
Master Thesis
September 14, 2013

Identifying a Starting
Context of Code

Elements for a
Change Task

Katja Kevic
of Nesslau-Krummenau, Nesslau SG, Switzerland (07-709-850)

supervised by
Prof. Dr. Thomas Fritz

software evolution & architecture lab

Master Thesis

Identifying a Starting
Context of Code

Elements for a
Change Task

Katja Kevic

software evolution & architecture lab

Master Thesis

Author: Katja Kevic, Katja.Kevic@uzh.ch

Project period: 15.03.2013 - 15.09.2013

Software Evolution & Architecture Lab
Department of Informatics, University of Zurich

Acknowledgements

I would like to thank all the people who were involved in this thesis. First of all, I thank professor
Thomas Fritz for giving me the opportunity to write this thesis, for the great ideas and for the
great support. Many thanks also to David Sheperd who supported me in the execution of the
exploratory study and many thanks to all people which participated in the study.

Abstract

Developers spend a substantial amount of their time searching, navigating and reading source
code while performing a change task. Several research approaches have been suggested to rec-
ommend points in the source code, which are relevant for the change task at hand. However,
none of these approaches leverages information given through the Mylyn task context.

We conducted an exploratory study to investigate this initial search, reading and navigation phase
before the source code is changed. We found that presenting a context along with search results,
supports a developer in selecting relevant search results. Furthermore, we identified that a major
challenge during the initial search phase, is the finding of good search terms given the change
task description.

To overcome the challenge of finding good search terms for a change task at hand, we suggest
two approaches which leverage information given through the Mylyn task contexts. The design
implications on the presentation of the search result context, are implemented in a prototype
application which automatically suggests starting points for a change task at hand by using user
interaction histories.

Zusammenfassung

Software Entwickler verbringen während der Bearbeitung einer Source Code Änderungsaufgabe
erheblich viel Zeit damit, den Source Code zu durchsuchen, zu navigieren und zu lesen. Ver-
schiedene Forschungen haben sich damit auseinandergesetzt, relevante Stellen im Source Code
für die Änderungsaufgabe dem Software Entwickler vorzuschlagen. Keine der Forschungen hat
sich jedoch mit dem Einsatz eines Mylyn task contexts beschäftigt.

Wir führten eine explorative Studie durch, die sich mit der anfänglichen Suche und Navigation
im Source Code auseinandersetzte, bevor der Software Entwickler die Änderung im Source Code
vornimmt. Wir fanden heraus, dass ein Kontext der Suchresultate die Software Entwickler unter-
stützt um relevanten Suchresultate näher zu betrachten. Ausserdem haben wir das Finden eines
guten Suchbegriffs als eine der grössten Schwierigkeiten identifiziert.

Um das Finden eines guten Suchbegriffes zu erleichtern, schlagen wir zwei Vorgehen vor. Beide
dieser Vorgehen nützen den Mylyn task context aus. Des Weiteren haben wir Implikationen der
Präsentation von einem Kontext der Suchresulate in einem Prototypen umgesetzt. Der Prototyp
schlägt basiered auf Benutzerinteraktionen Stellen im Source Code vor, die die Bearbeitung einer
Änderungsaufgabe erleichtert.

Contents

1 Introduction 1
1.1 Structure . 2

2 Related Work 3
2.1 Source Code Comprehension for Performing a Change Task 3

2.1.1 Using Dynamic Information to Understand Source Code 4
2.1.2 Using Static Information to Understand Source Code 4
2.1.3 Using Hybrid Information to Understand Source Code 5
2.1.4 User Development Interaction . 5
2.1.5 Conclusion on Related Work on Source Code Comprehension 6

2.2 Exploratory Studies on how a Developer Performs a Change Task 6
2.3 Search Term Recommendation Systems . 7

3 Exploratory Study with Developers 9
3.1 Method . 9

3.1.1 Participants . 9
3.1.2 Sando . 10
3.1.3 Comogen . 10
3.1.4 Change Tasks . 10
3.1.5 Tools and Instrumentation . 13
3.1.6 Procedure . 14

3.2 Study Results . 14
3.2.1 Browsing Code Structures to Find Task Relevant Points 15
3.2.2 Browsing for Task Related Recommendation Results 17
3.2.3 Finding Good Search Terms . 18
3.2.4 Qualitative Analysis of the Semi-Structured Interview 19

3.3 Threats to Validity . 20
3.3.1 External Validity . 20
3.3.2 Internal Validity . 20
3.3.3 Construct Validity . 21
3.3.4 Statistical Validity . 21

3.4 Conclusion on the Exploratory Study . 22
3.5 Implications from the Explorative Study . 22

3.5.1 Browsing Code Structures to Find Relevant Points 22
3.5.2 Browsing for Task Related Recommendation Results 23
3.5.3 Finding Good Search Terms . 23

viii Contents

4 Using Interaction Histories to Recommend a Starting Context of Code Elements for a
Change Task 25
4.1 Finding Similar Change Tasks . 26

4.1.1 Finding Similar Change Tasks to a New Change Task 26
4.1.2 Finding Similar Change Tasks for a Re-opened Change Task 30

4.2 Recommending Potentially Relevant Starting
Points . 30
4.2.1 Generation of Starting Points . 31
4.2.2 Generation of a Context . 33

4.3 Conclusion . 33

5 Two prototypes for Automatically Recommend Search Terms for a Change Task 35
5.1 Approach 1 for Recommending Search Terms . 35
5.2 Approach 2 for Recommending Search Terms . 37
5.3 Prototypical Implementation . 38
5.4 Case Study . 39
5.5 Discussion . 40

6 Approach: Automatic Identification of a Starting Context 43
6.1 Usage Scenario . 43
6.2 Identification of a Starting Context . 44

7 Implementation Details 47
7.1 Data Model . 47
7.2 Starting Context Recommender . 47
7.3 View . 49
7.4 Connector . 49
7.5 Source Code Parser . 49
7.6 Similarity Engine . 49
7.7 Search Term Recommender . 50
7.8 Visual Studio Monitor . 50

8 Future Work 53
8.1 Presenting the Rationale of a Recommendation . 53
8.2 Remembering Relevant Search Results . 53
8.3 Including Selections of Prior Searches in the Query 53
8.4 Examining Task Contexts . 54

9 Conclusion 55

A Participant Instructions 57

B Questionnaire 59

C Interview quintessences 61

D Text Preprocessing 63

E Contents of the CD-ROM 67

F Used Libraries, Tools and Plug-ins 69

Contents ix

List of Figures
3.1 A screen shot from the tool Sando. The search term split is used to query the code

base. For the search term split 40 recommendations of points in the source code
are suggested. The first result is expanded, such that the relevant code snippet is
visible. With a double-click on any result one can jump into the source code. 11

3.2 A screen shot from the tool Comogen. The search term log is used to query the
code base. For the search term log 6 recommendations of points in the source are
suggested. With a double-click on any method call one can jump into the source
code. 12

3.3 Sketch of a possible representation of the recommendation results along with a
context. 24

4.1 We identify the features which match in change task with a similar task context.
Then we apply this pattern to a set of change tasks to determine change tasks which
cover a similar concept. 27

4.2 To investigate if user interaction patterns are also reflected in the task contexts,
we analyzed the interactions immediately before a particular interaction and the
interactions immerdiately after. 33

4.3 Our approach generates recommendation for starting point based on task context
elements of a similar change task. 34

5.1 Our first approach to automatically recommend search terms includes the identifi-
cation of a similar change task. Within the term corpus on source code level of the
concept, we identify terms which describe the new change task best. 36

5.2 The concept of our second approach. We assume that terms of the natural language
term corpus match one or more terms of the source code term corpus. A set of
natural language terms defines a concept of a change task, which can be mapped
to a set of terms in the source code term corpus. As example , nl-t1, nl-t11 and nl-t12
define the concept c2, which is expressed as src-t13, src-t5 and src-t22 in the source
code. 38

5.3 The search term recommender views. 1.) is a screenshot of the user entries and 2.)
is a screenshot of the result view which includes the suggested search terms. 39

6.1 The workflow of our approach to automatically recommend a starting context for
a change task at hand. First, similar change task are determined through a fea-
ture pattern. Then, using the degree-of-interest model, relevant elements of a task
context are pitched on. These elements are the recommendations for potentially
relevant starting points for the change task at hand. Finally, we complement the
recommendations with structural information of the source code. 44

6.2 To use our tool, the user has to provide the id of the change task to investigate,
the url to the change task repository and the path to the local git repository. If
all information is provided, the user can click the button Get Recommendations to
generate suggestions for an initial starting context. In this screenshot one queries
an initial starting context for change task 340622. 45

6.3 The recommended starting points for change task 340622. One can jump into the
recommendations by double-clicking the result. 46

7.1 Overview of the five main components included in the architecture of our proto-
typical implementation. 48

7.2 The tools included in our Eclipse plugin. 51

x Contents

D.1 The sequence in which the text preprocessing steps are accomplished. 64

List of Tables
3.1 The six change tasks of the Sando project investigated by the ten participants. . . . 13
3.2 The results of the Mann-Whitney test on all the dependent variables. Comogen

and Sando differ significantly in terms of navigation steps accomplished, number
of queries accomplished and the number of jumped in results. 16

3.3 The numbers of relevant recommendations generated by both tools of the first
search terms, the numbers of all relevant recommendations generated through all
search terms after the first input and before the last input and the numbers of rele-
vant recommendations generated with the last search terms. 19

4.1 The combination of features for both initial sets together with the number of matched
change tasks (true positives and false positives regarding the concepts covered by
the pairs) out of 36 change task from the project org.eclipse.mylyn.context. 28

4.2 The LOF caption . 29
4.3 We identified six different index term selection strategies which are used to calcu-

late similarity measures between text features of change tasks. 29

5.1 The four change tasks of the project org.eclipse.mylyn.context for which we auto-
matically generate search terms. 41

5.2 The number of results generated by the Eclipse File Search tool using the best com-
bination of the suggested search terms and the number of results which point to
methods which were changed within a change set which is linked to the change task. 42

C.1 The quintessences of the semi-structured interview (translated from German to En-
glish) we conducted with each participant after he finished working on all the task. 62

Chapter 1

Introduction

Performing change tasks1 is a frequent activity in the evolution of software [VvMS99]. Evi-
dence shows that while working on change tasks, developers spend a lot of the time on com-
prehending the program through reading and navigating source code [KAM05], [MJS+00]. Ko et
al. [KMCA06] reported in an explorative study, conducted with ten participants, that developers
spend about 35% of their time reading code, performing searches and navigating code. Further,
Paul et al. [PPBH91] specify, that software engineers spend as much time reading source code than
programming code and Singer et al. [SLVA97] identified the exploration of code as an important
activity in their examination of software engineering work practices. In particular, a developer
is interested in locating the points in the code where the change has to be made [ASGA12]. A
common process to do so is to use text search tools such as grep, egrep, fgrep, ed, sed, awk or
lex [MRB+05] to locate starting points for code examination [SCH98]. This strategy may be very
fast and easy in cases where the software engineer has a broad knowledge about the system, as
it requires exact matching of keywords. However, identifying good search terms is not always
as easy. Since, for example, the change tasks are usually filled out by the users of the software
system which use a different vocabulary as the software engineers [ESW06].

Several research approaches have tried to better support developers in locating points in the
source code which are related to a change task at hand (e.g. [WGGS92] and [Zha06]). They range
from interactive to automated approaches mainly investigating execution traces of the program
(e.g. [WGGS92] and [EDV05]) or features of the change task with the according changes in the
source code (e.g. [MSRM04] and [Zha06]). However, to the best of our knowledge none of the
approaches leverages information given through the Mylyn task context. In addition, even if the
approaches identify code elements, that are close to the code that needs to be changed, developers
still spend a lot of time navigating source code to investigate the adjacencies of the recommended
elements [KDV07]. To capture this notion, Murphy et al. [MKRv05] and Ko et al. [KAM05] in-
troduced similar concepts which consist of various elements and their relationships, which are
relevant to perform a given change task—a task context.
Several studies have looked into what is interesting for a developer while comprehending source
code for performing a change task. Some studies [KM05b], [VvMS99], [FKS+08] revealed that
developers use the structure, intent and behavior of elements in the code to construct a context,
and others investigated which questions arise while performing a change task [SMDV08], [SD-
VFM05], [ES98]. Neither of these studies has looked into the challenges which arise when sophis-
ticated code search tools are used to perform a change task.
In this work, we are looking at the challenges which arise in the initial search and navigation
phase before an actual change is made, when a sophisticated code search tool is used. In partic-

1The term change task is used in this work interchangeably for bugs and other modification tasks

2 Chapter 1. Introduction

ular, we investigate whether a context along with the recommendations, generated by a search
tool, supports developers in identifying a starting point for code exploration for a given change
task. Furthermore, we investigate whether we can automatically recommend starting points for a
change task at hand by using developer interaction histories. What we refer to as ’starting point’ is
an element within the source code that is either structurally or conceptually related to the change
task at hand.

This thesis contributes an exploratory study with ten developers, to investigate the initial search
and navigation phase before a change is made in the source code. We found that presenting a
context of the recommended starting points supports the developers in the initial search and nav-
igation phase when performing a change task. We hypothesize that the reduced interactions with
the system origin from better assessing search results when a context is given. These results are
based on the observation that developers using a search tool, which presents context, navigate
through significantly less source code and conduct significantly less searches. Furthermore, we
observed a behavioral pattern, which occurs most frequently when developers use a search tool,
which presents context to the search result. The exploratory study also showed that finding a
good search term for a change task description, is a major challenge during the initial search and
navigation phase. We imply possible design decisions and tool suggestions based on these re-
sults. In particular, we suggest two approaches for recommending search terms given a change
task description and a representation of the search results which include a context.
In addition, this work contributes case studies on an open source project. We identified a pattern
of features to find similar change tasks to a change task at hand, once by using interaction histo-
ries and once by using change set information. The found patterns perform equally in terms of
preciseness. We also showed that user interaction histories, combined with the degree-of-interest
model [KM05a] recommend relevant starting points for a change task at hand. We combined our
findings in a prototype application which automatically identifies a starting context for a change
task at hand.

1.1 Structure
This thesis is structured as follows. In section 2 we discuss research related to source code com-
prehension when performing a change task and review exploratory studies conducted to explore
how developers perform change tasks. Section 3 summarizes the exploratory study we conducted
and we discuss the results of the study and infer design and tool implications from the findings.
Further, section 4 includes case studies on an open source project, to explore if user interaction
histories can be used in the process of identifying a starting context for a change task at hand. We
present our approach of automatically identifying starting contexts in section 6 and the implemen-
tation details of it in section 7. In section 9 we conclude our work on automatically identifying
starting contexts for a change task at hand.

Chapter 2

Related Work

This chapter discusses first two categories of research which are related to our approach of an
automatic identification of a starting context and then looks into approaches which suggest search
terms for a change task to query the source code.
For research related to our approach of automatically identifying a starting context we look in
a first step into research which addresses the understanding of source code which needs to be
changed when performing a change task (section 2.1). Specifically, we discuss research, which
leverages interaction histories of a developer performing a change task, to recommend potentially
relevant points in the source code (Section 2.1.4). In a second step, we look into studies which
have been conducted to capture the behavior of software engineers while performing a change
task (section 2.2). Section 2.3 reviews approaches which recommend search terms that can be
used to query the implementation of a concept in a change task.

2.1 Source Code Comprehension for Performing a
Change Task

Since many years research addresses the difficulty of understanding source code in order to per-
form a change task. To understand how a specific feature of the program is implemented, one can
either follow a systematic strategy or follow an as-needed strategy [LPLS86]. While the systematic
strategy requires the understanding of the global system behavior, the as-needed strategy focuses
on local system behavior and includes solely the understanding of the components necessary to
change in the source code. Since the systematic strategy is infeasible for the majority of software
systems, the following focuses only on the techniques that support the as-needed strategy. Re-
search which supports the understanding of source code in terms of the as-needed strategy can
broadly be categorized into dynamic, static and hybrid approaches. The dynamic approaches
(Section 2.1.1) investigate execution traces of the program to infer additional knowledge about
the source code while the static approaches (section 2.1.2) analyze features of the change task
and the source code to draw conclusions. Hybrid approaches (section 2.1.3) combine dynamic
and static approaches. These approaches follow either an interactive or an automated strategy.
The interactive approaches demands that the user interacts with the tool to locate source code
which is relevant for the change task, while the automated techniques manage to locate relevant
points in the source code without continuous user interactions [EDV05]. Recently, the notion of a
task context— various elements and their relationships which are relevant to perform the change
task—was introduced by Murphy et al. [MKRv05] and Ko et al. [KAM05]. Task Contexts support
developers to better perform a change task, as it is one possible way to transfer knowledge about
a feature. This section gives an overview of the main approaches, tools and techniques aimed

4 Chapter 2. Related Work

to locate relevant points in the source code. None of these approaches combine elements of My-
lyn task contexts with conventional techniques to recommend potentially relevant points in the
source code.

2.1.1 Using Dynamic Information to Understand Source Code
Dynamic bug localization techniques observe components in the source code while a feature is
executed to locate its most relevant parts in the source code [ESW06]. Over 20 years ago Wilde
et al. [WGGS92] introduced the first dynamic bug localization approach. They found a proba-
bilistic formulation and a deterministic formulation to map source code components of test case
executions to a collection of features to locate relevant parts in the source code. There are several
enhancements of this approach. Wong et al. [WHGT99] locate components at different granu-
larity levels that are unique to features or common to a group of features using execution slices.
Eisenberg and De Volder [EDV05] determine Dynamic Feature Traces. Using heuristics like mul-
tiplicity, specialization and depth enables to determine a source code component’s relevance to a
feature expressed as a gradual ranking. In order to provide a more comprehensive view of the
implementation of a feature Wong et al. [WGH00] introduced metrics which describe the rela-
tionship between a feature and component. The metrics disparity, concentration and dedication
try to quantitatively capture their closeness. These approaches imply implicitely that a test case
executes in a clearly defined time interval and that the behavior of the system is deterministic.
These two assumptions do not hold for distributed systems. To tackle these difficulties Edwards
et al. [ESW06] come up with an approach which observes the execution of the system while not-
ing time intervals in which components are active.

