
Department of Informatics, University of Zürich

Facharbeit

Implementation of a Relational
Algebra Based Graphical User
Interface for Temporal Queries

Michael Hartmann
Zürich, Schweiz

Matrikelnummer: 07-711-484

Email: michael.hartmann2@uzh.ch

April 10, 2013

supervised by Prof. Dr. M. Böhlen and A. Dignös

2

Abstract

In [DBG12] a relational algebra solution, that provides native support for the properties of
the sequenced semantics described in [BJS00], has been presented. Temporal expressions
are reduced to ordinary expressions using two additional primitive operators to align time
intervals. Until now, there is no automatically reduction implemented. In this Facharbeit an
application, that let expressions be graphically built and set as sequenced or non-sequenced,
is presented. If the expression is set to sequenced it automatically applies the reduction rules
and can be executed on a PostgreSQL database system supporting the additional primitives.

Contents

1 Introduction 6
1.1 Reduction from Temporal to Non-Temporal Operators 8

2 Problem Definition 12
2.1 Requirements . 12

3 Solution 13
3.1 Application Description . 13
3.2 Demonstration of the Example with the Application 15

4 Implementation 17
4.1 Packages . 17
4.2 Relations . 18

5 Conclusions 22

4

List of Figures

1.1 Relations proj and mgr . 6
1.2 Non-temporal join . 7
1.3 Temporal join . 7
1.4 Temporal join that scales the budget with respect to the valid time 7
1.5 Normalization of the DB-projects from relation proj 8
1.6 Temporal count of proj . 8
1.7 Alignment of relation proj and mgr . 9
1.8 Temporal join of mgr and proj . 9
1.9 Reduction Rules . 10

3.1 Connection Window . 13
3.2 Main Window . 14
3.3 SQL-Code for creating the relations for the example 15
3.4 Function for uniformly scaling . 15

4.1 Structure of the packages . 17
4.2 UML class diagram of the relation model classes 18
4.3 Join of two base relations . 19
4.4 The asSeqQuery()-method in the class Align 19
4.5 The asSeqQuery()-method in the class Join 20
4.6 Result of calling asQuery() on the sequenced theta join of mgr and proj . . . 21

5

1 Introduction

In order to process interval timestamped data, the sequenced semantics has been proposed. In
[DBG12] a relational algebra solution, that provides native support for the properties of the
sequenced semantics, is presented. For this purpose two temporal primitives were introduced
and with their support, rules, to reduce temporal operators to non-temporal, have been estab-
lished. In [BJS00] the notion of universal statement modifiers is introduced. Its main idea is
to provide statement modifiers to tag a query as temporal or non-temporal.
The aim of this Facharbeit is to implement a user interface to graphically build relational
algebra expressions which can be executed temporal or non-temporal, i.e., sequenced or non-
sequenced. Similar to the universal statement modifiers, the user can formulate expressions
as traditional and well known relational algebra expressions and is then able to specify which
parts of the expression should be treated sequenced or non-sequenced. For each temporal
algebra operator the application automatically applies the reduction rules to reduce it to a
non-temporal operator that make use of the two primitives.

Example 1 (Temporal Join) Consider projects of a university (Figure 1.1). Projects are
stored into the proj relation. A project belongs to one department (d), has a internal project
number (n), a budget (b) and a start- (ts) and ending timestamp (te). On the other hand, ev-
ery department has a manager during a specific time. The managers are stored into the mgr
relation. In this example for instance Ann managed the database department from 1.5.2013
to 31.7.2013 (m1) and Sam from 1.8.2013 to 31.12.2013 (m2). The ordinary non-temporal

proj
d n b ts te
DB 1 181.0 2013-02-01 2013-08-01 p1
DB 2 196.0 2013-05-01 2014-01-01 p2
AI 1 153.0 2013-04-01 2013-09-01 p3
AI 2 120.0 2013-04-01 2013-08-01 p4

mgr
r m ts te

m1 DB Ann 2013-05-01 2013-08-01
m2 DB Sam 2013-08-01 2014-01-01

Figure 1.1: Relations proj and mgr

join of mgr and proj is displayed in Figure 1.2. This join doesn’t take into account that the
timestamps are meant as valid times for the tuples. So for example j3 gives reason to presume,
that Sam was responsible for project number 1, but taking a look on the timestamp, it can be
seen that Sam managed the department from 1.8.2013 to 31.12.2013, but in fact project 1 was
finished before Sam started (on 31.7.2013).
However, the temporal join of proj and mgr, i.e., proj onT

r=d mgr, takes into account that the
tuples hold attributes (ts, te) for their valid times and includes them into the computation of the
join (Figure 1.3). The temporal join aligns the valid times to the time span when both tuples

