

Jörg-Uwe Kietz

Thomas Scharrenbach

Lorenz Fischer

M K Nguyen

Abraham Bernstein

TEF-SPARQL: The DDIS query-language for

time annotated event and fact Triple-Streams

University of Zurich
Department of Informatics (IFI)
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland ifi

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

–
N

o.
IF

I-
20

13
.0

7

2013

Jörg-Uwe Kietz, Thomas Scharrenbach, Lorenz Fischer, M K Nguyen, Abraham Bernstein
TEF-SPARQL: The DDIS query-language for time annotated event and fact Triple-Streams
Technical Report No. IFI-2013.07
Dynamic and Distributed Information Systems
Department of Informatics (IFI)
University of Zurich
Binzmuehlestrasse 14, CH-8050 Zurich, Switzerland
http://www.ifi.uzh.ch/ddis/

Jörg-Uwe Kietz
Thomas Scharrenbach

Lorenz Fischer
Minh Khoa Nguyen
Abraham Bernstein

TEF-SPARQL: The DDIS
query-language for time annotated

event and fact Triple-Streams

October 2013

University of Zurich
Department of Informatics (IFI)
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland ifi

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

–
N

o.
IF

I-2
01

3.
07

J.-U. Kietz et al.: TEF-SPARQL: The DDIS query-language for Triple-Streams
Technical Report No. IFI-2013.07, October 2013
Dynamic and Distributed Information Systems Group (DDIS)
Department of Informatics (IFI)
University of Zurich
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland
URL: http://www.ifi.uzh.ch/ddis.html

Contents

1 Introduction 4

2 Related Work 5

3 Motivation of Design Decision 8

4 Language Reference 12

5 Use-cases for the language 20

6 Conclusion 25

3

Chapter 1

Introduction

The amount of data available on the Web (e.g., on the Semantic Web and Linked Open
Data Cloud (LOD)) is growing at an astounding speed. An increasing number of these
data-sources are dynamic (i.e. their content changes over time) or even represent contin-
ually updating phenomena (such as the stock exchange, sensor networks, social networks,
or the continuous arrival of intelligence data). In many cases they also contain some kind
of temporal information - either explicitly given through temporal constraints (e.g. lim-
iting the validity of a statement by giving a start date and some live span) or implicitly
(i.e. defining its validity from the moment it is made available until it is superseded by
an update).
The data model underlying relational databases has severe limitations when integrating
data from several heterogeneous sources and requiring clear semantics [Stonebraker and
Cetintemel, 2005]. Thus, graph based data models like RDF have emerged in the last
decade. They are nowadays accepted as an industry standard and are vital components
of the Semantic Web and the Web of Data [Bizer et al., 2009]. Real-time processing
of linked data on Web scale is no longer possible offline but requires stream-processing
systems that guarantee to correctly answer queries within acceptable time-frames whilst
(i) continuously consuming triples and (ii) utilizing a limited amount of computational
resources (i.e. space and time).
Traditional approaches (see Chapter 2) address these requirements by defining a (time-
or space-) window over which the queries are evaluated: newly arriving triples evict the
oldest ones from the window of consideration. This approach allows for continuous updates
since a triple consumption process can continuously update the window (often defined as
a ”logically circular” region of memory) and a query process can evaluate queries over
the window. It also clearly limits memory consumption via the size of the window. The
time-window approach is, however, severely limited as it (1) cannot cope with queries
that will only match in time-spans longer than the chosen window, (2) cannot evaluate
queries with temporal constraints as all triples within the window are usually regarded
as being true without any temporal constraint, and (3) does not account for possibly-
varying validity-spans of different parts of a query (just consider a query that involves
both schema- and instance-related triple-patterns, where the former can be assumed to
be long-living and the latter can change continuously). (4) does not account for event
delimited windows, i.e. episodes or frames
In this report we first give a brief overview of related work (chapter 2) before we motivate
and illustrate the main design decision of the language (chapter 3). We then formally
specify syntax and semantic of our language and give some basic properties of our language
(chapter 4). We then illustrate on several use-cases how the language can be used to solve
typical problems in stream-processing (chapter 5) and conclude with a short discussion
(chapter 6).

4

Chapter 2

Related Work

The following sections are organized as follows: We first describe the characteristics of
queries over streams, how they differ from traditional queries, and what types of operators
are necessary to express them. Since most research in stream processing has been con-
ducted using relational data models, we are then going to list research on relational stream
querying systems. After that, we review systems that, while still processing streams, do
this on a stream of triples as opposed to a stream of table rows.
Since, the field of stream processing is vast, we are only going to list the work that is most
closely related to ours here and point to other survey papers on event processing [Owens,
2007] and complex event processing (CEP) [Lajos et al., 2010] for more a more extensive
overview of the field.

2.1 Temporal Operators

The main difference between static data and streams of data is the temporal aspect.
Traditional query languages such as SQL or SPARQL treat the database as a static snap-
shot. Even though the contents of the database might change over time, the change itself
is transparent to the user and the query. Active databases provide some primitive ways of
reacting to data mutation using triggers. Triggers allow a user to specify a condition that
has to be met for a piece of code to be executed. They do not take temporal relationships
of records into account, however. Similarly, one can use a conventional query language to
filter a stream of tuples. More complex queries that take the temporal relationships into
account, require temporal language constructs. These temporal operators can assigned
to one of two categories: Operators that define a range of data in the stream (1a) and
operators that describe the temporal order of data records (1b). A data range is often
defined as a window or a frame that moves over the stream and it is often used to compute
some aggregate value over the data records it contains. Temporal relationships are mostly
used in the event processing (EP) field, where one is interested in a combination of events
that have specific temporal relationships. Some stream processing systems only support
one or the other, while others support both types. For the queries we want to find answers
to, we need a system that supports both types.

2.2 Queries over Streams of Relational Data

Most stream processing systems that exist today operate on traditional relational data.
The STREAM system by Arasu et al. [2004] is a general purpose data stream management
system (DSMS). Streams are modeled as relations, into which records are inserted or
deleted from. Its CQL language [Arasu et al., 2005] is based on SQL and allows continuous
queries over relational data streams using windows. The size of the window is defined

5

6

by either a number of rows or a time value on a per-stream basis. There is no support
for temporal ordering operators. Similarly to triggers, the existence of a record can be
made dependent on the occurrence of other records in the stream using the IStream and
DStream operators. The technology of the STREAM system was commercialized in the
Coral8 CEP engine which through several acquisitions is part of SAP’s Sybase since early
2010.
Another DSMS is TelegraphCQ [Chandrasekaran et al., 2003], which allows a user to
register continuous queries (CQ) over static and streamed relational data. The query
language of TelegraphCQ is also SQL based. Similarly to STREAM, TelegraphCQ lets
a user define the size of the windows and the slide by which a windows is moved on a
per-stream basis. Also there is no support for operators to define temporal relationships
between events. The system has been commercialized by Truviso, which in turn has been
acquired by Cisco Systems in Spring 2012.
Cayuga [Brenna et al., 2007, Demers et al., 2007, 2006], Sase [Wu et al., 2006], Sase+
[Diao et al., 2007], CEDR [Barga et al., 2007] and ZStream [Mei and Madden, 2009] also
work with relational data. In contrast to the systems described above, they are event
processing systems. As such, they focus on the temporal relations of the data tuples
(events) in the stream.
The Cayuga Event Language (CEL) is based on SQL. Its NEXT operator allows the user
to define a sequence, in which events have to occur in the stream. The FOLD operator
works similarly to the Kleene+ operator. However, in addition to a regular Kleene+
operator the FOLD operator also supports an aggregation expression, which allows the
user to create aggregate values over a range defined by the data, as opposed to a date
range. This is similar to the concept of Frames described in [Maier et al., 2012], where
the range of the window is defined by data, rather than a fixed size. A query can use the
output of another query, which essentially allows the user to create nested queries.
The strength of the Sase+ language is the SEQ operator and its variants. They allow the
user to specify an order in which events have to or must not occur in the stream. The
WITHIN operators allows for the definition of a time based window, which is defined for
the whole query. The slide size of the window cannot be defined. Sase+ also supports
aggregate functions such as max, min, avg, count, and sum.
The CEDR query language supports event sequencing operators such as SEQUENCE,
ALL, ANY, ATLEAST, ATMOST. These operators filter a stream for a sequence or the
occurrence of events in a given time frame. In contrast to other languages CEDR also
supports an array of negation operators.

