
Replicating Mining Studies with SOFAS
Giacomo Ghezzi and Harald C. Gall

s.e.a.l. – software evolution and architecture lab
Department of Informatics

University of Zurich, Switzerland
{ghezzi, gall}@ifi.uzh.ch

Abstract—The replication of studies in mining software reposi-
tories (MSR) is essential to compare different mining techniques
or assess their findings across many projects. However, it has
been shown that very few of these studies can be easily replicated.
Their replication is just as fundamental as the studies themselves
and is one of the main threats to validity that they suffer
from. In this paper, we show how we can alleviate this problem
with our SOFAS framework. SOFAS is a platform that enables
a systematic and repeatable analysis of software projects by
providing extensible and composable analysis workflows. These
workflows can be applied on a multitude of software projects,
facilitating the replication and scaling of mining studies. In this
paper, we show how and to which degree replication can be
achieved. We investigated the mining studies of MSR from 2004
to 2011 and found that from 88 studies published in the MSR
proceedings so far, we can fully replicate 25 empirical studies.
Additionally, we can replicate 27 additional studies to a large
extent. These studies account for 30% and 32%, respectively, of
the mining studies published. To support our claim we describe
in detail one large study that we replicated and discuss how
replication with SOFAS works for the other studies investigated.
To discuss the potential of our platform we also characterise how
studies can be easily enriched to deliver even more comprehensive
answers by extending the analysis workflows provided by the
platform.

I. INTRODUCTION

Mining software repositories (MSR) has a strong foundation
in empirical studies,however, a systematic approach to repli-
cability is still missing. As reported by Robles [31], very few
published studies can be easily replicated. The problem lies
in both the tools and the data used by such tools. Tools are
available for approximately 20% of the studies and another
20% are only partially available [31]. Moreover, even when
publicly available, they are difficult to set up and use. As a
matter of fact, they are mostly prototypes (or just a collection
of scripts) working under specific operating systems and set-
tings, and are usually offered “as-is” without user manuals or
technical documentation. Data can be divided into “raw” data
and processed data. “Raw data” can be directly retrieved from
publicly available sources such as version control systems,
issue trackers, plain source code, mailing lists, etc. Processed
data, which is what is actually used by researchers to perform
their analyses, is the result of the retrieval and processing of
such raw data. While “raw” data is usually widely available
(at least in the case of OSS projects), processed data is not.

Different approaches have already been proposed to address
this problem. But these efforts are mainly aimed at creating
large, internet accessible, evolution analysis data repositories,

similarly to PROMISE [8]. Some of them offer a query-able,
static collection of data for specific projects fetched from
single [26] or multiple sources [2], [27]; others allow the
user to interactively run specific analyses on her own projects
of interest [15], [16] through online web applications. Large,
static software data repositories give third party applications
and analyses a sizeable, common body of knowledge to build
upon. They can also be useful to provide benchmark data to
test and compare similar tools/analysis that use such data.
However, they do not target the replication of the actual
analyses and are based on a fixed set of software projects.
The existing interactive approaches that address this issue
limit the user to a few predefined analyses. Replicability is
thus still limited to very specific cases. A broader and more
systematic approach to replicability is missing. We claim that
a solution such as our SOFAS (SOFtware Analysis Services)
platform [12] can cover this need.

SOFAS is a RESTful software analysis architecture and
platform that was originally created to support interoperability
of distributed software analyses in flexible and lightweight
way. It is made up of three main constituents: Software
Analysis Web Services, Software Analysis Ontologies and
a Software Analysis Broker. The Software Analysis Web
Services offer different software evolution analyses as standard
RESTful web service interfaces. They use specific Ontologies
to define and represent the data they consume and produce.
The Software Analysis Broker is the single entry point to
all services, acting as an interface between the services and
the users. It contains a Services Catalog of all the registered
analysis services with respect to a specific software analysis
taxonomy. These analyses can be easily accessed and invoked
by passing them the URLs of the source control repository, the
issue tracking system, or release notes, etc. Analysis services
can be combined into analysis workflows that perform specific,
composite analysis tasks. A custom composition language de-
rived from WS-BPEL called SCoLa was employed to specify
these workflows [11] and make them reusable across projects
and analysis runs.

In this paper, we show how and to which degree replication
can be achieved with SOFAS . We investigated the mining
studies of MSR from 2004 to 2011 and found that out of 88
studies published in the MSR proceedings so far, we can fully
replicate 25 empirical studies; additionally, we can replicate an
additional 27 studies to a large extent. These studies account
respectively for 30% and 32% of the mining studies published.



To support our claim we describe in detail one large study that
we replicated and discuss how replication with SOFAS works
for the other studies investigated. To discuss the potential of
our platform we also characterize how studies can be easily
enriched to deliver even more comprehensive answers by
extending the analysis workflows provided by the platform.

The main contribution of this paper is a showcase of the
use of SOFAS as a viable way to replicate mining studies. In
particular, we argue for a platform versus ad-hoc scripting, we
advertise repeatable processes versus manual configurations,
we provide for flexible and scalable analysis and focus on a
technology independent framework.

The remainder of the paper is structured as follows: in
Section II we give a brief overview of SOFAS (for a detailed
description we refer to [12]). In Section III, we present the
method used in this paper to assess the replicability offered
by SOFAS and show the results. To further substantiate these
results and better show the potential of SOFAS in such a
replication context, Section IV presents in detail the replication
and extension of one of the mining studies. Section VI gives
an overview of the related work. We then conclude with a
discussion of the strengths and weaknesses of the framework
and an outlook onto the next steps.