6

proj onr=d mgr
d n b proj.ts proj.te m mgr.ts mgr.te
DB 1 181.0 2013-02-01 2013-08-01 Ann 2013-05-01 2013-08-01 j1
DB 2 196.0 2013-05-01 2014-01-01 Ann 2013-05-01 2013-08-01 j2
DB 1 181.0 2013-02-01 2013-08-01 Sam 2013-08-01 2014-01-01 j3
DB 2 196.0 2013-05-01 2014-01-01 Sam 2013-08-01 2014-01-01 j4

Figure 1.2: Non-temporal join

are valid, i.e., the intersection of both time intervals. The tuple for Sam mentioned before is
not part of the temporal join because the join tuples have disjoint valid times.

proj onT
r=d mgr

d n b r m ts te
DB 1 181.0 DB Ann 2013-05-01 2013-08-01
DB 2 196.0 DB Ann 2013-05-01 2013-08-01
DB 2 196.0 DB Sam 2013-08-01 2014-01-01

Figure 1.3: Temporal join

In contrast to the time intervals the other attributes, particularly the budget, are not adapted. In
real world scenarios it is frequently requested to scale the attributes with respect to their valid
time. An amount of money is a typical example for an attribute which often has to be scaled
to represent the reality.

Example 2 (Scaling) In the last example it attracts attention that a sum of the budget (b) over
all relations in Figure 1.3 grouped by the project number (n) would distort the amount of
budgets. The value of budget for project number 2 would be twice as much as it originally was
(2·196.0), because the whole amount of money is not scaled to the new timestamp that has been
adjusted. Figure 1.4 shows the same relation as before, but with scaled attribute budget. The

proj onT
r=d mgr

d n b r m ts te
DB 1 92.0 DB Ann 2013-05-01 2013-08-01
DB 2 73.6 DB Ann 2013-05-01 2013-08-01
DB 2 122.4 DB Sam 2013-08-01 2014-01-01

Figure 1.4: Temporal join that scales the budget with respect to the valid time

scaling is uniformly with respect to the duration of the valid time interval. A summation of the
budget grouped by the project number would return the original budget (73.6 + 122.4 = 196)
for project number 2 because the two time intervals meet and cover the original timestamp
([01.05.2013, 01.8.2013)∪ [01.08.2013, 01.01.2014) = [01.05.2013, 01.01.2014)). The budget
of project 1 differs from the original value, because the valid time of the tuple in the temporal
join is only 50.83% of the original one, so the budget is only 50.83% of the original amount
also.

Scaling is not a property of the schema, but depends on the purpose of a query. Depending on
the semantics of the query an attribute should be scaled or not.

7

One of the key elements in temporal querying is to adjust the timestamps. In the following
section a method from [DBG12], to adjust the timestamps, is presented with the support of
two primitives. The primitives align the tuples such that temporal queries then can be trans-
formed to non-temporal ones. Those primitives have been implemented in PostgreSQL and
are the basis for this Facharbeit.

1.1 Reduction from Temporal to Non-Temporal
Operators

The main problem in temporal operations is that the time intervals of the corresponding tuples
can overlap and so an ordinary algebra operator cannot handle it. The idea is to adjust the time
intervals of the tuples in order that the operator can use the equality on the time attributes.
For this purpose [DBG12] introduced two temporal primitives, temporal normalizationN and
temporal alignment φ, to adjust the timestamps.

Example 3 (Temporal Aggregation) Consider the relation proj of Example 1. Asking for
the number of projects in the database department the answer should be: 1 from 1.2.2013
to 30.4.2013 (project 1), 2 from 1.5.2013 to 31.7.2013 (project 1 and 2), and again 1 from
1.8.2013 to 31.12.2013 (project 2).
To process the aggregation by the ordinary (non-temporal) aggregation operator the time in-
tervals of the two argument tuples has to be split, and that is exactly what the temporal nor-
malization operator is designed for. It splits the tuples as shown in Figure 1.5. From the

proj′

d n b ts te
DB 1 181.0 2013-02-01 2013-05-01 p̃11
DB 1 181.0 2013-05-01 2013-08-01 p̃12
DB 2 196.0 2013-05-01 2013-08-01 p̃21
DB 2 196.0 2013-08-01 2014-01-01 p̃22

2012/1 2012/2 2012/3 2012/4 2012/5 2012/6 2012/7 2012/8 2012/9 2012/10 2012/11 2012/12 t

proj
p1 = (1, 181.0)

p2 = (2, 196.0)

proj′
p̃11

p̃12

p̃21

p̃22

Figure 1.5: Normalization of the DB-projects from relation proj

two argument tuples the temporal normalization operator produced four tuples which can be
processed by the ordinary aggregation operation (in this case COUNT) with the additional
grouping arguments ts and te. So, the SQL code would look like in Figure 1.6.