2.1.2 Using Static Information to Understand Source Code
Static concept localization techniques leverage static information from change tasks, changesets
and source code. Unlike the dynamic concept localization techniques do the static concept local-
ization techniques not necessarily require executable code. In practice, the most popular tools to
locate concepts in source code are using pattern matching. The tools grep, egrep, fgrep, ed, sed,
awk, and lex treat the source code as character stream and return lines of it which match a pat-
tern which was specified by the user [MRB+05]. While these lexical tools are very versatile, easy
to use, fast [MN96] and integrated with the editing environment [GYK01], they do not take into
account the structure of the source code [MN96] and the performance of these tools is highly
dependent on the query [MRB+05]. Some more elaborated tools based on pattern-matching,
e.g. [MN96], [ESS92], [GYK01] counteract these flaws.
Approaches which analyze program component dependencies, e.g. [FTAM96], [MTO+92], [RM02],
[CR01], [BMW94], are usually interactive and present a graph to the user which nodes are source
code entities and which edges are the relationships between these entities. These graphs present
the user structural information of the program and can be filtered, searched and clustered such
that developers are supplied with possible starting points for further investigations.
Extensive research has been conducted on leveraging information retrieval techniques to bet-
ter understand source code and find points in the code relevant to a feature. These approaches
differ mainly in the specific techniques applied for preprocessing activities, indexing units, sim-
ilarity measure definitions and the granularity of the results which are typically presented in a
ranked list [MRB+05]. Exemplary approaches of this category are [MSRM04], [YF02], [ACCDL00],
[TSL03], [MBK91] and [Zha06]. Another important approach presented by Weiser [Wei81], finds
relevant components of a feature by reducing the source code to a program slice. The program
slice includes all components in the source code which are possibly dependent to the feature.

2.1 Source Code Comprehension for Performing a Change Task 5

These components are filtered through data and control dependencies.

2.1.3 Using Hybrid Information to Understand Source Code
Some approaches combine static and dynamic information artifacts to locate interesting points
in the code. Eisenbarth et al. [EKS03] present a semi-automated approach that exploits the dy-
namic technique of Wilde and Scully [WS95] to obtain a feature-unit map. The results are refined
afterwards manually by inspecting the dependency graph of the system. Antoniol et al. [AG05]
create through static analysis of the source code a model. The relevant elements of a feature are
abstracted with data gathered from dynamic analysis procedures. Rilling and Karanth [RK01]
introduced a hybrid slicing algorithm, which reduces the number of program executions while
maintaining the accuracy of a dynamic slicing algorithm. The hybrid approach basically prepares
through a static slicing algorithm the inputs for the dynamic slicing algorithm.

2.1.4 User Development Interaction
Mylyn is an Eclipse plug-in that monitors interaction events of a developer while performing
a change task. Mylyn is tightly integrated with Eclipse and enables a task-focused user inter-
face. The task context of the change task being worked on is formed by interaction events that
are classified as selections, edits, commands, preferences, predictions, propagations, manipula-
tions and attentions. All of these interaction events are captured along with a unique identifier
of the element being interacted with, timing information and an interest rate to the respective
change task [Fou13]. The interest rate of the element being interacted with is based on a degree-
of-interest model. This degree-of-interest model is based on specifications of interest increasing
rules and interest decreasing rules while considering temporal occurrences. As example, if a de-
veloper selects a code element, the interest rate increases (+1 by default). On the other hand, the
interest rate decreases, if the developer does not edit or select that code element for a specified pe-
riod of time or other code elements are interacted with (-0.1 by default). Users of Mylyn can also
manually add or remove elements from their current task context or delete the whole task context
if needed [KM05a]. Basically, Mylyn captures a program slice from the developer’s perspective.
This kind of program slice supports developers when resuming a change task since the moni-
tored task contexts can be attached to change tasks. Interesting code elements are immediately
presented and serve as initial starting points for code exploration. If only little work has been
performed on a change task, the prediction interaction events can be used. Mylyn task contexts
are a mean of transferring and storing knowledge about interesting code elements of a change
task explicitly.
Fewer research has been conducted on investigations about using task contexts from the project
history to recommend potential starting points for investigations given a new change task. Al-
though using task contexts for recommendations seems promising, as not only the final work
product is considered, but also the work in between. Rastkar and Murphy [RM09] compared
in a case study the change tasks pairs which have similar change sets to the change task pairs
which have similar task contexts. They conclude that the change task pairs found through similar
change sets are not necessarily the same change task pairs found through similar task contexts.
Robillard and Manggala [RM08] present the tool ConcernDetector, which detects, depending on
the current changes, related concern mappings out of a concern pool. The concern pool stores a
collection of history concern mappings. Concern mappings can be created differently, as example
by a technique which automatically infers concern descriptions out of program investigation ac-
tivities [RM03]. However in the case study presented the tool ConcernMapper was used, which

6 Chapter 2. Related Work

allows the developer creating concerns manually by selecting code elements. The concern de-
tection is based on the number of overlapping elements between the current changes and the
concern mappings in the concern pool. Matched concern mappings from the concern pool are
immediately recommended to the developer as a mean to decrease the effort of finding relevant
code pieces while working on a change task. One approach, Team Tracks [DCR05], points de-
velopers to interesting locations in the source code by mining navigations gathered from other
developers working on the project. Team Tracks offers, based on the gathered navigation data, a
filtered class view and view which presents related items to a selected item. A recent approaches
is implemented in the tool NavClus [LK11], which recommends clusters of code elements rele-
vant to the changes currently made in the source code. The recommendations are based on prior
interaction histories of the project. The relevancy of a code element is determined based on two
principles : 1) a code element which is frequently visited during work on a change task, is likely
to be highly relevant and 2) the neighboring code elements to a relevant code element are likely
to be relevent as well.

2.1.5 Conclusion on Related Work on Source Code Compre-
hension

Even though object-oriented code ideally reflects one singular concept per class and several de-
sign patterns are introduced to support modularization, the localization of source code to change
for a change task cannot be cut down to the trivial selection of the class implementing the con-
cept [MRB+05], [MKRv05]. The widespread of functionality is not necessarily caused by a bad
system structure. It is rather inevitable if a structure of the system cannot be integrated into an-
other structure of the system [MKRv05]. To this end, several approaches have been proposed
to support developers in better understanding source code. None of these approaches exploits
information of Mylyn task contexts to automatically recommend potentially interesting locations
in the source code given a new change task. Further, many of these approaches present a ranked
list to the users, which includes the recommendations of locations in the source code, which are
potentially relevant to a change task. Observations from our study (see section 3) claim that a
developer understands the recommended results better if they are presented within a context.

2.2 Exploratory Studies on how a Developer Per-
forms a Change Task

There have been several studies conducted to discover how developers understand source code in
order to perform a change task. In the following we discuss the most influential ones and the ones
which are similar to our study. One important study carried out by Ko et al. [KMCA06], [KAM05]
was performed with ten participants who were told two solve five change tasks. The study aimed
to better understand how a developer decides what is relevant for a given change task, what
types of information is considered relevant and how developers remember locations in the code
that were potentially relevant. The results inspired the authors for a new task context model
which is based on searching, relating and collecting of code elements that the developer thinks
are relevant. Vans et al. [VvMS99] started to explore developers’ activities during change task
performances very early. An experimental study with professional software engineers doing a
debugging task was conducted. The focus of investigation aimed to understand better what type
of actions developer perform, on which level of abstraction developers are working and how de-
velopers confronted hypothesis during debugging tasks. They showed that developers work on

2.3 Search Term Recommendation Systems 7

all levels of abstraction while they only care what a specific piece of code does and less care why
a specific piece of software is designed in a certain way.
The research most related to our research is the study conducted by Starke et al. [SLS09]. In their
laboratory study, ten participants solved a change task using common Eclipse search features,
such as Open Type, Find in File, References, Implementor, Declaration. They addressed the question
of how developer decide what to look for and how developers decide which results are relevant
to their query. Starke et al. observed that developers rarely look at more than one search result
and start a new query instead. Our study differs insofar that we explore challenges which occur
when skimming search result produced by state-of-the-art search tools, which present more so-
phisticated results than the Eclipse search functionalities provide.
The presented studies give precise insights on how a developer performs a change task. What we
in contrary investigate are the challenges a developer faces when performing a change task using
state-of-the-art search tools.

2.3 Search Term Recommendation Systems
Ko et al. [KMCA06] found in their exploratory study that most developers start working on a
change task by performing firstly a textual search against the source code with a term they think
describes the concept of the change task best. This section discusses research which has been
conducted to support the developers in the very first step of performing a change task, namely
the formulation of the query which can be entered in a code search tool. The Sando Code Search
Tool 1 employs instant feedback to the user as she begins to type a query term. These feedbacks
consist of element names of the source code which match the terms being typed in and terms
which are likely to be added to the provided term. Further, if the term entered does not match any
element in the source code, synonyms of the term are suggested. The tool Find-Concept [SFH+07]
supports the developer in choosing efficient query terms in an interactive process. Different terms
are assigned to a Verb-Query or a Direct-Object-Query by letting the user select recommended
words for adding to the Verb-Query set or to the Direct-Object-Query set. However, we are not
aware of any research which leverages task contexts to automatically recommend efficient search
terms for a change task at hand.

1http://sando.codeplex.com/

http://sando.codeplex.com/

Chapter 3

Exploratory Study with
Developers

This section describes an exploratory study conducted with ten participants working on six dif-
ferent change tasks. This study aims to identify challenges developers face in the initial search
and navigation phase before an actual change is made [KMCA06]. Further, we want to under-
stand whether a context along with the recommendations, generated by a search tool, support
developers in identifying a starting point for a new change task. The participants investigate the
change tasks either using a code search tool which presents the recommendations in form of a
ranked list or a code search tool which employs a more sophisticated visualization techniques
which also presents limited context information to the user. Our goal is to use the gained knowl-
edge from our observations to elaborate design implications for a new approach of automatically
recommending a starting context.

3.1 Method
We asked ten developers to investigate six change tasks of a program they were unfamiliar with.
For each change task, they were asked to find three places in the source code (at least on method
level) they would point a new programmer to, who will be assigned this task to work on. They
were given a maximum of ten minutes to work on each task, but were allowed to finish ear-
lier. We employed an A/B testing method with an additional counterbalance measure design
to avoid bigger learning effects. Specifically, one group of the participants investigated the first
three change tasks with Sando (see section 3.1.2) and the last three change tasks with Comogen
(see section 3.1.3) and one group investigated the first three change tasks with Comogen and the
last three change tasks with Sando.
The study was arranged in our lab such that the participants could work on the same change
tasks under the same conditions. This enabled us to compare the work results better as if the
participants would have investigated change tasks on a different code base as it would have been
the case in a field study. It would have been impossible to predict if variations in behaviors would
have been caused by different conditions such as example task difficulty or the source code qual-
ity.

3.1.1 Participants
Ten male undergraduate and graduate students from our school participated in this study. They
all have a profound background in object-oriented programming (mean of 7.4 years, whereat the

10 Chapter 3. Exploratory Study with Developers

shortest experience is 4 years and the longest experience is 13 years) and all of them also have
professional programming experience (mean of 2.93 years, whereat the shortest experience is 0.8
years and the longest experience is 6 years). The participants were split about equally regarding
their object-oriented programming experience into two groups. One group has a mean of 6.6
years of object-oriented programming experience and one group has a mean of 8.2 years of object-
oriented programming experience. All of them were familiar with common navigation features,
such as Go To Definition, View Call Hierarchy or Find All References and all of them were unfamiliar
with Sando, Comogen and the source code of Sando.

3.1.2 Sando
The participants investigated change tasks of the Sando project 1. Sando is implemented as Visual
Studio Extension. It is a code search tool which leverages static information of the source code.
When a user starts to type a query into Sando, it suggests various related query terms to the user
which are retrieved out of the source code. After executing the query, Sando presents a ranked list
of search results to the user. Each search result can be quickly explored by clicking it once and a
little code snippet of relevant code to the search result is displayed. By double-clicking the search
result, the user jumps directly into the source code (see figure 3.1 for a screenshot of Sando). The
participants investigated six different revisions of Sando. Each of these revisions is the revision
before the change task was worked on. For change task 1, the participants worked on revision
1083 which contains 5.57k lines of code. The revision 1057 for change task 2 contains 5.52k lines of
code, the revision 1042 for change task 3 contains 6.71k lines of code, the revision 1902 for change
task 4 contains 5.61k lines of code, the revision 779 for change task 5 contains 6.85k lines of code
and the revision 1162 for change task 6 contains 5.71k lines of code 2. The Code Metrics Results
tool within Visual Studio Ultimate 2012 rates the Sando source code as good maintainable. The
participants did not receive any introduction of the architecture of Sando.

3.1.3 Comogen
Comogen is a Visual Studio extension which uses information retrieval techniques and structural
information from the code base to recommend potentially relevant points in the source code for
a search term. Comogen marks each recommendation with a bar which indicates the estimated
relevancy of the recommendation. Comogen includes in each recommendation result a context
which displays part of the control flow which surrounds the recommendation result. The context
is displayed as sequence diagram indicating relevant method calls. Several visualization adjust-
ments can be conducted, such as zooming in the sequence diagram. To jump in directly into the
source code, one has to click on a method call. See figure 3.2 for a screenshot of Comogen.

3.1.4 Change Tasks
Each participant investigated six real change tasks of the Sando project. The summary and the
description of these six change tasks originated from one of the main contributors of Sando. Table
3.1 summarizes the change tasks we used in this study. These change tasks cover different parts
of the functionality within Sando. For each change task, we looked up the actual changed lines
of code and referred to the methods containing these changed lines of code, as the most relevant

1http://sando.codeplex.com/
2The tip revision of Sando can be cloned with https://hg.codeplex.com/sando. With $ hg update -r<revision>

the tip version can be updated to the specified revision.

http://sando.codeplex.com/
https://hg.codeplex.com/sando

3.1 Method 11

Figure 3.1: A screen shot from the tool Sando. The search term split is used to query the code base. For the
search term split 40 recommendations of points in the source code are suggested. The first result is expanded,
such that the relevant code snippet is visible. With a double-click on any result one can jump into the source
code.

12 Chapter 3. Exploratory Study with Developers

Figure 3.2: A screen shot from the tool Comogen. The search term log is used to query the code base. For
the search term log 6 recommendations of points in the source are suggested. With a double-click on any
method call one can jump into the source code.

3.1 Method 13

Change Task Summary Description
1 Sando fails to prop-

erly handle under-
scores in query and
corpus

Sando fails to match identifiers that contain an underscore,
when the query is not quoted. Also, queries containing an
underscore do not match terms in the index. Probably a
splitting issue.

2 Sando isn’t robust
to Lucene directory
removal

If the Lucene directory (in
C:\Users \<username>\AppData \Local \Micros
oft\VisualStudio \...) somehow gets removed,
Sando seems confused at startup, looking for the cached
Index there. On Sando startup, we need to make sure that
the Lucene directory still exists before reading the Index.

3 Small, unuploaded
log files should be
removed

Small log files (< 400) bytes are not uploaded or deleted and
will pile up at the user’s machine. A better solution is to
erase them once we decide that they are too small for log
collection.

4 Searches on terms
similar to access
level specifications
return junk

Searches for words similar to access level keywords collide
with the access level declarations, which are stemmed be-
fore being indexed. For instance, a query term “protection”
will match all protected methods. There is no reason for the
access level keywords to be stemmed.

5 Subprojects in so-
lution are not in-
dexed

Sando does not index projects recursively, so if a project
contains a subproject, the files within it will get ignored.

6 Parsing C++ needs
to be performed
via SrcML Service

The C++ parser still generates its own SrcML files. Using
the SrcML service is the preferred way to do this.

Table 3.1: The six change tasks of the Sando project investigated by the ten participants.

points regarding the specific change task. The participants of each group rated the change tasks
about equal in terms of difficulty.

3.1.5 Tools and Instrumentation
In this study, we used Visual Studio 2012 Ultimate running on a remote desktop with Windows 7.
For each change task the according revision of the Sando source code was opened by the experi-
menter. The participants were allowed to use Sando and Comogen and additionally the common
source code navigation features of Visual Studio 2012 Ultimate, such as go to definition, view call
hierarchy and find all references. The experimenter only answered questions about fundamental
unclarities within the change task which were caused of non-native English speaker participants.
As example, the experimenter explained if needed the word “stem”.
During the study execution we recorded audio, we captured the screen and monitored naviga-
tion steps within Visual Studio. The monitor within Visual Studio captured the commands find
in files, find in selection, find next, find prev, find regular expression, find whole word, go to definition,
find all references, view call hierarchy. Further all keyboard inputs were captured and the selections
on methods, classes, events, properties, fields and files in the solution monitor. Additionally, the
elapsed time per change task was measured and the participants answered a questionnaire about

14 Chapter 3. Exploratory Study with Developers

their confidence about the points found in the code, their confidence about the query terms used
and their perception of the difficulty of the change task. After the participants were finished with
all change tasks we conducted a semi-structured interview to learn more about their experiences
during the investigations of the change tasks.

3.1.6 Procedure
We executed the study with each participant separately in our lab. Additionally to the partici-
pant only the experimenter was present. First, the participant received a questionnaire to fill in
his personal data. Then, each participant got a short introduction from the experimenter to the
features of Sando and Comogen and was allowed to experiment with both tools for maximum
five minutes. The participants received further instructions which were put down on paper (see
appendix A). They were asked to identify for six change tasks three places in the source code (at
least on method level) they would point a new programmer to, who will be assigned this task to
work on. Further, they were asked to speak out loud at which elements they were looking at and
what they were doing while investigating a change task. Also the timed limit of ten minutes was
explained on the instruction note and the participants were pointed out to all recording mecha-
nism of the study. Then, the experimenter answered specific questions about the procedure, such
as which navigation features were allowed. The experimenter told the participant in which group
they are and then they started investigating the change tasks. After finishing with each task, the
participants filled out a questionnaire which captured the confidence about the found points in
the source code, the confidence about the query terms entered in the search tools and the per-
ception about the difficulty of the task. After finishing with all the change tasks, we conducted
a semi-structured interview with each participant to learn more about their general experience
with the two different tools.

