
Scraping BitTorrent Trackers

Gian Marco Jutz
Zürich, Switzerland

Student ID: 07-726-748

Supervisor: Andri Lareida, Dr. Thomas Bocek
Date of Submission: August 21, 2013

University of Zurich
Department of Informatics (IFI)
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland ifi

B
A

C
H

E
LO

R
T

H
E

S
IS

–
C

om
m

un
ic

at
io

n
S

ys
te

m
s

G
ro

up
,P

ro
f.

D
r.

B
ur

kh
ar

d
S

til
le

r

Bachelor Thesis
Communication Systems Group (CSG)
Department of Informatics (IFI)
University of Zurich
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland
URL: http://www.csg.uzh.ch/

Abstract

BitTorrent is one of the most used file sharing protocols on the Internet. Understanding
the distribution and behavior of BitTorrent users has a beneficial impact on validation of
future BitTorrent related applications.
This work describes the design and evaluation of a tool to acquire data about peer beha-
vior in a BitTorrent environment. A distributed approach has been chosen which allows
collecting this information from different nodes with a variety of user configurable para-
meters. This tool has been deployed on Emanics Lab nodes and during a process of one
week has been data collected.
The results uncover high similarity in the evolution of different BitTorrent swarms. It
has revealed a periodic behavior of BitTorrent users as well as high fluctuation of peer
numbers during short periods.

i

ii

Contents

Abstract i

1 Introduction 1

1.1 Motivation . 1

1.2 Description of Work . 2

1.3 Thesis Outline . 2

2 Background and Related Work 3

2.1 Peer-to-Peer Architecture . 3

2.2 BitTorrent . 4

2.3 BEncoding . 5

2.4 Gathering Peer Information from Trackers 6

2.4.1 HTTP/TCP Trackers . 6

2.4.2 UDP Trackers . 7

2.5 Related Work . 10

3 Solution Design and Implementation 11

3.1 Design Specifications . 11

3.2 Architecture Design . 12

3.2.1 Master Server . 13

3.2.2 Slave Server . 15

3.2.3 Database . 15

3.2.4 Scheduling . 16

iii

iv CONTENTS

3.3 Implementation . 17

3.3.1 Conversion of BEncoded Values . 18

3.3.2 Decoding of Tracker Addresses . 19

3.3.3 Configuration . 20

3.3.4 Logging . 21

4 Evaluation 23

4.1 Test Environment . 23

4.2 Scraper Evaluation . 24

4.2.1 Experiment Design . 24

4.2.2 Results . 25

4.3 Evaluation of acquired Data . 26

4.3.1 Experiment Design . 26

4.3.2 Results . 27

5 Summary, Conclusions and Future Work 31

5.1 Summary . 31

5.2 Conclusions . 31

5.3 Future Work . 32

Bibliography 33

Abbreviations 35

Glossary 37

List of Figures 38

List of Tables 39

A Installation Guidelines 43

B Contents of the CD 45

Chapter 1

Introduction

With the development of peer-to-peer (P2P) networks the traffic landscape of the internet
has radically changed. Today, P2P applications are still responsible for a vast amount
of internet traffic [1]. Even though, many peer-to-peer applications have been proposed
and implemented in the past 10 years and different concepts have been improved and
expended, the behaviour of P2P networks and its traffic handling is still a major field of
research [2].

1.1 Motivation

Developers and scientists are working on improvements and extensions of the BitTorrent
protocol or related applications. Traffic shaping techniques to discriminate the traffic in
P2P networks can induce negative side effects on P2P users. Handling peaks with higher
capacity infrastructure may lead to over provisioning. Caching might be a proposal for
a solution of this problem. To evaluate and especially validate this approach, realistic
experiment input data of BitTorrent user behaviour is beneficial. In a BitTorrent [3] P2P
network a tracker [4] coordinates the communication between different clients. Whenever
a peer connects or disconnects from a tracker an announce message is sent. Due to this
fact, it is inevitable that a tracker has complete knowledge of all clients connected to its
BitTorrent networks. Trackers offer a service to give a snapshot of the client constella-
tion of a particular network, but only for a specific point in time. Observing the client
behaviour over a longer period has an important impact on research and further protocol
improvements. Therefore. this thesis designs, develops and tests an application to acquire
sets of data from different torrent swarms. A BitTorrent swarm refers to the set of peers
currently connected to a tracker. Due to the fact that this tool should provide flexibility,
reusability as well as extensibility, a detailed documentation is required. To assure that
the application is able to perform this task absolutely reliable, deployment in a distributed
environment is crucial. In a final step, a collection of data from a real life environment is
acquired for a period of at least one week and subsequently evaluated.

1

2 CHAPTER 1. INTRODUCTION

1.2 Description of Work

The work for this thesis was structured in three major parts, which had to be completed
one after another. In a first step, background knowledge about the topic had to be
acquired and possibly arising problems identified. Based on these findings, a first rough
concept was worked out. After several iterations of improvement steps, a final design
choice was made.
The following step included the implementation of the previously decided design choice. In
an iterative and incremental development procedure, first a simple and basic application
was implemented, improved and extended in several further steps. Between each step, a
short period of testing in a real life environment was carried out to assure reliability, correct
functionality and to find undetected problems. During all these steps, the documentation
had been extended and improved.
This tool, which will be referred to as Scraper in further parts of this work had been
deployed in a distributed test environment and the results evaluated. Final errors had
been fixed and the application extended by adding smaller modifications.

1.3 Thesis Outline

In the following chapter 2, a brief outline on P2P in general and especially on BitTorrent
is given. The main part of this chapter explains the essential mechanisms to gather peer
information like IP addresses from trackers to identify peer swarms. As a final part of
this chapter an overview on related work and their conclusions will be given.
In chapter 3, the design choice will be explained. Motivation and incitement of the final
project architecture and its overall functionality will be explicated. In addition, a closer
look will be taken at how this design choice tries to fulfil the requirements. Further,
it will show the application design in detail. How the different encoding and decoding
mechanisms have been implemented and how the tool configuration works.
In a fifth chapter follows an introduction to the test environment Emanics Lab and how
tests have been performed. In second part of this chapter, results are presented and
discussed.
The final chapter of this thesis provides a summary and a conclusion.

Chapter 2

Background and Related Work

Before the final design choice for the Scraper is presented, first, a brief description of the
common P2P mechanisms is given. It will be explained why it outperforms in particular
situations the traditional client/server architecture.
The section 2.2 will focus on the general BitTorrent architecture and functionality. Par-
ticularly, important aspects of BitTorrent regarding this work will be precisely explained.
In addition, it will be demonstrated in detail how peers in a BitTorrent network commu-
nicate with each other and how an initial set of peers is obtained by a BitTorrent client.
This chapter will be concluded by looking at related work.

2.1 Peer-to-Peer Architecture

Although, the basic client/server architecture is still important for computer networks, due
to the demand of a continually growing amount of data on the internet, a new architecture
approach has been designed. Especially file sharing, media streaming and communication
through networks have gained popularity in recent years [5]. In traditional client/server
architectures as shown in Figure 2.1a, the server can easily become a bottleneck for such
a huge amount of users and demand of data, because a server acts as a single centralized
system. Servers are not able to meet all the demands concurrently, as a result, the P2P
architecture has been developed (Figure 2.1b).
In contrast to conventional single server systems, clients bear in a P2P design the cost of
file transfer and organization together, which results in higher robustness and scalability.
Clients not only act as consumer of a resource, they act as well as a supplier, the con-
sequence is a better network utilization. Multiple connection with several sources at the
same time are possible without a centralized instance.