2.3 Queries over Triple Streams

All of the above systems process streams of relational data. In contrast to this, our
system processes streams of triples using a query language that builds on the SPARQL
query language. Several temporal extensions to the SPARQL have been proposed in
literature. The ones most closely related to our work, are listed below.
Continuous SPARQL (C-SPARQL) is an extension to SPARQL that allows the user to
query a stream of triples [Barbieri et al., 2009]. Using a special FROM clause the user
defines the size and the slide (step) of a window on a per-stream basis. These windows can
then be queried like conventional SPARQL endpoints. The system supports aggregates,
grouping, and a special timestamp function, which allows for temporal comparison of
triples. In [Barbieri et al., 2010] the authors present an implementation of the system,
using Stanford’s STREAM system for the dynamic event processing and Sesame 1 as the
RDF datastore for storing and retrieving persistent data. In [Hoeksema and Kotoulas,

1http://www.openrdf.org

7

2011] Hoeksema et al. present work in progress of implementing C-SPARQL on distributed
stream processing framework S4 2.
In their paper, Anicic et al. [2011] present EP-SPARQL. They propose several powerful
operators to SPARQL that allow the user to query for sequences of triples arriving in a
stream. In ETALIS 3 the authors provide a Prolog implementation of EP-SPARQL which
next to classic operators such as conjunction, disjunction and negation also supports
aggregates, sequences and all of Allen’s temporal operators.
SPARQL-ST [Perry and Sheth, 2009] is a spacio-temporal extension to SPARQL that
allows for filters over temporal and geographical attributes of triples. In contrast to C-
SPARQL, EP-SPARQL, and our solution, this system is not capable of running continuous
queries over a stream of data, but adds temporal filters for queries against an otherwise
mostly static datastore.

2http://incubator.apache.org/s4
3http://code.google.com/p/etalis

Chapter 3

Motivation of Design Decision

3.1 Episode-based matching

Most Stream processing systems are based on the notions of (sliding) time-windows that
define the the relevance of incoming data for the scope of queries. The oldest systems had a
fixed window defining which data have to be kept in a DB-Cache to answer queries. Newer
system have multiple windows each specified as part of the queries to process. While this
effectively reduces the infinite amount of incoming data to a (mostly) manageable size, it
has the serious limitation that the window size cannot depend on the data, but must be
specified in advance at system start or query formulation/deployment.
In a recent paper, [Maier et al., 2012] argues that it is important that stream processing
systems are able to detect episodes on streams, detect them accurately, and detect them
promptly. They presented several scenarios, in which content-based frames are better
suited for solving the problem than fixed-size windows: ”We see at least three issues with
using windows to identify episodes:

• Window sizes are fixed in terms of tuples or time. Reducing the window size to
obtain better accuracy on episode boundaries leads to an increased number of win-
dows.

• Windows are continually produced, meaning that we continue to generate windows
(and other results that must be processed) during uninteresting periods.

• Windows are often incorporated into aggregate operators to produce summary values
over the windows. We would like the flexibility combine episodes detected on one
stream with data from another stream.”[Maier et al., 2012, p.1-2]

They therefore defined Frames as a partitioning of the stream into (sub-)sequences of
events, for which

• a specified data attribute exceeds a specified threshold

• a minimal duration is exceeded

• and which are maximal (no frame is included in another), drained (i.e. minimal
amount of frames) and complete (cover all possible candidate frames).

While this is an interesting and important step towards episode based processing, it lacks
a full integration of the frame definition into the matching process.
Complex Event processing systems don’t have a sliding window, but most of them require
the specification of a max time (space) based attention span per query. This defines a
kind of dynamic window per query, events contributing to partial matches are kept as
long as they are in the attention span and discarded afterwards. Cayuga [Demers et al.,

8

9

2007] offers a FOLD construct to specify a data-segment based on the content of the data,
but this is limited to compute aggregations and does not allow pattern matching on the
specified segment. A pure data or event delimited attention is to our knowledge not used
so far1.

max time/max space data driven

Stream Processing, streamed
data are buffered in a DB and
processed by (normal DB)
queries on them

Sliding Window: data are
buffered by a sliding window of
specified size or time

Frame, the data are partitioned
based on simple properties of
the data

Complex Event Processing
partial matches expire after a
fixed amount of time or space

partial matches expire when
some event happens or fact is
no longer valid

Figure 3.1: Stream vs Event Processing with limited or data determined episodes

3.2 Integration of Events and temporarily Facts

In our system we distinguish between, Events, i.e. things that happen(ed) and Facts,
i.e. things that are true for a specified amount of time. Peter bought a book is an event
that happened at a specific point in time. It never becomes invalid that this happened,
but it may be irrelevant after a while, i.e. when it is to old to influence any active query.
Someone owns a book is a fact, and this fact is usually only true for a restricted period
of time. It becomes true after he bought the book or when someone gifted it to him. If
nothing else happens it stays true, in which case it belongs to the current state. But there
are also other events that can occur, which would terminate (and negate it for the future)
the fact that he owns the book, such as when he looses it or when he gives it to a friend.
We aren’t aware of any other system that differentiates and integrates time-dependent
facts and events. Some [Barbieri et al., 2010] systems integrated events and immutable
facts, and some (ab-)use events to represent time-depended factual knowledge, but no one
integrated time-dependent facts into event-processing so far.
But we think this it is important in an event processing system to have time dependent
facts, as

• events start or finish validity of temporal facts, and

1This has of course the danger of never discarded nor completed partial matches. We plan to handle
them with intelligent garbage collection, i.e. purge the most unlikely completable ones when memory is
needed.

10

• the validity of facts influence the interpretation of events.

Suppose we get (basic) events about birth, relocation and dying2, e.g.:

JohannSebastianBach bornIn Eisenach [1685]
JohannSebastianBach relocatedTo Ohrdruf [1695]
JohannSebastianBach relocatedTo Lueneburg [1700]
JohannSebastianBach relocatedTo Weimar [1703]
JohannSebastianBach relocatedTo Arnstadt [1703]
JohannSebastianBach relocatedTo Muehlhausen [1707]
JohannSebastianBach relocatedTo Weimar [1708]
JohannSebastianBach relocatedTo Koethen [1717]
JohannSebastianBach relocatedTo Leipzig [1723]
JohannSebastianBach diedIn Leipzig [1750]

These events would allow us to infer where a person lived when, e.g.