3.2 Study Results
We transcribed the Sando and Comogen specific actions of 8.24 hours of video and audio capture
together with the files produced by the Visual Studio monitor. The list of navigation steps in the
file produced by the monitor was complemented with Sando and Comogen specific actions as the
monitor was not able to capture events from an extension within Visual Studio. One part of an
audio capture was corrupt and hence could not be analyzed. We could counteract this flaw, as we
have screen recordings and files produced by the monitor which include the participant’s actions
on the change tasks. The audio capture is not corrupted during the follow up semi-structured
interview. As we unexpectedly had to change the configurations within the Visual Studio envi-
ronment, the monitor did not produce meaningful files. Only the keyboard inputs were correctly
captured but not the specific developer actions. Hence, we built the transcription for the first
three participants completely manually out of the screen and audio captures. We crosschecked
the completely manually created transcriptions with the transcription created out of the correct
monitor files complemented with Sando and Comogen specific actions we observed in the screen
and audio captures. We did not notice any deviations in the two types of transcriptions.
We analyzed the following dependent variables:

• the number of navigation steps accomplished during an investigation of a change task

• the time elapsed until the participants finished with an investigation of a change task

• the relevancy of the found starting points

• the confidence of the found starting points

3.2 Study Results 15

• the confidence of the entered search terms

• the number of queries accomplished during an investigation of a change task

• the use of the navigation features View Call Hierarchy and Find All References

• the number of results jumped in

• the number of queries accomplished without jumping in a result

For all dependent variables, we chose to do a Mann-Whitney test as we are considering a categor-
ical treatment with different participants and data points which do not meet parametric assump-
tions3. The participants are different in each category because they did not work on a change
task with both treatments. The Mann-Whitney test ranks all the datapoints from both treatment
groups. If the the datapoints from both treatment groups are similar, then each group contains
about the same number of low and high ranked datapoints. On the other hand, if the treatment
groups differ, one group contains more lower ranked datapoints and one group contains more
highly ranked datapoints. This difference is even more visible, when the ranks of the datapoints
are summed up. To determine whether there is a significant difference between the datasets, the
z-score is calculated using the mean and the standard error over all datapoints [Fie05]. Table 3.2
summarizes the findings of the statistical tests. We report for each dependent variable the me-
dian, the interquartile range, the test statistic U, the z-score, the significance and the effect size.
We calculated the effect size on each statistical test to report a standard measure of the size of the
effect we observed in our study, such that these results are comparable to observations from other
studies. If the parametric assumptions were met on the datasets the counterpart test which can be
applied when the parametric assumptions are met (independent t-test) would be more powerful,
in terms that the independent t-test would more likely discover an effect if there is one in the
dataset. However, since we are dealing with datasets which do not fulfill the parametric assump-
tions we cannot calculate the statistical power, since we do not know the Type I error rate [Fie05].
Further, we analyzed the answers to the questionnaires from the participants’ investigations on
the six change tasks. In the following our key observations with respect to the research questions
are discussed.

3.2.1 Browsing Code Structures to Find Task Relevant Points
To understand if the presentation of a context along with the recommendation results supports
the developers in finding interesting points in the source code, we analyze first the number of
navigation steps accomplished. Through a Mann-Whitney Test we found that the number of
navigation steps from Comogen users (Mdn=18.5) is significantly lower than the number of nav-
igation steps from Sando users (Mdn=23), U=312.5, z=-2.036, p=0.042, r=-0.263. We assembled
the number of navigation steps through the transcription of the files, which were produced by
screen capture together with the Visual Studio monitor. While the number of navigation steps
is lowered when using Comogen, the relevancy of the starting points found, the time needed to
come up with starting points, the confidence about the starting points found and the use of the
navigation features View Call Hierarchy and Find All References do not differ significantly (see table
3.2).
To determine the relevancy of the starting points found, we compare these points to the commit-
ted changes of the particular change task. We assigned an adjacency of zero to a starting point
found which was recorded in the committed changes, an adjacency of one to a starting point
found which is reachable within one navigation step from any committed change of the change

3according to the Kolmogorov-Smirnov test

16 Chapter 3. Exploratory Study with Developers

median, range

dependent variable Sando Comogen U z p r

navigation steps accomplished 23,11.5 18.5,10 312.5 -2.036 0.042 -0.263

relevancy of the found starting
points

4,6.75 1.5,4 365.5 -1.307 0.191 -0.169

time elapsed (in seconds) 600,178.25 572,158.25 420.0 -0.465 0.642 -0.060

number of queries accomplished 4,3.75 3,2 305.5 -2.163 0.031 -0.280

confidence of the found starting
points

3,2 3.5,1 378.5 -1.090 0.276 -0.141

the confidence of the entered search
terms

4,2 3.5,2.5 426.0 -0.365 0.715 -0.047

use of navigation features View Call
Hierarchy and Find All References

1,2.5 1,2 388.5 -0.941 0.347 -0.121

number of jumped in results 4,4 2,3 291.0 -2.385 0.017 -0.308

number of queries accomplished
without jumping in a result

1,1 1,2 332.5 -1.802 0.072 -0.233

Table 3.2: The results of the Mann-Whitney test on all the dependent variables. Comogen and Sando differ
significantly in terms of navigation steps accomplished, number of queries accomplished and the number of
jumped in results.

task. In this way we assigned an adjacency of two, respectively three to starting points found
reachable within two, respectively three navigation steps. By considering the size and structure
of the Sando source code and observing that only four out of 60 change task investigation in-
stances included navigations sequences with more than three steps, we decided to account only
starting points into the relevancy measure which are reachable within three navigation steps. The
time was measured with a stop watch and the confidence was captured on a scale from 1-5 in the
questionnaire each participant filled out after finishing with each change task. We assembled the
number of invoking the navigation features View Call Hierarchy and Find All References through
the transcription of the screen capture and the Visual Studio monitor files. Along these results we
observed in a Mann-Whitney test that developers made significantly less searches when using
Comogen (Mdn=3) than when using Sando (Mdn=4), U=305.5, z= -2.163, p=0.031, r=-0.28.
We hypothesize, that developers overall interact less with the system when using Comogen be-
cause the developers are able to assess search results better when a context is provided. The
context prevents developers of jumping into not related parts of the system and spending time
navigating irrelevant code. The higher number of queries accomplished in Sando supports this
hypothesis as we observed that developer often jumped into source code recommended by top
results in Sando, then they quickly scrolled through the class and entered another query term.
On the other hand, developers using Comogen were not forced to jump into the search result to
assess if it is meaningful. The presentation of the context did not cause a significantly decreasing
number of the navigation features View Call Hierarchy and Find All References even though this
kind of information may have already been assessed while choosing the recommendation result
in Comogen. On average, the participants using Comogen accomplished 1.3 times such a fea-
ture and the participants using Sando accomplished on average 1.634 times such a feature. We
did not report a significant difference on the time elapsed while the participants worked on the

3.2 Study Results 17

change tasks. As the participants using Comogen made significantly less queries, we claim that
the participants using Comogen assessed the recommendation results more accurately and spent
less time browsing through source code than the participants using Sando. The participants who
used Comogen found about even relevant starting points although significantly less navigation
steps were accomplished. We claim that this improvement originates from the more accurate as-
sessment of the recommendation results which display a context. Participants using Comogen
and participants using Sando are about equal in terms of the confidence of the found starting
points, even though participants using Comogen navigated less. We hypothesize that the com-
prehension of the source code which participants using Sando gained while navigating code, was
already captured by the participants using Comogen while assessing the recommendation results.

Analyzing the transcription, created out of the screen recordings and the Visual Monitor files, we
identified a specific sequence of navigation steps carried out by participants of both groups. The
sequence of steps includes the jumping into a result, then going to a definition of an element and
then going back immediately to the origin again. The last two steps of the sequence, following a
definition of an element and returning to the original element, are arbitrarily repeated. We iden-
tified twelve appearances of this pattern, while nine appearances of the pattern are carried out
by participants using Comogen and three appearances of the pattern are carried out by partici-
pants using Sando. We hypothesize that Comogen users jump into a result after they assessed
the context of the recommendation and recognize terms in the source code which they have seen
before in the context, but cannot remember what the connection was. Thus they navigate to these
elements just to quickly see what it was about and then immediately return to the original result.

3.2.2 Browsing for Task Related Recommendation Results
Another key observation of this study is that developers using Sando more often missed rele-
vant search results in the recommendations than developers using Comogen, even though Sando
generally recommended a greater number of relevant results. We base the claim that develop-
ers missed more relevant results in a recommendation set of Sando on the observations from the
screen and audio captures. As we analyzed the screen capture along with the audio contents, we
wrote down each time a developer missed a relevant result in the recommendation list. Over all 60
change task investigation instances we observed 16 query instances in which a developer missed
a relevant result in Sando and we observed one query instance in which a developer missed a
relevant result in Comogen. We hypothesize three reasons for this behavior.
First, we hypothesize that the developers could better identify relevant search results when the
context of a recommendation was presented. We base this hypothesis on the findings of the semi-
structured interview (see appendix C for the quintessences of the interviews) and the dependent
variable “queries accomplished without jumping in a result”. In the interview, nine participants
stated that they used lexical information pieces to assess if a result was relevant. Sando displays,
when no code snippet is extended, two terms per search result and Comogen on average around
five4. The additional code snippet which can be extended in each Sando search result, contains
also terms which are irrelevant to the query, such as “public static void”. Thus, given the broader
range of displayed terms in Comogen, enabled the participants to choose relevant results. The
number of queries accomplished without jumping into any result is about equal in both groups,
while the participants using Sando missed more relevant results than the participants using Co-
mogen. Thus, we claim that the context supports the accurate assessing of relevant recommenda-
tions.
Second, we hypothesize that the order of the search results is a highly influencing factor for choos-
ing to jump into a result. Therefore, we determined the position within the result list of both tools

4This is a subjective observation from the experimenter

18 Chapter 3. Exploratory Study with Developers

of the relevant search results, generated with the last query term entered. We chose to examine
the last accomplished query of each change task because the developers generally queried in an
advanced stage of the change task investigation with better search terms. Overall results of the
last query, Sando includes 16 recommendations of points in the source code which are included
in a change set of an examined change task and Comogen recommends overall six relevant points
in the source code. The difference between these figures originates from the fact, that the par-
ticipants made significantly more queries with Sando during an investigation of a change task
(see table 3.2) and hence came up with better last search terms. However, we found that Sando
presents the relevant search result on average as the 15.69th result (±11.15), while relevant results
in Comogen are presented on average as 3rd results (±3.53) and are further within the top two
result sets presented. To determine the location within the result set, we count the lines of results
until we reach the relevant result for Sando. For Comogen, we count every method invocation
until the relevant search result is reached. Thus, the developers using Comogen were not forced
to scroll through the result set to find relevant results.
Third, we hypothesize that the bigger size of the result list in Sando (a maximum of 40 recom-
mendations are displayed out of which 30 fit in a screen which is 1024 x 768 pixels) did not im-
prove the selection of relevant recommendations. We base our hypothesis on the findings of the
semi-structured interviews and the significantly higher number of accomplished queries together
with the significantly higher number of results jumped in when using Sando. As Sando user ac-
complished more queries and jumped into more search results within about equal time span as
Comogen users investigated change tasks (see 3.2), we infer that only top-ranked Sando results
were investigated and thus relevant results further down in the list were missed. Furthermore, a
participant stated in the semi-structured interview that he looked only at the first five results in
Sando. This observation supports the results of Starke et al. [SLS09] which observed that devel-
opers usually look only at one search result and enter another search instead of browsing through
the rest of the result set.

3.2.3 Finding Good Search Terms
We observed that one challenge participants face in the initial search phase, is coming up with
good search terms. Even though Sando suggests, depending on the letters fed in by the devel-
oper, some related search terms, both tools were able to recommend only few points in the source
code which were edited because of the change task. Both groups were also about equally confi-
dent about the search terms entered (see table 3.2). Table 3.3 sums up the number of all relevant
results found with the first search term entered, the number of all relevant results found with
the last search term entered, and the sum of all relevant results generated with search terms in
between the first and the last query. We observed that in an advanced stage of the change task
investigation, participants come up with better search terms, as the first search term entered by
each participant on each task generated only nine relevant recommendations while the last search
term entered generated 22. Over all participants and change tasks 118 queries were accomplished
in between the first and the last query, which resulted in merely 18 relevant recommendations.

We hypothesize that too general search terms, as well as a too specific search terms were entered
in the code search tool. Hence, too many irrelevant, respectively too few results were generated.
Participants who entered too general search terms were overwhelmed by the size of the resulting
list. In the interview a participant stated that if he has to browse through hundreds of results,
he would just start on top and ignore the rest. Participants who entered too specific search terms
used the wrong vocabulary. The usage of a wrong vocabulary originated probably from the pro-
gramming experiences of the developers. We also hypothesize that combinations of terms were

3.2 Study Results 19

Change Task CT 1 CT 2 CT 3 CT 4 CT 5 CT 6
First Search Term 0 2 5 0 1 1

Middle Search Terms 2 8 2 1 1 4
Last Search Term 2 6 6 3 2 3

Table 3.3: The numbers of relevant recommendations generated by both tools of the first search terms, the
numbers of all relevant recommendations generated through all search terms after the first input and before
the last input and the numbers of relevant recommendations generated with the last search terms.

used where only one part of the query entered was leading to irrelevant result, preventing the
good part of the query term to perform better.

3.2.4 Qualitative Analysis of the Semi-Structured Interview
This section summarizes the most important findings we gained through the answers of the par-
ticipants in the semi-structured interviews. In this interview we asked the participants the fol-
lowing questions:

• What did you most like within Comogen/Sando?

• What did you like less within Comogen/Sando?

• Is there a particular strategy for selecting search terms?

• How did you decide which search results to explore further?

We analyzed the 72 minutes interview recordings by noting down the quintessence of each an-
swer of each participant. Then we combined very similar answers into a general statement (see
appendix C for the quintessences of the interview).
Six participants stated that they did not like the presentation of the context in Comogen, because
the sequence diagram was too hard to understand, too much adjustments of the view have to
done prior to exploring or the diagrams were too big. One participant stated that he thinks it is
a generally good idea to display context and two participants stated that the sequence diagram
helped them to gain more confidence. Two participants explained that they would prefer a list or
a tree view instead of a sequence diagram, which contains too much information. Two other par-
ticipants suggested to present such a diagram optionally to the user. Another notion which was
mentioned by six participants is that they were confused when looking through results which did
not contain any related term to the concept and hence it was not comprehensible why a certain
result is suggested. One participant stated “If I knew why a certain result is in the list , I would
be more confident in assessing if its relevant or not”. The participants had different opinions on
the code snippets presented by Sando. Four participants found them useful to assess if the result
is relevant and other four participant said they ignored the code snippet completely. Similarly
the participants were split up in one group which likes to have test classes included in the result
sets and in another group which were annoyed by the test classes in the search results. The com-
mon notion was that test classes should be marked somehow to differ them from other classes.
Another suggestion on the improvement of both tools was to include also source code comments
in the result set and a suggestion to the improvement of Comogen was to include any kind of
outline over all results.
Regarding the strategy of the search term selections all participants explained that they tried to
find terms out of the change task, which are very specific to this concept.

20 Chapter 3. Exploratory Study with Developers

Nine participants assess the relevancy of a recommendation result depending on the terms they
see. One participant even stated, that when assessing a search result in Comogen, he was looking
at the additional terms and ignoring the information on the sequences of calls. This quote of a
participant captures the general notion on how they decided to explore a search result further:
“First, I assessed the class name and then the method name and if both matched the concept in
my head, I selected the result”. Several quotes of different participants are evidence to suggest
that the location of a search result within the result set is influencing if a search result is selected:
“In Sando, I looked only at the first 5 results”, “In Sando, I oriented myself with the first search
result, because scrolling the list is too tedious” or “If I have hundreds of results, I start on top and
ignore at first hand the results further down the list”. Another participants stated that he explored
the results in Comogen more accurately and again another participant stated that he had more
confidence in the recommendation of Comogen, because less results were presented.

3.3 Threats to Validity
In the following, we discuss several points which threaten the validity on the results of this ex-
ploratory study.

3.3.1 External Validity
Due to the small number of participants and the rather ordinary size and complexity of Sando’s
source code our results are limited with regards to generalizability. The participants had different
levels of programming experience, which influenced the rapidity of understanding unfamiliar
source code and which influenced the selections of search terms. The fact that the participants
used the code search tools for the first time and investigated completely unfamiliar code is also
somewhat artificial, but not avoidable as we conducted the study in our lab. The size and com-
plexity of Sando is not comparable with a system which includes hundreds of thousands of lines
of source code. The size of the source code may affect the size of the result sets of Comogen and
Sando which are investigated by the developers. The change tasks which were investigated in
our study could be categorized as “quick fixes” as these change tasks caused the editing of on
average 3 methods (±1.291). Further, our study is based on a program which is written in C# and
the study was conducted within Visual Studio 2012 Ultimate. These two factors limit the number
of reasonable navigations in the source code to object-oriented programming languages and the
tools available within Visual Studio 2012 Ultimate.
Further, several constraints were imposed on the behaviors of the participant while investigating
a change task. As example, the participants were not allowed to consult the internet or to discuss
with other developers. Finally we imposed a time constraint of ten minutes.

3.3.2 Internal Validity
In the following we analyze several possible threats with regards to the internal validity of this
experimental study. First, the time the participants spent on investigating a change task may be
influenced by other factors than only by our independent variable. As example, learning effects
throughout the six change task can occur, as the participant learn more about the system as they
investigate more change tasks. We counteract this learning effect by applying a counterbalance
measure design. Further, also the exhaustion of the participants of solving several change tasks
in a row can influence the time measurements, as well as the individual perceptions of the task
difficulty. The presence of the experimenter may also be an influencing factor on the time mea-
surement, as the participants may feel uncomfortable being observed. The learning effect may

3.3 Threats to Validity 21

also influence the number of accomplished navigation steps, as the participants get to know the
system better and thus can better assess if it is meaningful to explore, as example, a method call
further. Further, the number of jumps into search results could be influenced by the prototypical
status of Comogen. In Comogen, when only one method in a result set is recommended, it is
not possible to jump directly in the code, because of missing mouse click listeners. The partici-
pants have to manually open the recommended point. This prototypical behavior of Comogen
may have influenced the participants to jump into fewer results than they would have done in
a fully developed tool. Other small bugs and prototypical characteristics of Comogen may have
also influenced the dependent variables we investigated. As example, if a name of a class or a
method is longer than expected by Comogen, it is cut off and the user cannot see the full name.
Further when reselecting the Comogen tab within Visual Studio the mouse was in a mode which
caused the moving of the prior selected diagram. Clicking on the diagram stopped the move
mode again. The scrolling within Comogen was somewhat confusing, as it is not smooth and
jumps over results. Further, the search took longer than the searches in Sando.