SELECT d , COUNT(∗) , t s , t e
FROM proj′

GROUP BY d , t s , t e

Figure 1.6: Temporal count of proj

8

The temporal normalizer is used for group based operators (π, ϑ,∪,−,∩). It adjust the time
interval of an argument tuple by splitting it at each start and end point of all tuples in the same
group.
In contrast, for tuple based operators (σ,×,on, d|><|, |><|d, d|><|d,B) the temporal aligner adjust an
argument tuple according to each tuple of a group.

Example 4 (Temporal Join) Consider the relations proj and mgr from Example 1. To com-
pute the temporal join, proj onT

r=d mgr, both the relations have to be aligned with respect
to the other relation. Figure 1.7 shows how the temporal aligner adjust the time intervals.
For simplicity, only the two tuples p1 and p2 are shown, because p3 and p4 don’t fulfill the
θ-condition d = r anyway. The relation mgr stays the same, because all the start and end

proj′

d n b ts te
DB 1 181.0 2013-02-01 2013-05-01 p̃11
DB 1 181.0 2013-05-01 2013-08-01 p̃12
DB 2 196.0 2013-05-01 2013-08-01 p̃21
DB 2 196.0 2013-08-01 2014-01-01 p̃22

2012/1 2012/2 2012/3 2012/4 2012/5 2012/6 2012/7 2012/8 2012/9 2012/10 2012/11 2012/12 t

mgr
m1 = (Ann)

m2 = (Sam)

proj
p1 = (1, 181.0)

p2 = (2, 196.0)

proj′
p̃11

p̃12

p̃21

p̃22

mgr′

r m ts te
DB Ann 2013-05-01 2013-08-01
DB Sam 2013-08-01 2014-01-01 2012/1 2012/2 2012/3 2012/4 2012/5 2012/6 2012/7 2012/8 2012/9 2012/10 2012/11 2012/12 t

mgr
m1 = (Ann)

m2 = (Sam)

proj
p1 = (1, 181.0)

p2 = (2, 196.0)

mgr′

m1 = (Ann)

m2 = (Sam)

Figure 1.7: Alignment of relation proj and mgr

points of mgr are contained in proj. The temporal join can now be computed by applying the
ordinary join operator to mgr′ and proj′ with additional θ-condition mgr′.T = proj′.T , so
the corresponding SQL-code is the following:

SELECT r , m, d , n , b , t s , t e
FROM mgr′ INNER JOIN proj′

ON r = d
AND mgr′ . t s = proj′ . t s
AND mgr′ . t e = proj′ . t e

Figure 1.8: Temporal join of mgr and proj

9

In addition to the two primitives [DBG12] introduced two help operators to define the reduc-
tion rules, the timestamp propagation operator ε and the absorb operator α. The timestamp
propagation operator duplicates the timestamp to be available after adjusting the timestamps.
This is for example used for scaling where the scaling function need both, the adjusted and the
original timestamp. The absorb operator eliminates duplicates that can not be avoided with
alignment.
All four operators (the two primitives and the two help operators) are implemented in the ex-
tended PostgreSQL-DBMS and are accessible as follows:

εU (r): SELECT t s us , t e ue , ∗ FROM r

Nθ(r, s): FROM (r NORMALIZE s USING θ) r

φθ(r, s): FROM (r ALIGN s ON θ) r

α(r): SELECT ABSORB ∗ FROM r

For every algebra operator [DBG12] defines a rule to reduce the corresponding temporal op-
erator to expression of non-temporal operators. This reduction rules are shown in Figure 1.9.

Operator Reduction
Selection σTθ (r) = σθ(r)

Projection πTB(r) = πB,T (Nr.B=s.B(r, r))

Aggregation Bϑ
T
F (r) = B,TϑF (Nr.B=s.B(r, r))

Difference r−T s = Nr.A=s.A(r, s)−Nr.A=s.A(s, r)

Union r ∪T s = Nr.A=s.A(r, s) ∪Nr.A=s.A(s, r)

Intersection r ∩T s = Nr.A=s.A(r, s) ∩Nr.A=s.A(s, r)

Cartesian Product r×T s = α((φ>(r, s)) onr.T=s.T (φ>(s, r)))

Inner Join r onT
θ s = α((φθ(r, s)) onθ∧r.T=s.T (φθ(s, r)))

Left Outer Join r d|><|
T
θs = α((φθ(r, s)) d|><| θ∧r.T=s.T (φθ(s, r)))

Right Outer Join r |><|d
T
θs = α((φθ(r, s)) |><|d θ∧r.T=s.T (φθ(s, r)))

Full Outer Join r d|><|d
T
θs = α((φθ(r, s)) d|><|d θ∧r.T=s.T (φθ(s, r)))