3

4 CHAPTER 2. BACKGROUND AND RELATED WORK

(a) Client/Server (b) P2P

Figure 2.1: Comparison of C/S and P2P architecture

2.2 BitTorrent

Bram Cohen [6] developed with BitTorrent a peer-to-peer protocol that focuses on the
distribution of large files in a sophisticated way. An important difference between Bit-
Torrent and other P2P protocols is the implementation of a tit-for-tat strategy which
rewards clients for sharing content in an unselfish and altruistic way. This strategy offers
an effective way to make other clients not to just download files but also upload them,
which is an important requirement for a successful peer-to-peer system.
BitTorrent file sharing is based on a common P2P sharing scheme. Clients subscribe and
download chunks of a particular file from several different other peers. As a first step in
joining a BitTorrent network, a client needs the address of other peers. To obtain this
information, a user visits initially an index site for BitTorrent content and downloads
the meta-data file(.torrent) which includes one or several tracker addresses. Trackers are
servers, which are storing information about one or many BitTorrent networks from sev-
eral different torrent files. Figure 2.2 shows the typical interaction between an index site,
the peers and the trackers.
To publish content with BitTorrent a user generates a .torrent file. The content is sepa-
rated into equal sized pieces. Hashes of the pieces are added to the meta-data file which
allows the client application to verify the received data. A .torrent file provides clients
with all the necessary information to participate the network.
Scraping a tracker denotes the sending of a request for information about one or several
torrents to a tracker. A tracker that supports scraping responses with the number of peers
currently connected to the requested torrents. In contrast to sending a scrape message
implies the sending of an announce message that a client intends to connect to a particular
torrent network for the first time or needs additional clients. The tracker responds beside
the number of seeders and leechers with a list of 50 randomly chosen peers. Due to the
fact that scrape messages are less bandwidth consuming, a client should send a scrape
request in advance to decide whether an announce message is beneficial.

2.3. BENCODING 5

Figure 2.2: BitTorrent architecture

2.3 BEncoding

An ordinary HTTP Tracker responds to an announce request in an encoded format. The
so called BEncoding offers the file sharing system BitTorrent to store and transmit data in
an endian unspecific way, which is important for cross-platform communication. Torrent
meta-data files take advantage of the same encoding mechanism. Bencoding allows the
encoding of four different data types:

BEncoded strings: Strings are encoded without a beginning or ending delimiter and
have always the following format: <length of string>:<string>. For example 5:world
represents the string world.

BEncoded integers: Integers encoded in BEncoding format contain a starting and an
ending delimiter, negative values are allowed and have the format: i<integer>e. The
encoding of the integer 54 would be encoded with string i54e.

BEncoded lists: The encoding of a list follows the format: l<list elements in bencoded
string format>e, the character ’l’ is the starting delimiter and the ’e’ is used as an ending
delimiter. An example for a BEncoded list is the sequence l5:plant5:ocean4:snowe, it is
the representation of the list entries plant, ocean, snow.

6 CHAPTER 2. BACKGROUND AND RELATED WORK

BEncoded dictionaries: The final data type is the dictionary, it contains for each key
a value. An initial ’d’ and a trailing ’e’ are used as delimiters. The dictionary values
are BEncoded types as integers, strings, lists or even other dictionaries. The key must
store a string value. The following encoding d5:plant5:green:5ocean4:blue4:snow5:white
are dictionary entries plant ⇒ green, ocean⇒ blue, snow⇒ white.

2.4 Gathering Peer Information from Trackers

A typical BitTorrent client application as Vuze [7] or uTorrent [8] only needs the informa-
tion from a .torrent file to obtain all necessary parameters to connect to other peers. The
user allows the client application by downloading .torrent files to automatically connect to
available trackers. The final communication to other peers is running in the background.
There are two types of trackers in BitTorrent networks, the more common HTTP track-
ers and the UDP trackers, they are using different connection protocols and a different
request and response format. In the following part of this chapter we will focus on the
structure of announce requests and disregard scrape requests, since peer identification can
only be obtained by announcing to a tracker.

2.4.1 HTTP/TCP Trackers

The more frequently used type of tracker is offering a HTTP/HTTPS service and responds
to HTTP GET requests. A request for a peer list needs a specific structure and must
include some information from the meta-data file to identify the particular torrent and
to allow the tracker to update the statistics. The tracker responds to this request with a
plain text format containing a bencoded dictionary.

Encoding the HTTP GET request URL to retrieve peer information includes the following
steps:

1. The base format of a HTTP GET request is the tracker announce URL as encoded
in the .torrent file. An example for a typical announce address is
http://tracker.com:80/announce.

2. In a second step, a specific key called info hash needs to be extracted for this torrent
from the meta-data file. The info hash is a unique fingerprint for each torrent. The
content of all torrents are split during the transfer process between peers. Each
piece has its own hash which is compared to the info hash in the torrent. The hash
value has a 20-byte SHA1 format and needs to be converted to an URL friendly
format to be usable in a HTTP GET message. As a result, all bytes not in the set
of [[0-9], [a-z], [A-Z], [.], [-], []] must be encoded in ”%nn” format, with ”nn” as the

2.4. GATHERING PEER INFORMATION FROM TRACKERS 7

hexadecimal representation of the bytes. The following 20-byte hash

x12\x34\x56\x78\x9a\xbc\xde\xf1\x23\x45\x67\x89\xab\xcd\xef\x12\
x34\x56\x78\x9

needs to be converted to this form:

%124Vx%9A%BC%DE%F1%23Eg%89%AB%CD%EF%124Vx%9A

3. In a final step, the converted info hash value is added to the announce URL using
basic Common Gateway Interface(CGI) methods. The resulting announce URL
looks like this:

http://tracker.com:80/announce?info hash=%124Vx%9A%BC%DE%F1
%23Eg%89%AB%CD%EF%124Vx%9A

A HTTP tracker responds to such a GET request message in a plain text document con-
sisting of a BEncoded dictionary with either a single key, representing a failure message,
or the following keys:

interval: An interval in seconds, that a client should wait for the next request.

tracker id: A string the client should use for further requests.

complete: The number of other peers seeding the complete data (i.e. seeders).

incomplete: The number of non or partly seeding peers (i.e. leechers).

peers: The value for this key is another list of dictionaries with the following keys:

peer id: The ID, chosen by the client.

ip: The IP address.

port: The used port number.

Additionally, other optional, less important parameters are included.

A tracker responds to a HTTP request with a message containing not more than 50
different, randomly chosen peers. According to the BitTorrent protocol, such a number
should be sufficient for a regular use of BitTorrent [3].

2.4.2 UDP Trackers

There are less trackers supporting the User Datagram Protocol (UDP) than HTTP. Until
now, there are only a few tracker implementations supporting the communication over
UDP. Compared to HTTP, UDP allows to reduce the necessary bandwidth by more than
50% [9]. UDP is a stateless connection and does not limit the number of open TCP con-
nections a server or router can handle. Nevertheless, UDP is an unreliable protocol, there

8 CHAPTER 2. BACKGROUND AND RELATED WORK

is no guarantee packets reach their destination and lost packets need to be retransmitted
manually.

Connection request:

Whether a client wants to send a scrape or an announce message to a UDP tracker, a
connection ID needs to be obtained before. The following steps explain how it has to be
done. In a second step, information about the torrent are sent to the tracker.

1. Randomly choosing a transaction ID(connection id).

2. Creating a byte packet according to the following format:

Offset Size Name Value
0 64-bit integer connection id 0x41727101980
8 32-bit integer action 0 (=connect)
12 32-bit integer transaction id (randomly chosen)

3. Extracting the tracker address and the port from the meta file and sending the
packet to the tracker.

Connection response:

The tracker responds in a similar format including the clients transaction id and a new
generated connection id. When receiving a connection response, these steps should be
followed:

1. Receiving the packet, it should have the following format:

Offset Size Name Value
0 32-bit integer action 0 (=connect)
8 32-bit integer transaction id (chosen in request)
12 64-bit integer connection id (chosen by tracker)

2. Checking whether at least 16 bytes are included.

3. Comparing the transation id with the one chosen in the connection request.

4. Checking whether the value of the action field is equal to zero.

5. Are all the conditions in the previous steps fulfilled, storing the connectio id for
further use, but this ID will be valid for not more than two minutes.

