_new) / (te_old - ts_old);
END; $$ LANGUAGE PLPGSQL;

Figure 3.13: Function for Uniform Scaling.

Hence the original timestamps still have to exist when the scaling takes place, it is necessary
that we use timestamp propagation εU(L) before the temporal adjustment is done. Having the
propagation and the normalization done, it is then possible to use the original timestamps us
and ue to perform a valid scaling.

All in all we get a definite order of operations that has to be met so that the scaling of at-
tribute values is done right. But all of this has to be taken care of by the translation algorithm
that transforms queries with statement modifers to queries with temporal primitives. We will
pursue this topic in the next chapter. As we can see, the grammar of the PostgreSQL parser
itself does not need to be modified any further so that a scaling would be possible. The user
itself has to take care that he passes the right timestamps to the scale-function. Regarding
the scale function above, the second and third parameter should be filled with the timestamp
names that are used for the interval timestamps in the database. For the forth and the fifth pa-
rameter, the user should pass along the names that were created in the course of the timestamp
propagation.

24

4 The SQL mapping

In Chapter 4 we investigate the mapping of queries with statement modifiers to queries with
temporal primitives. In the first section we will look at the already existing implementation of
temporal primitives in PostgreSQL. We show the usage of this primitives in an example and
we illustrate the advantages of WITH-clauses in this context. Then, in the second section, we
will demonstrate the mapping of queries over algebra expressions and determine the actual
order for processing temporal operations. In the third section we will explain the mapping
in SQL and the basic approach of our implementation of the translation algorithm into the
PostgreSQL parser.

4.1 Implementation of the Temporal Primitives
An implementation of the temporal primitives in the kernel of the PostgreSQL database system
has already been described by Dignös et al. [1]. They’ve used a very straightforward approach
so that the formulation of temporal SQL queries are relatively easy. Prerequisites are the
knowledge of how to write the relational algebra expressions of the desired temporal queries
and how the reduction rules need to be applied to reduce the expressions properly. With that we
are able to assemble the corresponding SQL queries and statements containing the temporal
primitives. The SQL syntax for these primitives is shown in Table 4.1.

εU (r) : SELECT ts us, te ue, * FROM r

NB(r; s) : FROM (r NORMALIZE s USING(B)) r

rΦθs : FROM (r ALIGN s ON θ) r

α(r) : SELECT ABSORB * FROM r

Table 4.1: Implementation of Temporal Primitives

The timestamp propagation operation εU(r) can be achieved by using a common non-
temporal select statement that projects the argument relation with all of its attributes and ex-
tends it with copies us and ue of the original timestamps ts and te as explicit non-temporal
attributes. As previously specified, the original timestamps must be replaced with the ref-
erences to the propagated attributes whenever the original timestamps are needed in theta
conditions θ, in aggregate functions ϑF and in scaling functions. The normalization operator
NB(r; s) is made accessible by using the keyword NORMALIZE inside the FROM-clause. We
define the primitive’s corresponding grouping-clause by writing the grouping attributes inside

25

the brackets of USING(). To the immediate left and right side of the keyword NORMALIZE
we write the two input argument relations so that the first relation is normalized with respect
to the second one. In a similar manner we can handle the alignment operation rΦθs by us-
ing the keyword ALIGN instead of NORMALIZE. The associated theta-condition θ has to be
formulated by starting with the keyword ON and is then followed by the actual condition(s).
Finally, the absorb operator α is accessible by using the keyword ABSORB.

As we will also see it in Example 8 afterwards, WITH-clauses play an important part when
it comes to the use of reduction rules and temporal primitives. Without using WITH-clauses,
queries can become exponentially big. For instance, when we have to apply timestamp prop-
agation to an argument relation r, we would be forced to rewrite the timestamp propagation
SELECT ts us, te ue, * FROM r for each occurrence of this one argument relation.
That is at least twice, since every reduction requires each argument relation twice. By using
the WITH-clause it is only necessary to define such expressions once in the beginning of the
temporal statement. Each occurrence of the original expression can then be substituted with
the alias of the virtual table that has been created along with the WITH-clause, and thus queries
grow only linearly instead of exponentially.

Example 8 The affinity between the relational algebra and the SQL syntax can also be shown
in a more complex example. Consider our relational algebra expressions QT

rared1
and QT

rared2

the corresponding SQL is shown on the left-hand side in Figure 4.1, where the WITH state-
ment corresponds to QT

rared1
dealing with the temporal join, and the second expression QT

rared2

is the temporal aggregation corresponding to the remaining SQL. On the right-hand side in
Figure 4.1 we can clearly see that the query is becoming much bigger when not taking advan-
tage of the WITH-clause. Without the virtual table X from the WITH-clause we are forced to
write the whole SQL query for the temporal inner join twice, once for the left and once for the
right side of the NORMALIZE operation.

WITH X AS (
SELECT ABSORB mgr, n, M.ts, M.te
FROM (M ALIGN E ON M.dep = E.d) M

JOIN
(E ALIGN M ON M.dep = E.d) E
ON M.dep = E.d
AND M.ts=E.ts AND M.te=E.te

)
SELECT mgr, count(*), ts, ts
FROM (X NORMALIZE X USING(mgr)) Y
GROUP BY mgr, ts, ts;

SELECT mgr, count(*), ts, ts
FROM (

(SELECT ABSORB mgr, n, M.ts, M.te
FROM (M ALIGN E ON M.dep = E.d) M

JOIN
(E ALIGN M ON M.dep = E.d) E
ON M.dep = E.d
AND M.ts=E.ts AND M.te=E.te) X1

NORMALIZE
(SELECT ABSORB mgr, n, M.ts, M.te
FROM (M ALIGN E ON M.dep = E.d) M

JOIN
(E ALIGN M ON M.dep = E.d) E
ON M.dep = E.d
AND M.ts=E.ts AND M.te=E.te) X2

USING(mgr)
) Y

GROUP BY mgr, ts, ts;

Figure 4.1: Temporal Queries using Temporal Primitives with (l.) and without (r.) WITH.