3.3.3 Construct Validity
We observed participants using Comogen to accomplish significantly less searches than partici-
pants which used Sando. We hypothesize that participants can distinguish relevant from irrel-
evant results better when the context of the recommendation is also presented and thus do not
need to accomplish many searches until they find an interesting point. An alternative explanation
for accomplishing more searches within Sando and less searches within Comogen are the auto-
matic search terms recommendations of Sando. Participants may feel encouraged to try out the
other search terms which are suggested by Sando. On the other side, in Comogen, the partici-
pants have to come up with search terms without external help, which can lead to less manifold
ideas for search terms and hence to less queries. Further, the number of accomplished navigation
steps is somewhat dependent on the number of accomplished queries and hence also influenced
by the automatic search term suggestions of Sando.

3.3.4 Statistical Validity
We report as a possible measurement error the time measurements as the participant were told to
press the stopwatch when they are finished before 10 minutes elapsed. Some participants forgot
to press the stopwatch and had to be reminded to do so. Therefore, the time measurements on
each change task could change slightly. Another measurement error is the perception of relevant
points in the source code. We regarded changed methods in the according change sets to be the
most relevant points in the source code for a change task. But a change set includes only the points
in the source code which were edited and not points which account for the understanding of the
change task. Therefore, the participants may have suggested points in the source code to look at,
which we regarded irrelevant, but would have been assessed to be relevant if we would also have
had the possibility to account the work during the accomplishing of a change task. Further, we
defined that we account a starting point found in the relevancy measure if a changed method is
reachable within three navigation steps. We defined the limit of three navigation steps, because
of the size of the Sando project and because we observed in our study out of 60 change task inves-
tigations only 4 investigations which included more than 3 navigation steps from an interesting
point in the code. The size of the project is insofar influencing as in a smaller project different
concepts in the code can be reached within fewer navigation steps than in a bigger project. All of
the results rely on the transcript of the developers’ actions created out of the screen capture. Only
one person made the transcription which was not crosschecked by other people.
The statistical validity is strengthened by the facts, that we used equal numbers of participants

22 Chapter 3. Exploratory Study with Developers

in both groups, did not violate parametric assumptions when applying statistical tests which re-
quired to meet the parametric assumptions and we employed a counterbalance measure design
to counteract learning effects.

3.4 Conclusion on the Exploratory Study
This exploratory study investigated the initial search and navigation phase before an actual change
to the source code is made. The study included ten participants working on six different change
tasks. Half of the change tasks were investigated by using a code search tool, which presents
along with the recommendation results a context and the other half of the change tasks were in-
vestigated with a code search tool, which presents the recommendation in a list. We observed that
one of the biggest challenges in the initial search and navigation phase is to come up with search
terms, which provoke relevant results. Entering low performing search terms can originate from
different causes. Either the developer enters a too general search term or a too specific search term
or in case of a search term combination one search term can prevent the other to provoke good re-
sults. Further, we observed through the qualitative analysis of the semi-structured interview and
the dependent variables “number of navigation steps accomplished during an investigation of a
change task”, “time elapsed until the participants finished with an investigation of a change task”,
“relevancy of the found starting points”, “number of queries accomplished during an investiga-
tion of a change task, “the number of jumped in results” and “number of queries accomplished
without jumping into a result”, that the presentation of a context along with the recommendation
results supports developers in the initial search and navigation phase.

3.5 Implications from the Explorative Study
In this section we discuss the implications of the exploratory study we conducted with ten partic-
ipants working on six change tasks. The study focused on the initial search and navigation phase
before a change is made. We identified that one big challenge for developers is to find good search
terms. Further, we found that presenting a context of a search result is supporting the developer
in the initial search and navigation phase before editing the source code. We suggest a tool which
automatically generates search terms for a change task at hand and we infer design implication
for search tools which present a context.

3.5.1 Browsing Code Structures to Find Relevant Points
Our analysis of the explorative study revealed that developers using Comogen used about equally
frequent the Visual Studio navigation features View Call Hierarchy and Find All References, even
though Comogen users may already have assessed such type of structural information in the
result set. We hypothesized that Comogen users jump into a result after they assessed the context
of the recommendation and recognize terms in the source code which they have seen before in the
context, but cannot remember what the connection was. Thus they navigate to these elements just
to quickly see what it was about and then immediately return to the original result. To avoid this
additional navigation steps, we suggest to have an additional small view of the most important
pieces of the search result available in the code base when requested. As example, a keyboard
combination could provoke a pop up or hovering over the suggested line of code could display a
miniature context.
In the follow-up interview we found that most developers assess in a first step the terms contained
within an element when navigating code in order to decide if the element should be explored

3.5 Implications from the Explorative Study 23

further. If the code element contains sufficient appealing terms, the detailed code structure is
assessed as a second step. We suggest to display in a small view terms of the element, which are
related to the initial query term when hovering over an element. In this way, a developer does not
have to navigate to the element to assess in a first step its relevancy. If the terms of the element
are appealing, a developer may be more confident that the element is relevant and spending time
navigating the element is may be more focused as one can directly concentrate on the structure.

3.5.2 Browsing for Task Related Recommendation Results
We observed in the exploratory study that displaying context of a search result supports the de-
velopers in the initial search and navigation phase. There is evidence that developers can assess
search results more accurately when a context is displayed, as participants using Comogen did
not miss as many results as participants using Sando did. However, several participants disliked
the sequence diagram of Comogen. The most mentioned flaw was the complexity of the diagram.
Thus, we suggest to present the search result as a list which can be opened, when requested, to
display a diagram containing the context. Further, we learned that participants assess the rele-
vancy of a result mainly based on the terms which are related to the concept of the change task.
On these grounds, we suggest to focus more on the terms which resembles to the query input,
instead displaying specific calls. The presentation of the context would include the relationships
of element which are displayed as a list of terms related to the query term (see figure 3.3 for a
sketch of this possible design). We hypothesize that in this way developers would better under-
stand why a certain search result is generated.
Further, we imply from the study results, that the number of search results has to be rather small
and presenting the most relevant search results topmost. Overall, Sando and Comogen did not
generate many relevant results. In total, 238 queries were accomplished during the study and
merely 49 queries provoked a relevant search result. These rare strikes are on the one hand pro-
voked by the selected search terms and on the other hand generated by the tools. The relevancy of
the search result is only determined through the occurrence in the change set of the change task.
Thus, the adjacency of search results to change sets is not taken into consideration within these
figures. However, to generate more relevant results, we investigate whether taking into account
user interaction histories can support developers in finding a starting context for change tasks
(see section 4).

3.5.3 Finding Good Search Terms
We observed in our study, that one of the biggest challenges in the initial search and navigation
phase, is to find appropriate search terms. The rather unsuccessful search terms entered by the
participants, inspired us to prototype a tool, which includes two approaches to automatically
recommend possible search terms given a new change task (see section 5). The search term sug-
gestions generated by our tool can be used as input to a code search tool. Another suggestion
to overcome this challenge, is prototyped in our approach of identifying a starting context for a
change task at hand (see section 6). As this approach generates the recommendations on starting
points fully automatically, given the change task, the challenge is avoided as the user does not
have to think about query terms at all.

Another tool implication resulting from the observation of the entered search terms, is the possi-
bility of localizing expert developers of a specific concept. The number of queries in each change
task, which resulted in relevant recommendations can be analyzed. Out of the totally 60 investi-
gation instances on change tasks, the queries of 27 investigation instances resulted in at least one
relevant result. Out of these 27 investigation instances, 14 investigations are composed of queries

24 Chapter 3. Exploratory Study with Developers

Figure 3.3: Sketch of a possible representation of the recommendation results along with a context.

out of which at least 50% generated relevant results. As example, participant 9 accomplished
seven queries to investigate change task 2. Four search term he chose, resulted in at least one
relevant recommendation. Participant 6 accomplished during the investigation of change task 1
seven queries and none of these resulted in a relevant recommendation. Therefore, an expert on
a concept implemented by the change task, could be identified by analyzing the performance of
search terms for a given task of each participant.

Chapter 4

Using Interaction Histories to
Recommend a Starting Context
of Code Elements for a Change

Task

Implications from our exploratory study we conducted to investigate the initial search and nav-
igation phase before editing the code, include that search result lists, generated by code search
tools, have to be rather small and have to present the most relevant results topmost. The state-
of-the-art tools Sando and Comogen did not generate many results. From totally 238 queries
conducted in the exploratory study, 49 queries provoked the presentation of a relevant result.
This low number of strikes is explained on the on hand by the selected search terms and on the
other hand this low number of strikes is generated by the tools.
Thus, we investigate whether we can support developers in finding a starting context for a change
task by taking into account user interaction histories. We consider a typical static information re-
trieval approach for recommending interesting points in the source code for a new change task.
Given a change task description, these approaches first identify similar change tasks that have
already been completed. Completed change tasks have code changes associated to them. It is as-
sumed that similar change tasks also changed similar code. The code changes of a similar change
task can be recommended as starting points in the code for a change task at hand. In our research,
we want to understand if we can enhance the retrieval of similar change tasks to a change task at
hand by using developer interaction histories. Further, we investigate if taking into account user
interaction histories yields good starting points for a change task at hand.
The following investigations are analyzing the project org.eclipse.mylyn.context. We chose to an-
alyze this project, as it offers a broad number of change tasks with according change sets and user
interaction histories. The user interactions are monitored in form of Mylyn task contexts. The
project org.eclipse.mylyn.context implements the usage monitoring, the degree-of-interest mod-
eling and the task-focused user extension for the user interface of the Eclipse plug-in Mylyn. The
project org.eclipse.mylyn.context reports 209 change tasks, which are tracked in the bug tracking
system Bugzilla 1. Further, the project comprises 2892 change sets in a git repository. Out of these
209 change task, 36 change tasks have a task context attached and are linked to a change set and
are thus eligible for our analysis.

1http://www.bugzilla.org/

26
Chapter 4. Using Interaction Histories to Recommend a Starting Context of Code Elements for a

Change Task

4.1 Finding Similar Change Tasks
In this section we explore whether we can identify more precisely change tasks covering similar
concepts to a change task at hand by using a task context. We investigate the situation for a
completely new change task and we investigate the situation for a change task which has already
been worked on, but is reopened.

4.1.1 Finding Similar Change Tasks to a New Change Task
When a new change task is submitted only few attributes are available which can be used to find
similar change tasks. These features are summarized in table 4.2. Note that the features comment,
status, target milestone, assigned to, qa contact, url, whiteboard, keywords, depends on, blocks, cc list and
see also are not included in this comparison, as these features are not included in a new reported
change task. We also do not take the attachments into consideration for this analysis, because the
only attachment which is interesting for this purpose are patches, which are typically not filed
along with a new change task. We identified two distinct ways of using a task context to find
similar change tasks. We conducted a small case study for each of these two options.

Case Study 1

In a typical feature selection procedure, similar objects are determined and a pattern in the fea-
tures of these objects is searched. This pattern of features is used to match change tasks to a
change task at hand. In this case study we aim to determine a pattern of features once by using an
initial set of change tasks with an overlapping task context and once with an initial set of change
tasks which have common elements in their change sets. We compare which pattern of features
found yields the better precision and recall in retrieving change tasks which are covering similar
concepts Figure 4.1 depicts an exemplary course of this process when change tasks with a similar
task context are used as initial set. The same process applies to the process where the initial set is
determined through similarities in the change sets.

Study Method. In a first step, we determine all change tasks which share an element on method
level in their task context, respectively which have a method in common in their change sets.
Then, we determine manually which of these change task pairs are covering similar concepts. To
find the best combination of features, we build all possible combinations and match each com-
bination to the change tasks. We calculate the precision and recall of retrieving the change tasks
covering similar concepts out of the change tasks which have similar task contexts, respectively
change sets. The combination of features which retrieves the highest F-measure change tasks cov-
ering similar concepts is regarded as the best pattern.
To match a possible pattern to a change task we distinguish between exact matching and partial
matching features. The features tag, product, reporter, component, version, severity, hardware, and
os can be compared by exact matching while the textual features (summary and description) are
compared in terms of their textual similarities. Based on preceding tests, in which different infor-
mation retrieval models were employed, we use the vector model for this analysis and calculate
the cosine between two document vectors to determine their similarity. To improve the accuracy
of this textual analysis, we weight the index terms according the TF/IDF weighting method and
apply in a defined sequence several text preprocessing steps. Due to prior lexical analysis, we
process code snippets and stack traces, paths, punctuation, hyphens, upper and lower case, num-
bers, hyperlinks, names and abbreviations within change task particularly. Of course, we also
stem the index terms of change tasks, and eliminate the stop words. In prior tests in which we

4.1 Finding Similar Change Tasks 27

ct

tc

ct

tc

ct

tc

ct

tc

ct

tc

ct

tc

ct

tc

tc
ct

tc
ct

tc
ct

tc
ct

ct = change task, tc = task context

ct

ct
ct

ct

ct ct

Figure 4.1: We identify the features which match in change task with a similar task context. Then we apply
this pattern to a set of change tasks to determine change tasks which cover a similar concept.

used six different options of index term selections, we found that index term selection 1 is most
appropriate for this corpus. These six index term selection options are summarized in table 4.3
and are based on findings of [BYRN99] and [BCCN94] (see appendix D for details on the text
preprocessing). To determine which change task pairs are regarded textually similar and which
are not a similarity threshold needs to be defined. This means that all combinations of change
tasks pairs which similarity value is above the defined threshold are regarded to be similar and
all combinations of change tasks pairs which similarity value is below the defined threshold are
not regarded to be similar. Prior textual analysis showed that a threshold of 0.14 is appropriate
for this corpus.
To understand if a pattern which originates from an initial set of change tasks with similar task
contexts matches more precisely change tasks which are covering a similar concept, we used each
of these eight patterns to match 36 change tasks from the project org.eclipse.mylyn.context. In
this analysis we included change tasks which have a task context attached and are linked to at
least one change set of the project. Then, we determined manually for each matched change task
pair if the change tasks are covering similar concepts.

Results. We found several patterns of features for each initial set. These feature combinations are
summarized in table 4.1. Table 4.1 also reports on the true positive and false positive retrievals we
found through matching the identified patterns to change tasks of the project org.eclipe.mylyn.context.
The feature patterns tc3, cs2 and cs4 are equally precise in retrieving change tasks covering sim-
ilar concepts (with a precision of 0.667). On these grounds, we conclude that we cannot re-
port any improvement on the preciseness of retrieving similar change tasks out of the project
org.eclipse.mylyn.context using task contexts. We hypothesize that these two options can be used
interchangeably.
Further, we also noted that the change task pairs determined through similar task context are
substantially different to the change task pairs which we found through matching the change
sets. We found eleven change task pairs with similar task contexts and ten change task pairs with

28
Chapter 4. Using Interaction Histories to Recommend a Starting Context of Code Elements for a

Change Task

initial set based on] feature pattern true positives false positives

task contexts tc1 os, summary, description 5 7

tc2 tag, os, summary, description 1 4

tc3 reporter, os, summary, description 4 2

tc4 tag, reporter, os, summary, description 1 1

change sets cs1 hw, summary, description 12 12

cs2 reporter, hw, summary, description 4 2

cs3 os, hw, summary, description 5 7

cs4 reporter, os, hw, summary, description 4 2

Table 4.1: The combination of features for both initial sets together with the number of matched change
tasks (true positives and false positives regarding the concepts covered by the pairs) out of 36 change task
from the project org.eclipse.mylyn.context.

similar change sets. Only four pairs are in common. Rastkar and Murphy [RM09] made a similar
observation, when they investigated if change tasks with similar task contexts include more pairs
covering the same concept than change task pairs with similar change sets. The hypothesis is
stated that task contexts and change sets capture rather different types of information. As exam-
ple, the contextual information is missing in the change set.

Case Study 2

In this case study we compare the textual features of a new change task (summary and description)
to the task contexts available for the project. In this way we aim to identify change tasks which
cover a similar topic as the change task at hand. We investigate if matching natural language to
task context elements yields to more precise retrieval of change tasks covering a similar concept.

Study Method. We match the natural language features of the change task at hand to an interest-
ing element of a task context as described in section 3.5.3. We sum up the element matchings.
The change tasks with the highest number of element matchings are suggested to be similar to
the change task at hand. To find out if this approach performs more precise than the approaches
in case study 1, we picked randomly seven change tasks out of the 36 analyzed change tasks of
the project org.eclipse.mylyn.context. We manually assess the suggestions for each of the seven
change tasks and calculate the precision.

Results. For each of these seven change tasks our approach retrieved one change task out of the
change task for the project. We assessed three out of these seven suggestions to be true positives
(precision of 0.429). We report that we cannot suggest more precisely change tasks covering simi-
lar concepts when matching text features of the change task at hand to task contexts available for
the project.

2the detailed descriptions are taken from https://bugs.eclipse.org/bugs/page.cgi?id=fields.html

https://bugs.eclipse.org/bugs/page.cgi?id=fields.html

4.1 Finding Similar Change Tasks 29

Change Task Feature Description
summary The summary is a short sentence which succinctly describes what the

change task is about.
tag A custom unknown type field in this installation of Bugzilla† .
description The description of the change task.
product A classification of the change tasks.
reporter The person who filed this change task.
component Components are second-level categories; each belongs to a particular

product.
version The version field defines the version of the software the change task was

found in.
severity How severe the change task is, or whether it’s an enhancement.
hardware The hardware platform the changed task is designated.
os The operating system the change task is designated.
attachment A content which is attached to a change task.

†Mylyn uses tags in the summary of the change task to categorize bugs. All tags used in Mylyn change tasks can be found here:
http://wiki.eclipse.org/Mylyn_Contributor_Referenc#Bugzilla.

Table 4.2: The features of a change task which are captured when a new change task is filed 2.