Announce request:

The connection response we obtain contains a new connection id which allows us to send
to the tracker an announce request by guiding through these steps:

2.4. GATHERING PEER INFORMATION FROM TRACKERS 9

1. Choosing a new randomly generated transaction id.

2. Filling an announce packet according to the rules below. A proper BitTorrent client
has all needed information for a request.

Offset Size Name Value
0 64-bit integer connection id (randomly chosen)
8 32-bit integer action 1 (=announce)
12 32-bit integer transaction id 0
16 20-byte string info hash (.torrent info hash)
36 20-byte string peer id (ID of the peer)
56 64-bit integer downloaded (bytes downloaded)
64 64-bit integer left (bytes left)
72 64-bit integer uploaded (bytes uploaded)
80 32-bit integer event 0 (=default)
84 32-bit integer IP address 0 (=default)
88 32-bit integer key (unique client key)
92 32-bit integer number wanted 1 (=default)
96 16-bit integer port (port of the peer)

3. Sending the packet to the tracker.

Announce response:

As far as there are any peers available, the announce response contains at the end a list
of IP numbers followed by the associated port number.

1. Receiving packet of the format below.

Offset Size Name Value
0 32-bit integer action 1 (=announce)
4 32-bit integer transaction id (chosen in request)
8 32-bit integer interval (waiting interval)
12 32-bit integer leechers (number of leecher)
16 32-bit integer seeders (number of seeder)
20+6*n 32-bit integer IP address (list of IP addresses)
24+6*n 16-bit integer port (List of port numbers)

2. Checking whether the packet is at least 20 bytes.

3. Comparing the transaction id with the one chosen by the client.

4. Checking whether the value for action is set to 1.

5. Remembering to wait for the next request as long as indicated in the interval value.

Although, the number of wanted peer IP addresses can be specified, the tracker returns
not more than 50.

10 CHAPTER 2. BACKGROUND AND RELATED WORK

2.5 Related Work

BitTorrent has a great impact on the P2P history. Through modelling, simulation and
experimentation, people have studied the BitTorrent protocol over a long time. In this
part, an overview on already existing and especially meaningful research topics will be
given.
An analysis over eight months trace has been done by Poulwelse, et al. [10]. It offers
a detailed analysis about four performance measurements of the BitTorrent network, as
integrity, flash crowd influence, availability and performance of the system. They noticed
that only a few peers tend to stay in the system after they have finished downloading.
They exposed as well that peer arrival and departure in BitTorrent networks is not de-
scribable with a Poisson distribution, which has been assumed in modelling work.
Zhang et al. tried in a similar approach to describe the entire public BitTorrent system.
They developed a high-performance crawler that concurrently crawls thousands of track-
ers. In the end, they crawled five of the most popular torrent index sites over a period of
nine months. Based on their findings, the popularity of BitTorrent content is sensitive to
its age and distribution of Users on different index sites is disproportional [11].
In contrast to the work of Poulwelse et al. and Zhang et al., this thesis will focus on
a shorter time period and more on the behaviour of BitTorrent users regarding different
torrent content.
In another more theoretical approach, Guo et al. [12] used mathematical modelling and
equations that gave a good estimate for the lifespan of a particular torrent regarding the
number of successful peers and the number of peers that failed due to a lack of seeds.
They showed that the performance of small torrents fluctuated widely.
Pitatek et al. provided an interesting study about direct and indirect peer monitoring
techniques and gave empirical evidence approving that at least some law enforcement
agencies are using the indirect monitoring [13]. Indirect monitoring is the same approach
as the implementation in this work uses. Further, they showed that IP blacklists are
absolutely ineffective with current identification techniques.

Chapter 3

Solution Design and Implementation

This chapter primarily reveals the application concept and gives explanations for selected
design choices. The first section will outline the design specifications and gives answers
on how the solution tries to provide the main requirements. The subsection 3.2 explains
the collaboration of the components and their structure. The next subsections focus on
the decoding of tracker addresses, the configuration of starting parameters, and explains
the implemented logging mechanism.

3.1 Design Specifications

According to the main goal of this thesis, which is acquiring a set of data about peer
behaviour from trackers, an application has to be designed that provides the requirements
flexibility, extensibility, good documentation and deployment.

� Flexibility must be provided regarding the application’s domain. There is a huge
number of different tracker implementations connected to the global BitTorrent
network. Hence, tracker behaviour may be unpredictable and hardly reproducible.
Different trackers need to be announced in different intervals and the time to receive
a response varies.
This tool approaches this issue by providing as many reasonable starting config-
uration parameters as possible, in addition, sending announce requests for single
or multiple torrents is supported. A further part of this chapter will explain this
approach in detail.

� Extensibility, because BitTorrent offers beside the already discussed topics a wide
range of other functionalities. For example instead of downloading .torrent files
manually, magnet-links [14] offer a service to acquire the meta-data information au-
tomatically. It is assumed that the BitTorrent protocol will be extended or changed
in the future. Any newly designed tool related to BitTorrent has to take this fact
into consideration.

11

12 CHAPTER 3. SOLUTION DESIGN AND IMPLEMENTATION

By clearly separating the work area of the application, as conceptually shown in
Figure 3.1, proper extensions as adding new functionalities should be provided.

Figure 3.1: Separation of different work areas

� Good Documentation, because regarding the extensibility requirement and the re-
sulting code modification work, an easily readable and quickly comprehensible doc-
umentation is required. All code files have to be properly documented and further
serves this thesis as another approach to explain and illustrate the application’s
functionalities.

� Due to the fact that acquiring a huge amount of data from a tracker needs several
announce request steps, it is possible that a tracker blocks a client. Deployment of
the application is an important aspect. Splitting the announce requests to a wide
range of different servers avoid them from being suspended. But still is a flexible
distribution a crucial aspect of this approach.

3.2 Architecture Design

The global architecture has been split into three major components, Master Server, Slave
Server and Database. The first and most important is the Master Server which acts as a
primary component. In contrast to the Slave Servers is the Master Server not directly con-
nected to the trackers. Since one or ideally several distributed Slave Servers are sending
announce requests to the trackers, banning will not be an issue due to too many requests.
As a final component acts the Database to perform the task of storing the announce re-
sults. Figure 3.2 gives an overview of the deployment of these components.
The Master Server communicates with the Database Server using Java Database Connec-
tivity(JDBC). JDBC consists of a set of interfaces and classes which allows the application
to connect to a database. The Master Server sends the necessary parameters like tracker
addresses and the specific torrent info hashes to to the Slave Servers using Java Re-
mote Method Invocation(RMI) which supports direct transfer of serialized objects. Slave
Servers are using either a HTTP connection to send announce requests to HTTP trackers

3.2. ARCHITECTURE DESIGN 13

or equivalently UDP for UDP trackers. These major components are organised in two
Java packages, one package includes the Master Server and the Database components,
the second package the Slave Server. The following subsections of this chapter will have
a closer look at each of these different components.

Figure 3.2: Application deployment

3.2.1 Master Server

The Master Server has been designed by separating four major tasks to achieve the main
objectives. Figure 3.3 shows the class diagram of the Master Server. The first one is the
Setup class, it extracts all information from a configuration file, connects to the Database
Server and creates the tables. It gets from the configuration file all available Slave Servers,
creates instances and stores them in a list. In a next step, theSetup class reads all .torrent
files from a folder and accordingly creates for each of them an instance of a Torrent object.
As a next important task decodes the Setup class for each .torrent file all included trackers
and creates instances for each of these trackers. The Torrent objects are stored in a list,
each entry contains another list of Tracker objects. As a class for additional encoding
and decoding algorithms serves the abstract class Helperfunctions.
The second component of the Master Server is the scheduling. The detailed mechanism
will be explained in a next subsection. The Scheduler class receives the lists of Torrent
objects including their trackers and instances of all available Slave Servers. The class
keeps track of the current announce interval and a timer mechanism takes care of the
correctly given announce orders. A queue storing all Slave Server instances helps the
scheduler to assign slaves to trackers in a reasonable order.
A third component is the combination of tracker and torrent objects. Torrents keep
track of additionally needed announce requests for each of their trackers, which allows the
scheduler to decide whether another Slave Server has to be assigned or the status can be
changed to done for this announce interval. The detailed mechanism is shown in the next
chapter as well.