26

4.2 The Mapping of Queries with Statement Modifiers
to Queries with Temporal Primitives over
Algebraic Expressions

Till now, we have discussed the reduction rules and the temporal primitives. We know the re-
lational algebra representations as well as the PostgreSQL syntax of these temporal primitives.
Some supporting operations like timestamp propagation as well as the absorb operator have
been proposed to ensure the properties of the sequenced semantics and to allow the scaling of
attribute values.

Within the next step we fulfill one of our main goals of this project. We investigate how to
achieve the mapping of a query with statement modifiers to a query with temporal primitives.
Without statement modifiers and their proper mapping, every time we desire to execute some
temporal queries, we would be forced to manually formulate complex queries with temporal
primitives. Figure 4.2 makes clear how easier the formulation of temporal queries can be done
with temporal statement modifiers. Hiding the complexity of temporal statements will also
help to lower the possible error-proneness of expressing intricate temporal queries.

WITH X AS (
SELECT ABSORB mgr, n, M.ts, M.te
FROM (M ALIGN E ON M.dep = E.d) M

JOIN
(E ALIGN M ON M.dep = E.d) E
ON M.dep = E.d

AND M.ts=E.ts AND M.te=E.te
)
SELECT mgr, count(*), ts, ts
FROM (X NORMALIZE X USING(mgr)) Y
GROUP BY mgr, ts, ts;

SEQVT
SELECT mgr, count(*)
FROM M JOIN E ON M.dep = E.d
GROUP BY mgr

Figure 4.2: Temporal Queries without (l.) and with (r.) temporal Statement Modifiers.

The mapping started already with the definition of the grammar as described in the previ-
ous chapter. The remaining mapping is performed after the grammar rules of the PostreSQL
parser create a raw parse tree. This section investigates the mapping of queries over alge-
bra expressions and afterwards in the next section we will determine the mapping in SQL.
Figure 4.3(a) shows the query Q in its algebraic representation Qra as a parse tree, whereas
θ ≡ (M.dep = E.d).

mgrϑcount(∗)

./θ

M E

(a) Parse Tree

mgrϑ
T
count(∗)

./Tθ

M E

(b) Temporal P. T.

Figure 4.3: Mapping Parse Trees

27

From Chapter 3, we know that the parse tree stands for a select statement which holds in
its newly modified version a temporal statement modifier object if the statement modifier key-
word SEQVT has been set. If so, the parse tree should be processed regarding to the sequenced
semantics. To label our algebraic parse tree accordingly, we can mark it by replacing the re-
lational algebra operators ./ and ϑ in the parse tree by their temporal representations ./T and
ϑT , which is shown in Figure 4.3(b). As it is possible to see, this parse tree is identical to the
query QT

ra. For the next steps and for a better visualization, we split the temporal parse tree
into a tree and a sub-tree, where the temporal join is shown as node X in Figure 4.4(a) and the
temporal aggregation in Figure 4.4(b), having X as a sub-tree.

./Tθ

M E

(a) Temporal Join

mgrϑ
T
count(∗)

X

(b) Temp. Agg.

Figure 4.4: Splitting up the temporal Parse Tree

We proceed with the mapping by reducing the operators with sequenced semantics to their
non-temporal counterparts. Hence the temporal join is processed before the temporal aggre-
gation, we reduce the temporal join first, as shown in Figure 4.5(a). As we know it from the
reduction rules from Table 2.1, the argument relations M and E must both be aligned. Keep
in mind that θ is M.dep = E.d and therefore the condition for the non-temporal inner join is
M.dep = E.d ∧M.T = E.T .

The next step is to reduce the temporal aggregation as shown in Figure 4.5(b). The reduction
needs to perform the normalization by taking the previously reduced temporal join X as both
input arguments of the normalization operator. The normalization has to be processed with
respect to the attribute mgr and the grouping for the aggregation be performed with respect to
mgr and T . After that, we have the mapping of our example query with statement modifier to
its query representation with temporal primitives, that can be executed using PostgreSQL.

α

./θ∧M.T=E.T

Φθ

M E

Φθ

E M

(a) Reduced Temporal Join

mgr,Tϑcount(∗)

Nmgr

X X

(b) Reduced Temporal Aggregation

Figure 4.5: Reduction on Temporal Operators

To generalize, we know that an ordinary select statement is processed in the order shown
in Figure 4.6(a). If such statements are part of a set operation, the set operation has to be

28

processed after both argument statements have done so. This makes it possible to determine
a general case for the order of reduction rules that have to be performed, which is shown in
Figure 4.6(b). First, we have to perform the reduction of all the joins and/or Cartesian products
placed in the FROM-clause. Second, the WHERE-clause takes place, but nothing special needs
to be done, since a temporal selection is processed the same as a usual selection. Third,
we have to apply the reduction rules on aggregates. Fourth, the HAVING-clause has to be
handled, but since its behavior does not differ from a general selection, there is no special
reduction necessary here as well. Fifth, is to take care of the SELECT-clause by applying the
reduction rules of a temporal-projection. When we processed our ordinary select statement,
the reduction rules for set operations is applied if required by the query expression.

from items from
table

where
subset of table

group
grouped table

having
subset of groups

select subset of groups

(a) General Processing Order

FROM

WHERE

GROUP

HAVING

SELECT

SET OP

r ×Tθ s
r ./Tθ s

r ./Tθ s

r ./ Tθ s

r ./ Tθ s

r .Tθ s

σTθ (r)

Bϑ
T
F (r)

σTθ (r)

πTB(r)

r −T s
r ∪T s
r ∩T s

=

=

=

=

=

=

=

=

=

=

=

=

=

α((rΦtrues) ./r.T=s.T (sΦtruer))

α((rΦθs) ./θ∧r.T=s.T (sΦθr))

α((rΦθs) ./θ∧r.T=s.T (sΦθr))

α((rΦθs) ./ θ∧r.T=s.T (sΦθr))

α((rΦθs) ./ θ∧r.T=s.T (sΦθr))