Index Selection Options Description
option 1 Only nouns are selected for indexing and other grammatical groups

are not considered.
option 2 Nearby nouns are clustered and these noun groups are used as distinct

index terms.
option 3 Each term which is surrounded by whitespaces is selected.
option 4 Index terms from option 1, coupled with code related terms included

in the text features.
option 5 Index terms from option 2, coupled with code related terms included

in the text features.
option 6 Index terms from option 3, coupled with code related terms included

in the text features.

Table 4.3: We identified six different index term selection strategies which are used to calculate similarity
measures between text features of change tasks.

http://wiki.eclipse.org/Mylyn_Contributor_Referenc#Bugzilla

30
Chapter 4. Using Interaction Histories to Recommend a Starting Context of Code Elements for a

Change Task

4.1.2 Finding Similar Change Tasks for a Re-opened Change
Task

For a large software system, a large amount of change tasks are reported. Sometimes, a developer
starts working on a change task and before completing the change she must switch to another
task [KM06]. For such situations the developer created already parts of the final task context.
Those bits and pieces of beginning task contexts can be used to find change tasks covering similar
concepts. We conducted a small case study to find out if we can find more precisely change tasks
covering similar concepts.

Study Method. We compare task contexts based on their interesting elements. We only consider
elements which are on method level. Each element’s structure handle of one task context is com-
pared to each element’s structure handle of another task context. The structure handle states the
method declaration. We randomly chose seven change tasks out of the 36 analyzed change task
of the project org.eclipse.mylyn.context and assessed if the suggested similar change tasks are
covering similar concepts.

Results. We compared the task context of seven randomly chosen change tasks to each other
task context from the project. The matching on the task contexts generated twelve change task
pairs. We assessed seven out of these twelve change task pairs to agree on the concept they cover
(precision of 0.583). This case study showed that, for the 36 analyzed change tasks, we cannot
improve the preciseness on the retrieving of change task pairs which cover similar concepts.

4.2 Recommending Potentially Relevant Starting
Points

In this section, we want to investigate whether a task context includes information, which can be
used to recommend a starting point for a given change task. We hypothesize that using a task
context for recommending starting points is convenient for several reasons. First, if we act on the
assumption that similar change tasks also changed similar code, it is even more likely that similar
change tasks navigated through same code elements. A task context captures not only the code
elements which were edited because of the change task, but also the code elements which were
were navigated through. Further, task contexts educe a broad range of additional information,
which, as example, is not captured within the information of the change set. As example, a task
context contains elements which can be exactly weighted according their relevance to the change
task at hand. The most important source code elements of a change task are not necessarily
the code elements which were edited. Thus, when taking into account only the information of
change sets, possibly important source code elements are disregarded. Additionally, the chain
of user interactions can be precisely reproduced, which allows to conclude on the rationale for a
specific code editing. One can also infer additional information from the change set, as example
when taking into account the comments of a commit, the main reason of the code changes can
be learned. However, the process of extracting such additional information out of change sets is
tedious and not as precise as if a task context was used.
Because of these reasons we believe that using a task context for recommending starting points of
a change task can support a developer in the initial search and navigation phase when performing
a change task. To investigate this hypothesis, we elaborated different suggestions on how a task
context can be used to recommend a starting point for a change task. These suggestions include
the generation of a recommended starting point for a change task and the generation of a context

4.2 Recommending Potentially Relevant Starting
Points 31

to search results.

4.2.1 Generation of Starting Points
This section assumes that a similar change task to the change task at hand is already identified
(the identification of a similar change task is discussed in section 4.1). Following a typical static
information retrieval approach for recommending interesting points in the source code, which
assumes that similar change tasks changed similar code elements, we assume that similar change
tasks navigated through similar code elements. We even hypothesize that similar change tasks
have a stronger agreement on navigation sequences than on actual code changes, as code changes
are very specific to a particular change task. On the other hand we assume that a specific concept
is implemented within a partitioned module of the source code which is navigated when work-
ing on a change task which covers that concept. Hence, the challenge of finding starting point
recommendations for a change task at hand, which are generated using a task context, is divided
into selecting the most relevant elements from the task context (figure 4.3 depicts this concept).
We identified two distinct approaches to extract relevant information from the task context of a
similar change task. The first approach takes into account the degree-of-interest model [KM05a]
and the second approach analyzes textual similarities.

Using the Degree-of-Interest Model of Mylyn

The Eclipse plug-in Mylyn monitors all interactions of a developer while working on a change
task. The captured source code elements which constitute the developer’s context of the change
task are encoded within a degree-of-interest (DOI) model. To bring out the relevant elements of
a change task, the Mylyn user interface decodes the DOI model when a task-focused filter is en-
abled. The DOI model captures the relevance of each element to their change tasks by associating
an interest value to each element. A set of default scaling values, which were adjusted upon us-
age statistics, is responsible for assigning adequate interest values to the source code elements.
As example, a selection of a code element increases its value by 1, a typing on the keyboard by 0.1
while the interest values of the other code elements decrease by 0.1. The DOI model not only cap-
tures the selections and edits of the developer, but also so-called propagation events. As example,
when an element within the same package is multiple times selected or edited, the package also
gets an interest value assigned. Recency is also an influential factor when assigning interest val-
ues to a code element. When a code element is not selected nor edited over a specified amount
of time its interest value decreases. When an interest value decreases under a specified threshold
then the element is removed from the DOI model. The threshold which defines if an element is
interesting is equal 03. The developer working on a change task can also manually remove unin-
teresting elements from the task context or manually add interesting elements to the task context
of the change task [KM05a].
This approach of generating starting point recommendations uses the DOI model to elicit the
most interesting elements of a change task similar to the change task at hand.
The change tasks of the project org.eclipse.mylyn.context include on average 54.7 (±38.33) inter-
esting elements in their task contexts. This number of interesting elements is too high for taking
them as recommendations, as we observed in our exploratory study that a starting point recom-
mendation list supports developers best, when it is short and precise. Between all change tasks
and elements of their task context the DOI interest value is on average 96.37 (±341.76). Within
each change task the DOI interest value has a standard deviation of on average ±116.2. Thus,

3We refer to the implementation of InteractionContextScaling in org.eclipse.mylyn.internal.context.core when
change I4bfa906f137eb7dd3cb5be67c50cd2460806e0a9 was committed.

32
Chapter 4. Using Interaction Histories to Recommend a Starting Context of Code Elements for a

Change Task

we cannot specify a threshold to identify the interesting elements for the starting point recom-
mendations. Hence, we analyzed the task context elements which interest values are within the
top three interest values of the particular change task and we analyzed the task context elements
which interest values are within the third quartile of the interest values of a particular change task.
This analysis included 36 change tasks of the project org.eclipse.mylyn.context. We found, when
taking into consideration the top three elements, that for ten change tasks, the recommended start-
ing points will result in elements, which were mainly edited. The examination of the elements
within the third quartile revealed, that for nine change tasks, the recommendation will result in
elements, which were mainly edited. For these change tasks, our approach will result in similar
starting point recommendations as an approach which uses change sets. Since, the sum over all
interest values of top three task context elements is 12.69 time higher than the sum of the task
context element of the third quartile, we chose to recommend the task context elements which
have a top three interest value associated.

Analyzing textual similarities

This approach is based on two assumptions. The first assumption includes that the task context
of a similar change task includes relevant elements for a change task at hand and the second as-
sumption includes that terms used in the textual features of the change task are reflected in the
class and method declarations of the source code. In this approach we are matching the terms
included in the textual features of a change task at hand to the terms included in each element of
a similar change task.
We preprocess the natural language terms as described in appendix D to better match them to
source code terms of the task context elements. We extract the class name and the method name
from the task context elements and lowercase the terms. Then we assess which set of task context
element terms includes the most matches with the set of terms from the textual features of the
change task at hand.
This approach is somewhat similar to the approach we suggested for finding search terms (see
section 5.1). The main difference is that the search term recommendation approach treats the
words included in the source code term corpus in a so called bag-of-word representation while
this approach treats the terms of each change task element separately.

To get a general idea of how these two approaches perform in recommending starting points for
a change task at hand, we chose to generate starting points for six change tasks of the analyzed
project using the implemented prototypes. As both approaches rely on the prior assessment of a
similar change task, we manually entered a similar change task for each one assessed. We com-
pared the generated starting points of each approach with the particular change set of the change
task. We defined a starting point recommendation to be relevant, if the specific element was also
represented in the change set. The approach which used the degree-of-interest model generated
for four analyzed change tasks starting point recommendations, which are relevant, while the
text matching approach generated for two change tasks relevant results. As the task context ele-
ment terms usually consist of solely four different terms, we hypothesize that the text matching
approach needs a bigger corpus to perform better. Thus, we conclude that the text matching, we
applied between the textual features of the change task at hand and the task context elements, is
not suitable for finding relevant task context elements.
We also found, that the relevant search results generated by the degree-of-interest model are based
on task context elements, which mainly constitute of selection user interaction events. Only one
relevant result out of six relevant results overall, was mainly based on editing user interaction
events. This finding supports our hypothesis that similar change tasks navigate through similar

4.3 Conclusion 33

code elements and less edit similar code elements.

4.2.2 Generation of a Context
We hypothesize that a task context is also convenient for generating a context for a search result,
which was generated by a code search tool. Different to other context generation approaches,
this approach does not rely on structural information within the source code. We observed in
the exploratory study (see section sub:BrowsingCodeStructures) that developers often conduct a
specific sequence of navigation steps when navigating through source code. Thus, we analyzed
the sequences within the interactions of the user while performing a change task. Specifically,
we looked into the interactions immediately before a specific interaction and the interactions im-
mediately after a specific interaction (see figure 4.2). We observed mainly two patters. The first
pattern includes the interaction elements e1, e2, e3. At time t1, the developer visits e1, then nav-
igates to e2 and then visits e3. At time t2, the developer visits e3, then navigates to e2 and goes
back to e1. The second pattern includes the interaction elements e1 and e2. A developer starts the
investigation at e1, navigates to e2 and returns to e1.
The second user interaction pattern strengthens the observation of the user behaviors we made
in the exploratory study. We hypothesize, that given a relevant starting point recommendation
which may be generated by a code search tool, task contexts enable the generation of a completely
connected context graph. It is subject to future work to find more user interaction patterns within
a task context, which can be used to generate a connected context of code elements for a change
task automatically.

Figure 4.2: To investigate if user interaction patterns are also reflected in the task contexts, we analyzed the
interactions immediately before a particular interaction and the interactions immerdiately after.

4.3 Conclusion
We investigated on the basis of case studies on the project org.eclipse.mylyn.context whether we
can improve the preciseness of finding similar change tasks and whether we can recommend
starting points using a task context. We report that using task contexts, when identifying sim-
ilar change tasks to a change task at hand, yields equally precise change task suggestions. We
suggested a pattern based on task context information, which is able to match similar change
tasks. Only very few change tasks of one specific project were analyzed, which limits the gen-
eralizability of these case studies. Additionally, the change tasks analyzing in the case study on
re-opened change tasks, included closed change tasks, which limits the significance firmly. This
is due the fact, that the change task included in the analyzed group of change tasks of the project
org.eclipse.mylyn.context contain only two change tasks which status equals new.
We showed that when task contexts are considered to recommend starting points for a change task

34
Chapter 4. Using Interaction Histories to Recommend a Starting Context of Code Elements for a

Change Task

ct = change task, tc = task context

ct ct

tc

Figure 4.3: Our approach generates recommendation for starting point based on task context elements of a
similar change task.

at hand, the recommendations are in 66.67% of the cases relevant. Further, the investigation on
the task contexts of six change tasks strengthened our hypothesis, that the generated recommen-
dations are mainly the navigations which two change tasks have in common and not necessarily
the edited parts.
Through analyzing single user interactions within task contexts, we found two specific patterns.
These patterns can be used to complement a recommendation of a code search tool. In future
work, we plan to automatically generate a connected task context for a given change task. Task
contexts include a variety of meta-information pieces which could be exploited to support devel-
opers while performing a change task. As example, the total amount of time a developer spent
within one specific element could be examined. We hypothesize that depending on this time
span, the complexity of the element could be inferred. Further, we hypothesize that elements
which are included in many task contexts are a hint for possible bottlenecks in the source code.
The importance of a change task and hence the importance of the according source code elements,
could be inferred by analyzing task switches and time spans. Additionally, we hypothesize that
the values generated by the degree of interest model also reflect, as example the excitement of
the developer, as we observed in our study, some developers start to select more within a smaller
time span when working on a difficult task, which in turn would influence the DOI. Nevertheless,
the task context with the according degree-of-interest values always represent a specific filter for
a specific point in time. Meaning that, as example, the elements in the code which were navigated
to explore an unknown API, are initially important and eventually disappear from the task con-
text. However, for a new change tasks, these elements would have been probably a good starting
point.

Chapter 5

Two prototypes for
Automatically Recommend
Search Terms for a Change

Task

This chapter describes two prototypes of a tool which automatically recommends search terms
for a given change task. These tools are a direct result from the observations of the exploratory
study we conducted with ten participants to investigate the initial search and navigation phase
before a change is made (see section 3). In our exploratory study the participants used for half
of the change tasks investigated the code search tool Sando 1. As a user types in characters into
the search field, Sando suggests search terms. These suggestions heavily depend on the typed
in characters of the user. As a result of our study, we report that none of the participants using
Sando entered for change task 1 and for change task 4 a first query term, which generated a rel-
evant result in the recommendation list. For the other change tasks the participants entered first
search terms, which generated results on average at the 13.71th (± 11.7) position in the result list
of Sando. These findings let us conclude, that the suggestions of Sando are not necessarily sup-
porting developers, which are unfamiliar with the system, in finding immediately good search
terms. To overcome this challenge, we suggest two approaches of automatically recommending
search terms given the textual features of a change task.
To automatically recommend search terms for a given change task, we use the task contexts which
are attached to priorly completed change tasks of the system. We hypothesize that using a task
context to recommend search terms has two advantages. Namely, the corpus of all possible search
terms is tremendously decreased as against when all terms (i.e. class names, method names and
variable names) of the source code are processed. Nevertheless, using task contexts enables to
suggest source code vocabulary close-by terms. Thus, a code search tool which receives our rec-
ommended terms as input, does not need to map them to the vocabulary used in the source code
base.

5.1 Approach 1 for Recommending Search Terms
In order to generate search terms for a given change task, we first determine similar change tasks,
as we assume that similar change tasks cover similar concepts. This work discusses the identifi-

1http://sando.codeplex.com/

http://sando.codeplex.com/

36 Chapter 5. Two prototypes for Automatically Recommend Search Terms for a Change Task

source code

completed ct

new ct

src-t1 src-t2 src-t3
src-t4 src-t5

src-t6

src-t7

nl-t1
nl-t6 nl-t5

nl-t4
nl-t3

nl-t2

source code terms of the concept

natural language terms of the concept

ct = change task, nl-t = natural language term, src-t = source code language term

Figure 5.1: Our first approach to automatically recommend search terms includes the identification of a
similar change task. Within the term corpus on source code level of the concept, we identify terms which
describe the new change task best.

cation of similar change tasks in section 4.1. Further, we assume that the elements in the source
code are implemented using a vocabulary which reflects the particular concept too. The elements
which were navigated around while working on a change task are reflected in the task context of
the change task. These elements represent the corpus of the terms which is identifying a particu-
lar concept with the vocabulary of the source code. Thus, we conclude that a concept of a change
task can be either identified with the vocabulary of the textual features within the change task or
with the vocabulary of the code which was navigated when the change task was performed. We
also assume that these two sets of vocabularies have overlapping terms, as element names in the
source code are chosen with the aim to identify its behavior. Hence, the challenge of finding good
search terms for a given change task can be divided into finding good terms in the source code
corpus of the particular concept. Figure 5.1 depicts the concept of our first approach.
To find good search terms for the change task at hand, we match the textual features of it to
the identified terms included in the source code term corpus of the concept. In this way, we
tremendously scale down the possible search space to the concept of the change task, which is
expressed in source code vocabulary. As the task context captures every interaction event of the
user while working on a change task, we only consider the elements of the task context, which
are compiled by Mylyn. Further, we consider only elements which are on method level, as the
remaining elements are too general as to identify a concept precisely. To better match terms of
different vocabularies(i.e. natural language to source code), we accomplish some preprocessing
activities. The natural language tokens are built by splitting the sentences on each whitespace and
on each minus sign. We split the terms explicitly on the minus signs too, as many terms which
describe an action are composed terms (e.g. on-hover). These action specific terms are more
likely than other terms to appear also in the source code vocabulary. Further, we remove English
stopwords and remaining punctuation as these terms are not likely to appear in the source code
vocabulary. We do not stem the terms, as too much information for our matching strategy would
be lost. For each element in the task context, we extract the class name and the method name.
These terms are split according to the camel case rule, as actions are often described using more
than one word. As example, the source code element addPage is split into add and Page, which
both are likely to appear in natural language vocabularies.

5.2 Approach 2 for Recommending Search Terms 37

To find the elements which most likely contain a good search term for the change task at hand, we
match each set of element terms to the set of natural language terms of the change task. We count
how many times a term of the element set contains a term from the natural language set and how
many time a term from the natural language set contains a term from the element set. The element
sets with the highest number of containments are assumed to identify a subset of the concept of
the change task expressed in source code vocabulary. We extract the terms of the highest matching
element sets which are responsible for the high matching. Our approach suggests these terms as
search term recommendations for the given change task.

5.2 Approach 2 for Recommending Search Terms
Our first approach (see 5.1) has one main limitation. Namely the finding of similar change tasks
to the change task at hand. If change tasks covering different concepts are regarded to be similar
to the change task at hand, our approach will most likely not find any search terms. To overcome
this flaw, we implemented a prototype of a second approach which does not rely on specific other
change tasks of the project.
As we explicated in section 5.1 we assume that a particular concept can be either expressed with
natural language terms or can be expressed with source code terms. We also assume that concepts
can have overlapping terms in both corpora. As we assume that a specific concept expressed in
the terms of the natural language corpus is reflected in the terms of the source code corpus, we
conclude that one specific term of the natural language corpus points to one or more specific
terms in the source code corpus.
This approach aims to map the natural language terms which are used overall change tasks to the
terms which are used overall in the source code. To find adequate search terms for a change task
at hand, our approach looks up the natural language terms used for the change task at hand and
suggests the source code terms which are associated to them. As change tasks of the same soft-
ware system generally use an alike vocabulary, it is likely that the natural language terms of the
change task at hand are covered in the mapping. As soon as the change task at hand is completed
the mapping is updated. Hence, the challenge of finding a good search term for a given change
task can be divided into switching between these layers of used vocabularies. To better under-
stand the approach figure 5.2 illustrates the concept. As example, a new change task includes in
its natural language text features the terms nl-t17, nl-t18 and nl-t19 (see figure 5.2). Our approach
looks up the mappings to the source code terms and retrieves for nl-t18 the source code terms
src-t16 and src-t12. For nl-t17 the source code term src-t21 is retrieved and for nl-t19 no key in the
mapping exists.