14 CHAPTER 3. SOLUTION DESIGN AND IMPLEMENTATION

Figure 3.3: Class diagram Master Server

PeerAddress stores the IP address and the port number for a peer and the classes BDecoder
and BValue are necessary to convert the BEncoded values from tracker responses and
meta-data files into a readable format . As a final component serves the class SQLAccess
which contains all methods to create and insert parameters into the actual database which
is located on a MySQL server.

3.2. ARCHITECTURE DESIGN 15

3.2.2 Slave Server

The Slave Servers have been designed as simple as possible. Their main objective is to
send announce requests to the trackers and to receive the responses. All encoding and
decoding work, beside building UDP byte messages, reside on the Master Server side. The
responses received from the trackers are forwarded in an encoded form back to the Master
Server. In addition to the classes supporting the RMI communication, there is only an
announce class, which has the function to receive orders including all necessary parameters
to send an announce message to a given tracker. Two functions are first combining the
parameters to either a UDP or a HTTP announce message and forward them in a second
step. Figure 3.4 shows the class diagram of a Slave Server. The HelperFunctions class
contains some methods to assist the composing of the UDP byte announce message.

Figure 3.4: Class diagram Slave Server

3.2.3 Database

The Database Server is only connected to the Master Server. It is a MySQL server con-
taining one database with two tables. One of them is storing all information about a
particular announce interval, as for example the tracker and the torrent name or infor-
mation about connected peer numbers. Another table shows for each of the announce
requests all IP addresses and port numbers. Timestamp stores the time and the date of
an announce procedure. Figure 3.5 shows the schema of the two tables.

Figure 3.5: Database schema

Announce Id in the Announces table and Id in the Peers table are serving as a primary
keys. The field a id is a foreign key in the peers table and identifies a particular announce
request.

16 CHAPTER 3. SOLUTION DESIGN AND IMPLEMENTATION

3.2.4 Scheduling

Another part of the design is the scheduling. The user needs be able to choose the interval
time between acquiring two sets of peers from a tracker. Additionally, the user must be
able to define how many times in total all peers are collected from a tracker and at
which time these acquiring procedures start. The fact that only 50 peers are received in
each announce response indicates that multiple requests need to be sent concurrently if
a tracker’s peer list contains more than 50 peers. All announce messages would need to
be received by the tracker at the exact same time, which is technically impossible. Peers
are connecting and leaving trackers in undetermined time intervals, this circumstance
makes an absolutely accurate and error-free set of peers for a point in time impossible.
Nevertheless, distributing the announce requests on different instances of Slave Servers
and trying to send them as simultaneously as possible reduces this lack of accuracy. The
formula

p−1∑
i=0

p− (i mod 50)

p− i

to approach the Coupon Collector Problem [15] has been used to calculate the needed
number of announce requests to receive a descent number of peers. In this formula stands
’p’ for the total number of peers connected to the tracker. Chapter 4 will show and try
to analyse the results obtained using this approach. Based on this formula, for a set of
100 peers a minimum of 7 announce requests is needed and accordingly 500 peers need
a minimum of 64 requests. The problem arises if the tracker’s network consists of larger
numbers of peers. For example need more than 1000 peer already more than 150 theoret-
ically concurrent announce messages. Depending on the tracker and the results, receiving
a response for an announce message takes a specific time. It is expected that sending
150 announce messages in a row would not only adulterate the real peer set due to the
long announce period, it would affect the users choice in interval duration as well. Local
tests with one Slave Server have shown that 150 announce requests take approximately
40 minutes The exact duration of announce periods with large peer numbers using this
formula will be evaluated in chapter 4.
In the next part is an overview of the design regarding the assignment of Slave Servers to
trackers given. Due to previously explained reasons, multiple announce messages must be
sent as concurrent as possible. An obvious design solution would be sending all needed
announce requests for each tracker in a row. However, most trackers request clients to
wait a certain time interval between two announce requests. Moreover would the non-
availability of a tracker for a few seconds result in series of failure messages, the outcome
of this is an extensive time delay for the whole announce procedure. In previous test
announce procedures it has become apparent that especially failed connections are one of
the main reasons for response delay. Instead of the previously mentioned scheduler design
solution, a different approach has been chosen. The pattern shown in 3.6 is simplified
but typical possible initial situation for a start of a new acquiring procedure using this
approach.
There are four Slave Servers available and they need to send announce messages to six
different trackers. All these trackers were extracted from three different BitTorrent meta-
data files. This means in this example, trackers T1, T2 and T3 are aware of all peers
downloading right now the actual file content from .torrent A. Accordingly has .torrent

3.3. IMPLEMENTATION 17

Figure 3.6: Initial situation

B only one tracker and .torrent C two trackers that keep track of peers downloading a
specific file. Regarding the design, it was important to assign to each Slave Server in a
reasonable order trackers. Another aspect that had to be taken into account was that a
Slave Server is not able to send announce messages to the same tracker in quick succes-
sion. To assure this condition, all slaves have been stored in a Queue data structure. As
far as not the same number of Slave Servers and torrent meta-data files are available, it
is nearly impossible to assign a slave to the same tracker multiple times in a row. For
a better overview, the assignment procedure for a single .torrent file is explained in a
flowchart on Figure 3.7.
In this example, as soon as the tool has to start gathering all peers connected to to the
trackers, the following assignments will be made: Slave Server A will be assigned to .tor-
rent A, Slave Server B will be assigned to .torrent B and Slave Server C will be assigned to
.torrent C. Slave Server C remains in the queue and will be assigned as soon as a new slave
is needed. Each slave assigned to a .torrent sends announce messages to all the connected
trackers. That means, Slave A will send to trackers A, B and C announce messages. As
soon as all responses for this particular .torrent are received, the Slave Server object is
returned to the queue. Once all .torrent objects have ordered announce messages to all of
their trackers, the scheduler checks whether additional announce requests are needed for a
tracker in one of the .torrents. If there are still requests needed to obtain a decent number
of peers, the scheduler assigns to each .torrent that contains one or more of these trackers
a new slave. This procedure goes on until all .torrents report that they do not contain any
trackers which need to be announced another time. As soon as a new announce interval
starts, the whole procedure restarts all over again.

3.3 Implementation

This chapter will introduce the ideas and key concepts of the implementation. The first
two subsections will focus on the decoding of BEncoded values and the transformation into
easily usable format. Next, the configuration and logging mechanism will be explained.

18 CHAPTER 3. SOLUTION DESIGN AND IMPLEMENTATION

Figure 3.7: Server assignment

3.3.1 Conversion of BEncoded Values

Torrent meta-data files and HTTP Tracker responses are generally encoded in a BEn-
coded format. This format is less efficient than pure binary encoding as used in UDP
tracker implementations, but it is unaffected by endianness, which assures cross-platform
communication. Although, BEncoding is an easily readable information representation,
handling and processing this encoding can become exhausting. Due to this fact, another
way of storing announce responses has been chosen. Especially regarding the extensibility
of the tool, a different encoding seems to be a good choice. BValues are used in other
BitTorrent related implementations, but are still not an official way to translate and store
BEncoded values. Figure 3.8 shows the transformation of a BEncoded value to a BValue
format using the bDecode method.

complete: Number of peers who have completely downloaded the file.

downloaded: Number of peers downloaded the file and share the file (i.e. seeders).

incomplete: The number of non-seeding peers (i.e. leecher).