(rΦθs) .θ∧r.T=s.T (sΦθr)

σθ(r)

B,TϑF (NB(r; r))

σθ(r)

πB,T (NB(r; r))

NA(r; s)−NA(s; r)

NA(r; s) ∪NA(s; r)

NA(r; s) ∩NA(s; r)

(b) General Order of the Temporal Operators / Reduction Rules

Figure 4.6: General Case

29

4.3 The Mapping of Queries with Statement Modifiers
to Queries with Temporal Primitives over SQL
Expressions

4.3.1 Preliminaries for the actual Mapping
When it comes to the question, what implementation tasks are necessary to integrate the map-
ping into the PostgreSQL parser, it seems to be useful to analyze this tasks, group these by the
aspect of similarity and finally to narrow them down. Regarding Figure 4.6(b) in the last sec-
tion about the general order of the reduction rules, we can say that we do not have to modify
the parser to make the temporal selection work properly. So that means, however the WHERE-
clause and the HAVING-clause are implemented into the PostgreSQL parser, no modifications
have to be done there.

Next, we take a look at the temporal anti join r .Tθ s. In PostgreSQL, the non-temporal anti
join is treated differently than the other joins. This might be more clear when thinking about
how the anti join is used compared to the other joins in PostgreSQL. The difference as shown
in Figure 4.7 indicates that the internal processing of an anti join is implemented differently
in the parser. Whereas the other joins are represented by join-expression objects in the raw
parse tree and then further transformed in the FROM-clause, the anti join has no resemblance in
these points. Basically, the left argument of the anti join represents the main select statement
whereas the right argument of the anti join is a subselect nested in the select statement’s
WHERE-clause. The actual anti join and with that the removal of tuples happens in combination
with the keyword NOT EXIST. After the parsing and analyzing step PostgreSQL’s planner
recognizes the NOT EXIST clause and performs the conversion of the select statement to a
join expression. Because of this differences the anti joins needs to be treated as an exceptional
case. Hence some non-trivial challenges occur in trying to handle a temporal anti join in the
parser, we decided to leave this exceptional case out of the scope of this project and we will
deal with it in future work.

SELECT *
[FROM R JOIN S ON ...
| FROM R LEFT JOIN S ON...
| FROM R RIGHT JOIN S ON...
| FROM R FULL JOIN S ON...];

SELECT *
FROM R
WHERE NOT EXIST (SELECT *

FROM S
WHERE ...);

Figure 4.7: SQL of usual Joins (l.) vs. Anti Join (r.)

Considering the temporal Cartesian product r ×Tθ s, we might treat its reduction rule as a
special case as well. This is not entirely true since there exist two ways to express a Carte-
sian product in PostgreSQL. As shown in Figure 4.8, one way is to use the keyword CROSS
JOIN to explicitly characterize the Cartesian product and the other way is to make a comma
separated list of FROM-clause items which implies a Cartesian product.

As we take an insight in the source code of the parser, we see that the CROSS JOIN

30

SELECT *
FROM M CROSS JOIN E;

SELECT *
FROM M, E;

Figure 4.8: Explicit (l.) vs. implicit (r.) Cartesian Product

variant leads to the creation of a join-expression object without a join condition. So it is highly
possible that this variant can be implemented similarly to the other joins. In contrast the variant
with the comma separated list of items in the FROM-clause is implemented differently, having
no join-expression object created after the parsing step. Because of that we have to treat it as an
exceptional case. Even more complex, this special case in itself can be divided into two cases.
Even though we have a list of items in the FROM-clause, we also may have a join condition
inside the WHERE-clause as shown in Figure 4.9. Such a formulation will be transformed by
PostgreSQL as an inner join only in the optimizer. Our Implementation has to take care of that
and needs to support the processing of such temporal joins for performance reasons as well.
Hence no explicit join-expression object is created by the grammar after parsing the inner join
formulation, we have to treat these temporal implicit inner joins as exceptional cases too.

SELECT *
FROM M, E;

SELECT *
FROM M, E
WHERE M.dep = E.d;

Figure 4.9: Cartesian product (l.) vs. implicit Inner Join (r.)

In our next observation, we can find some similarities for the temporal aggregation Bϑ
T
F (r)

and the temporal projection πTB(r). As shown in Figure 4.10, the SQL statement for aggrega-
tion is realized by the items in the GROUP-clause as well as from the aggregation functions
that are specified in the SELECT-clause. Similarly the projection is realized in the SELECT-
clause, containing the desired attributes to project on. The optional grouping possibility for a
projection is likewise to the aggregation achieved with the items in the GROUP-clause. Having
this strong resemblance to each other, the temporal aggregation and the temporal projection
might be implemented in the same breath.

SELECT n, sum(l)
FROM ELOAN
GROUP BY n;

SELECT n
FROM ELOAN
GROUP BY n;

Figure 4.10: Aggregation (l.) vs. Projection (r.)

All this considerations lead to a number of implementation-tasks as shown in Figure 4.11.
The tasks are arranged in the order in which a select statement is processed. The temporal anti
join is not the only temporal operator that we leave out of the scope of this project. We do the
same with the implicit cross join, the implicit inner join as well as the set operations. Besides
the already existing challenges of this project many more major challenges arise in the process
to handle these temporal operations and we have to take care of them in future work.

31

1. Exceptional case: Determine the number of items in the FROM-clause. If there is more
than one item, transform the items to one or more join-expressions.

• r ×Tθ s = α((rΦtrues) ./r.T=s.T (sΦtruer)) (implicit cross-join)

2. Investigate the FROM-clause and apply the reduction-rules to join-expressions.

• r ×Tθ s = α((rΦtrues) ./r.T=s.T (sΦtruer)) (explicit cross-join)

• r ./Tθ s = α((rΦθs) ./θ∧r.T=s.T (sΦθr)) (explicit inner-join)

• r ./Tθ s = α((rΦθs) ./θ∧r.T=s.T (sΦθr))

• r ./ Tθ s = α((rΦθs) ./ θ∧r.T=s.T (sΦθr))

• r ./ Tθ s = α((rΦθs) ./ θ∧r.T=s.T (sΦθr))

3. Exceptional case: Inspect the FROM-clause as well as the WHERE-clause and find out if
an implicit inner-join needs to be performed and if so, apply the corresponding reduction
rule.