JohannSebastianBach liveIn Eisenach [1685,1695]
...
JohannSebastianBach liveIn Leipzig [1723,1750]

But so far only the ETALIS [Anicic et al., 2010] event processing system allows us to deploy
the rules to make such inferences. In our language this can be expressed as following:

CONSTRUCT ?Person liveIn ?Place
WHERE (SINCE ?Person bornIn ?Place)

UNION
(REPLACE ?Person liveIn ?OldPlace

ON ?Person relocatedTo ?Place,
?Place =/= OldPlace)

UNION
(TILL (?Person diedIn ?SomeWhere

HAPPENSWHILE ?Person liveIn ?Place))

Before 1685 this query cannot infer anything about JohannSebastianBach. Starting with
his birth the query infers JohannSebastianBach liveIn Eisenach [1685,∞] till his first re-
location that finishies it to JohannSebastianBach liveIn Eisenach [1685,1695] and newly
infers JohannSebastianBach liveIn Ohrdruf [1695,∞] and so on for all further reloca-
tions, till his dead event that changes JohannSebastianBach liveIn Leipzig [1723,∞] to
JohannSebastianBach liveIn Leipzig [1723,1750].
This illustrates the effects of events on the computation and validity of facts. But also the
validity of facts have an influence on the interpretation of events. Let’s come back to our
book buying example. We could define that a person buys a book (a complex event) in an
online shop by pressing the ”BuyButton” (basic event), if and only if the book is currently
in the shopping basket (a temporal fact) and the account balance (of the selected payment
method) of the person contains enough money to pay (another temporal fact) the book
current price (a third temporal fact). Together with this buying event (an output event)
an event to charge this persons account should be triggered. In our language this would
look as following.

CONSTRUCT ?Person buys ?Book, ?Person accountCharge ?Price WHERE
(?Person presses "BuyButton")
DURING
(?Person hasInShoppingBasket ?Book,

2This is not really a time critical-example for a stream-engine, but as soon as you replace, birth,
relocated and dying by entering, observedAt and leaving an area or building you have one.

11

?Book hasPrice ?Price,
?Person accountCovers ?Price)

3.3 Orientation towards the Semantic Web

The earlymost stream processing languages offspring from the database community and
the query languages where oriented on data base standards, i.e. on SQL. However, we
think that the Semantic Web is nowadays the environment into which stream-processing
has to be integrated. The Semantic Sensor Web integrates millions of sensors, millions
of and computers generate events in interaction with the Semantic Web (publishing and
subscribing to news, making contacts, buy and sell goods and information, ...) and the
Web of Data provides an enormous amount of background knowledge useful to interpret
the events.
Therefore, we base our language for defining temporal event and fact patterns on the
W3C recommendation SPARQL [Harris and Seaborne, 2012]. It defines a protocol and a
language for querying RDF graphs. As could be shown, the expressive power of SPARQL
queries is equal to the of SQL [Angles and Gutierrez, 2008]. In contrast to SQL that
relies on a relational model for data, RDF and consequently SPARQL offer a number of
advantages over the relational model [Stonebraker and Cetintemel, 2005]:
In RDF, both schema information as well as instances are expressed facilitating the same
syntax. Hence, we can query for schema information. This is particularly useful when
yet unknown links between two instances shall be discovered. Assume, for example, we
described an instance of a terrorist ?x and and an instance of a suspect to terror with ?y.
Opposed to SQL we can query for potential links explicitly using SPARQL:

SELECT ?x, ?p, ?y
WHERE {

{SUBQUERY FOR ?x}
{SUBQUERY FOR ?y}
?x ?p ?y .
{CONSTRAINTS ON ?p}

}

The result of that query not only returns the potential links between terrorist and suspects,
but allows further constraining the relationships between these. Note that we can define
all kinds of transitive patterns for matching not only first-degree links between ?x and ?y
but also nearly arbitrary indirect ones (e.g. links of at least length 3, etc.). Note that
SPARQL cannot work on the Kleene closure.
Besides the simple data model of RDF gravely simplifies the integration of new datasets,
and there exist various tools for turning relational data and many more formats into RDF.
Finally, there exist very sophisticated definitions for schema languages, the most popular
of which are the W3C recommendations RDFS (RDF Schema), OWL (Web Ontology
Language), SKOS (Simple Knowledge Organization System), and RIF (Rule Interchange
Format). These advanced schemata allow for various ways of constraining and describing
the actual data. More important, for languages, such as RDFS and OWL, there exist
formal semantics that allow for sound logic inference.
As a result, RDF and SPARQL are the perfect candidates for integrating various different
data sets not known ex-ante. Patterns can be defined in a most flexible way and reasoning
support can be added, if necessary.

Chapter 4

Language Reference

4.1 Time Annotated Triples and Streams

A time instant τ is a value taken from a set of discrete equidistant values,1 i.e. positive
natural numbers N = 1, 2, . . . or one of the three special time instants {0, η,∞}. 0 is
interpreted as ”at system start” or ”since ever” η is interpreted as ”currently” or ”up to
now” and ∞ is interpreted as ”forever”. For any τ ∈ N : 0 < τ < η < ∞. now() → N is
a monotonically non-decreasing function returning the current point in time.2

A time interval Ti is a pair of time instants [τs, τe] for which it holds that τs ≤ τe. A time
stamp Ts is a pair of equal time instants [τ, τ]. T = Ti∪Ts is a time annotation. For time
annotations the function duration(T) → xs : dayT imeDuration∪{∞} computes the time
interval length. See [Malhotra et al., 2010] for the specification of xs:dayTimeDuration
and functions working on it and xs:dateTime.
A basic triple t is a tuple �s, p, o� ∈ I × I × (I ∪ L) consisting of subject s, predicate p,
and object o, as defined in [Klyne and Carroll., 2004] where U = (I ∪ L) denotes the set
of possible terms.3 We assume the predicates P be partitioned into three disjoint sets Pf

for facts and Pe for events and Ps for special predicates like rdf : type.
A time annotated triple e = �s, p, o�[τs, τe] with p ∈ Pe and 0 < τs ≤ τe < ∞ is called
event triple (or just event), E is the set of all event triples. We say e is produced at [τs, τe],
started at τs and happened, occurred or finished at τe.
A time annotated triple f = �s, p, o�[τs, τe] with p ∈ Pf and 0 ≤ τs < τe ≤ ∞ is called fact
triple (or just fact), F is the set of all fact triples. We say f is valid at [τs, τe], it started
to be valid at τs and stopped to be valid at τe.
A basic triple t = �s, p, o� with p ∈ Ps is called special triple, S is the set of all special
triples, it is interpreted as an always valid fact triple t = �s, p, o�[0,∞].
A time annotated triple f = �s, p, o�[τs, η] is called a (current) state fact. A time annotated
triple f = �s, p, o�[τe, τe] is a (current) state fact ending (event), i.e. if the system knows
both f = �s, p, o�[τs, η] and f = �s, p, o�[τe, τe] with τs < τe ≤ η then the current state fact
ends, i.e. is replaced by f = �s, p, o�[τs, τe].
Note that facts are not true at time instants, but at the periods between time instants,
so lightOn[1, 2] and lightOff[2, 3] is not contradictory as [2, 2] is not an allowed time
annotation for the validity of facts, only a possible time annotation for events, e.g.
lightSwitchedOff[2, 2] may have happened and be the cause for the fact change at time-
point 2.

1A possible internal representation is milliseconds since system start, automatically converted
from/into xs:dateTime [Malhotra et al., 2010] for outside communication.

2The current point of time is our main interest, we want to infer what is currently valid, neither what
was true in the past nor what will (may) be true in the future.