Anti Join rBTθ s = (φθ(r, s))Bθ∧r.T=s.T (φθ(s, r))

Figure 1.9: Reduction Rules

Example 5 (Applying the reduction rule) Consider the same assumptions as in Example 3.
The temporal count of projects should be computed , so dϑ

T
count(∗)(proj). The corresponding

reduction is given by: d,Tϑcount(∗)(Nproj.B=proj.B(proj, proj)) which can be stated as follows
in SQL:

10

SELECT d , COUNT(∗) , t s , t e FROM
(

(SELECT ∗ FROM p r o j) AS p r o j
NORMALIZE

(SELECT ∗ FROM p r o j) AS p r o j
USING (d)
) AS p r o j

GROUP BY d , t s , t e

The rest of this Facharbeit is organized as follows: Section 2 defines the requirements for
the application, followed by Section 3 which describes how the requirements are solved. The
section presents the application and shows how the example from the introduction can be
solved with it. Section 4 gives an overview of the implementation.

11

2 Problem Definition

The two primitives from [DBG12] and the absorb operator have been implemented for Post-
greSQL, are accessible as described in the last section, and build the fundament of this Fachar-
beit. The uniformly scaling, presented in [DBG13], is also implemented as a PL/pgSQL-
function.
Until now, there exists no tools that automatically apply the reduction rules to transform tem-
poral to non-temporal relational algebra expressions. The reduction rules has to be applied
manually and the expressions has to be written by hand as ordinary SQL expressions extended
with the primitives.
To simplify and accelerate the work with a PostgreSQL-DBMS supporting the additional tem-
poral primitives, an application is to be developed that supports the following:

2.1 Requirements
(R1) Connect to a PostgreSQL-DBMS supporting the additional temporal primitives

(R2) Queries can be specified as temporal or non-temporal

(R3) Automatically reduce the temporal (sub-)expressions to non-temporal (sub-)expressions
via reduction rules 1

(R4) Attributes in temporal queries can be scaled

(R5) Queries and subqueries can be executed

(R6) The result set of the last three executed queries should be displayed

(R7) Display the SQL code sent by the application to the server

(R8) Display all available tables for the specified database

1Note that, in the future, the reduction from temporal to non-temporal expressions is thought to be done auto-
matically by the DBMS or some kind of middleware, but this is not implemented for now. So the reduction
has to be done by the application itself.

12

3 Solution
This section first describes the application and then how the example from the introduction
can be computed with it.

3.1 Application Description
After starting the application the main screen is in the background and the Connection Win-
dow is on the top. In this window the user can specify a database connection and connect to
it (R1). The connection menu can also be reached via the menu bar under Database > Con-
nection Window, to change the database connection later. To check the connection there is a
button Ping, and to confirm the parameters there is a Connect button. After connecting the

Figure 3.1: Connection Window

Connection Window closes and the Main Window appears on the top. The Main Window is
structured as follows: On the left there is a list of operators that can be used to compose an
algebra expression. The symbols are the standard symbols of relational algebra. The symbol
called Base Relation (�) selects the whole relation given in the name parameter. The area
in the center, called scene, is initially empty. By clicking on an operator the symbol for this
specific operator appears in this area where it can be freely placed by drag and drop. Operators
are selected by just clicking on them.
The right side is split into two parts. In the upper part the parameters (such as sequenced /
non-sequenced (R2) or scale (R4)) for the selected operation are shown an can be modified.
The bottom part consists of three tabs, Relation Set, Query, and Database Layout.

• The Relation Set displays the history of result sets of the last three executed queries
(R6). This tab can be detached from the tab plane by rightclicking on it and choosing
Result set in a separate window. Then the Relation Set is a separate window and for
example can be placed on a second screen, if available.

13

• After executing an expression it is possible to see the query in the Query tab (R7). This
is exactly the same query as the application sent to the server.

• On the Database Layout tab there is a list of all available database tables for the specified
database connection (R8).

Figure 3.2: Main Window

A popup menu appears by rightclicking on an operator in the scene, and the following four
different options are being provided

• New Edge: provides a new edge started at the selected operation. By clicking on another
component a new edge between these two operation appears.

• Delete Component: deletes the selected operation and all edges connected to.

• Delete Top Edge: deletes the edge on the top of the operation.

• Execute: reduces the temporal part and executes the selected (sub)query (R3), (R5).

14

3.2 Demonstration of the Example with the
Application

This Section demonstrates how the example from the introduction can be computed with the
application provided that the relations proj and mgr exist in the database (see Figure 3.3) and
the function for uniformly scaling is defined as shown in Figure 3.4.