• r ./Tθ s = α((rΦθs) ./θ∧r.T=s.T (sΦθr)) (implicit inner-join)

4. Exceptional case: Investigate the WHERE-clause for the keyword NOT EXIST and de-
cide whether a temporal antijoin has to be transformed.

• r .Tθ s = (rΦθs) .θ∧r.T=s.T (sΦθr)

5. Analyze the SELECT-clause and apply if needed the reduction-rules for temporal pro-
jection and temporal aggregation.

• πTB(r) = πB,T (NB(r; r))

• Bϑ
T
F (r) =B,T ϑF (NA(r; r))

6. If a select statement is flagged as a set operation, apply the appropriate reduction rules.

• r −T s = NA(r; s)−NA(s; r)

• r ∪T s = NA(r; s) ∪NA(s; r)

• r ∩T s = NA(r; s) ∩NA(s; r)

Figure 4.11: Implementation Tasks

32

4.3.2 Reducing Temporal Join-Expressions
By neglecting a few details we can say that in the transformation process of a select statement
the FROM-Clause is the first clause that is analyzed in PostgreSQL and then appropriately
transformed for the query tree. This corresponds to the SQL processing order discussed in
Figure 4.6(a). Basically, the algorithm iterates through all the items in the FROM-clause and
transforms each of them individually. Each item is tested for its type and each type is trans-
formed in its specific way. There are a few possible types like a plain relation, a subselect or
for what we are searching for now, a join-expression. But in the case of our implementation
we do not only test the item if it is a join-expression, we also check for the possibility if this
item is a join-expression and a temporal statement modifier has been set for the whole select
statement. If this test holds true, we transform the join-expression object according to the
reduction rules. Having our running example in mind, this transformation is very similar to
the mapping shown before in Figure 4.4(a) and Figure 4.5(a). In our implementation we took
advantage of the already existing implementations from Dignös et al. [1] and reused their code
whenever possible.

Example 9 Consider the temporal join of the query QT or rather as expressed by the al-
gebraic query QT

rared1
. The corresponding SQL fromulation of the original select statement

is shown in Figure 4.12(a). At the beginning of our translation algorithm we create two
new select statements. These statements represent the alignment operations M ALIGN E
ON M.dep=E.d and E ALIGN M ON M.dep=E.d. The code that is used to create each
of these two statements is in principle the same as the already existing code inside the ALIGN-
rule in the gram.y file (src/backend/parser/gram.y1). The difference is that we do not get the
columns, relations and qualifiers directly from the users formulated SQL statement, but from
the original join-expression that we are trying to reduce. So the left and right arguments M
and E of the inner join as well as its condition M.dep = E.d are passed appropriately to
both of the alignment statements. As next we have to ensure that the left and right arguments
of the join-expression are replaced with the newly created alignment statements. We further
extend the conditions of the join with the expression AND r.ts = s.ts AND r.te =
s.te to cope with the reduction rules. Finally, we wrap up the join in a new select state-
ment that has set the ABSORB keyword. The tree of these newly created statements is shown
in Figure 4.12(b). One non-trivial problem arises if we have a closer look at this statement
tree. The transformed inner join expression joins the two aligned relations M and E together.
Since both of the relations possess the interval timestamp attributes ts and te, we will have
unnecessary duplicate timestamps in our result relation. Even worse is the fact that the re-
sult would have ambiguous column names. If no further operations follow which are using
these timestamps, it would not cause a problem. But keeping in mind that some more temporal
operations may follow and as it is in our running example, we need to remove the duplicate
timestamps. In Chapter 5 we will investigate some aspects of the implementation of the query
transformation very closely and the solution to the duplicate timestamp problem is a part of it.
The problem is not trivial as one might think and it will give us some important insights about
the implementation of the PostgreSQL parser itself.

1http://www.ifi.uzh.ch/dbtg/research/align.html

33

SEQVT SELECT * FROM arg1 JOIN arg2 ON M.dep = E.d

M E

(a) Original Temporal Join Statement

SELECT * FROM arg1

SELECT ABSORB * FROM arg1 JOIN arg2 ON M.dep=E.d AND M.ts=E.ts AND M.te=E.te

SELECT * FROM arg1 ALIGN arg2 ON M.dep=E.d

M E

SELECT * FROM arg1 ALIGN arg2 ON M.dep=E.d

E M

(b) Reduced Temporal Join

Figure 4.12: Reduction of Temporal Joins in SQL

This transformation algorithm is valid for all the other join-types (except the anti join)
since none of our transformation steps is specific to a type of join-expression to be reduced.
Having the alignment statements created the same as in the ALIGN grammar-rule, allows
us also to let the alignment statements be transformed by the already implemented func-
tion transformAdjustmentStatement (src/backend/parser/analyze.c1) which has also
been made available by Dignös et al. [1]. The transformation in this function is responsible
for compiling an appropriate SQL expression which does the actual temporal alignment as
described by Dignös et al. [1].

4.3.3 Reducing Temporal Projection and Temporal Aggregation
Since temporal aggregation and temporal projection need to be performed after processing the
temporal joins, we have to find the right place to apply the appropriate reduction rules. In
the PostgreSQL parser, the transformation order of the different clauses for a select statement
is not the same as the final processing order of a select statement as shown in Figure 4.6(a).
The SELECT-clause is analyzed and transformed to the needs of the query tree right after
the transformation of the FROM-clause. Only after that, the WHERE-, GROUP- and HAVING-
clauses can be transformed, due to their dependency on what stands in the select statement’s
SELECT-clause. This mixed up order of transforming the different parts of a select statement
makes it difficult to achieve the correct final order of processing temporal operations. The

1http://www.ifi.uzh.ch/dbtg/research/align.html

34

reduction of temporal aggregations and projections can not happen in the usual transformation
function of a select statement. Instead we have to separate the projection and/or the aggrega-
tion from the original statement and put it on top of the transformation of the original select
statement. In Example 10 we show the details how the transformation is done.