3We use only URIs and literals and exclude blank nodes at moment due to inconsistencies in their
interpretation [Mallea et al., 2011]

12

13

T = S∪E∪F is the set of all possible triples. We use the functions T (T) → T , τs(T) → τ

and τe(T) → τ to get the time annotation, the start time and the end time of triples. For
all s ∈ S T (s) = [0,∞], τs(s) = 0, τe(s) = ∞, i.e. their (implicit) annotation is since ever
and for ever. A fact triple without given annotation is interpreted as [0,∞] annotated as
well, if a not time annotated event enters the system it is annotated with [now(), now()],
if an event annotated with an time instant τ enters the system, its annotation is converted
to the time stamp [τ, τ].
The input of our system is a called triple stream, it is an infinite sequence of event triples
S = e1, e2, ..., where for any ei, ej in the stream i ≤ j ⇐⇒ τe(ei) ≤ τe(ej).

4.2 Triple Sets, Triple Pattern and Bindings

A triple pattern tp is a basic or annotated triple t that may contain variables V (symbols
starting with ?) for any of the five annotated triple constituents, e.g. �a, ?p, ?l� and
�?v, p, ?l�[?t,∞] are both triple patterns. We may reference to the variables contained in
a triple pattern via the function vars.
A binding θ = {?v1/u1, ?v2/u2, . . .} is a finite set of pairs of variables and terms/time
instants, where every variable occurs at most once. A binding is applied to a triple
pattern tpθ by replacing in the pattern all occurrences of variables in binding by their
corresponding terms/time instants. A triple pattern tp matches a triple t with a binding
θ, iff tpθ = t.
We denote the set of all currently valid bindings with Ω.
Expressions are a way to bind new variables (allowed on left-side of = only) based on
the execution of built-in functions on terms and already bound variables and to filter out
bindings if all variables in the expression are already bound by the left context of the
expression. Expressions are conjunctions of simple expressions, which are of the form:
t0{= | �= | < | ≤ | > | ≥}f(t1, . . . , tn) with ti ∈ V ∪ L ∪ T .

4.3 Triple Graphs, Graph Pattern and Bindings

A temporal RDF graph is a finite subset of T = S ∪ E ∪ F .

Graph patterns are defined inductively:

• any triple pattern tp is a graph pattern; it is a fact graph pattern, if the predicate
p ∈ Pf ; it is an event graph pattern, if the predicate p ∈ Pe; it is either or, but not
both - determined by its context - if the predicate is variable.

• If F , F1, F2 are fact graph pattern and E, E1, E2 are event graph pattern and B is
a expression, then

– (F1 , F2),

– (F , B),

– (F1 ; F2) or equivalently (F1 union F2),

– (F1 without F2),

– (F without E),

– (since E),

– (until E),

– (replace F on E),

14

– (F on init)

are fact graph pattern, and

– (E1 , E2),

– (E , B),

– (E1 ; E2) or equivalently (E1 union E2),

– (E1 without E2),

– (E without F),

– (E1 seq E2),

– (E1 before E2),

– (E during F),

– (E with F),

– (onStart F),

– (onEnd F)

are event graph pattern. All other combinations are not admissible. A graph pattern
is in TEF-SPARQL, if it is admissible.

Fact Pattern T (F) Conditions &
Sideeffects

Returned Bindings

< S, PF , O > [τs, τe] [τs, τe] τs < τe vars(< S, PF , O > [τs, τe])
F1, F2 [max(τs(F1), τs(F2)),

min(τe(F1), τe(F2))
vars(F1) ∪ vars(F2)

F,B T (F) vars(F) ∪ vars(B)
F1;F2

F1 union F2

T (F1) or
T (F2)

vars(F1) ∩ vars(F2)

F1 without F2 [max(τs(F1), τe(F2)),
τe(F1)]

¬∃F2∨
τe(F1) > τe(F2)

vars(F1)

F without E [max(τs(F), τe(E)),
τe(F)]

¬∃E∨
τe(F) > τe(E)

vars(F)

since E [τe(E),∞] vars(E)
until E [τe(E), τe(E)] vars(E)
replace F on E [τe(E), η] if τe(F) = η

then add
F [τe(E), τe(E)]

vars(F) ∪ vars(E)

F on init [0, η] now() = 0 vars(F)
Table 4.1: Fact Graph Pattern

Graph Pattern Matching Bindings for complex graph event/fact patterns are defined
on graphs. A graph pattern gp matches a temporal graph G with a binding θ, iff gpθ = G�

where G� ⊆ G. The time semantics are always defined in the context of a binding. As soon
as the matching constraints of a graph pattern are fulfilled, the graph pattern produces a
new binding. In the case of a fact graph pattern, its end time may not yet be determined.
This is due to their interval-based time model. Consider, for example, a fact graph pattern
whose end time is punctuated by an untilE event graph pattern. As such, this binding
may belong to a partial match for fact graph patterns. Event graph patterns produce
complete matches only.

15

Event Pattern T (E) Conditions &
Sideeffects

Returned Bindings

< S, PE, O > [τs, τe] [τs, τe] τs ≤ τe vars(< S, PE, O > [τs, τs])
E1, E2 [min(τs(E1), τs(E2)),

max(τe(E1), τe(E2))]
∃E1 ∧ ∃E2 vars(E1) ∪ vars(E2)

E,B T (E) vars(E) ∪ vars(B)
E1;E2

E1 union E2

T (E1) or
T (E2)

∃E1 ∨ ∃E2 vars(E1) ∩ vars(E2)

E1 without E2 T (E1) ∃E1 ∧ ¬∃E2 :
τs(E1) ≤
τe(E2) <

qτe(E1)

vars(E1)

E without F T (E) ∃E ∧ ¬∃F :
T (E) ∩ T (F) �=
∅

vars(E1)

E1 seq E2 [τs(E1), τe(E2)] ∃E1 ∧ ∃E2 :
τe(E1) ≤
τs(E2)

vars(E1) ∪ vars(E2)

E1 before E2 [min(τs(E1), τs(E2)),
τe(E2)]

∃E1 ∧ ∃E2 :
τe(E1) ≤
τe(E2)

vars(E1) ∪ vars(E2)

E during F T (E) τs(F) ≤ τs(E)
τe(E) ≤ τe(F)

vars(E) ∪ vars(F)

E with F T (E) τs(F) ≤ τs(E)
≤ τe(F)

vars(E) ∪ vars(F)

onEnd F [τe(F), τe(F)] vars(F)
onStart F [τs(F), τs(F)] vars(F)

Table 4.2: Event Graph Pattern

Conjunction The graph pattern (F1, F2) matches G with a binding θ, iff

• there exist θ1, θ2 ∈ Ω for which F1 and F2 match some g1, g2 ⊆ G,

• the value for all ?v ∈ vars(F1) ∩ vars(F2) is the same in θ1 and θ2, and

• Ω = Ω ∪ {?v/u ∈ θ1 | ?v ∈ vars(F1)∨ ?v ∈ vars(F2)}.

The first condition ensures that both F1 and F2 match some triple of G. The second
ensures that the join between F1 and F2 is valid. The third condition ensures that all
variables make it into the final binding. Note that the join condition ensures that we can
choose ?v/u from either θ1 or θ2, since ?v/u has the same value in both bindings.
The start time of a conjunction of events is the earliest starting time of both conjuncts
whereas its ending time is the latest of these. In contrast, the start and end times for facts
are defined as the latest starting and the earliest ending of the conjuncts, respectively.