DROP TABLE IF EXISTS p r o j ;
CREATE TABLE p r o j (D VARCHAR(2) , N INTEGER , B FLOAT, TS DATE, TE DATE) ;
INSERT INTO p r o j VALUES (’DB’ , 1 , 181 , ’2013−2−1 ’ , ’2013−8−1 ’) ;
INSERT INTO p r o j VALUES (’DB’ , 2 , 196 , ’2013−5−1 ’ , ’2014−1−1 ’) ;
INSERT INTO p r o j VALUES (’ AI ’ , 1 , 153 , ’2013−4−1 ’ , ’2013−9−1 ’) ;
INSERT INTO p r o j VALUES (’ AI ’ , 2 , 120 , ’2013−4−1 ’ , ’2013−8−1 ’) ;

DROP TABLE IF EXISTS mgr ;
CREATE TABLE mgr (R VARCHAR(2) , M VARCHAR(3) , TS DATE, TE DATE) ;
INSERT INTO mgr VALUES (’DB’ , ’Ann ’ , ’2013−5−1 ’ , ’2013−8−1 ’) ;
INSERT INTO mgr VALUES (’DB’ , ’Sam ’ , ’2013−8−1 ’ , ’2014−1−1 ’) ;

Figure 3.3: SQL-Code for creating the relations for the example

CREATE OR REPLACE FUNCTION
s ca l e U (x FLOAT, t s_new DATE, te_new DATE,

t s _ o l d DATE, t e _ o l d DATE)
RETURNS FLOAT AS
BEGIN
RETURN x ∗ (te_new − t s_new) / (t e _ o l d − t s _ o l d) ;
END ; LANGUAGE PLPGSQL ;

Figure 3.4: Function for uniformly scaling

First step, after connecting to the database, is to place two base relations on the scene for the
relations proj and mgr, by clicking on the base relation icon (�). By clicking on one of the
appeared icons on the scene the property panel for this operation appears on the right top and
the property name can be filled with the relation name, e.g. ’proj’. Analogous the other base
relation can be named ’mgr’. These two base relations can be executed as expressions to de-
tect errors at an early stage. This can be done by right clicking on them and choose execute
in the popup menu. In general it is always possible to execute subexpressions by clicking on
them and choose execute.
To join these two relations it requires to add a join operator to the scene. By clicking on the
join icon (on) a new join operator appears on the scene. Every join needs to have a left and a
right subquery. This can be done by right clicking on the desired left subquery, say proj, and
choose New Edge and then choose the join operation. Analogous for the right subquery.
By clicking on the join operator the property panel appears with four different options (Se-
quenced, Alias, Scaling, Theta Condition). The join attribute in initial example was the de-
partment, so the theta condition should be d = r. The alias only matters if the join acts as
a subquery, which is not the case in this example, so it can be empty. If the join should be

15

treated temporal, the checkbox Sequenced should be checked and the join operation change
automatically its color to red. If the join is temporal then there is also the possibility to scale
certain attributes. This can be specified in the scale field. In the beginning example the budged
should be scaled, so in the scale field belongs the following: ’scaleU(b)’, where ’scaleU’ is the
function defined in Figure 3.4. Similar to the base relations, the join operator can be executed
by right clicking on it and choose execute. The query that was sent by the application can be
viewed in the query tab. The result set for this executed query is displayed in the result set
tab. A column of the result set can be ordered ascending or descending by respectively left-
or rightclicking on its corresponding header.

16

4 Implementation
This section gives first an overview of how the packages are structured, then it describes the
implementation of the model for the relations and an example to illustrate the commands when
executing an expression is given.

4.1 Packages

src
db
gui

components
rel

presentation
handler
img
interfaces
model
rel

Figure 4.1: Structure of the packages

The structure of the packages is shown in Figure 4.1. Package db contains the classes that
communicate with a database or treat with data from the database. For instance it contains the
class Executor and the singleton ConnectionProvider for respectively executing queries and
providing the connection. The GUI-component are situated in the package gui. This package
contains the different windows and panels. gui is further divided into components and pre-
sentation which contain the components for the scene and the presentation logic, respectively.
components further contains a subpackage, namely rel, that contains the JComponent for dis-
playing the relations on the scene and a factory to create them.
The package handler contains the class EventHandler responsible for updating the relation
components on the scene if the underlying model has been changed or vice versa.
The package img includes all icons used in the application, to wit the symbols for the operator
button as well as the icons for the popup menu.
All interfaces are placed in the package interface. The model package contains the models for
the gui-model-mapping of the relations and the connection settings. Further the rel package
involves all the models of the relation components. For every relation component which can
be placed on the scene there is a corresponding model, compare Section 4.2.