Example 10 We show the temporal aggregation of the query QT which is also expressed by
the algebraic queryQT

rared2
. The original SQL statement for the temporal aggregation is shown

in Figure 4.13(a). In our implementation of the translation algorithm we first create a new
select statement that copies the SELECT-clause and GROUP-clause from the original aggre-
gation statement. The new statement wraps up in its FROM-clause a new adjustment statement
containing the normalization operation X NORMALIZE X USING(mgr). As before, the
code used to create this adjustment statement is nearly the same as the existing code inside
the NORMALIZE-rule which can be found in the parsers grammar file. As it has been the
same with the temporal alignments before, we do not get the arguments for the normalization
statement from the users input directly. Instead we derive the normalizations USING-clause
from the original select statements GROUP-clause and extract the timestamp column names.
The left and the right arguments for the NORMALIZE operation are then assigned with our
original aggregation statement. At the end we have to ensure that the SELECT-clause from
the original statement is a plain * so that no projection happens before the temporal normal-
ization operation takes place. Furthermore the GROUP-clause is removed since the grouping
happens inside the wrapper statement which we have created in the beginning of the transfor-
mation algorithm. In Figure 4.12(b) we show the newly created tree of statements.

SEQVT SELECT mgr, count(mgr), ts, ts FROM arg1 GROUP BY mgr, ts, te

X

(a) Original Temporal Aggregation Statement

SELECT mgr, count(mgr), ts, ts FROM arg1 GROUP BY mgr, ts, te

SELECT * FROM arg1 NORMALIZE arg2 USING (mgr)

SELECT * FROM arg1

X

SELECT * FROM arg1

X

(b) Reduced Temporal Aggregation

Figure 4.13: Reduction on Temporal Aggregation and Projection in SQL

The transformation algorithm handles temporal aggregations as well as temporal projec-
tions since none of the reduction steps has to distinguish between these two different oper-

35

ations. Similar to the last subsection, having the normalization statement created the same
way as in the NORMALIZE grammar-rule enables us to let this adjustment statement to be
transformed by the transformAdjustmentStatement (src/backend/parser/analyze.c1)
function too. As denoted in the previous subsection, this function has been provided by Dignös
et al. [1] and is responsible for transforming the normalization statement to an SQL statement
that is capable to perform a temporal normalization.

1http://www.ifi.uzh.ch/dbtg/research/align.html

36

5 Implementation

In Section 4.3 we have proposed the basic approach of our implementation of the mapping
of statements with temporal statement modifiers to statements with temporal primitives. This
chapter will give some detailed insights of the implementation and the challenges that had to be
mastered. The first section gives a brief introduction to the implementation of the PostgreSQL
parser itself and the second section shows implementation-details about the temporal statement
modifier. The third section investigates the reduction of temporal join-expressions and how the
duplicate interval timestamps after join operations are removed. The fourth section shows how
our implementation deals with the explicit temporal Cartesian products. In the fifth section
we show the algorithm that detects if a select statement contains a temporal aggregation or
projection and therefore the appropriate reduction needs to be done.

5.1 Preliminaries
In order to better understand some aspects of our implementation, we establish a certain level
of comprehension of the PostgreSQL parser code. The basic data types in the parser archi-
tecture are the structures Node and List. A List can contain an unlimited number of
objects of the type ListCell and each cell points to a Node. For simplicity we can say
that each structure in the PostgreSQL parser inherits from Node. One important Node data
type is the SelectStmt type and as the name denotes it represents a usual SQL select state-
ment. A SelectStmt has attributes and the most important ones for our implementation
are shown in Figure 5.1. The attribute targetList is a pointer to a list which contains the
attributes that should be projected by the SelectStmt. The other three attributes should be
self-explanatory by their names.

SelectStmt

targetList(List*) fromClause(List*) whereClause(Node*) groupClause(List*)

Figure 5.1: The SelectStmt Data Type

As seen in Chapter 3, the simple_select rule of the PostgreSQL grammar creates such
a SelectStmt object. This object can also be seen as a raw parse tree and is later further
transformed to a query tree, mainly by the transformSelectStmt function.

37

5.2 Determining the Scope of the Statement Modifier
In Chapter 3 we defined that we want to assign a temporal statement modifier object to
a select statement that has a prepended SEQVT. To make this possible we created a new
data type TempStmtModifier and added a new attribute statementModifier to the
SelectStmt data type. The modifiers-grammar creates such a TempStmtModifier-
object which is then assigned to the attribute statementModifier of the SelectStmt.
With this we can identify select statements on which we have to apply the re-
duction rules. If we detect a statement which has a temporal statement modifier,
we call a new function transformTempStmtModifiers() before the traditional
transformSelectStmt() is processed. This new function marks the original statement
that possible join expressions need to be reduced as shown in the Section 4.3.2. It checks
whether a temporal projection or aggregation needs to be done and a normalization tree as
shown in the Section 4.3.3 needs be wrapped around the original statement. With the creation
of these trees of select statements a new challenge arises. Some of this statements like the
alignment, normalization or the reduced join statements need to know the interval timestamps
that are currently stored in the statement modifier that is only assigned to the original state-
ment. That leads to the consideration that we need to assign the statement modifier object to
these statements as well, so that they have access to the names of the interval timestamps. That
in turn leads to the problem that these select statements would be recursively processed by the
transformTempStmtModifiers() function, that would be wrong since the statement
has already been reduced to non-temporal operators. In order to omit this false behavior we
add the boolean isTsmSet to the statement modifier data type which is shown with its inter-
val timestamp names in Figure 5.2.