Disjunction The graph pattern (F1;F2) matches G with a binding θ, iff

• there exist θ1, θ2 ∈ Ω for which F1θ1 or F2θ2 match some g1, g2 ⊆ G,

• Ω = Ω ∪ {?v/u | ?v/u ∈ θ1 ∧ ?v ∈ vars(F1)∧ ?v ∈ vars(F2)}
(if θ1exists), and

• Ω = Ω ∪ {?v/u | ?v/u ∈ θ2 ∧ ?v ∈ vars(F1)∧ ?v ∈ vars(F2)}
(if θ2exists).

16

The first condition ensures that F1 of F2 indeed match. The second and third conditions
ensure that if a binding exists it will be added to the set of bindings—for both F1 and F2.
Note that the new bindings are restricted to the intersection of the variables that occur
in F1 and F2. This restriction ensures first, that no unbound variables from one of the
disjuncts is contained in the new binding. Second, under this regime outer joins are not
admissible.
The time semantics of a disjunctive graph pattern is somewhat more complicated than for
a conjunction. The start and end times are defined for the two possible graph patterns,
separately. We illustrate this by the following example:

Example 4.3.1. Assume the fact graph pattern that shall match whenever a person lives
in a city or in a village:

?xlivesInCity UNION ?xlivesInV illage

Note that this actually is an exclusive disjunction, since for each possible binding variables
can only be bound to a single value. Never can both branches of such a disjunction match
for any binding. In other words: observing a single triple from the stream of data we can
never produce two bindings in the present case. The time fro which a match for a binding
is valid solely depends on the validity of that very disjunct which matches for the binding.
The produced binding contains only the common variables, in the present case ?x.
Assume now the following fact graph pattern that can be used to find out the relations
between that the entity person123 has with the entities City and V illage:

person123 ?prop1 City UNION person123 ?prop2 V illage

The disjunction does not contain common variables. Consequently, it matches, for ex-
ample, for the binding θ = {?prop1/livesIn, ?prop2/likes}. The start time of the match
depends on the earliest binding for ?prop1 and prop2. Note that the binding produced b
the match is actually empty as we take the intersection of the variables that occur in the
disjunction.

Negation Negation for events and facts such as E1withoutE2 means that E2 either
never occurs or it must have ended before E1 ends. The time semantics is defined either
as the whole interval of the positive fact/event E1, in case the negative fact/event does not
occur during the positive’s lifetime. Or it is defined as the remaining time interval when
the negated event/fact has already ended up until the positive event/fact will actually
end.

Sequences For all temporal topological operations seq, before, during, and with we
have that—as in the case of conjunction—the new binding contains all variables of the
participating bindings. This reflects the immutable state of all bindings that conform a
match not to change over time. The time-semantics are self-explanatory.

Punctuation For punctuation (since, until, onEnd, onStart) is it worth noting that
the binding for an event E solely consists of the variables that are to be found in the fact
F . Vice versa, the binding for a fact F solely consists of those variables that occur in E.
We may hence ”forget” about variable bindings via punctuation.

Filters Filters can be defined on both fact and event graph patterns. Their scope is
limited to the binding of the very graph pattern that they are attached to. The matching
times solely depend on that of the graph pattern and not of the matching time of the
filter.

17

Binds Bind statements may bind values to variables. This can be useful, for example,
when the result of the query variable can only be computed from the data. Consider, for
example, the case for distinguishing the dividend between common stock and preferred
stock. The latter usually has a higher dividend at the cost of no voting rights.

(?x type CommonStock , ?x hasV alue ?y) BIND ?y = 2∗?x)
UNION

(?x type PreferredStock , ?x hasV alue ?y) BIND ?y = 2∗?x)

Assume further that we are only interested in the value of ?y. We then can use BIND to
declare the variable ?y and define its value as a functional outcome of the current binding,
in our case the value for ?x. The matching time of the BIND solely depends upon that
of the connectd graph pattern.

4.4 SELECT-Queries

SELECT-queries are defined similar to standard SPARQL.

SELECT ?v1 ... ?vN
ONCE PER ?v1 ... ?vM
WHERE {

GP
}

In essence SELECT-queries are projection of the query variables ?vn to the set of bindings
Ω. The body of the query is defined by a graph pattern GP which can be a fact or an
event graph pattern. We require each variable ?vn to occur in GP at least once. The result
of a SELECT-query is a stream of N -tuples. For every binding for which GP matches, the
query produces one tuple. Each tuple consists of the ordered sequence of ?v1, . . . , ?vN
where each ?vn has been substituted with a value in the binding, accordingly.
Similar standard SPARQL and SQL we can restrict results to be distinct. The ONCE
PER statement restricts the result to one match for each distinct binding of the vari-
ables ?v1, . . .?vM where (i) each ?vm is bound to a value and (ii) {?v1, . . . , ?vM} ⊆
{?v1, . . . , ?vN}, i.e. all variables of the ONCE PER statement have to occur in the pro-
jection. Note that the ONCE PER statement is optional.
For the sake of simplicity we assume that the stream of data we are matching against
is unique. We consequently omit federated queries for this version of the language. Op-
posed to standard SPARQL, we cannot provide the source of the data specified by FROM
statements. This will be added in a later version as it requires further investigation of the
consequences. For the same reasons we omit a formal specification for prefixes.

4.5 Graph Pattern Construction

As in standard SPARQL, we support the construction of graph patterns using the CONSTRUCT
operator.

CONSTRUCT {FACT|EVENT} GP_C
ONCE PER ?v1 ... ?vM
WHERE {

GP
}

Similar to the case of SELECT-queries we do not construct N -tuples but graph patterns as
defined by GPC. We restrict GPC to a list of triple patterns TP1, . . . , TPM where for all

18

predicates must solely drawn from either Pe or Pf . In other words: it is not admissible
to produce events and facts at the same time. Optionally, i.e. for better readability, the
type of tuples can be made explicte. The triple patterns may comprise IRIs and variables
but not blank nodes. This imposes another restriction on the creation of new bindings:
A binding θ that produces variable substitutions with values drawn from both Pe and
Pf for a CONSTRUCT query Q, then that binding is not admissible for the query, if
substituting the variables of theQ the resulting triples had values from both Pe and Pf .
As in the case of SELECT-queries for each binding for which GP matches we produce
an instance of GPC . The ONCE PER statement is defined in the same way. Prefixes and
federation are also left for later specification.

4.6 Properties of the language

The most important property of a stream processing language is that of time-wise mono-
tonicity Anicic et al. [2011]: ”The querying formalism is intended to work on triple streams
(i.e., triples continuously enter the system in the order of their associated time stamps)
and query results are supposed to be output as soon as they are detected. This leads
to the straightforward requirement that it should not be possible that query results once
obtained get invalidated by later triple inputs.”

Corollary. The consequences of any fixed set of select and construct query in our language
is monotone, if and only if the input stream is monotone.

The dependence on a monotone stream is most obvious for the (E1 without E2) pattern.
If finishing of E1 arrives before a delayed E2, the pattern is (wrongly) assumed to be
satisfied at the end of E1 and would need correction on the late arrival of E2.
The monotonicity itself is a consequence of the following theorem, that stats that queries
in our language can only express pattern, that involve the current point of time, i.e. it
never allows to infer that something was true (or happened) in the past or will be true
(will happen) in future. Consequently, nothing can depend on the future, nor contradict
the past.