To create the mapping of the natural language terms to the source code terms, our prototype re-
trieves all change tasks of the project including the associated task contexts. We regard the entries
in the task contexts as the elements which contain the terms which constitute the corpus of the
source code terms. Although our approach would also work with other kinds of information
sources, which identify source code elements, such as a change sets. As in the first approach (see
5.1) we only use the elements of a task context. As we aim to suggest only a few, but precise terms,
we only take into consideration the elements which describe an source code element on method
level. If we would consider also elements which are on a higher level, the corpus of the source
code terms would explode and too many source code terms would be matched to a single nat-
ural language term. The textual features of the retrieved change tasks (i.e. the summary and the
description) constitute the terms of the natural language corpus. Both types of terms undergo a
preprocessing workflow, which enables to better match terms within the same type of corpus. For
the natural language terms, we apply the preprocessing steps which are explained in appendix D.

38 Chapter 5. Two prototypes for Automatically Recommend Search Terms for a Change Task

c = concept, nl-t = natural language term, src-t = source code language term

source code

src-t1 src-t2
src-t3

src-t4

src-t5 src-t6
src-t7 src-t8

src-t9

src-t10

src-t11

src-t12 src-t13

src-t14
src-t15

src-t16

src-t23

src-t17

src-t18

src-t19

src-t20

src-t21
src-t22

c1

c2

c2

c1

nl-t1

nl-t6

nl-t3

natural language

nl-t2

nl-t4

nl-t5

nl-t7

nl-t8

nl-t9

nl-t10

nl-t11

nl-t12
nl-t13

nl-t14

nl-t17

nl-t18
nl-t19

nl-t20

nl-t15

nl-t16

nl-t21

nl-t22

nl-t23
nl-t24 nl-t25

Figure 5.2: The concept of our second approach. We assume that terms of the natural language term corpus
match one or more terms of the source code term corpus. A set of natural language terms defines a concept
of a change task, which can be mapped to a set of terms in the source code term corpus. As example , nl-t1,
nl-t11 and nl-t12 define the concept c2, which is expressed as src-t13, src-t5 and src-t22 in the source code.

In this procedure the terms are stemmed, meaning that the term filtered and filtering are processed
to filter. After the preprocessing steps on the terms of each change task, a change task is repre-
sented as a set of stemmed words. For the task context elements, we retrieve the class name and
the method name of each element, split them according to camel case and remove any additional
punctuation. Further, we setup a small collection of stopwords which threat the usability of this
approach. The stopword collection includes terms, such as can or get, which typically appear in
an object-oriented source code. These terms are excluded from further analysis. After the prepro-
cessings on the elements of each task contexts, we found for each change task the terms on the
natural language level and the terms on the source code level. To get the mapping of one specific
natural language term to one or more specific source code terms, we assign firstly to each natural
language term of a change task all the source code terms of the particular change task. We count
the frequencies of the source code terms which appear in each same term of the change tasks.
This means, that if a change task 1 includes the natural language terms 1,2 and 3 and a change
task 2 includes the natural language terms 3,4 and 5, we assess which source code terms are in
common between the terms attached to term 3 of change task 1 and the terms attached to term 3
of change task 2. The frequencies of the source code term attachments in common for each same
term overall change tasks is the decisive factor for the mapping.
For a new change task, the natural language text features are preprocessed in the same way as for
the completed change tasks. Our approach looks up the natural language terms of the new change
task and return the according source code terms to the user as suggestions for search terms.

5.3 Prototypical Implementation
We implemented a prototype of our approaches to automatically recommend search terms as an
Eclipse plug-in. The user of our prototype has to provide the textual features of the change task

5.4 Case Study 39

1.)

2.)

Figure 5.3: The search term recommender views. 1.) is a screenshot of the user entries and 2.) is a screenshot
of the result view which includes the suggested search terms.

of which she wants to get search term suggestions and a url to the change task repository, which
stores the completed change tasks of the project. Further, the user can select which approach
she wants to use. See 1.) figure 5.3 for a screen shot of this view. When clicking the button Get
Search Terms our prototype starts to retrieve change tasks and the according task contexts from the
specified url. Our prototype implements both approaches which we discussed in section 5.1 and
5.2 to recommend search terms depending on the use selection. The recommendations according
to the approach selected, are presented to the user as depicted in 2.) of figure 5.3.

5.4 Case Study
To understand if search term suggestions generated by our approaches are good, we chose to
conduct a small case study on four change tasks of the project org.eclipse.mylyn.context (see ta-
ble 5.1). We determine if a search term is good, if its usage in a code search tool results in at least
one relevant result. A relevant result is determined through the change set of the change task
being assessed. If a result generated by the code search tool includes a method which is included
in the change set of the change task, we define that the search term entered was good.
For the first approach, we determined similar change task manually to get an idea on how the
approach performs, if this limitations is dispatched. We used the Eclipse File Search tool to query
the 376 files of the project org.eclipse.mylyn.context with the generated search terms. We used the
search terms as part of a regular expression and search only within files ending with “.java” . We
queried the code base of the project with different combinations of the suggested search terms.

40 Chapter 5. Two prototypes for Automatically Recommend Search Terms for a Change Task

As example, for change task 175655 we queried the code base with the combinations [.∗hover.∗],
[.∗listen.∗] and [.∗hover.∗listen.∗|.∗listen.∗hover.∗]. In most cases, it was very obvious which term
combinations are most promising.
The first approach generated on average 2.75 (±1.48) suggestions of search terms and the second
approach generated on average 10 (±4.53) suggestions. (see table 5.1 for the analyzed change
tasks and the generated search terms). Table 5.2 summarizes the findings on relevant results,
generated through the Eclipse File Search tool, we retrieved through the best combination of the
suggested terms. We counted only results pointing to different methods as distinct results in the
Eclipse File Search tool result list.

5.5 Discussion
We applied our approaches only to a small number of change tasks, which limits the general-
izability. However, including the task context into the recommendation of search terms looks
promising. Even though, approach 1 suggested for one of the change tasks five different search
terms and approach 2 suggested for two change tasks 14 search terms. Although, we think that
building good combinations of suggested terms, given the change task text, is not challenging.
Both approaches suffer limitations. Approach 1 is dependent on the identification of a change
task which covers a similar concept and approach 2 is not usable when the set of terms from the
textual features of the change task is too big. Approach 2 suggests a probably exponentially grow-
ing number of search terms depending on the size of the input set. Thus, we think, that approach
2 is more suitable when a query is entered by the user, which is likely not as long as the textual
features of the change tasks. Approach 2 is essentially a translation engine which transform a user
query in natural language into source code language which is more adequate for a code search
tool.
We hypothesize that we found good results, because we could exclude efficiently irrelevant terms
from possible suggestions. Both approaches are not dependent on user input, which may be an
advantage when developer which are unfamiliar with the system start a query.
Future work can be done on excluding terms within both corpora which would yield to many
search results. Thus, an extended stopword list for the specific source code vocabulary is needed.
Our approach can be used in any code search tool, which requires the user to enter a query, as an
initial feature to support developers in finding a good search term. Task contexts are not always
available for a software project. Interchangeably, elements extracted from change sets could be
used instead. However, we hypothesize that elements extracted from change sets do not provide
as good search terms as when a task context is employed, because change sets only include a
subset of the vocabulary, which is identifying the concept of the change task.

5.5 Discussion 41

Change
Task

Summary Description Suggested
Search
Terms 1

Suggested Search Terms 2

175655 [api]
[context]
provide an
on-hover af-
fordance to
supplement
Alt+click
navigation

many times I want to get
a set of files from a pack-
age into the context. cur-
rently the process is pretty
annoying, for each file I
need to: * alt-click the par-
ent package. * click on
the file. since the alt-mode
turns off when I click the
file, I need to do the whole
thing again. it gets extra
annoying if I am in hierar-
chal package presentation,
and I need to ’drill down’
the packages list for each
file. maybe a solution can
be a new ’sticky’ alt click
mode, that remains until I
explicitly turn it off? (ALT-
CTRL maybe?)

hover, listen unfiltered, mouse, deco-
ration, children, hover,
drawer, landmarks,
browse, focused, lis-
tener, bridge, viewer,
move, filters

364155 [api] add
a method
to retrieve
projects in
current ac-
tive context

Build Identifier:
Review is here:
http://review.mylyn.org/
] change,111
Adds a method to retrieve
all IProject, that are con-
tained in the currently ac-
tive context.
Reproducible: Always

ui, project,
activ

projects, landmarks,
editor_se_3_8_2

340622 alt+click
hover af-
fordance
appears
when no
task active

I am seeing the alt+click
hover affordance in the
package explorer without
a task active. It went away
after closing and reopen-
ing the package explorer,
but when I restarted
Eclipse, it was there again.

hover mouse, filtered, deco-
ration, children, hover,
drawer, landmarks,
browse, listener, focused,
filters, viewer, move,
preferences

267143 [performance]
[context]
expand
all causes
expensive
compu-
tations in
InterestFilter

When all nodes in a view
are expanded the interest
filter can cause a noticeable
slow down of the UI.

interest, se-
lect,viewer,
filter, up

unfiltered, handle,
providers, focused, lis-
tener, interaction, tasks,
elements, filters

Table 5.1: The four change tasks of the project org.eclipse.mylyn.context for which we automatically gener-
ate search terms.

42 Chapter 5. Two prototypes for Automatically Recommend Search Terms for a Change Task

Change Task Result List
Length 1

Relevant Results
Approach 1

Result List
Length 2

Relevant Results
Approach 2

175655 5 5 5 5
364155 3 1 1 0
340622 5 0 6 2
267143 15 8 3 0

Table 5.2: The number of results generated by the Eclipse File Search tool using the best combination of the
suggested search terms and the number of results which point to methods which were changed within a
change set which is linked to the change task.

Chapter 6

Approach: Automatic
Identification of a Starting

Context

We suggest an approach to automatically identify starting points for code exploration given a
change task at hand. We base this approach on the observations from the explorative study (see
section 3) and the findings from the case studies conducted on the change tasks and task contexts
of the project org.eclipse.mylyn.context (see section 4). We developed a prototypical implemen-
tation of our approach, which can be used in future work to examine its feasibility. The prototype
is implemented as an Eclipse plug-in.

6.1 Usage Scenario
This section illustrates how a software developer can use our approach for finding starting points
in the source code for a change task at hand.
The software developer John has joined the Mylyn software development team recently. He al-
ready worked on the Mylyn software system, but is not familiar with the source code at all. Today,
he gets a new change task assigned. He understands that the change task is about some unex-
pected behaviors in the package explorer when hovered over, but he has no clue where to jump
into the source code to understand more about the problem domain.
So, John opens in Eclipse the view Starting Context Recommender and enters all required informa-
tion, such as the change task id, the url to the repository containing the other change tasks of the
project and finally he enters the path to his local git repository (see figure 6.2). Then he clicks on
Get Recommendations. A result view is presented (see figure 6.3) which includes the recommen-
dations for starting points of John’s change task. John immediately strikes the recommendation
MoveListener and FilteredChildrenDecorationDrawer. He jumps into the recommen-
dation MoveListener by double-clicking on the result. He notices that MoveListener is a
private class of FilteredChildrenDecorationDrawer and that it is related to mouse hover-
ing, since he finds the method mouseHover in this class. At this point John is indecisive what
to do, because mouseHover seems to work appropriately. So, he decides to go back to the Start-
ing Context Recommender view to explore more results. He notices that the third result in the
recommendation list includes the terms applyToTreeViewer, addListener and addMouseMoveListener
and hence he jumps into the method applyToTreeViewer where he finally finds the missing
if-statement which caused the change task.

44 Chapter 6. Approach: Automatic Identification of a Starting Context

ct

ct

ct

finding similar change tasks

tc

tc

starting point recommendations complementing the
starting points with
contextual
information

ct = change task, tc = task context

Figure 6.1: The workflow of our approach to automatically recommend a starting context for a change task at
hand. First, similar change task are determined through a feature pattern. Then, using the degree-of-interest
model, relevant elements of a task context are pitched on. These elements are the recommendations for po-
tentially relevant starting points for the change task at hand. Finally, we complement the recommendations
with structural information of the source code.

6.2 Identification of a Starting Context
To recommend a starting context for a change task at hand, our approach comprises three distinct
parts. First we retrieve out of the set of reported change tasks all similar change tasks to the
change task at hand. Then, we recommend the top three task context elements according to the
degree-of-interest model as starting points for the change task at hand. In a third step, these
starting points are complemented with contextual information, which we infer from the source
code structure of the project.
Our approach is based on the assumption that the feature pattern tc3, which is specified in section
4.1, table 4.1, matches similar change tasks to a change task at hand. Thus, a change task is
retrieved, and regarded as similar, if it has the same values for the features reporter and os and if
the cosine similarity of its textual features is at least 0.14. To determine relevant elements from the
task contexts of the similar change tasks, we use the degree-of-interest model. The determined
elements of the task contexts are recommended as initial starting points for the change task at
hand. To provide a context for each recommendation, we look up the method invocations of
the relevant element in the source code structure. At this stage, our prototypical implementation
cannot include the methods which invoke the relevant element, as this procedure consumes too
much computation time. Figure 6.1 depicts the workflow of our approach.

6.2 Identification of a Starting Context 45

Figure 6.2: To use our tool, the user has to provide the id of the change task to investigate, the url to the
change task repository and the path to the local git repository. If all information is provided, the user can
click the button Get Recommendations to generate suggestions for an initial starting context. In this screenshot
one queries an initial starting context for change task 340622.

46 Chapter 6. Approach: Automatic Identification of a Starting Context

Figure 6.3: The recommended starting points for change task 340622. One can jump into the recommenda-
tions by double-clicking the result.

Chapter 7

Implementation Details

This section describes the prototypical implementation of our approach to automatically identify
a starting context for a change task at hand. We implemented our approach as an Eclipse plug-in.
Our implementation integrates with the change task repository Bugzilla. Although our approach
is extensible to other change task repositories.
The implementation consists of mainly six components: View, Starting Context Recommender,
Data Model, Similarity Engine, Connector and Source Code Parser (see figure 7.1). In the follow-
ing, we characterize each component in more detail. Furthermore, we briefly disclose implemen-
tation details of the search term recommender 3.5.3 and the Visual Studio Monitor which we used
in the exploratory study 3.

7.1 Data Model

Our implementation is based on an underlying model. This model consists of the change task
model, which reflects several features of a Bugzilla change task. The model captures the id, sum-
mary, description, product, reporter, component, version, severity, hardware and os features of a change
task. Further, a comment model and an attachment model are included in the change task model.
Each of these models capture relevant pieces of information regarding the comments, respectively
the attachments. The change task model includes the information to load the priorly downloaded
zip file which includes the task context. The task context is stored in an xml file. We hook the
LocalContextStore of org.eclipse.mylyn.internal.context.core to work with the task context.

7.2 Starting Context Recommender

This component defines the workflow of our approach. It receives the user input and downloads
the change tasks. Then it queries the similar change task to the specified one by invoking the sim-
ilarity engine. Then it retrieves the interesting elements of each similar change task’s context by
hooking the IInteractionContext of org.eclipse.mylyn.context.core. The relevant elements
are fed into the source code parser which determines the callees of the relevant elements. Finally,
the starting context recommender weights the terms according to their occurrences and passes
the information to the view, which displays the result to the user.

48 Chapter 7. Implementation Details

Change Task Repository
Connector

Similarity Engine

Cosine Similarity
Calculator

Text Preprocessing
Activities

Vector Creation Engine

Data Model

Change Task Model

Local Context Store

Eclipse Platform

View Starting Context Recommender

Source Code Parser

Figure 7.1: Overview of the five main components included in the architecture of our prototypical imple-
mentation.

7.3 View 49

7.3 View
So far, our implementation provides two views, implemented with SWT, to interact with a user:
the entry view and the results view. In the entry view, the user can provide the details needed for
our approach, such as the change task id, the url for the Bugzilla tracking system and the path to
the local git repository. The results view displays the task context. The results view responds to
double-click events on a result to open the specific file in the Eclipse editor. See examples of these
view in figure 6.2, respectively figure 6.3.

7.4 Connector
Our implementation includes a connector to the change task tracking system Bugzilla. Although
the approach works with any change task tracking system. To connect to the Bugzilla change task
repository, we hook the BugzillaRepositoryConnector of the project org.eclipse.mylyn.internal.bugzilla.core.
The user of our prototypical implementation only has to provide a query. One can query the an-
alyzed set of change tasks in the browser application of Bugzilla 1 and then copy and paste the
url into our prototypical implementation. The connector includes an adapter which adapts the
queried change tasks from Bugzilla to our change task model. The adapter also downloads the
change tasks’ task context zip files and stores them locally.
Furthermore, we also implemented a git repository connector which was employed during the
case study 1 of section 4.1 to retrieve change sets of change tasks.

7.5 Source Code Parser
To complete a recommended starting point automatically with additional context, we analyze the
call dependencies of the particular project. To do so, we read all .java files of the project and build
an abstract syntax tree by using the org.eclipse.jdt.core.dom.ASTParser. Through a visitor pattern
we search the abstract syntax tree for the method, which is recommended as starting point. Then
we look up all method invocations of the found method declaration. We also implemented the
mechanics to find the callers of the recommended method. This procedure includes searching in
each method declaration of a particular method invocation. We could not include this piece of
functionality in our prototypical implementation as the computation consumes too much time.