3.3. IMPLEMENTATION 19

peers: The value for this key is another list of dictionaries.

interval: The number of seconds a user should wait for the next announce.

peers: A binary coded IP/port list.

Figure 3.8: Method bDecode decodes BEncoded HTTP response to BValue format

The key/value pairs of the BEncoded dictionary are translated into another key/value
dictionary by ”BValue” separators which results in a more comfortable, handlebar and
even readable format. There is already a vast number of different efficient implementations
available on the internet. Due to this fact, it has been decided to adopt and slightly modify
Chris Oudman’s elegant solution [16] for the BDecoder and BValue class.

3.3.2 Decoding of Tracker Addresses

In this subsection a short overview of the implementation will be given and the used
methods for the first decoding of a .torrent and the ensuing building of the final announce
will be explained. For a tracker using the HTTP protocol and a tracker using the UDP
protocol an example will be shown to explain the functionality of each used method in
detail. The start of each URL building process is the decoding of the .torrent files.

1) private static ArrayList<Torrent> readTorrents(File torrentFolder)

The constructor of Setup.java called at the application start creates a new list of Tor-
rent.java. The method readTorrents receives as a parameter the file location which has
been loaded from the class PropertiesLoader.java.

2) privat static String bDecode(String input)

For each file found in torrentFolder the method bDecode is called to convert the file
entry to a string. The method returns a string containing the BEncoded values con-
verted to a dictionary of BValues as explained in subsection 3.3.1. The next step in
extracting tracker addresses from the in BValues encoded string has simply be done
by searching for suitable substrings. Each available tracker address either starts with

20 CHAPTER 3. SOLUTION DESIGN AND IMPLEMENTATION

”http://” or ”udp://”, depending on their protocols. Each address which has been found
is stored as a string trackerAddress. Conversion into BValues allows to easily identify
start and end position of the needed substring. In a further step, the address is com-
pared to the already collected tracker addresses. Based on previous observations regard-
ing the time performance of announce requests, the HTTP tracker protocol is chosen
if an identical UDP tracker address is available. Some trackers are supporting UDP
and HTTP connection. In contrast to that observation, there are different trackers
using different but very similar URLs to identify two independent trackers, sometimes
it is difficult to distinguish between an already added and a new tracker. An exam-
ple are the two tracker addresses: http://fr33domtracker.h33t.com:3310/announce and
udp://fr33dom.h33t.com:3310/announce. It is nearly impossible to avoid double entries
of the same trackers which is actually for the announce process not severe. Before a new
tracker is added to the final list of available trackers, the announce URL has to be created.
The following method will focus on HTTP trackers, steps in creating an announce URL
for a UDP tracker will be shown afterwards.

HTTP: 3) private String createHttpAnnounceUrl(String trackerAddress, String metaFile)

The meta-data file contains a byte info hash of the .torrent file. The method create-
HttpAnnounceUrl receives the .torrent file in string format. By calling itself the function
createInfoHash an info hash already converted to a URL friendly format by convertByte-
ToHexString is returned. The method createHTTPAnnounceUrl adds finally the URL
conventional parameters ”?info hash=” before appending the received info hash. The an-
nounce URL is in a next step returned to the readTorrents function and stored in the
according tracker instance. UDP trackers use different announce addresses to handle a
request. Initially, all UDP trackers are stored in the .torrent files in a format similar to
udp://tracker.openpittorrent.com:80/. To send a UDP announce request, the address has
to be changed using the following two methods.

UDP: 3) private String extractPort(String trackerAddress)

UDP: 4) String createUdpAnnounceUrl(String trackerAddress)

By removing the protocol name ”udp://” and the port, the initial tracker address has
already been converted in a suitable UDP announce address. The port number as well as
the announce URL is stored in an according tracker instance.
After extracting for each torrent all the trackers, the list of torrents is delivered to the
Scheduler.java class.

3.3.3 Configuration

Choosing the correct starting configuration is an important criterion to acquire relevant in-
formation. The file configuration/configuration.properties serves as a document to specify
the initial starting parameters. The class PropertiesLoader extracts all properties defined

3.3. IMPLEMENTATION 21

by the user as soon as the application has been started. The constructor of the class
Setup is used to instantiate the values. As an example returns the static method Prop-
ertiesLoader.getTorrentFolder() the location of the .torrent files. The user must specify
each parameter carefully to guarantee a proper functionality. Wrong or missing properties
can result in unexpected errors. The following part explains the not trivial configuration
parameters.

announceInterval: Defines the interval duration between two acquiring processes
of peers for each tracker. According to the design, only the minimum time is spec-
ified. Needs the Scheduler more time to complete all announce requests, the time
for this particular announce interval will be extended.

nrOfAnnounceIntervals: The total number of times the peer acquiring process
must be performed. It defines how many announce entries are inserted into the
database.

maxNrOfConcurrentRequests: Maximum number of requests in an announce
interval. The calculated number of requests during an interval depends on the
initial number of peers. This allows the user to limit the number of requests. A ’0’
entry indicates unlimited, which means, as many announce requests will be done as
calculated before.

database: Defines whether beside the log file a database is used. ’1’ indicates the
use of a database, ’0’ indicates no database support.

torrentFolder: The location of the .torrent files. The user has to take care that
this folder is located in the same directory as the MasterServer.jar file or in a
subdirectory.

port: Defines the accessible port of a particular slave.

user: Indicates the user of a Slave Server, an arbitrary string, used to register in
RMI.

host: Represents the IP number of the Slave Server.

All Slave Server properties must be defined by adding ’.X’, where X represents the number
of the slave. For example port.3 represents the port of slave number 3. The user is advised
to enumerate the slaves properly from 1 to the number of slaves which the user intends
to use. Missing numbers will cause errors.

3.3.4 Logging

During the implementation and test process an extended debugging mechanism with the
ability to write a logging file has been proven beneficial. Error recognition and the pos-
sibility to reproduce announce results require more than database records. Due to this
demand, a basic logging mechanism has been implemented for the Master Server by

22 CHAPTER 3. SOLUTION DESIGN AND IMPLEMENTATION

using Apache Log4j [17]. The external library log4j-1.2.17.jar allows the tool to sup-
port logging functionalities. The configuration of the mechanism is stored in /config-
uration/log4j.xml and log4j.dtd.A static instance of the Logger is created by LogMan-
ager.getLogger(Scheduler.class). As soon as the application starts, the folder MasterLog
is created in the same file path as the MasterServer.jar. Into MasterLog the output log-
ging file MasterLog.log is added. The mechanism logs in a first step all successfully added
.torrent files and their associated trackers. Additionally, all Slave Servers are listed. The
following logging messages give an overview of the announce procedure configuration, in-
cluding approximate duration, number of announce requests for each tracker and interval
duration. The next logging messages contain for each sent announce request the following
information:

[response status] - ([current] / [needed]) [tracker] for [torrent] : [Slave]

response status: Indicates whether an announce message was successful. A failed
first announce request will result in a second attempt. If a tracker has been unsuc-
cessfully tried to be announced for two times, he will not be considered any more
for this announce interval.

current: The current announce request number for this interval.

needed: The needed number of requests as calculated for the first announce or
defined as the maximum number, which has been specified in the configuration.

tracker: The address of the tracker.

torrent: The torrent associated to the requested tracker.

slave: The name of the Slave Server which has sent the request.

Another type of logging entry tells the user whenever a Slave Server was not connectable.
Further indicates the logging mechanism the end of an announce interval and the end of
the announce procedure. The fact that the number of needed announces is calculated
based on the number of peers received in the first request can cause irregularities in the
number of actually received and the expected number of peers. A higher number of
received peers compared to the expected number of peers may indicate that more new
peers have announced to the tracker than left during this interval.