17

4.2 Relations

AbstractRelation
-alias: String
-isSequenced: Boolean
-scaling: String
-leftNode: AbstractRelation
-rightNode: AbstractRelation

#asNonSeqAlgExpr(): String
#asSeqAlgExpr(): String
#asNonSeqQuery(): String
#asNonSeqSubQuery(): String
#asSeqQuery(): String
#asSeqSubQuery(): String
#canHaveLeftNode(): Boolean
#canHaveRightNode(): Boolean
+getLeftNode(): AbstractRelation
+getRightNode(): AbstractRelation
+asQuery(): String
+asSubQuery(): String
+setAlias(alias:String)
+setScaling(scaling:String)
+setSequenced(isSequenced:Boolean)
+getAlias(): String
+getScaling(): String
+isSequenced(): Boolean
+setLeftNode(leftNode:AbstractRelation)
+setRightNode(rightNode:AbstractRelation)

BaseRelation

#asNonSeqAlgExpr(): String
#asSeqAlgExpr(): String
+asSeqQuery(): String
+asNonSeqQuery(): String
+canHaveLeftNode(): Boolean
+canHaveRightNode(): Boolean

Join

#asNonSeqAlgExpr(): String
#asSeqAlgExpr(): String
+asSeqQuery(): String
+asNonSeqQuery(): String
+canHaveLeftNode(): Boolean
+canHaveRightNode(): Boolean

SetOperation

#asNonSeqAlgExpr(): String
#asSeqAlgExpr(): String
+asSeqQuery(): String
+asNonSeqQuery(): String
+canHaveLeftNode(): Boolean
+canHaveRightNode(): Boolean

Selection

#asNonSeqAlgExpr(): String
#asSeqAlgExpr(): String
+asSeqQuery(): String
+asNonSeqQuery(): String
+canHaveLeftNode(): Boolean
+canHaveRightNode(): Boolean

Projection

#asNonSeqAlgExpr(): String
#asSeqAlgExpr(): String
+asSeqQuery(): String
+asNonSeqQuery(): String
+canHaveLeftNode(): Boolean
+canHaveRightNode(): Boolean

UnionDifference Intersection FullOuterJoinLeftOuterJoin RightOuterJoinThetaJoin

AntiJoin

#asNonSeqAlgExpr(): String
#asSeqAlgExpr(): String
+asSeqQuery(): String
+asNonSeqQuery(): String
+canHaveLeftNode(): Boolean
+canHaveRightNode(): Boolean

Aggregation

#asNonSeqAlgExpr(): String
#asSeqAlgExpr(): String
+asSeqQuery(): String
+asNonSeqQuery(): String
+canHaveLeftNode(): Boolean
+canHaveRightNode(): Boolean

Align

#asNonSeqAlgExpr(): String
#asNonSeqSubQuery(): String
+asSeqQuery(): String
+asNonSeqQuery(): String
+canHaveLeftNode(): Boolean
+canHaveRightNode(): Boolean

Normalize

#asNonSeqAlgExpr(): String
#asNonSeqSubQuery()(): String
+asSeqQuery(): String
+asNonSeqQuery(): String
+canHaveLeftNode(): Boolean
+canHaveRightNode(): Boolean

Extend

#asNonSeqAlgExpr(): String
#asNonSeqSubQuery()(): String
+asSeqQuery(): String
+asNonSeqQuery(): String
+canHaveLeftNode(): Boolean
+canHaveRightNode(): Boolean

Figure 4.2: UML class diagram of the relation model classes

The relations i.e., either operators or base relation, are located in the package rel. Every
model of a relation available on the list of operators extends the abstract class AbstractRelation
directly or indirectly. Figure 4.2 shows this inheritance hierarchy. The additional operators are
also extending the AbstractRelation. For every relation the user puts on the scene one instance
of the corresponding relation model is instantiated. The methods asNonSeqQuery(), asSeq-
Query(), canHaveLeftNode(), canHaveRightNode() in the AbstractRelation class are abstract,
so they must be defined by the subclasses.

Example 6 The example illustrates the procedure that is executed when the user clicks on
execute on a relation on the scene (Figure 4.3). As sample the relations from the last example
(join of mgr and proj) are considered. The example is focused on the chain of commands in
the model classes and does not go into GUI aspects.

By clicking on execute of the temporal join operator the method asQuery() of the corre-
sponding instance of a ThetaJoin is called. This method, which calls asSeqQuery() or as-
NonSeqQuery() depending whether it is sequenced or not, is located in the abstract class
AbstractRelation. In the example the join relation is sequenced, so asSeqQuery() is called.
This method is abstract in AbstractRelation, so it is implemented by the subclass Join. The