TempStmtModifier

isTsmSet(bool) ts(char*) te(char*)

Figure 5.2: The TempStmtModifier Data Type

The only time this boolean is set to true is when the PostgreSQL grammar recognizes
the keyword SEQVT and the original select statement gets the original statement modifier
object assigned to it. Now we check select statements not only if they have an assigned
TempStmtModifier object but also if isTsmSet is true. As soon as the statement
gets processed by the transformTempStmtModifiers() function we ensure that the
boolean isTsmSet gets set to false. With that, a second invocation of this function is avoided
for the rest of the tree of statements while the corresponding statements have access to the
statement modifier and the interval timestamp names.

38

5.3 The Reduction of Temporal Joins
Join expressions are represented in PostgreSQL with the data type JoinExpr as shown in
Figure 5.3. The JoinExpr structure has also some other attributes but we will only briefly in-
troduce the four attributes we need to know for our implementation. The attribute jointype
stores the type of the join. Some of its possible values are JOIN_INNER, JOIN_LEFT,
JOIN_RIGHT or JOIN_FULL which indicate respectively the expressions inner join ./, left
outer join ./, right outer join ./ and full outer join ./ . The left and the right argument of a
join operation are stored in the attributes larg and rarg and the quals attribute holds the
conditions for a join-expression.

JoinExpr

jointype(JoinType) larg(Node*) rarg(Node*) quals(Node*)

Figure 5.3: The JoinExpr Data Type

5.3.1 Preventing Endless Reductions on Join-Expressions
In Section 4.3.2 we defined that every JoinExpr from a select statement that has a
TempStmtModifier object will be reduced according to the reduction rules for joins.
As previously described in Section 5.2 several statements of the statement-tree which re-
sults from the reduction have a TempStmtModifier object assigned to them. That leads
to the problem that endless recursions of reductions might occur when one of these newly
produced select statements hold a join-expression in their FROM-clause. Unfortunately, the
alignment statements have a left outer join as well as an assigned TempStmtModifier so
this case would really occur. Now we have to find a mechanism to prevent this from happen-
ing and to do the proper implementation. In Section 5.2 we have already denoted a solution
to this problem. We said that the transformTempStmtModifiers() function marks
the original statement that possible join expressions need to be reduced. This is made pos-
sible by defining a new attribute applyJoinReductionRules for the SelectStmt
data type which is then set to true by the transformTempStmtModifiers() func-
tion. We will use this attribute as an additional predicate to check if a join expression
needs to be reduced. In Figure 5.4 we show a very simplified version from the func-
tion transformFromClauseItem() that does the transformation of FROM-clause items.
This function gets an item node n as input parameter. By using the method IsA() we can
determine the type of the node n and transform the node accordingly. By checking the
node for its type, verifying the existence of a TempStmtModifier and testing the boolean
applyJoinReductionRules we can make sure if the transformation of a temporal join is
needed. Since with the applyJoinReductionRules-attribute only the original state-
ment may be reduced, an endless reduction is avoided.

39

Function: transformFromClauseItem()
Input: FROM-clause item Node n and some other parameters
Output: Tranformed Node n

if IsA(n,RangeV ar) then
Transform and return plain relation;

else if IsA(n,RangeSubselect then
Transform and return nested select statement;

else if IsA(n,RangeFunction) then
Transform and return function call appearing in a FROM-clause;

else if IsA(n, JoinExpr) ∧ TempStatementModifier ∧ applyJoinReductionRules then
Transform and return temporal join by applying the reduction rules for join-expressions;

else if IsA(n, JoinExpr) then
Transform and return usual join expression;

Throw an error for unrecognized node type of n;

return NULL;

Figure 5.4: Determination of the FROM-clause Items Type

5.3.2 Removing Duplicate Interval Timestamps
As described in the previous chapter, one major challenge has been the removal of duplicate
timestamps after a temporal join operation. Since in the processing of temporal queries both
of the aligned argument relations of a temporal join have interval timestamps, we have them
twice after the join.

Example 11 Consider the temporal inner join from our example, we can express the algebraic
query QT

rared1
as the SQL query: SEQVT SELECT * FROM M JOIN E ON M.dep =

E.d. Executing this temporal inner join in terms of our transformation algorithm proposed in
the previous chapter would lead to the result relation X as shown in Figure 5.5.

Xdup

mgr dep ts te n d ts te
x1 Xavier 1 2012/01/01 2012/09/01 Amber 1 2012/01/01 2012/09/01
x2 Xavier 1 2012/07/01 2012/12/01 Chelsea 1 2012/07/01 2012/12/01
x3 Yvonne 2 2012/01/01 2012/04/01 Billy 2 2012/01/01 2012/04/01
x4 Zoe 2 2012/04/01 2013/01/01 Billy 2 2012/04/01 2013/01/01
x5 Zoe 2 2012/09/01 2013/01/01 Amber 2 2012/09/01 2013/01/01

Figure 5.5: Relation X with duplicate Interval Timestamps

The implementation of the PostgreSQL parser possesses a mechanism to junk not required
columns in the result relation. Unfortunately this mechanism only allows us to remove
columns from the end of a relation. Since the current execution algorithm of the prototype

40

of adjustment statements requires that interval timestamps are placed at the end of an argu-
ment relation, we can not decide to junk the right-most timestamps, and as we will later see this
would not be a general solution for all joins. So the provided junking algorithm is no use to us
and we have to do our own implementation instead. We have marked the select statement that
has a possible temporal join with applyJoinReductionRules. So first we let the FROM-
clause of this statement be transformed which means we let the reduction for join expressions
and the whole temporal join happen. After that, the parser is starting with the transformation of
the targetList to determine which attributes should be projected for the statements result
relation. In the case of our temporal join it holds a star ∗ since we do not want our intermedi-
ate reduction statements to remove any attributes before the actual projection defined by our
original statements SELECT-clause happens. In processing the star ∗ the transformation of the
targetList ensures that it gets every column of all the relations used in the FROM-clause.
The main processing of the ∗ happens inside the function expandRelAttrs() which is
responsible to fetch all columns of a single FROM-clause item and to return them so that they
finally can be stored in the targetList of the query tree. So our basic idea is to filter out
duplicate interval timestamps while the expandRelAttrs() algorithm fetches columns of
a FROM-clause item.