Chapter 4

Evaluation

This chapter will show and explain the results of the announce procedures in a real life
environment. In a first part, an introduction to the test environment Emanics Lab is
given. Emanics Lab allowed to deploy the Master Server and the slaves on different
nodes all over Europe. The second section examines the tool’s performance regarding the
needed announce request time and analyses a factor which has an impact on the delay of
the tracker responses. The section 4.3 will evaluate the acquired data from a one week
announce process of four torrent files.

4.1 Test Environment

To test the designed application and to acquire the requested data about one week’s peer
behaviour, a distributed approach had been chosen. An ideal condition to collect the data
offered the deployment of several different slaves in a spatial separated environment.

Figure 4.1: Distribution of Emanics Lab sites [18]

23

24 CHAPTER 4. EVALUATION

Planet Lab is a large collection of servers spread around the world for distributed system
research. It is composed of 1090 nodes worldwide. The concept of Planet Lab is to assign
to each research project a slice, and each slice has access to a subset of all available nodes.
Similarly to Planet Lab is Emanics Lab based on myPLC, the backend management
infrastructure of Planet Lab. Emanics Lab consists of 11 sites, which refer to different
research institutes and 22 nodes spread all over Europe (Figure 4.1) and the functionality
is comparable to Planet Lab, but in a smaller scale.
Emanics Lab provided 20 nodes for the experiments described in sections 4.2 and 4.3. On
one node was the Master Server located and on other nodes were Slave Servers running.
For the one week acquiring process only 10 nodes have been used at the same time to react
on the eventual loss of the Master Server or several slaves at the same time which had
caused the failure of the whole experiment. Retaining the other 10 nodes had offered the
possibility to react on any unpredictable incident. Furthermore is regarding the design
the number of slaves primarily important to prevent trackers from banning a slave, this
is not expected to be an issue with 10 or with 20 slaves.

4.2 Scraper Evaluation

Prior tests have already suggested that it is possible to acquire a certain number of peers
from different trackers with the designed application and its minimal announce number
calculation. But in terms of trackers or torrents with thousands of peers might force the
user to extend the announce interval into a length that does not offer any more a satisfy-
ing accurateness. An experiment will try to observe this issue by monitoring in particular
bigger sized torrent swarms.
Several previous local tests have indicated that the successive and not concurrent an-
nounces might delay the announcing process, especially if a tracker is not responding. A
number of announce results will try to statistically evaluate whether a correlation between
announce duration and failed tracker responses exists.

4.2.1 Experiment Design

Regarding the first part of this experiment, a collection of 12 .torrent files have been
gathered from different BitTorrent index sites. All of them have been designated from
the index sites as torrents which are shared by more than 2000 peers. A focus has been
placed on the number of calculated announces and the resulting announce procedure du-
ration. In this respect, the previously indicated and the actual received number of peers
have been compared. A growing aberration of the expected and received number of peers
with respect to the announce duration would have indicated that the application’s design
approach was not appropriate for bigger torrent swarms.
The correlation between announce time and failed connection has been analysed by eval-
uating 48 announce requests from the dataset received during the one week announce
period. A closer explanation of the .torrent files and the results of the evaluation of this
experiment will be given in Section 4.3.

4.2. SCRAPER EVALUATION 25

4.2.2 Results

According to the BitTorrent index sites, a number of more than 2000 peers have been
available for each torrent. In fact, only 8 of 12 torrents and their associated trackers
responded with a cumulated number of at least 2000 peers. Table 4.1 gives an overview
of the received results. The 12 torrents have been announced as many times as necessary
according to the formula mentioned in chapter 3, shown in the column Announces. The
number of failed announce requests due to connecting problems to the trackers as well as
received peers in relation to the primarily indicated number of peers are shown in the next
two columns. The last two columns indicate the duration in seconds for each announce
process and the average number of seconds needed for each individual announce response.
A particularly striking observation is the fact that the previously indicated number of
peers for a particular torrent and the finally received number differ widely. Comparable
differences have not been observed for smaller torrent swarms. This suggests that either
the actual number of connected peers does not agree with the indicated number of peers
from trackers or that the fluctuation of peers is very high. High fluctuation as sole expla-
nation implies that the differences on a percentage basis of these two peer numbers grow
in respect to the the duration, which can not be observed.

Torrent Announces Failed Peers Duration Duration / Announce

Futurama 2869 51 23762 / 16410 1598 0.557

Graceland 888 13 8049 / 5818 433 0.488

Top Gear 619 13 6499 / 3716 719 1.162

Wilfred US 550 10 5128 / 3734 300 0.545

The Daily Show 422 7 4124 / 3033 215 0.509

Game of Thrones 331 12 5058 / 2184 323 0.976

The Big Bang Theory 329 6 3884 / 2117 225 0.684

King and Maxwell 300 11 3133 / 2170 224 0.747

The Newsroom 267 12 3136 / 1776 236 0.884

Americas Got Talent 189 8 2120 / 1547 207 1.095

Falling Skies 157 13 2548 / 1337 200 1.274

Continuum 86 24 1381 / 693 526 6.116

Table 4.1: Announce results for trackers with more than 1000 peers

It is obvious that the number of sent announce messages for a particular torrent has
a significant impact on the duration of its whole announce procedure. But the compar-
ison of the average announce request time suggests that an individual message tends to
be strongly influenced by the fraction of failed announce messages. This observation will
be evaluated in the now following second part of the Scraper evaluation.
Figure 4.2 shows graphically the relation between the duration and the number of failed

26 CHAPTER 4. EVALUATION

Figure 4.2: Announce procedure duration and failed announce requests

announce messages for 48 requests. As expected, a clear correlation is observable. Thus,
it appears that either handling failed announces differently would be beneficial or a com-
pletely different design approach would improve the announce duration.

4.3 Evaluation of acquired Data

The next two subsections will show the results of the seven day announce period.

4.3.1 Experiment Design

This experiment analyses the behaviour of peers in a swarm connected to a particular
torrent and the peer interaction regarding different torrent files. To collect the data from
a real life environment, meaningful starting parameters had to be chosen. Due to this
condition, a careful selection of .torrent files was crucial. Choosing BitTorrent content
from absolutely independent topics did not offer expectations for any relations between
peers. Based on this fact, a collection of different popular TV shows has been chosen.
Using BitTorrent to download the newest episode of a TV show is widespread all over the
world which promises a decent number of peers. Based on these findings and based on
previous experience with this application regarding its performance, four different .torrent
files have been selected. Each torrent with a number of approximately 1000 peers.

Defiance S01E11 720p HDTV, .torrent uploaded on 02.07.13

4.3. EVALUATION OF ACQUIRED DATA 27

Falling Skies S03E07 HDTV XviD-AFG, .torrent uploaded on 15.07.13

Orange Is The New Black S01E10 720p WEBRip, .torrent uploaded on
14.07.13

Under the Dome S01E04 480p HDTV x264, .torrent uploaded on 16.07.13

All torrents beside one have been uploaded on a BitTorrent index site a few days before
the experiment started. To observe a possible impact of the upload time on the peer
number development, the torrent ”Defiance S01E11 720p HDTV” has been chosen, which
has been uploaded roughly two weeks before the others. All these series are still running
on TV, at least in the United States, and are quite successful. The target audience of the
shows are similar and therefore particularly suitable for this experiment.
The priority of this experiment is to describe, beside the torrent specific, the individual
peer’s behaviour based on the four different torrent files as exact as possible. Based on
this precision criteria, the intervals between two announce processes had to be chosen as
small as possible. It has been tried to acquire an accurate collection of involved peers in
intervals of 20 minutes which means, a total of 504 announce procedures for each tracker.
Regarding the announce interval duration based on number of trackers and peers, 20
minutes duration seemed to be appropriate to receive all responses in time. Accordingly,
the sum of all peers connected to a torrent has been monitored three times an hour during
one week.
The experiment started at 19:12 on July 21, 2013. To one Emanics Lab node was the
Master Server assigned, while 10 other nodes acted as slaves, handling the announce
requests. The evaluation of this experiment is separated into two parts, the first tries to
describe the peer behaviour regarding fluctuation of seeder and leecher numbers during the
whole week. The second part will focus on the number of peers which were downloading
more than one of the given torrents during the experiment duration, it will especially be
taken a closer look on when peers downloaded two different torrent files, whether they
did it concurrently or with a time lag.