7.6 Similarity Engine
The similarity engine includes all functionality required to match two change tasks. Specifically,
it preprocesses the textual features, creates vectors out of the preprocessed textual features and
calculates the cosine similarity between two vectors. The specific preprocessing activities are de-
scribed in Appendix D. At this point we complement the report on text preprocessing activities.
We report on the code snippet detection mechanism, which is part of the preprocessing activi-
ties. We assume that the analyzed project is written in Java and the code conforms to the Java
coding conventions 2. Inspired by the work of Nicholas Sawadsky [Saw12], we define a regular
expression which determines if text is regarded as Java code. Specifically, the regular expression
is constructed through the following rules:

1https://bugs.eclipse.org/bugs/query.cgi
2http://www.oracle.com/technetwork/java/javase/documentation/codeconventions-135099.html#367

50 Chapter 7. Implementation Details

• the term starts with one or more lower-case letters AND contains at least one upper-case
letter; OR [Saw12]

• the term starts with an upper-case letter AND contains at least one lower-case letter, fol-
lowed by an upper-case letter; OR [Saw12]

• the term starts with two or more upper-case letters AND contains at least one lower-case
letters [Saw12].

• the term starts with either one or more lower-case or upper-case letters AND contains a dot
which is followed by at least one lower-case letter.

To create vectors out of the preprocessed textual features, we used the class Matrix of the Jama
project 3. These vectors are weighted according to the TF/IDF (term-frequency-inverse docu-
ment frequency) weighting mechanism. We calculated the cosine between these vectors using the
formula [SB88]:

similarity(Q,D) =

∑t
k=1 wqk · wdk√∑t

k=1 (wqk)
2 ·

∑t
k=1 (wdk)

2

In the above formula, Q denotes the query vector, D denotes the document vector, wqk denotes
the weight of the term k of Q and wdk denotes the weight of term k of D.

7.7 Search Term Recommender
The search term recommender is part of the Eclipse plugin we built for our prototypical imple-
mentation of our approach to automatically recommend a starting context. Both views can be
opened in Eclipse through Window → Show View → Other → Starting Context Recommender tools
(see 7.2). The search term recommender uses BugzillaConnector 7.4 to retrieve the change
tasks of the project specified in the url which is provided by the user. The search term recom-
mender hooks the LocalContextStore of org.eclipse.mylyn.internal.context.core to parse the
task contexts into IInteractionElements. We implemented a text preprocessor for the text
features used in the search recommender. This text preprocessor includes a subset of the pre-
processing steps which are described in appendix D. Particularly, we do not stem words in this
case, so that they can better be matched to the terms included in the structure handles of the
IInteractionElements. The preprocessing steps on the task context elements are specified in
the search term recommender.

7.8 Visual Studio Monitor
To monitor the navigation steps, the keyboard inputs and the selections conducted by the partic-
ipants within Visual Studio, we implemented a Visual Studio extension. Several navigation steps
are hooked by a command interceptor. This visual studio extension can handle events from the
following commands: clean solution, find, go to definition, open class view, clear breakpoints, close all
documents, close document, close solution, open debug explorer, enable breakpoint, F1 help, file close, file
open, find backwards, find in files, find in selection, find match case, find next, find prev, find all refer-
ences, find whole word, go to error tag, insert breakpoint, open output window, paste, pause, open project

3http://math.nist.gov/javanumerics/jama/

7.8 Visual Studio Monitor 51

Figure 7.2: The tools included in our Eclipse plugin.

explorer, replace, replace in files, resume, save and save as. Although, we did make use of all of these
commands during the explorative study. The keyboard is captured through intercepting key-
board inputs and the selections are captured through the determination of where the cursor is.
All gathered data is stored together with a timestap in XML.

Chapter 8

Future Work

Part of future work is the determination of the feasibility of our approach and its prototypical
implementation in a user study. Furthermore, many features could extend our approach to auto-
matically identify a starting context for a new change task. In the following, we discuss some of
these possible features.

8.1 Presenting the Rationale of a Recommendation
We found in the explorative study, that users may be confused, when they explore a search re-
sult which is unclear why it is recommended. Consequently, a mechanism should be included
which explains the creation of the search result. As example, the terms which are responsible for
the recommendation should be marked. In this way, the user may be more confident about the
relevancy of a search result.

8.2 Remembering Relevant Search Results
We observed in the explorative study that some developers had to look for a relevant search
result twice, because they searched for other terms in meanwhile. In one case, the participant
forgot the term he queried and was spending some of his available time in remembering what
he searched for. Thus, our prototypical implementation should include some kind of support to
remember relevant search results. One suggestion is to drag and drop relevant search results in a
so-called relevant search results pool. Search results from this pool can be recovered more easily.
Furthermore, functionality to explore the search history would also be an option.

8.3 Including Selections of Prior Searches in the
Query

Future work, which could extend a code search tool, is to take prior queries for the change task
into account for the generation of the recommendation list for the current query. As example, top
results from a prior query which were not further explored, should be excluded from subsequent
result lists.

54 Chapter 8. Future Work

8.4 Examining Task Contexts
Further research can be conducted in the way task contexts are examined. Our work used only
textual features to compare a task context to another subject. In a next step, structural features
from the code could be included. As example, elements which are reachable within a defined
number of navigation steps starting from a task context element could be included in the analysis.

Chapter 9

Conclusion

Developers spend a substantial amount of time locating and understanding parts of the source
code while performing a change task. In an explorative study we investigated what challenges
developers face during the initial search and navigation phase before an actual change is made.
Furthermore, we investigated whether the extending of search results with a context supports
developers during the initial search and navigation phase. We found that the presentation of
a context in the search results supports the developers insofar that search results are more ac-
curately assessed and thus relevant search results were chosen more often. We identified one
major challenge in the initial search and navigation phase in finding accurate search terms given
a change task description.
Since we found that the contextual information within a search results supports the developers
in the initial search and navigation phase, we further investigated the generation of search re-
sults by using user interaction histories. We analyzed by using user interaction histories the two
steps which are typically employed in an information-retrieval-based procedure: finding similar
change tasks and recommending starting points for a change task at hand. We observed that in
terms of finding similar change tasks to a change task at hand, the use of user interaction histories
does not resolve in an improvement of preciseness. In terms of finding starting point recommen-
dations we could generate for 66.67 % of the analyzed change task a relevant result.
We consolidated the findings of the explorative study and the results on the generation of a start-
ing point in an approach to automatically recommend a starting point for a given change task.
We implemented the approach as a prototype to evaluate the feasibility. The user study on the
feasibility of our approach is part of the future work.

Appendix A

Participant Instructions

58 Chapter A. Participant Instructions

Instructions

In the following you will get 6 change tasks of the project Sando, which you will either investi-
gate using Sando and navigation support of Visual Studio or using CoMoGen additionally to the
navigation support of Visual Studio.

For each change task you will find an individual Visual Studio 2012 instance running on the
remote computer. The corresponding revision of the Sando solution is already opened in each
Visual Studio instance.

Given the change task, please use <Comogen/Sando> to identify three places in the source
code (at least on method level) you would point a new programmer to, who will be assigned
this task to work on.

During the accomplishment of the change tasks please speak out loud at which elements you are
looking at and what you are doing. Try to select what you are looking at.

You are finished with each task when you think you found the relevant elements in the code or
when 10 minutes are up. After finishing the accomplishment of the change task you will be asked
to fill out a questionnaire about your confidence of the identified starting context.

Please note that your navigation steps within Visual Studio are captured and the screen and audio
are recorded.

Appendix B

Questionnaire

60 Chapter B. Questionnaire

Starting Context Confidence Questionnaire

Please write down the three places in the source code you found, that you would point a new
programmer to, who will be assigned this task:

Please rate how confident you are that the identified places in the source code are relevant for
performing the change task (5-highly confident, . . . , 1-not confident).

◦ 5

◦ 4

◦ 3

◦ 2

◦ 1

Why do you think the places in the source you find are a good starting point?

Please rate how confident you are that the search terms you used yield to good search results
(5-highly confident, . . . , 1-not confident).

◦ 5

◦ 4

◦ 3

◦ 2

◦ 1

Please rate the difficulty of the task (5-very difficult, . . . , 1-very easy).

◦ 5

◦ 4

◦ 3

◦ 2

◦ 1

Appendix C

Interview quintessences

62 Chapter C. Interview quintessences

number of participants quintessence
2 The sequence diagram helped me to gain confidence
2 I liked the sequence diagrams
6 I did not like the sequence diagrams
2 I would prefer a list or a tree of search results over sequence diagrams
4 The sequence diagrams were hard to read
9 I assessed a result on the basis of the terms included
4 I think that the code snippets in Sando are useful
4 I ignored the code snippets in Sando
6 I was confused with search result which have no interesting terms in it
2 Comogen misses an outline over all results
4 I think the test classes were useful to display in the search results
3 I think test classes in the search result were not useful
6 The test classes should be marked
3 I think it is better to have less results

10 I tried to select words from the change tasks which can only describe
this specific concept

Table C.1: The quintessences of the semi-structured interview (translated from German to English) we con-
ducted with each participant after he finished working on all the task.

Appendix D

Text Preprocessing

Preceding the application of any information retrieval model, text preprocessing steps are con-
ducted in order to achieve a better accuracy of the results. We adapt the five preprocessing steps,
which are proposed by Baeza-Yates and Ribeiro-Neto [BYRN99] and include an explicit prepro-
cessing of code related terms to the text features of the change tasks. Some of these preprocessing
steps lower the number of terms which are indexed and some of the preprocessing steps come up
with term categorization structures. Both types of preprocessing steps are believed to improve
the accuracy of the applied information retrieval techniques [BYRN99].
The sequence of the preprocessing steps is rather important. As example, the selection of stop
words highly depends on the grammatical status of a term and the exclusion of punctuation
requires the previous removal of code snippets and stack traces. Figure D.1 depicts the text pre-
processing workflow which specifies which step sequence is conducted.

Lexical Analysis of the Text
A manual screening of different change tasks from the project org.eclipse.mylyn.context revealed
several discussion points. The identified discussion points and their treatment are enlisted in the
following:

• Code snippets and stack traces. In most of the change tasks appear code snippets or stack
traces as part of the text features. These code related terms need to be extracted from the
natural language text, because in the code related terms a strongly diverse vocabulary is
used than in the natural language sections. The text of the code related terms holds in our
case Java specific vocabulary, which means that symbols have a different meaning allocated
than symbols in natural language would have. Thus, we apply different preprocessing steps
to the code related terms. See below for details about the preprocessing activities of the
code related terms. The subsequent discussion points apply only to natural language text
sections.

• Paths. Some change tasks include in their text features descriptions of paths, such as plu-
gins/.mylyn/tasks/<repository>/data/<task id>/. These paths vary in their appearances
throughout the change tasks and do not offer significant semantic information. We exclude
these path declarations from our further analysis.

• Punctuation. We identified 22 distinct symbols (?,!, @, :, ", (,), ., [,], <, > ,/ , *, ’, +, _, =, „
;, ^, $), which do not hold significant semantic information and are thus removed from the
text and not included in our further analysis. Further, we specified three exceptions of the
general removal rule. We think that version specifications and keyboard combinations do
hold semantic value which we can exploit. Thus, we do not remove branch specifications,

64 Chapter D. Text Preprocessing

ex
tr

ac
t

co
d

e
sn

ip
p

et
s

an
d

 s
ta

ck

tr
ac

es

u
n

p
ro

ce
ss

ed

te
xt

re
m

o
ve

 p
at

h

d
ec

la
ra

ti
o

n
s,

 h
an

d
le

h

yp
er

lin
ks

lo
w

er
 c

as
e

th
e

te
xt

re
m

o
ve

 n
am

es

Le
xi

ca
l A

n
al

ys
is

 o
f

th
e

Te
xt

p
re

p
ro

ce
ss

ed

te
xt

cr
ea

te
 t

o
ke

n
s

Le
xi

ca
l A

n
al

ys
is

 o
f

th
e

Te
xt

h
an

d
le

 p
u

n
ct

u
at

io
n

,
h

yp
h

en
s

an
d

n

u
m

b
er

s

el
im

in
at

io
n

 o
f

st
o

p
w

o
rd

s
st

em
m

in
g

cr
ea

te
 a

 t
h

es
au

ru
s

in
d

ex
 t

er
m

 s
el

ec
ti

o
n

Figure D.1: The sequence in which the text preprocessing steps are accomplished.

65

such as e_4_3_m_3_9_x, version specifications such as 4.2.2. and keyboard combinations,
such as Ctrl+Alt+Shift.

• Hyphens. Hyphens are used in different ways throughout the change tasks. On the one
hand they are used as part of the term itself, such as example the term task-specific and on
the other hand they are used as dash, to determine an a time span, as part of an arrow or in
an enumeration. We only regard the hyphens which are part of a specific term as valuable,
as the splitting of the term would lead often to two terms with little information content.

• Upper and lower case. Depending on the position in the text and on the specific type of the
term, terms are either lower-cased, upper-cased or a mixture of it. To be able to match terms
exactly the entire natural language text is transformed to lower case symbols.

• Numbers. In our case, numbers are generally to vague to include strong semantic informa-
tion and change task ids cannot be distinguished from other six digit numbers. Hence, we
exclude numbers from our analysis. As mentioned above, version specifications build the
exception from this rule.

• Hyperlinks. Many change tasks contain hyperlinks in their text features. These hyperlinks
point as example to a Gerrit code review web page 1, to the Mylyn FAQ web page 2, to
Hudson logs 3, to the eclipse wiki 4, to an eclipse update site 5, to tools 6, or to the Mylyn
download page 7. These hyperlinks do not contain significant semantic information. Thus
we exclude all of them in our further analysis.

• Names. Screening through the change tasks revealed that names of people who contributed
to the project or who submitted the change task appear in the text sections. As people’s
names can be ambiguous and names do not reveal strong semantic information we identi-
fied 77 names which are filtered out of the text features.

• Abbreviations. Rarely abbreviations of words are used, such as C instead of see. Terms which
consists only of one letter are removed from the candidate index terms because they are not
holding enough semantic information.

Code related Terms Preprocessing
As code related terms can determine a quite exact place in the source code, which is possibly in-
volved in the change task, this information content is important for our analysis. Similar to the
text preprocessing steps of the natural language terms, also the code related terms need prepro-
cessing steps to enhance the accuracy of the applied information retrieval approach. The manual
screening of the code related terms the following lexical analysis steps:

• Punctuation. Code related terms includes a lot of different symbols (:,(,), ;, ., =, <, >, „ $). In
our analysis these symbols are not needed and are thus removed.

• Numbers. The included stack traces include a lot of numbers to determine on which line
the error occurred. We remove these numbers as they are not holding enough semantic
information.

1as example https://git.eclipse.org/r/#/c/13879/ in change task 334937
2as example http://wiki.eclipse.org/Mylyn/FAQ#Why_does_startup_of_org.eclipse.mylyn.

context.ui_take_so_long.3F in change task 226618
3as example https://hudson.eclipse.org/hudson/job/mylyn-context-nightly/104/consoleFull in

change task 359547
4as example http://wiki.eclipse.org/EGit/User_Guide#Creating_Patches in change task 354989
5as example http://download.eclipse.org/tools/mylyn/update/maintenance in change task 325551
6as example http://csdl.ics.hawaii.edu/Tools/Jupiter/ in change task 162007
7as example http://eclipse.org/mylyn/downloads/#weekly in change task 327432

https://git.eclipse.org/r/#/c/13879/
http://wiki.eclipse.org/Mylyn/FAQ#Why_does_startup_of_org.eclipse.mylyn.context.ui_take_so_long.3F
http://wiki.eclipse.org/Mylyn/FAQ#Why_does_startup_of_org.eclipse.mylyn.context.ui_take_so_long.3F
https://hudson.eclipse.org/hudson/job/mylyn-context-nightly/104/consoleFull
http://wiki.eclipse.org/EGit/User_Guide#Creating_Patches
http://download.eclipse.org/tools/mylyn/update/maintenance
http://csdl.ics.hawaii.edu/Tools/Jupiter/
http://eclipse.org/mylyn/downloads/#weekly

66 Chapter D. Text Preprocessing

• Upper and lower case. The word case is important in Java source code as it indicates which
Java construct the term denotes. Thus, we do not preprocess the terms regarding upper and
lower case.

Stemming
We stem the terms to their grammatical root, such that we can match terms even when they exhibit
plurals, gerund forms or past tenses. This preprocessing step reduces again the number of dis-
tinct candidate index terms, which is believed to improve the precision and recall of the applied
information retrieval approach. We choose the Porter algorithm to stem the terms of the analyzed
change task, as this algorithm applies affix removal which is intuitive and simple [BYRN99].

Elimination of Stop words
Terms which appear in 80% of the change task are regarded as inefficient, because they do not
reveal any identifiying concepts of the change tasks. As we are analyzing natural language, ar-
ticles, prepositions and conjuctions appear in every change task and are thus regarded as stop
words [BYRN99] which are removed from the candidate index terms. Hence, we filter out 571
distinct english stop 8 words from the processed text features. Further, we also add terms to
the stoplist, which are specific to the vocabulary used in the analyzed change tasks as Zaman et
al. [ZMB11] found out that a tailored list of stop words improves the performance of the applied
information retrieval approach.

Removing stop words from the list of candidate index terms, typically compresses the list up
to 40% or even more. This reduction of the index terms affects beneficially the precision in the
applied information retrieval approaches. In return, the recall degrates if a query includes too
many stop words [BYRN99]. As our approach is not dependent on any user input and we use
queries which do not include any stop words. So, the risk of reduction of the recall is lowered in
our case.

Index Terms Selection
Baeza-Yates and Ribeiro-Neto [BYRN99] argue that most of the significant conceptual information
of a text is included in nouns. Hence, one option (option 1) is to select nouns for indexing and
not considering other grammatical groups. Broglio et al. [BCCN94] present an approach which
clusters nearby nouns and uses this noun group as a distinct index term (option 2). As Baeza-
Yates and Ribeiro-Neto suggest, we use a syntactic distance of three as the predefined threshold
to build noun clusters [BYRN99]. A third and simple option (option 3) is to select each term which
is surrounded by whitespaces. Option 4 to 6 are assembled through adding the preprocessed code
related terms to each of the options 1-3.

Thesaurus
An idea can be expressed using several different words. Although the community which con-
tributes to org.eclipse.mylyn.context is rather small, it looks like no general glossary is used.
Unfortunately, we can only match terms which are composed of exactly the same symbols. To
overcome this flaw, we make use of a thesaurus to express a concept with alternative terms. We
employed the popular thesaurus of Peter Roget [Com96].