Example 12 In order to illustrate our implementation as good as possible, we reuse the em-
ployee relation M and use a new relation D where the names of departments are stored as
shown in Figure 5.6(a). Note that in relation D we have no tuples that record a department
name for department 2 and that d1 records the fact that department 1 has the name Ubisoft
only the first half of the year. We assume the temporal query: Qdup = M ./ Tθ D (temporal
full join), where θ ≡ (M.dep = D.dp). The result relation Z is shown in Figure 5.6(b).

M

mgr dep ts te

m1 Xavier 1 2012/01/01 2013/01/01

m2 Yvonne 2 2012/01/01 2012/04/01

m3 Zoe 2 2012/04/01 2013/01/01

D

name dp ts te

d1 Ubisoft 1 2012/01/01 2012/07/01

d2 Valve 3 2012/01/01 2012/07/01

d3 Wahoo 3 2012/07/01 2013/01/01

(a) Argument Relations M and D

Z
mgr dep ts te name dp ts te

z1 Xavier 1 2012/01/01 2012/07/01 Ubisoft 1 2012/01/01 2012/07/01
z2 Xavier 1 2012/07/01 2013/01/01 ω ω ω ω
z3 Yvonne 2 2012/01/01 2012/04/01 ω ω ω ω
z4 Zoe 2 2012/04/01 2013/01/01 ω ω ω ω
z5 ω ω ω ω Valve 3 2012/01/01 2012/07/01
z6 ω ω ω ω Wahoo 3 2012/07/01 2013/01/01

(b) Result

Figure 5.6: Partial Duplicate Timestamps.

This example clearly shows that the filtering of duplicate timestamps is more complex than
expected. Whereas the tuple z1 has values in both of time intervals, z2 to z4 have only values
in the timestamp interval attributes coming from the manager relation M . Null values are

41

denoted by the symbol ω. The tuples z5 and z6 have on the contrary only values in the times-
tamps coming from relation D. That means that our implementation is not allowed to strictly
filter out the interval timestamps of one of the argument relations, instead we have to filter
duplicate intervals for each tuple individually depending on ω-values.

The solution to overcome this problem is to use the COALESCE(val1, ..., valN)
function. COALESCE can take any number of input arguments and returns the first value that
is not null. If all values are equal to null it returns null. Regarding our duplicate timestamp
problem this means that we need to use two COALESCE expressions, one for the duplicate
start point timestamps and one for the duplicate end point timestamps. Figure 5.7 shows a
simplified version of the expandRelAttrs() function that we have modified.

Function: expandRelAttrs()
Input: Some parameters to identify current FROM-clause item
Output: result, a list of targetList-entries

Fetch columns columns from appropriate FROM-clause item;

if TempStmtModifier then
foreach column of columns do

if applyJoinReductionRules ∧ column.name = TempStmtModifier.ts then
tscolumns← (lappend(tscolumns, column));

else if applyJoinReductionRules ∧ column.name = TempStmtModifier.te then
tecolumns← (lappend(tecolumns, column));

else
Create targetList-entry from column with name column.name;
Append targetList-entry to result;

if list_length(tscolumns) > 0 then
Create COALESCE-object with tscolumns as input;
Transform COALESCE-object to targetList-entry with name ts;
Append targetList-entry to result;

if list_length(tecolumns) > 0 then
Create COALESCE-object with tecolumns as input;
Transform COALESCE-object to targetList-entry;
Append targetList-entry to result;

else
Execute the usual algorithm to compile the list of targetList-entries;

return result;

Figure 5.7: Compiling the targetList including COALESCE-expressions.

Of course, our implementation is only processed if a temporal statement modifier
TempStmtModifier is set and therefore its attributes ts and te are set. The algorithm is
also aware whether it is processing the targetList of a temporal join statement by using
the checking the applyJoinReductionRules variable. First, it iterates through the columns of

42

the FROM clause item that needs currently being processed. If the applyJoinReductionRules
variable is set and the current column name equals to ts, we append this ts-column to the
temporary list tscolumns. If not, we check if the current column name equals to te, and
so have to store the te-column in the temporary list tecolumns. If none of the both previ-
ous cases hold true, we process the column as a non-temporal attribute and append it in a
regular manner to the result-list. After iterating through the columns we check for both tem-
porary lists tscolumns and tecolumns if timestamps have been fetched. For both cases a
COALESCE-object is created that holds the corresponding timestamp list as input value. The
COALESCE-object is then transformed to a targetList-entry and appended to the result
list.

Example 13 If we now run the query from example 12, we will get the desired result relation
as shown in Figure 5.8. Hence the COALESCE-expression returns the first value that is not
null, the interval timestamps from z1, z2, z3 and z4 are derived from the timestamps from the
manager-relations side. On the contrary, the result tuples z5andz6 get their timestamp values
from the department-relations side.

Z
mgr dep name dp ts te

z1 Xavier 1 Ubisoft 1 2012/01/01 2012/07/01
z2 Xavier 1 ω ω 2012/07/01 2013/01/01
z3 Yvonne 2 ω ω 2012/01/01 2012/04/01
z4 Zoe 2 ω ω 2012/04/01 2013/01/01
z5 ω ω Valve 3 2012/01/01 2012/07/01
z6 ω ω Wahoo 3 2012/07/01 2013/01/01

Figure 5.8: Removed duplicate Timestamps

5.4 The Reduction of the Explicit Cartesian Product
In Figure 4.11 we distinguished between explicit and implicit Cartesian products. We have
an explicit Cartesian product when we formulate SQL queries like SELECT * FROM M
CROSS JOIN E that contain the terminal CROSS JOIN. The SQL grammar produces a
JoinExpr object in these cases and sets its attribute jointype to INNER_JOIN. That’s
because PostgreSQL treats a CROSS JOIN as an unqualified inner join. Thanks to this cir-
cumstance it is relatively easy to handle explicit Cartesian products in the same algorithm that
reduces temporal joins as shown in Figure 5.9. As mentioned in Section 4.3.2 the alignment
operations rΦθs adopt their theta conditions from the join predicates of the joins. Since a
CROSS JOIN is an unqualified inner join the alignment operations would fail. But as we have
seen in Table 2.1 inside the reduction rule for a Cartesian product, the theta condition for the
alignment operations need to hold the value true. So the only thing that we have to do is
to assign the boolean constant true to the predicates quals of the JoinExpr. This only
happens when the quals are null because with that it is sure that a temporal CROSS JOIN
needs to be reduced.