18

Figure 4.3: Join of two base relations

method is shown in Figure 4.5. First (line 3) the method verifies that a left and a right node is
set and throws an exception if this is not the case. If the left and right node are set the method
makes a sequence of computations to finally return the query in form of a string. For this, the
method first apply propagation operator ε to extend the attributes by copy’s of ts and te in the
left and right node (line 7-13). In this case the BaseRelations are proj and mgr.
Next a list of the non-temporal attributes are generated for the left and right node (line 15,16),
which are used to create the scaling (line 18). In the example the budged will be scaled uni-
formly. Line 21-29 align the left node with respect to the right and vice versa. In line 31 to 36
the attributes of the left and right node are stored into a list.
The next step (line 38) checks what kind of join it is. In the example, the join is a theta-join,
so it jumps directly to line 48, which append the timestamp with prefixed alias of the left node
(in the example this is proj).
After that the method actually build the query string (line 53-61). For this it makes use of the
method asSubQuery() from the left and right aligned nodes. This method is shown in Figure
4.4. The method getTabs() only adds tab stops to the string to increase the clarity of the result-
ing SQL code. The asSubQuery() of the left and right node (line 3,5 in Figure 4.4) are simple:

(SELECT ∗ FROM baseRe la t ionName) AS baseRe la t ionName

where baseRelationName stands for either proj or mgr.

In total the result of the method asQuery() on the ThetaJoin is shown in Figure 4.6. This is
the query shown in the query tab and which is sent to the server.

1 @Override
2 p u b l i c S t r i n g asSeqQuery () throws SQLException {
3 S t r i n g r e s u l t = g e t L e f t N o d e () . asSubQuery () + " \ n " ;
4 r e s u l t += g e t T a b s () + "ALIGN \ n " ;
5 r e s u l t += ge tR igh tNode () . asSubQuery () + " \ n " ;
6 r e s u l t += g e t T a b s () + "ON "+ newLines (t h e t a) ;
7 re turn r e s u l t ;
8 }

Figure 4.4: The asSeqQuery()-method in the class Align

19

1 @Override
2 p r o t e c t e d S t r i n g asSeqQuery () throws SQLException {
3 i f (! hasLef tNode () | | ! hasRigh tNode ())
4 throw new Run t imeExcep t ion ("ERROR: T h e t a J o i n must have two c h i l d r e n ! ") ;
5
6 /∗ e x t e n d ∗ /
7 Extend l e x t e n d = new Extend () ;
8 l e x t e n d . s e t A l i a s (g e t L e f t N o d e () . g e t A l i a s ()) ;
9 l e x t e n d . s e t L e f t N o d e (g e t L e f t N o d e ()) ;

10
11 Extend r e x t e n d = new Extend () ;
12 r e x t e n d . s e t A l i a s (ge tR igh tNode () . g e t A l i a s ()) ;
13 r e x t e n d . s e t R i g h t N o d e (ge tR igh tNode ()) ;
14
15 L i s t < A t t r i b u t e > l a t t s = A t t r i b u t e . g e t N o n T e m p o r a l A t t L i s t (l e x t e n d . getSchema ()) ;
16 L i s t < A t t r i b u t e > r a t t s = A t t r i b u t e . g e t N o n T e m p o r a l A t t L i s t (r e x t e n d . getSchema ()) ;
17
18 S t r i n g s c a l e d T h e t a = S c a l e . m a k e S c a l e d C o n d i t i o n (t h e t a , l a t t s , r a t t s) ;
19
20 /∗ a l i g n ∗ /
21 Al ign l a l i g n = new Al ign (s c a l e d T h e t a) ;
22 l a l i g n . s e t A l i a s (l e x t e n d . g e t A l i a s ()) ;
23 l a l i g n . s e t L e f t N o d e (l e x t e n d) ;
24 l a l i g n . s e t R i g h t N o d e (r e x t e n d) ;
25
26 Al ign r a l i g n = new Al ign (s c a l e d T h e t a) ;
27 r a l i g n . s e t A l i a s (r e x t e n d . g e t A l i a s ()) ;
28 r a l i g n . s e t L e f t N o d e (r e x t e n d) ;
29 r a l i g n . s e t R i g h t N o d e (l e x t e n d) ;
30
31 S t r i n g t L i s t = A t t r i b u t e . g e t A t t N a m e L i s t (l a t t s , n u l l) ;
32 i f (l a t t s . s i z e () > 0)
33 t L i s t += " , " ;
34 t L i s t += A t t r i b u t e . g e t A t t N a m e L i s t (r a t t s , n u l l) ;
35 i f (r a t t s . s i z e () > 0)
36 t L i s t += " , " ;
37
38 i f (o p e r a t i o n == J o i n . OP_FULL_OUTER_JOIN) {
39 t L i s t += " C o a l e s c e ("+ g e t L e f t N o d e () . g e t A l i a s () + " . "+ A t t r i b u t e .NAME_TS + " , "
40 + ge tR igh tNode () . g e t A l i a s () + " . "+ A t t r i b u t e .NAME_TS + ") " + A t t r i b u t e .NAME_TS
41 +" , C o a l e s c e ("+ g e t L e f t N o d e () . g e t A l i a s () + " . "+ A t t r i b u t e .NAME_TE+" , "
42 + ge tR igh tNode () . g e t A l i a s () + " . "+ A t t r i b u t e .NAME_TE+") "+ A t t r i b u t e .NAME_TE;
43 }
44 e l s e i f (o p e r a t i o n == J o i n . OP_RIGHT_OUTER_JOIN) {
45 t L i s t += ge tR igh tNode () . g e t A l i a s () + " . "+ A t t r i b u t e .NAME_TS+" , "
46 + ge tR igh tNode () . g e t A l i a s () + " . "+ A t t r i b u t e .NAME_TE;
47 }
48 e l s e {
49 t L i s t += g e t L e f t N o d e () . g e t A l i a s () + " . "+ A t t r i b u t e .NAME_TS+" , "
50 + g e t L e f t N o d e () . g e t A l i a s () + " . "+ A t t r i b u t e .NAME_TE;
51 }
52
53 S t r i n g qry = g e t T a b s () + "SELECT ABSORB "+ t L i s t +" FROM\ n "+ l a l i g n . asSubQuery () + " \ n "
54 + g e t T a b s () + o p e r a t i o n + " \ n "+ r a l i g n . asSubQuery () + " \ n " + g e t T a b s ()
55 + "ON "+newLines (s c a l e d T h e t a)+ " \ n " + g e t T a b s () + "AND "+ g e t L e f t N o d e () . g e t A l i a s ()
56 + " . Ts="+ ge tR igh tNode () . g e t A l i a s () + " . Ts "+ " \ n " + g e t T a b s ()
57 + "AND "+ g e t L e f t N o d e () . g e t A l i a s () + " . Te="+ ge tR igh tNode () . g e t A l i a s () + " . Te " ;
58
59 S t r i n g s c a l e d T L i s t = S c a l e . m a k e S c a l i n g T a r g e t L i s t (g e t S c a l i n g () , l a t t s , r a t t s) ;
60
61 qry = g e t T a b s () + "SELECT " + s c a l e d T L i s t + " FROM \ n (" + qry + ") j " ;
62
63 re turn qry ;
64 }