4.3.2 Results

Unfortunately, due to technical problems on a particular Emanics Lab site, one of the
slave servers did not respond at all. The remaining 9 nodes were collecting the seeder
and leecher numbers from all trackers during a total of 168 hours. Figure 4.3 gives an
overview on all four torrent files regarding their peer numbers.
An interesting aspect is that the fractions of peers which were acting as seeder have been
for all torrents and during the whole week clearly higher than the fraction of leecher.
Another finding is the periodic recurrence of peaks in all four diagrams for the number
of seeder, clearly shown in Figure 4.3b. The peaks reappear approximately after 72 an-
nounce intervals, which equals to 24 hours. The experiment started at 19:12, shortly
before the first occurrence of a peek. The recurrences indicate a periodic user behaviour
regarding the use of BitTorrent clients. In addition to this observation about the seeder,
the distribution of leecher numbers is less periodic, but still some similarities observable,
especially in Figure 4.3c. In contrast is the fluctuation of leecher numbers in Figure 4.3a

28 CHAPTER 4. EVALUATION

(a) Defiance S01E11 720p HDTV (b) Falling Skies S03E07 HDTV XviD-AFG

(c) Orange Is The New Black S01E10 720p WEBRip (d) Under the Dome S01E04 480p HDTV x264

Figure 4.3: Change of peer numbers

less significant compared to its seeder numbers. This might be explained by the fact, that
this torrent has already been uploaded two weeks earlier and the demand less intense.
An overall observable similarity for each torrent is the fact that all peer numbers have
decreased. At first sight it seems that the fraction of seeder have lost in percentage more
during the experiment. But as shown on Table 4.2, the leecher have overall lost for each
torrent in percentage more clients. This indicates that the interest in downloading these
particular torrent files has decreased over the course of the week. Although, the TV show
Defiance has been uploaded around two weeks before the others, there is no indication
that it was losing faster peers than the other three. It appears that two weeks of upload
time difference had no impact on the peer decrease compared to newer torrents.

The following final part of this chapter will focus on peers which have been downloading
two or more of the monitored torrents concurrently in the same announce interval or at

4.3. EVALUATION OF ACQUIRED DATA 29

Defiance Falling Skies

Peers Seeder Leecher Peers Seeder Leecher

1st Interval 1175 1035 140 1338 1148 190

504th Interval 410 367 43 313 276 37

∆ -65.1% -64.5% -69.3% -76.6% -75.9% -80.5%

Orange is the new Black Under the Dome

Peers Seeder Leecher Peers Seeder Leecher

1st Interval 1398 1008 390 700 541 159

504th Interval 781 580 201 116 96 20

∆ -44.1% -42.6% -48.5% -83.4% -82.2% -87.4%

Table 4.2: Change of peer numbers during the experiment

least in any time interval during this week. Due to the fact that these TV shows are
popular today and all of them addressed a similar audience, it was expected to discover
a descent number of users.

Falling Skies Under the Dome Defiance Orange is the new Black

Falling Skies - 92 (0.100%) 4 (0.001%) 460 (0.079%)

Under the Dome 92 (0.051%) - 2 (0.001%) 194 (0.033%)

Defiance 4 (0.002%) 2 (0.002%) - 20 (0.003%)

Orange is the new Black 460 (0.256%) 194 (0.212%) 20 (0.005%) -

Different Peers 179944 91223 335230 585102

Table 4.3: Peers concurrently connected to 2 torrents

Despite these facts, as apparent in Table 4.3, less than one percent of all users who have
downloaded one of these torrents, have downloaded at the same time another one as well.
The last row presents the total number of different peers which have been monitored
downloading a particular torrent content. This means, for example for ”Falling Skies”,
nearly 180’000 different IP addresses have been collected during seven days. Regarding
the fact that concurrently only 1’400 peers have been connected to all available trackers
for ”Falling Skies”, the fluctuation per day must be very high.

30 CHAPTER 4. EVALUATION

Falling Skies Under the Dome Defiance Orange is the new Black

Falling Skies - 258 (0.283%) 15 (0.004%) 1215 (0.208%)

Under the Dome 258 (0.143%) - 10 (0.002%) 411 (0.070%)

Defiance 15 (0.008%) 10 (0.011%) - 49 (0.008%)

Orange is the new Black 1215 (0.675%) 411 (0.450%) 49 (0.015%) -

Total Different Peers 179944 91223 335230 585102

Table 4.4: Peers connected to 2 torrents during experiment

The Table 4.4 shows the number of peers which have downloaded two of these torrents
during the whole week, either concurrently or time delayed. There are still only a few
clients observable which have downloaded two torrent contents. The small number of
peers might be explained with the fact that there are several different .torrent files avail-
able for one particular show. They differ in resolution, sound quality or even language.
Which means, if a client was downloading one of the selected torrents, the user might was
also downloading one of the TV shows from another .torrent source that has not been
monitored in this experiment.

Chapter 5

Summary, Conclusions and Future
Work

5.1 Summary

The overriding purpose of this thesis was to acquire and evaluate a set of data about
peer behaviour in a BitTorrent environment. Due to evaluating and validating purposes
of BitTorrent applications, a realistic set of input data is beneficial. To accomplish this
task it became necessary to reach some prerequisite goals. Determining how information
about peer swarms can be collected and how the BitTorrent protocol works in detail. In
several iterations of design and implementation a suitable application called Scraper has
been designed which is able to collect the necessary data from one or several BitTorrent
meta data files. It offers the user different configuration possibilities. An approach has
been chosen which allows the Scraper to gather the data distributed from different Slave
Servers and collects the overall information in a database coordinated by a centralized
Master Server.
The evaluation has been separated into two parts, the first included the evaluation of
the Scraper application and identified issues regarding trackers with large peer numbers.
Another problem regarding the time delay of tracker responses has been detected and
evaluated. The second part analysed the collected data about peer behaviour which has
been acquired during one week. It has been focused on the overall peer behaviour and on
the concurrent downloading of more than one of the monitored torrent files.

5.2 Conclusions

The evaluation of the Scraper application has shown that smaller numbers of peers can
be easily acquired. Although, there is no guarantee that the received peer numbers and
the individual IP addresses are correct or the acquired data complete. Regarding torrents
with larger peer numbers, an accurate set of peers is difficult and not possible to acquire
with the chosen design. Especially, time delay caused by not responding trackers have a

31

32 CHAPTER 5. SUMMARY, CONCLUSIONS AND FUTURE WORK

significant impact on the announce procedure.
The monitoring of seeder and leecher numbers of four .torrent files during one week has
revealed a periodic behaviour of BitTorrent users. The comparison of peer numbers in
this thesis have revealed similar results in all torrent files, in general, the peers collected
from all four monitored files have shown similarities in their behaviour.

5.3 Future Work

The work performed in this thesis provides a basis for further future research in different
fields.
The observed peer numbers in the one week acquiring process showed a periodic behaviour
of BitTorrent users. One possible direction of research is investigating the geographical
location of different peers. As mentioned in chapter 4, the monitored TV shows are
particularly popular in the United States. A comparison of clients from different locations
might reveal more insights into peer behaviour.
Only a small number of peers have been discovered which have downloaded two torrents
concurrently. An additional experiment including all collectable .torrent files with the
same content may give a more meaningful result.