43

...
else if IsA(n, JoinExpr) ∧ TempStatementModifier ∧ applyJoinReductionRules then

...
Store node n as JoinExpr j;
if !j.quals then

j.quals← true;

...

...

Figure 5.9: Dealing with explicit Cartesian Products

5.5 The Reduction of Projection and Aggregation
The reduction of temporal projections and aggregations happens in the
transformTempStmtModifiers() function. The decision if the appropriate re-
duction rules need to be applied is made by the function isTempProjOrAgg(). Before we
introduce this function we briefly explain three other data types from the PostgreSQL parser.
One data type is the ResTarget structure which is shown in Figure 5.10(a). It is basically
used as a wrapper object for an item in the targetList of a select statement. Its attribute
val contains the actual targetList item that need to be computed. The second data type
shown in Figure 5.10(b) is the ColumnRef structure which represents one possible type of
a targetList item. It is used to specify a reference to a column or to hold a A_Star
object. The A_Star data type is only used to represent the character ∗ that can be used in a
SELECT-clause and as shown in Figure 5.10(c) it has no real attributes in the parser yet.

ResTarget

val(Node*)

(a)

ColumnRef

fields(List*)

(b)

A_Star

(c)

Figure 5.10: The ResTarget, ColumnRef and A_Star Data Types

The basic idea of our implementation is to check whether the targetList of the
SelectStmt is holding only a star ∗. If it is something different from a bare star ∗, we
need to do a temporal projection or aggregation. This assumption is a bit naive and not en-
tirely right. There are a few other possibilities how the targetList could look like and
a temporal projection would not be needed either. For instance when we have a query that
has the form SEQVT SELECT M.*, E.* FROM M, E. The targetList contains the
expression M.∗, E.∗, but there is no projection needed since the targetList contains the
same columns as it is delivered by the relations from the FROM-clause. Another sample case
that is not correctly covered by our simplified assumption can be shown with the query SEQVT

44

SELECT mgr, dep, ts, te FROM M. Again the targetList contains all columns
that are present in the FROM-clause’ relation.

Nevertheless we use this assumption for the current prototype, since the un-handled excep-
tions do not appear that frequently in the common use. The corresponding algorithm of the
isTempProjOrAgg() function is shown in Figure 5.11.

Function: isTempProjOrAgg()
Input: The targetList of a SelectStmt
Output: A boolean indicating whether temporal projection is needed

foreach listCell of targetList do
Assign object pointed by listCell to restarget;

if IsA(testarget.val, ColumnRef) then
Unwrap column reference inside testarget and assign it to column;

if IsA(llast(column.fields), A_Star) then
if list_length(column.fields) == 1 then

return false;

break;

return true;

Figure 5.11: Testing if temporal projection is needed

As denoted we take a targetList as input parameter. Each item in a targetList-
cell is a ResTarget-object and holds in its val attribute the actual targetList item.
Common items are of types ColumnRef or FuncCall. As already introduced, the former
represents column names or a star ∗. The latter represents functions, for instance, it may
represent aggregate functions. Foremost we fetch the restarget from the first ListCell of
the targetList. We then check if it contains a ColumnRef and after that we determine
with the condition IsA(llast(column.fields), A_Star) if the column holds an expression of
the form something.∗. After that we use list_length(column.fields) == 1 to get sure that
it is only a bare ∗ expression. If this holds true we return the boolean false and thus avoid that
the reduction rules for temporal projection or aggregation is applied. Note that the ForEach
loop is only run once and then returns true if no ∗ has been found. Since in our assumption
the existence of two or more targetList items lead to a temporal projection we do not
need any further iterations.

45

6 Conclusion

In this thesis we describe a mechanism to compile queries with statement modifiers to queries
with temporal primitives. As preliminaries for this query compilation, we have looked at re-
duction rules that are using temporal primitives and thereby define a temporal algebra with se-
quenced semantics. Then, as part of the query compilation, we have defined an SQL language
using temporal statement modifiers for the querying of temporal data. We have illustrated
the general case of the SQL mapping by opposing the reduction rules for temporal operations
with the processing order of typical SQL queries. The general case of the mapping has been
used to define the implementation tasks to finally develop a translation algorithm for the query
compilation. In the end we have implemented the translation algorithm in the database man-
agement system PostgreSQL. With that we have made the querying of temporal data possible
by prepending temporal statement modifiers to a select statement.

46

Bibliography

[1] A. Dignös, M. H. Böhlen, and J. Gamper. Temporal alignment. In Proceedings
of the 2012 international conference on Management of Data, SIGMOD ’12,
pages 433–444. ACM, 2012.

[2] M. H. Böhlen, C. S. Jensen, and R. T. Snodgrass. Temporal statement modi-
fiers. ACM Trans. Database Syst., 25(4):407–456, 2000.

[3] H. Garcia-Molina, J. D. Ullman, and J. Widom. Parsing. In Database systems
- the complete book (international edition), chapter 16.1, pages 788-795. Pear-
son Education, 2002.

[4] M. H. Böhlen, J. Gamper, and C. S. Jensen. An algebraic framework for tempo-
ral attribute characteristics. Annals of Mathematics and Artificial Intelligence
46.3, pages 349–374. 2006.

[5] A. Dignös, M. H. Böhlen, and J. Gamper. Query time scaling of attribute val-
ues in interval timestamped databases. In Proceedings of the 29th IEEE In-
ternational Conference Data Engineering, ICDE ’13, pages 1304–1307. IEEE,
2013.

47