Theorem. At any point in time (position of received events from the input stream), it
only infers facts and events with E[τs, τe] with τe = now()
F [τs, τe] with either τs = now(), τe = η or τs = τe = now()

The definition of the pattern in tables 4.1 and 4.2 ensure that.

Theorem. For any event-stream and any finite set of queries in our language without
generation of new terms (URI and type elements) nor blank-nodes in the head of construct
statement it is decidable wether a triple is in the answer-set and at any point in time and
the number of triple is in the answer-set is finite.

Up to any point in time, there is only a finite number of time points, and as the language
cannot infer statements about the future the maximum number of annotated triples is
|I|2 ∗ |I ∪ L| ∗ now()2/2. With a finite number of possible triples the question, if a triple
is in the answer-set is decidable.

Theorem. Deciding wether a purely conjunctive graph pattern without time annotations
matches a graph is NP-hard.

This is equivalent (as triple and nary-relations are equivalent) to the theta-subsumption
problem in Datalog clauses, e.g. see Section 3 in Kietz and Lübbe [1994] for a proof of
the NP-hardness of theta-subsumption, that can be directly used for conjunctive graph
pattern.

19

Theorem. Deciding wether a purely conjunctive graph pattern with time annotations
pattern as defined in section 4.3 matches a graph is within NP.

If we can guess the θ of the match correctly, the verification is a simple subset test and
can be performed in polynomial time.
For graph pattern containing complex without and union subexpression this simple veri-
fication cannot be used, Their complexity is likely higher.

Chapter 5

Use-cases for the language

5.1 Using Events to cache Never/Slow-Changing Facts

in States/Events

Consider you want to recommend TV-Movies to people. For that you need to know things
like what kind of movie it is, how good it is rate why which groups of people, which actors
play in the movie, and so on. All these information are available in the internet, but
querying the internet for them takes a while. Clearly, the events ?Channel start ?Movie
and ?Channel finishes ?Movie are coming over the stream. But you want to recommend
movies close to their start and not when they are running already for a while. So querying
the internet on demand takes much to long and keeping a local copy of the (potentially
relevant parts of the) internet to get faster answers is not realistic as well.
Fortunately the schedule of movies on TV is known before so it is not to difficult to have
an event ?Channel willShowNext ?Movie sufficiently ahead of time to query the internet
and keep the result of this query in the engine as state or event, till the movie is finished.
This can be done with a query like the following:

CONSTRUCT <Things you want to cache about the movie>
WHERE ((SINCE ?Channel willShowNext ?Movie)

UNION
(TILL ?Channel finishes ?Movie)

)
DURING
<Things you need to query from the internet>

For most parts the schedule is also known weeks ahead and can be accessed before, i.e..
facts for the pattern ?Show isScheduledToStartAt ?DateTime can be cached with a sim-
ilar query as above from the internet at least ?DateTime - "PT1H" = now(). Given that,
we can replace the dependence on the external event (SINCE ?Channel willShowNext
?Movie) by a time driven pattern that let us catch things 1 hour before scheduled start
(?Show isScheduledToStartAt ?DateTime, now() > ?DateTime - "PT1H").

5.2 Using Facts to compute arbitrary aggregations

Most Stream Engines provide aggregation functions (similar to SQL) over time windows.
If the needed function is a provided function and the specification of a time or size window
is adequate for the problem, they are easy to use and efficient computable.
However, when the sliding window is not a adequate way to characterize the relevant data,
then their usage become clumsy, inefficient or even impossible.

20

21

In EP-SPARQL (as in our language) no specific aggregate functions functions exist. But
nevertheless aggregations can be computed. [Anicic et al., 2011] present the following
example query to illustrate a moving average computation in EP-SPARQL.

CONSTRUCT _:aaa :hasCount ?count .
_:aaa :hasSum ?sum .

{ SELECT ?count AS ?prevcount + 1
?sum AS ?prevsum + ?price

WHERE {{ ?point :hasCount ?prevcount .
?point :hasSum ?prevsum .

} SEQ { :ACME :hasStockPrice ?price . }
} EQUALSOPTIONAL
{{ ?point :hasCount ?prevcount .

?point :hasSum ?prevsum .
} SEQ { :ACME :hasStockPrice ?inbetween .
} SEQ { :ACME :hasStockPrice ?price . }

}
FILTER (!BOUND(?inbetween) &&

getDURATION() < "P10D"^^xsd:duration)}

SELECT ?sum / ?count AS ?average
WHERE {{ :ACME :hasStockPrice ?price . }

SEQ { ?point :hasCount ?point :hasSum ?prevsum . }
} EQUALSOPTIONAL
{{ :ACME :hasStockPrice ?price . }
SEQ { :ACME :hasStockPrice ?inbetween . }
SEQ { ?point :hasCount ?prevcount .

?point :hasSum ?prevsum . }
}

FILTER (!BOUND(?inbetween) &&
getDURATION() > "P10D"^^xsd:duration)

We think the EP-SPARQL formulation of this query has three disadvantages compared to
an formulation in our language. The query uses generation of new URI via blank nodes in
the head of the CONSTRUCT, this enables an infinite number of possible triples and as the
query simultaneously uses recursion1 (_:aaa :hasSum ?sum is contructed out of ?point
:hasSum ?prevsum the an EP-SPARQL formalism enabling this query is most likely unde-
cidable. The complicated EQUALSOPTIONAL part together with the !BOUND(?inbetween)
filter is the clumsy way how EP-SPARQL supports negation. The in our view most clumsy
thing in this query is however that EP-SPARQL only has events and misses time-depended
facts. The :hasCount and :hasSum are de facto facts of limited validity, i.e. any is are true
between two :ACME :hasStockPrice ?price events and they are not events that occur
in between as modeled in this EP-SPARQL query. If n :ACME :hasStockPrice ?price
events occur inside the window, then this query has to keep

�n−1
i=1 3i = 1.5 ∗ n ∗ (n − 1)

triples inside partial matches in memory to work correctly in all cases.
In our language that combines occurring events with facts limited for a period of time,
the above behavior can be reached easier and with less memory.

CONSTRUCT ?Ticker sumMember ?P,
?Ticker sum ?NSum,
?Ticker count ?NCount,

1It is probaly even wrong as the recursion base case ?point :hasCount 0 . ?point :hasSum 0 at
the start of each window is missing.

22

?Ticker tenDayAverage ?NSum/?NCount
WHERE REPLACE(?Ticker sum ?Sum,

?Ticker count ?Count.
?Ticker tenDayAverage ?_)

ON (?Ticker :hasStockPrice ?price[?_,?TN],
WITHOUT (Ticker sumMember ?OP[?TO,?_],

duration(?TO, ?TN) > 10d),
?NSum = Sum + ?price, ?NCount = Count +1)

CONSTRUCT ?Ticker sum ?NSum,
?Ticker count ?NCount

WHERE (REPLACE(Ticker sumMember ?OP[?TO,?_],
?Ticker sum ?Sum,
?Ticker count ?Count)