Figure 4.5: The asSeqQuery()-method in the class Join

20

SELECT d , n , s ca l eU (b , Ts , Te , Us , Ue) b , r , m, Ts , Te FROM
(SELECT ABSORB us , ue , d , n , b , vs , ve , r , m, p r o j . Ts , p r o j . Te FROM

(
(
SELECT Ts Us , Te Ue , ∗ FROM

(
SELECT ∗ FROM p r o j
) AS p r o j

) AS p r o j
ALIGN

(
SELECT Ts Vs , Te Ve , ∗ FROM

(
SELECT ∗ FROM mgr
) AS mgr

) AS mgr
ON r =d
) AS p r o j

INNER JOIN
(

(
SELECT Ts Vs , Te Ve , ∗ FROM

(
SELECT ∗ FROM mgr
) AS mgr

) AS mgr
ALIGN

(
SELECT Ts Us , Te Ue , ∗ FROM

(
SELECT ∗ FROM p r o j
) AS p r o j

) AS p r o j
ON r =d
) AS mgr

ON r =d
AND p r o j . Ts=mgr . Ts
AND p r o j . Te=mgr . Te) j

Figure 4.6: Result of calling asQuery() on the sequenced theta join of mgr and proj

21

5 Conclusions

I have designed and implemented an application, TheAlignGUI, that fulfills all the require-
ments given in Section 2. With this application it is possible to graphically build relational
expressions and set them to be executed sequenced or non-sequenced. For the sequenced ex-
pressions it automatically applies the reduction rules to be executed on a PostgreSQL database
system supporting the additional primitives. It is also possible to set a scaling function which
adopts the specified attributes. The query, that is sent to the server, can be seen in the query
tab and the result of the last three executed expressions are displayed in the result set tab.

22

Bibliography

[BJS00] Michael H. Böhlen, Christian S. Jensen, and Richard Thomas Snodgrass. Temporal
statement modifiers. ACM Trans. Database Syst., 25(4):407–456, December 2000.

[DBG12] Anton Dignös, Michael H Böhlen, and Johann Gamper. Temporal alignment. In
ACM SIGMOD 2012 international conference on Management of Data, SIGMOD
’12, pages 433–444. ACM, MAY 2012.

[DBG13] Anton Dignös, Michael Böhlen, and Johann Gamper. Query time scaling of at-
tribute values in interval timestamped databases. In 29th IEEE International Con-
ference on Data Engineering, ICDE 2013 (Demonstration), 4 pages. IEEE, 2013.

23