8The list of stop words can be found here http://jmlr.org/papers/volume5/lewis04a/
a11-smart-stop-list/english.stop

http://jmlr.org/papers/volume5/lewis04a/a11-smart-stop-list/english.stop
http://jmlr.org/papers/volume5/lewis04a/a11-smart-stop-list/english.stop

Appendix E

Contents of the CD-ROM

The following files are stored on the CD-ROM:

• Zusammenfassung.pdf
The German version of the abstract of this thesis

• Abstract.pdf
The English version of the abstract of this thesis

• MasterThesis.pdf
A copy of this thesis

• StudyData.zip
All data that was analyzed in connection with the explorative study

• StartingContextRecommender.zip
The Eclipse plugin

• StartingContextRecommender Documentation
The JavaDoc documentation of the plugin project

• VisualStudioMonitor.zip
The Visual Studio extension

Appendix F

Used Libraries, Tools and
Plug-ins

• org.eclipse.mylyn.bugzilla.core

• org.eclipse.mylyn.tasks.core

• org.eclipse.mylyn.context.core

• org.eclipse.mylyn.monitor.core

• Jama - http://math.nist.gov/javanumerics/jama/
A linear algebra package for Java

• Joda-Time - http://www.joda.org/joda-time/
A package to handle date and time in Java

• Apache Lucene - http://lucene.apache.org/core/
A Java text search engine library

• The Open Roget’s Project - http://rogets.site.uottawa.ca/
Library for lexical analysis resources for natural language

• Stanford Log-linear Part-of-Speech Tagger - http://nlp.stanford.edu/software/
tagger.shtml
Library to determine the part of speech to a word

http://math.nist.gov/javanumerics/jama/
http://www.joda.org/joda-time/
http://lucene.apache.org/core/
http://rogets.site.uottawa.ca/
http://nlp.stanford.edu/software/tagger.shtml
http://nlp.stanford.edu/software/tagger.shtml

70 Chapter F. Used Libraries, Tools and Plug-ins

Bibliography

[ACCDL00] G. Antoniol, G. Canfora, G. Casazza, and A. De Lucia. Identifying the starting impact
set of a maintenance request: a case study. In Software Maintenance and Reengineering,
2000. Proceedings of the Fourth European, pages 227–230, 2000.

[AG05] G. Antoniol and Y.-G. Gueheneuc. Feature identification: a novel approach and a
case study. In Software Maintenance, 2005. ICSM’05. Proceedings of the 21st IEEE Inter-
national Conference on, pages 357–366, 2005.

[ASGA12] N. Ali, A. Sabane, Y. Gueheneuc, and G. Antoniol. Improving bug location using
binary class relationships. In Source Code Analysis and Manipulation (SCAM), 2012
IEEE 12th International Working Conference on, pages 174–183, 2012.

[BCCN94] John Broglio, James P. Callan, W. Bruce Croft, and Daniel W. Nachbar. Document
retrieval and routing using the inquery system. In In Proceeding of Third Text Retrieval
Conference (TREC-3, pages 29–38, 1994.

[BMW94] Ted J. Biggerstaff, Bharat G. Mitbander, and Dallas E. Webster. Program understand-
ing and the concept assignment problem. Commun. ACM, 37(5):72–82, May 1994.

[BYRN99] Ricardo A. Baeza-Yates and Berthier Ribeiro-Neto. Modern Information Retrieval.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[Com96] Houghton Mifflin Company. Roget’s II: The New Thesaurus. Houghton Mifflin Com-
pany, 1996.

[CR01] Kunrong Chen and Vaclav Rajlich. Ripples: Tool for change in legacy software.
In Proceedings of the IEEE International Conference on Software Maintenance (ICSM’01),
ICSM ’01, pages 230–, Washington, DC, USA, 2001. IEEE Computer Society.

[DCR05] R. DeLine, Mary Czerwinski, and G. Robertson. Easing program comprehension
by sharing navigation data. In Visual Languages and Human-Centric Computing, 2005
IEEE Symposium on, pages 241–248, 2005.

[EDV05] A.D. Eisenberg and K. De Volder. Dynamic feature traces: finding features in un-
familiar code. In Software Maintenance, 2005. ICSM’05. Proceedings of the 21st IEEE
International Conference on, pages 337–346, 2005.

[EKS03] Thomas Eisenbarth, Rainer Koschke, and Daniel Simon. Locating features in source
code. IEEE Trans. Softw. Eng., 29(3):210–224, March 2003.

72 BIBLIOGRAPHY

[ES98] K. Erdos and H.M. Sneed. Partial comprehension of complex programs (enough to
perform maintenance). In Program Comprehension, 1998. IWPC ’98. Proceedings., 6th
International Workshop on, pages 98–105, 1998.

[ESS92] Stephen G. Eick, Joseph L. Steffen, and Eric E. Sumner, Jr. Seesoft-a tool for visualiz-
ing line oriented software statistics. IEEE Trans. Softw. Eng., 18(11):957–968, Novem-
ber 1992.

[ESW06] Dennis Edwards, Sharon Simmons, and Norman Wilde. An approach to feature
location in distributed systems. J. Syst. Softw., 79(1):57–68, January 2006.

[Fie05] Andy Field. Discovering Statistics Using SPSS. SAGE Publications, 2005.

[FKS+08] Scott D. Fleming, Eileen Kraemer, R. E. K. Stirewalt, Shaohua Xie, and Laura K. Dil-
lon. A study of student strategies for the corrective maintenance of concurrent soft-
ware. In Proceedings of the 30th international conference on Software engineering, ICSE
’08, pages 759–768, New York, NY, USA, 2008. ACM.

[Fou13] The Eclipse Foundation. Mylyn @ONLINE, August 2013.

[FTAM96] R. Fiutem, P. Tonella, G. Antoniol, and E. Merlo. A cliche-based environment to
support architectural reverse engineering. In Software Maintenance 1996, Proceedings.,
International Conference on, pages 319–328, 1996.

[GYK01] William G. Griswold, Jimmy J. Yuan, and Yoshikiyo Kato. Exploiting the map
metaphor in a tool for software evolution. In Proceedings of the 23rd International
Conference on Software Engineering, ICSE ’01, pages 265–274, Washington, DC, USA,
2001. IEEE Computer Society.

[KAM05] Andrew J. Ko, Htet Aung, and Brad A. Myers. Eliciting design requirements for
maintenance-oriented ides: a detailed study of corrective and perfective mainte-
nance tasks. In Proceedings of the 27th international conference on Software engineering,
ICSE ’05, pages 126–135, New York, NY, USA, 2005. ACM.

[KDV07] Andrew J. Ko, Robert DeLine, and Gina Venolia. Information needs in collocated
software development teams. In Proceedings of the 29th international conference on Soft-
ware Engineering, ICSE ’07, pages 344–353, Washington, DC, USA, 2007. IEEE Com-
puter Society.

[KM05a] Mik Kersten and Gail C. Murphy. Mylar: a degree-of-interest model for ides. In
Proceedings of the 4th international conference on Aspect-oriented software development,
AOSD ’05, pages 159–168, New York, NY, USA, 2005. ACM.

[KM05b] Andrew J. Ko and Brad A. Myers. A framework and methodology for studying the
causes of software errors in programming systems. Journal of Visual Languages &
Computing, 16(1-2):41 – 84, 2005. <ce:title>2003 IEEE Symposium on Human Centric
Computing Languages and Environments</ce:title>.

[KM06] Mik Kersten and Gail C. Murphy. Using task context to improve programmer pro-
ductivity. In Proceedings of the 14th ACM SIGSOFT international symposium on Founda-
tions of software engineering, SIGSOFT ’06/FSE-14, pages 1–11, New York, NY, USA,
2006. ACM.

BIBLIOGRAPHY 73

[KMCA06] Andrew J. Ko, Brad A. Myers, Michael J. Coblenz, and Htet Htet Aung. An ex-
ploratory study of how developers seek, relate, and collect relevant information
during software maintenance tasks. IEEE TRANSACTIONS ON SOFTWARE EN-
GINEERING, 32(12):971–987, 2006.

[LK11] Seonah Lee and Sungwon Kang. Clustering and recommending collections of code
relevant to tasks. In Software Maintenance (ICSM), 2011 27th IEEE International Con-
ference on, pages 536–539, 2011.

[LPLS86] David C. Littman, Jeannine Pinto, Stanley Letovsky, and Elliot Soloway. Mental
models and software maintenance. In Papers presented at the first workshop on empirical
studies of programmers on Empirical studies of programmers, pages 80–98, Norwood, NJ,
USA, 1986. Ablex Publishing Corp.

[MBK91] Y.S. Maarek, D.M. Berry, and G.E. Kaiser. An information retrieval approach for
automatically constructing software libraries. Software Engineering, IEEE Transactions
on, 17(8):800–813, 1991.

[MJS+00] Hausi A. Müller, Jens H. Jahnke, Dennis B. Smith, Margaret-Anne Storey, Scott R.
Tilley, and Kenny Wong. Reverse engineering: a roadmap. In Proceedings of the
Conference on The Future of Software Engineering, ICSE ’00, pages 47–60, New York,
NY, USA, 2000. ACM.

[MKRv05] Gail C. Murphy, Mik Kersten, Martin P. Robillard, and Davor Čubranić. The emer-
gent structure of development tasks. In Proceedings of the 19th European conference
on Object-Oriented Programming, ECOOP’05, pages 33–48, Berlin, Heidelberg, 2005.
Springer-Verlag.

[MN96] Gail C. Murphy and David Notkin. Lightweight lexical source model extraction.
ACM Trans. Softw. Eng. Methodol., 5(3):262–292, July 1996.

[MRB+05] A. Marcus, V. Rajlich, J. Buchta, M. Petrenko, and A. Sergeyev. Static techniques for
concept location in object-oriented code. In Program Comprehension, 2005. IWPC 2005.
Proceedings. 13th International Workshop on, pages 33–42, 2005.

[MSRM04] A. Marcus, A. Sergeyev, V. Rajlich, and J.I. Maletic. An information retrieval ap-
proach to concept location in source code. In Reverse Engineering, 2004. Proceedings.
11th Working Conference on, pages 214–223, 2004.

[MTO+92] H. A. Müller, S. R. Tilley, M. A. Orgun, B. D. Corrie, and N. H. Madhavji. A re-
verse engineering environment based on spatial and visual software interconnection
models. SIGSOFT Softw. Eng. Notes, 17(5):88–98, November 1992.

[PPBH91] Santanu Paul, Atul Prakash, Erich Buss, and John Henshaw. Theories and techniques
of program understanding. In Proceedings of the 1991 conference of the Centre for Ad-
vanced Studies on Collaborative research, CASCON ’91, pages 37–53. IBM Press, 1991.

[RK01] J. Rilling and B. Karanth. A hybrid program slicing framework. In Source Code Anal-
ysis and Manipulation, 2001. Proceedings. First IEEE International Workshop on, pages
12–23, 2001.

[RM02] M.P. Robillard and G.C. Murphy. Concern graphs: finding and describing concerns
using structural program dependencies. In Software Engineering, 2002. ICSE 2002.
Proceedings of the 24rd International Conference on, pages 406–416, 2002.

74 BIBLIOGRAPHY

[RM03] M.P. Robillard and G.C. Murphy. Automatically inferring concern code from pro-
gram investigation activities. In Automated Software Engineering, 2003. Proceedings.
18th IEEE International Conference on, pages 225–234, 2003.

[RM08] M.P. Robillard and P. Manggala. Reusing program investigation knowledge for code
understanding. In Program Comprehension, 2008. ICPC 2008. The 16th IEEE Interna-
tional Conference on, pages 202–211, 2008.

[RM09] S. Rastkar and G.C. Murphy. On what basis to recommend: Changesets or interac-
tions? In Mining Software Repositories, 2009. MSR ’09. 6th IEEE International Working
Conference on, pages 155–158, 2009.

[Saw12] Nicholas Sawadsky. Reverb: Dynamic bookmarks for software developers. Master’s
thesis, Dept. of Computer Science, University of British Columbia, 2012.

[SB88] Gerard Salton and Christopher Buckley. Term-weighting approaches in automatic
text retrieval. Information Processing & Management, 24(5):513 – 523, 1988.

[SCH98] S.E. Sim, C.L.A. Clarke, and R.C. Holt. Archetypal source code searches: a survey
of software developers and maintainers. In Program Comprehension, 1998. IWPC ’98.
Proceedings., 6th International Workshop on, pages 180–187, 1998.

[SDVFM05] J. Sillito, K. De Voider, Brian Fisher, and Gail Murphy. Managing software change
tasks: an exploratory study. In Empirical Software Engineering, 2005. 2005 International
Symposium on, pages 10 pp.–, 2005.

[SFH+07] David Shepherd, Zachary P. Fry, Emily Hill, Lori Pollock, and K. Vijay-Shanker. Us-
ing natural language program analysis to locate and understand action-oriented con-
cerns. In Proceedings of the 6th international conference on Aspect-oriented software devel-
opment, AOSD ’07, pages 212–224, New York, NY, USA, 2007. ACM.

[SLS09] J. Starke, C. Luce, and J. Sillito. Searching and skimming: An exploratory study. In
Software Maintenance, 2009. ICSM 2009. IEEE International Conference on, pages 157–
166, 2009.

[SLVA97] Janice Singer, Timothy Lethbridge, Norman Vinson, and Nicolas Anquetil. An exam-
ination of software engineering work practices. In Proceedings of the 1997 conference of
the Centre for Advanced Studies on Collaborative research, CASCON ’97, pages 21–. IBM
Press, 1997.

[SMDV08] Jonathan Sillito, Gail C. Murphy, and Kris De Volder. Asking and answering ques-
tions during a programming change task. IEEE Trans. Softw. Eng., 34(4):434–451, July
2008.

[TSL03] Christos Tjortjis, Loukas Sinos, and Paul Layzell. Facilitating program comprehen-
sion by mining association rules from source code. In Proceedings of the 11th IEEE
International Workshop on Program Comprehension, IWPC ’03, pages 125–, Washington,
DC, USA, 2003. IEEE Computer Society.

[VvMS99] A. Marie Vans, Anneliese von Mayrhauser, and Gabriel Somlo. Program understand-
ing behavior during corrective maintenance of large-scale software. Int. J. Hum.-
Comput. Stud., 51(1):31–70, 1999.

[Wei81] Mark Weiser. Program slicing. In Proceedings of the 5th international conference on
Software engineering, ICSE ’81, pages 439–449, Piscataway, NJ, USA, 1981. IEEE Press.

BIBLIOGRAPHY 75

[WGGS92] N. Wilde, J.A. Gomez, T. Gust, and D. Strasburg. Locating user functionality in old
code. In Software Maintenance, 1992. Proceerdings., Conference on, pages 200–205, 1992.

[WGH00] W. Eric Wong, Swapna S. Gokhale, and Joseph R. Horgan. Quantifying the closeness
between program components and features. Journal of Systems and Software, 54:2000,
2000.

[WHGT99] W. Eric Wong, Joseph R. Horgan, Swapna S. Gokhale, and Kishor S. Trivedi. Locating
program features using execution slices. In Proceedings of the 1999 IEEE Symposium
on Application - Specific Systems and Software Engineering and Technology, ASSET ’99,
pages 194–, Washington, DC, USA, 1999. IEEE Computer Society.

[WS95] Norman Wilde and Michael C. Scully. Software reconnaissance: mapping program
features to code. Journal of Software Maintenance, 7(1):49–62, January 1995.

[YF02] Yunwen Ye and Gerhard Fischer. Information delivery in support of learning
reusable software components on demand. In Proceedings of the 7th international con-
ference on Intelligent user interfaces, IUI ’02, pages 159–166, New York, NY, USA, 2002.
ACM.

[Zha06] Zhao2006. Sniafl: Towards a static noninteractive approach to feature location. ACM
Trans. Softw. Eng. Methodol., 15(2):195–226, April 2006.

[ZMB11] A. N K Zaman, P. Matsakis, and C. Brown. Evaluation of stop word lists in text
retrieval using latent semantic indexing. In Digital Information Management (ICDIM),
2011 Sixth International Conference on, pages 133–136, 2011.

	Introduction
	Structure

	Related Work
	Source Code Comprehension for Performing a Change Task
	Using Dynamic Information to Understand Source Code
	Using Static Information to Understand Source Code
	Using Hybrid Information to Understand Source Code
	User Development Interaction
	Conclusion on Related Work on Source Code Comprehension

	Exploratory Studies on how a Developer Performs a Change Task
	Search Term Recommendation Systems

	Exploratory Study with Developers
	Method
	Participants
	Sando
	Comogen
	Change Tasks
	Tools and Instrumentation
	Procedure

	Study Results
	Browsing Code Structures to Find Task Relevant Points
	Browsing for Task Related Recommendation Results
	Finding Good Search Terms
	Qualitative Analysis of the Semi-Structured Interview

	Threats to Validity
	External Validity
	Internal Validity
	Construct Validity
	Statistical Validity

	Conclusion on the Exploratory Study
	Implications from the Explorative Study
	Browsing Code Structures to Find Relevant Points
	Browsing for Task Related Recommendation Results
	Finding Good Search Terms

	Using Interaction Histories to Recommend a Starting Context of Code Elements for a Change Task
	Finding Similar Change Tasks
	Finding Similar Change Tasks to a New Change Task
	Finding Similar Change Tasks for a Re-opened Change Task

	Recommending Potentially Relevant Starting Points
	Generation of Starting Points
	Generation of a Context

	Conclusion

	Two prototypes for Automatically Recommend Search Terms for a Change Task
	Approach 1 for Recommending Search Terms
	Approach 2 for Recommending Search Terms
	Prototypical Implementation
	Case Study
	Discussion

	Approach: Automatic Identification of a Starting Context
	Usage Scenario
	Identification of a Starting Context

	Implementation Details
	Data Model
	Starting Context Recommender
	View
	Connector
	Source Code Parser
	Similarity Engine
	Search Term Recommender
	Visual Studio Monitor

	Future Work
	Presenting the Rationale of a Recommendation
	Remembering Relevant Search Results
	Including Selections of Prior Searches in the Query
	Examining Task Contexts

	Conclusion
	Participant Instructions
	Questionnaire
	Interview quintessences
	Text Preprocessing
	Contents of the CD-ROM
	Used Libraries, Tools and Plug-ins