ON (?Ticker :hasStockPrice ?_[?_,?TN,
duration(?TO, ?TN) > 10d),

?NSum = ?Sum - ?OP, ?NCount = ?Count -1

The main trick in our query is to remember the currently valid state, i.e. sum and count
and all the ?prices that are in the aggregation, as facts. This allows us to subtract
them from the current sum if they become to old to be in the window any longer. If
the maximum of prices inside the time-window is n, the minimum2 memory needed is
n + 4, i.e. the n elements in the window, the new event, that let some old ones drop
out of the window and a triple for each of sum, count and average. When a new price
event occurs the new price is added the update occurs. The first CONSTRUCT adds the new
price as member element, to the sum and to the count, but only if no (now) outdated
sumMember exist (or has been subtracted by the second query). In this case the new
average is computed as well. If there are members which are now to old to be kept in the
window, they are subtractd by the second CONSTRUCT This query terminates all (one after
the other, till now is found) members which are to old and reduces sum and count.
The first query needs to keep partial matches for: 1 sum fact, 1 count fact, 1 tenDayAv-
erage fact and 1 hasStockPrice event the second query needs to keep partial matches for:
N sumMember facts, 1 sum fact, 1 count fact and 1 hasStockPrice event. which gives a
total of N + 7 triples to be stored as partial matches, i.e. is optimal up to a constant
summand (not even factor) and as a second advantage over EP-SPARQL, it does not
need to generate new URI to do so, i.e. by avoiding this source of infinity, we reduce the
danger of undecidability.3

This illustrates how arbitrary time-window based aggregations can be handled in our
language efficiently. But it is able to do more, namely aggregate in event-delimited win-
dows. Let’s look on such an even-delimited aggregation. Let’s assume we get the follow-
ing events about TV-shows and TV-viewer. TV-shows are delimited by 2 events on the
stream ?Channel starts ?Show and ?Channel finishes ?Show, and when a TV-viewer
switches on or off or between different channels we get ?Person joins ?Channel and
?Person leaves ?Channel events. Let us compute to example aggregations, namely ”the
maximum and the average number of viewers of a TV-show”. This is also a slightly more
complicated average, just taking the mean value of all the different currentNoOfViewers
numbers of a channel during a show does not capture an essential dimension, namely

2The only way to reduce this memory requirement is to bins of several values added and removed
together to the moving average, i.e. to trade precision for memory.

3We still use numbers and arithmetic to build new numbers, but this well know source of infinity can
be much better controlled than a possibly infinite number of URI’s.

23

how long how many were watching the show. So the currentNoOfViewers weighted by is
validity duration captures the intuition much better.

CONSTRUCT FACT ?Channel currentNoOfViewers ?N WHERE
(REPLACE ?Channel currentNoOfViewers ?N1

ON ?_ joins ?Channel), ?N = ?N1+1
UNION
(REPLACE ?Channel currentNoOfViewers ?N2

ON ?_ leaves ?Channel), ?N = ?N2-1
UNION
((?Channel rdf:type TV-Channel, ?N = 0) ON INIT)

CONSTRUCT FACT ?Channel shows ?Show WHERE
(SINCE ?Channel starts ?Show)
UNION
(UNTIL ?Channel finishes ?Show)

CONSTRUCT EVENT ?Show maximumViewer ?N WHERE
(((?Channel starts ?Show

BEFORE ?Channel finishes ?Show
) WITH (?Channel currentNoOfViewers ?N)

) WITHOUT
((ONSTART ?Channel currentNoOfViewers ?HN)
DURING ?Channel shows ?Show, ?HN > ?N)

)

CONSTRUCT EVENT ?Show averageNoOfViewers ?N WHERE
((?Channel starts ?Show),
((?Channel finishes ?Show)
WITH (?Show weightedSumOfViewers ?S)))[?ST,?ET],

?N = ?S/duration(?ST,?ET)

CONSTRUCT FACT ?Show weightedSumOfViewers ?S WHERE
(REPLACE ?Channel weightedSumOfViewers ?OS

ON (ONEND ?Channel currentNoOfViewers ?N[?ST,?ET]),
?S = ?OS + ?N*duration(?ST,?ET))

UNION
((SINCE ?Channel starts ?Show, ?S = 0)

5.3 Using precise queries to generate only the inter-

esting matches

Declarative languages like EP-SPQRL have an inherent problem with multiple matches
and a resulting explosion of match candidates to be kept and answers to be generated.
If you take the example query from [Anicic et al., 2011] and assume a stream of data,
containing the daily end-price of stocks as shown in Fig. 5.1, the problem becomes obvious.
How many partial matches have to be kept by the engine and how many complex events
have to be signaled at which time with which time-interval to the user.

1. once at day21 (but with which of the 10 possible intervals?) and never again or

2. once at day21 (but with which of the 10 possible intervals?) , once at day22, ...,
once at day30

24

IBM hasStockPrice 1.00 at day1
...
IBM hasStockPrice 0.98 at day10
IBM hasStockPrice 0.50 at day11
...
IBM hasStockPrice 0.54 at day20
IBM hasStockPrice 1.20 at day21
...
IBM hasStockPrice 1.24 at day30

CONSTRUCT ?company OWL:ISA VolatileShare WHERE
{ ?company hasStockPrice ?price1 }

SEQ { ?company hasStockPrice ?price2 }
SEQ { ?company hasStockPrice ?price3 }

FILTER (?price2 < ?price1 * 0.7 &&
?price3 > ?price1 * 1.05 &&
getDURATION() < "P30D"^^xsd:duration)

Figure 5.1: Stock market example

3. 10 times at day21 (with intervals [day1,day21], [day2,day21], ..., [day10,day21]), 10
times at day22, ..., 10 times at day30

4. 100 times at day21, 100 times at day22, ..., 100 times at day30

If the result of this complex event definition is used as input by another query or event
only 3) and 4) ensure the completeness of any possible followup-query. However, if the
result of this query is signaled to a human only 1) or 2) seems to be acceptable as humans
don’t like to get overwhelmed with more or less redundant events.
A usual way to reduce the answerset from case 4) to case 3) is the usage of distinct
keyword within the CONSTRUCT/SELECT. With EP-SPQRL it is not possible to formulate
a query with the behavior of case 1) or case 2). Our language allows a more precise
formulation of the query, i.e. to specify that this should be generated only once per
company (case 1) or once per companay and day (case 2)

ONCE PER ?company {, fn:day-from-dateTime(now())}

Chapter 6

Conclusion

In this report we presented an extension of SPARQL for processing dynamic and time-
annotated data, namely TEF-SPARQL. To the best of our knowledge it is first language
to respect the semantic difference between temporal facts and events and to provide useful
and sound operators for their interaction. Special focus is laid on the combination of time
relations and joins. To avoid potential complexity issues, only a limited form of negation
can be expressed. The combination of facts and events allows for expressive aggregations.
TEF-SPARQL has been structured for operation on data driven episodes. The implemen-
tation of the actual matching process will hence base on Event-Processing approaches. A
realization of a distributed event processor has already started. In a subsequent step we
will build a compiler that will translate a given query into the execution framework.
The design of the language follows the path of combining expressive power with efficient
distributable implementation. TEF-SPARQL in particular respects an efficient poten-
tial implementation of aggregates. The actual evaluation will take place in phases two
and three. This evaluation will be based on three sample use-cases. Adoptions to the
language—if necessary—will follow a thorough analysis of the results.

Acknowledgements

The authors gratefully acknowledge the Office of Naval Research for the support of this
work under the The Naval International Cooperative Opportunities in Science and Tech-
nology Program (NICOP), grant number N62909-11-1-7065.

25

Bibliography

R. Angles and C. Gutierrez. The Expressive Power of SPARQL. In A. Shet, S. Staab,
M. Dean, M. Paolucci, D. Maynard, T. Finin, and K. Thirunarayan, editors, The Se-
mantic Web - ISWC 2008: 7th International Semantic Web Conference, ISWC 2008,
Karlsruhe, Germany, October 26-30, 2008, Proceedings, volume 5318 of LNCS, pages
114–129. Springer, 2008.