Bibliography

[1] Cisco visual networking index: Forecast and methodology, 2012-2017. Available:
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/

ns705/ns827/white_paper_c11-481360_ns827_Networking_Solutions_White_

Paper.html, July 2013

[2] Ankur Gupta, Lalit K. Awasthi: Peer-to-Peer Networks and Computation: Current
Trends and Future Perspectives, Model Institute of Engineering and Technology, 2012

[3] Bram Cohen: The BitTorrent Protocol Specification. Available: http://www.

bittor-rent.org/beps/bep_0003.html, July 2013

[4] BitTorrent Inc.: Trackers. Available: http://www.bittorrent.com/intl/fr/help/
manual/appendixa010502, July 2013.

[5] EBU TECHNICAL: Peer-To-Peer Technologies and Servicies. Available:
http://tech.ebu.ch/docs/techreports/tr009.pdf, July 2013

[6] Bram Cohen: Incentives Build Robustness in BitTorrent. Available: http://www.

ittc.ku.edu/~niehaus/classes/750-s06/documents/BT-description.pdf, July
2013

[7] Vuze Bittorrent Client. Available: http://www.vuze.com, July 2013

[8] uTorrent Available: http://www.utorrent.com, July 2013

[9] Olaf van der Spek: UDP Tracker Protocol Specification. Available: http://www.

bittorrent.org/beps/bep_0015.html, July 2013

[10] J.A. Pouwelse, P.Garbacki, D.H.J. Epema, H.J.Sips: The BitTorrent P2P file-sharing
system: Measurements and Analysis, Delft University of Technology

[11] Chao Zhang, P. Dhungel, Wu Di, K.W. Ross: Unraveling the BitTorrent Ecosystem,
Parallel and Distributed Systems, IEEE Transactions on , vol.22, no.7, pp.1164,1177,
July 2011

[12] Guo, Lei, et al.: Measurements, Analysis and Modeling of BitTorrent-like Systems.
Berkeley, CA : ACM, 2005. Internet Measurement Conference

[13] Piatek, Michael, Kohno, Tadayoshi and Krishnamurthy, Arvind: Challenges and
Directions for Monitoring P2P, 2008, University of Washington

33

34 BIBLIOGRAPHY

[14] Magnet-URI Project, Available: http://magnet-uri.sourceforge.net/, July 2013

[15] Weiyu Xu, A. Kevin Tang: A Generalized Coupon Collector Problem, Cornell Uni-
versity, 2011

[16] Chris Oudeman, 2011, ubertorrent, Available: http://code.google.com/p/ubertorrent/
source/browse/trunk/ubertorrent/src/main/java/com/bitsfromspace/?r=7, July
2013

[17] Apache Software Foundation, Apache Log4j, Available:
http://logging.apache.org/log4j, July 2013

[18] EmanicsLab Steering Committee, Emanics Lab, Available:
http://www.emanicslab.org/

Abbreviations

C/S Client / Server
CGI Common Gateway Interface
JDBC Java Database Connectivity
HTTP Hypertext Transfer Protocol
P2P Peer-To-Peer
RMI Remote Method Invocation
SQL Structured Query Language
TCP Transmission Control Protocol
URL Uniform Resource Locator
UDP User Datagram Protocol

35

36 ABBREVIATONS

Glossary

.torrent A .torrent file is a synonym for a BitTorrent meta-data file. A BitTorrent user
downloads the .torrent file in general from a BitTorrent index site which allows the
client to connect to trackers.

announce interval The announce interval specifies the time duration between two
processes of acquiring all peers from a tracker.

announce URL The announce URL is the specific tracker address which is used to
send an announce request.

announcing By announcing or sending an announce request informs a BitTorrent client
a tracker that he is connecting to the particular torrent network for first time or
that he needs more peers.

BEncoding BEncoding is an encoding used by BitTorrent related applications to store
information in meta data files or HTTP tracker responses.

BValue BValues are used in several BitTorrent related applications to store the BEn-
coded values in a well readable format.

Database The Database is part of the Scraper application, it stores the results received
from the Master Server.

info hash Each .torrent file has a unique info hash which ensures the complete, uncor-
rupted download of a content.

leecher Leecher are a part of a BitTorrent swarm. In contrast to a seeder, uploads and
downloads a leecher content of a specific torrent.

Master Server The Master Server is a component of the Scraper tool with the main
task to schedule and order the announces.

meta-data file A meta-data file is the same as a .torrent file. A BitTorrent user
downloads the meta-data file from a BitTorrent index site which allows the client
to connect to trackers.

peer A peer is either a seeder or a leecher. A BitTorrent swarm consists of a given
number of peers.

37

38 GLOSSARY

peer-to-peer Peer-to-peer is a network architecture which allows the system to dis-
tribute the cost of file transfer and organization on different clients. The result is
higher scalability.

RMI Remote Method Invocation is a Java API which has similar functionalities as
remote procedure calls. It provides communication between programs written in
Java.

scraping Scraping or sending a scrape message is done by a BitTorrent client to receive
the currently connected number of peers to a BitTorrent network.

seeder A seeder is a client which shares file pieces with other BitTorrent users. In
contrast to a leecher has a seeder already downloaded the complete content.

Slave Server Slave Servers are components of the Scraper application. Slaves are
communicating with the trackers and are forwarding the results to the Master Server.

swarm A BitTorrent swarm consists of the total number of peers connected to a tracker
regarding a particular torrent.

tracker Trackers store information about one or many BitTorrent networks.

List of Figures

2.1 Comparison of C/S and P2P architecture 4

2.2 BitTorrent architecture . 5

3.1 Separation of different work areas . 12

3.2 Application deployment. 13

3.3 Class diagram Master Server. 14

3.4 Class diagram Slave Server. 15

3.5 Database schema. 15

3.6 Initial Situation . 17

3.7 Server assignment. 18

3.8 Method bDecode decodes BEncoded HTTP response to BValue format . . 19

4.1 Distribution of Emanics Lab sites . 23

4.2 Announce procedure duration and failed announce requests 26

4.3 Change of peer numbers . 28

39

40 LIST OF FIGURES

List of Tables

4.1 Announce results for trackers with more than 1000 peers 25

4.2 Change of peer numbers during the experiment 29

4.3 Peers concurrently connected to 2 torrents 29

4.4 Peers connected to 2 torrents during experiment 30

41

42 LIST OF TABLES

Appendix A

Installation Guidelines

Slave Server

Each Slave Server needs to be defined in the configuration.properties file in the
Master.jar. Each instance of Slave.jar has to be started as follows

� Slave.jar [Slave host] [Slave port]
e.g. Slave.jar Scraper 14000

Using exactly the same port, user and host as indicated is crucial to guarantee
functionality.

Master Server

Before executing the Master.jar, all the Slaves need to be started. It is important
that all entries in the configuration.properties file have been adjusted. The location
of the BitTorrent meta data files which need to be monitored must be specified as
well in the configuration file. The logging file is created next to the Master.jar. The
Master Server can be started with

� Master.jar

The application will immediately start with the announce procedure and logs the
relevant information to the logging file.

43

44 APPENDIX A. INSTALLATION GUIDELINES

Appendix B

Contents of the CD

Evaluation:

DataEvaluation.zip - Contains all files from the evaluation of the one week
peer acquiring process.

ScraperEvaluation.zip - Contains all files from the evaluation of the Scraper
tool.

Source:

Master.jar - An executable Master Server file.

Slave.jar - An executable Slave Server file.

Source.jar - Project source file.

Thesis:

Zusfg.pdf - A German version of the abstract.

Presentation.pdf - A copy of the presentation slides.

RelatedWork.zip - Copies of related work papers.

Thesis.pdf - A copy of the written thesis.

Thesis.zip - Source files of the written thesis.

Abstract.pdf - A copy of the abstract.

45