D. Anicic, P. Fodor, and S. Rudolph. A rule-based language for complex event processing
and reasoning. In Web Reasoning and Rule Systems, volume 6333 of Lecture Notes
in Computer Science, pages 42–57. Springer, 2010. URL http://www.springerlink.
com/index/5G22262881813263.pdf.

D. Anicic, P. Fodor, S. Rudolph, and N. Stojanovic. EP-SPARQL: a unified language
for event processing and stream reasoning. In Proceedings of the 20th International
Conference on World Wide Web, pages 635–644. ACM, 2011. URL http://portal.
acm.org/citation.cfm?id=1963495.

A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, M. Datar, K. Ito, R. Motwani, U. Srivastava,
and J. Widom. STREAM : The Stanford Data Stream Management System. Technical
report, 2004.

A. Arasu, S. Babu, and J. Widom. The CQL continuous query language: semantic
foundations and query execution. The VLDB Journal, 15(2):121–142, July 2005. ISSN
1066-8888. doi: 10.1007/s00778-004-0147-z. URL http://www.springerlink.com/
index/10.1007/s00778-004-0147-z.

D. Barbieri, D. Braga, S. Ceri, and M. Grossniklaus. An execution environment for
C-SPARQL queries. In Proceedings of the 13th International Conference on Extend-
ing Database Technology, pages 441–452. ACM, 2010. URL http://portal.acm.org/
citation.cfm?id=1739041.1739095.

D. D. F. Barbieri, D. Braga, S. Ceri, E. Della Valle, and M. Grossniklaus. C-SPARQL:
SPARQL for continuous querying. In Proceedings of the 18th International Conference
on the World Wide Web, volume 427 of WWW ’09, pages 1061–1062. ACM, 2009.
ISBN 9781605584874. doi: 10.1145/1526709.1526856. URL http://www2009.org/
proceedings/pdf/p1061.pdfhttp://portal.acm.org/citation.cfm?id=1526856.

R. S. Barga, J. Goldstein, M. Ali, and M. Hong. Consistent Streaming Through Time :
A Vision for Event Stream Processing. In CIDR 2007, Third Biennial Conference on
Innovative Data Systems Research, Asilomar, CA, USA, January 7-10, 2007. CIDR,
2007.

C. Bizer, T. Heath, and T. Berners-Lee. Linked Data - The Story So Far. International
Journal on Semantic Web and Information Systems, 5(3):1–22, 2009. URL http:
//www.citeulike.org/user/omunoz/article/5008761.

26

27

L. Brenna, A. Demers, J. Gehrke, M. Hong, J. Ossher, B. Panda, M. Riedewald,
M. Thatte, and W. White. Cayuga: a high-performance event processing engine. In
SIGMOD Conference, pages 1100–1102, BEIJING, 2007. ACM. ISBN 9781595936868.
doi: 10.1145/1247480.1247620. URL http://portal.acm.org/citation.cfm?id=
1247480.1247620.

S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M. Hellerstein, W. Hong,
S. Krishnamurthy, S. Madden, V. Raman, F. Reiss, and M. Shah. TelegraphCQ: Contin-
uous Dataflow Processing for an Uncertain World. CIDR, 20(March):668, 2003. doi: 10.
1145/872757.872857. URL http://db.cs.berkeley.edu/papers/cidr03-tcq.pdf.

A. Demers, J. Gehrke, M. Hong, and M. Riedewald. Towards Expressive Publish / Sub-
cribe Systems. In Y. E. Ioannidis, M. H. Scholl, J. W. Schmidt, F. Matthes, M. Hat-
zopoulos, K. Böhm, A. Kemper, T. Grust, and C. Böhm, editors, Advances in Database
Technology - EDBT 2006, 10th International Conference on Extending Database Tech-
nology, Munich, Germany, March 26-31, 2006, Proceedings, volume 3896 of Lecture
Notes in Computer Science (LNCS), pages 1–18. Springer, 2006. ISBN 3-540-32960-9.

A. Demers, J. Gehrke, M. Hong, B. Panda, M. Riedewald, V. Sharma, and W. White.
Cayuga: A General Purpose Event Monitoring System. In CIDR 2007, Third Biennial
Conference on Innovative Data Systems Research, Asilomar, CA, USA, January 7-10,
2007, pages 412–422. CIDR, 2007.

Y. Diao, N. Immerman, and D. Gyllstrom. SASE+: An Agile Language for Kleene Closure
over Event Streams. Technical report, 2007.

S. Harris and A. Seaborne. SPARQL 1.1 Query Language. Technical report, The World
Wide Web Consortium (W3C), 2012. URL http://www.w3.org/TR/sparql11-query/.

J. Hoeksema and S. Kotoulas. High-performance Distributed Stream Reasoning using S4.
In FIRST INTERNATIONAL WORKSHOP ON ORDERING AND REASONING,
2011.

J.-U. Kietz and M. Lübbe. An Efficient Subsumption Algorithm for Inductive Logic
Programming. In ICML, pages 130–138, 1994. URL http://dblp.uni-trier.de/db/
conf/icml/icml1994.html\#KietzL94.

G. Klyne and J. J. Carroll. Resource Description Framework (RDF): Concepts and
Abstract Syntax, 2004. URL http://www.w3.org/TR/rdf-concepts/.

J. F. Lajos, G. Toth, R. Racz, J. Panczel, T. Gergely, and A. Beszedes. Survey
on Complex Event Processing and Predictive Analytics. Technical report, Citeseer,
2010. URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.173.
2029\&rep=rep1\&type=pdf.

D. Maier, M. Grossniklaus, S. Moorthy, and K. Tufte. Capturing Episodes : May the
Frame Be with You. In DEBS 2012, 2012. ISBN 9781450313155.

A. Malhotra, J. Melton, N. Walsh, and M. Kay. XQuery 1 . 0 and XPath 2 . 0
Functions and Operators (Second Edition), 2010. URL http://www.w3.org/TR/
xpath-functions/.

A. Mallea, M. Arenas, A. Hogan, and A. Polleres. On Blank Nodes. In ISWC, volume
1380, pages 421–437, 2011.

28

Y. Mei and S. Madden. ZStream : A Cost-based Query Processor for Adaptively Detecting
Composite Events Categories and Subject Descriptors. Proceedings of the 35th SIGMOD
international conference on Management of data, pages:193–206, 2009. doi: 10.1145/
1559845.1559867. URL http://portal.acm.org/citation.cfm?id=1559867.

T. Owens. Survey of event processing. Distribution, (December), 2007. URL
http://oai.dtic.mil/oai/oai?verb=getRecord\&metadataPrefix=html\
&identifier=ADA475386.

M. Perry and A. P. Sheth. SPARQL-ST : Extending SPARQL to Support Spatiotemporal
Queries. Design, 2009.

M. Stonebraker and U. Cetintemel. ”One Size Fits All”: An Idea Whose Time Has Come
and Gone. 21st International Conference on Data Engineering ICDE05, 0(Icde):2–11,
2005. ISSN 10844627. doi: 10.1109/ICDE.2005.1. URL http://ieeexplore.ieee.
org/lpdocs/epic03/wrapper.htm?arnumber=1410100.

E. Wu, Y. Diao, and S. Rizvi. High-performance complex event processing over streams.
Proceedings of the 2006 ACM SIGMOD international conference on Management of
data - SIGMOD ’06, page 407, 2006. doi: 10.1145/1142473.1142520. URL http:
//portal.acm.org/citation.cfm?doid=1142473.1142520.