II. SOFAS

SOFAS is a RESTful platform devised to provide software
analyses as RESTful web services and to combine them into
analysis workflows in an easy and effective way. It is made up
by three main components: Software Analysis Web Services, a
Software Analysis Broker, and Software Analysis Ontologies.
Software Analysis Web Services expose the functionality
and data of software (evolution) analyses through a standard
RESTful web service interface. The Software Analysis Broker,
acts as the services manager and the interface between the
services and the users. It contains a catalog of all the registered
analysis services. Moreover, it also offers interfaces for both
humans and computers to compose such services into work-
flows and execute them. Ontologies define and represent the
data consumed and produced by the different services. In the
following we briefly describe each of these three components.

A. Software Analysis Web Services

From a user’s perspective, software analyses are inherently
linear and uniform in the way they work. Given some infor-
mation about a software project (be it the code, its source code
repository, some data already calculated by an analysis, etc.)
and possible analysis calibration settings, they extract and/or
calculate their specific data. Once that is completed, the results
can be fetched. Such linearity and uniformity make REST a
perfect fit for our needs, as some of its inherent principles are
also the main requirements and characteristics of our services.

A RESTful web service provides a uniform interface to
the clients, no matter what the service actually does. It is a
collection of resources all identified by URIs, which can be
accessed and manipulated with HTTP request methods (e.g.,
POST, GET, PUT or DELETE). Furthermore, every message

exchanged is self-descriptive as it always contains the Internet
media type of the content, which is enough to describe how
to process it.

These analyses can be divided into three categories: Data
gatherers, basic and composite software evolution analyses.

Data gatherers work on raw data, extracting it from
different software repositories, such as version control, issue
tracking, mailing lists, plain source code, etc., and making it
available to other SOFAS services analyses. This includes:

• Version history importers for CVS, SVN, GIT and Mer-
curial extract the version control information from a given
repository.

• Issue tracking history importer for Bugzilla, Google
Code, Trac, and SourceForge extract the issue tracking
history from a given issue tracker.

Basic software evolution analyses exploit the data im-
ported by one of these data gatherers to calculate all sort of
software evolution information. For example:

• Version history and issue tracking metrics calculators, cal-
culating several statistics from version and issue histories
extracted by one of the aforementioned services.

• Code ownership calculators, detecting which develop-
ers “own” every file of a software project, based on
its extracted version control history and using different
heuristics.

• Change distribution calculator, calculating the distribution
of changes between the developers in a given version
control history using the Gini coefficient as proposed by
Giger et al. [14].

Composite software evolution analyses aggregate data
produced by other analyses to calculate more complex and
domain spanning evolution information. This includes:

• Issue-revision linkers, reconstructing the links between
issues of an issue tracking history and the revisions of a
version control history that fixed them.

• Code Disharmonies detector, detecting the code dishar-
monies [22] existing in a software project using the code
metrics extracted by the aforementioned calculators.

• Defect predictors, predicting defect prone entities using
different heuristics, e.g. using code metrics or the bug
cache algorithm that uses issue tracking and version
histories of a project [21].

B. Software Analysis Ontologies

To describe the data produced by our analyses, we have
developed our own family of ontologies, called SEON (Soft-
ware Engineering ONtologies).1 An ontology is a formal
description of the important concepts identified in the domain
of discourse and their relationship to one another [17]. It
provides a common vocabulary for a specific domain, which
can be used to express the meta-data needed to capture the
knowledge of the shared and reused data. Our ontologies,
defined in OWL, are organized in a pyramidal structure. The
top layer comprises ontologies describing general concepts,

1http://www.se-on.org



the attributes to describe them, and the relations between the
concepts. The second-highest layer defines domain-spanning
concepts. These concepts describe knowledge that spans a
limited number of subdomains. The third layer is made up
of ontologies describing different domains corresponding to
important aspects of software evolution, e.g. issue and version
management. At the bottom of the pyramid sit ontologies
describing system-specific or language-dependent concepts
(e.g. Java-specific constructs, SVN concepts, etc.). We refer
to [36] and SEON ’s official web page for more details on the
approach and for a description of some of these ontologies.

C. Software Analysis Broker

The Software Analysis Broker offers a single entry point to
SOFAS ’ services. Through it, they are kept track of, classified
in a registry, queried, monitored and coordinated. In this way,
users do not have to interact directly with the plain services.
The Broker is in turn made up of four main sub-components:
the Services Catalog , a user interface, the Services Composer ,
and a series of management tools.

The Services Catalog stores and classifies all the registered
analysis services so that a user can automatically discover
services, invoke them, and fetch the results. We developed
a software analysis taxonomy to systematically classify ser-
vices. This taxonomy divides the possible analyses into three
main categories: development process, underlying models, and
source code. For more details we refer to the SOFAS website.2

The User Interface is the access point to the Software
Analysis Broker. It consists of a web UI meant for human
users and a series of RESTful service endpoints to be semi-
automatically used by applications. Through the UI the user
can easily browse through the Services Catalog to check for
analyses offered, invoke them individually or, if necessary,
combine them into workflows. The user interface offers an
intuitive, high level way to do that, allowing the user to
combine the services in a “pipe and filter” fashion. The system
then translates this high-level workflow into an executable
form using SCoLa , our WS-BPEL-based custom composition
language. Furthermore, users can also pick from some already
predefined combinations of analysis services provided as high
level analyses workflows. On the other hand, applications
directly submit analysis workflows written in SCoLa to the
Broker using its REST API.

The Services Composer takes care of translating the work-
flows defined through the UI into actual, executable ones and
execute them. Having the composition definition and the actual
composition language decoupled, allows the user to focus on
the creation of meaningful composite analyses without having
to deal with the complexity and technicalities of the actual
composition and orchestration. Moreover, calls to additional
management services can be automatically weaved into a user
defined workflow.

Management services are used to support a correct execution
of analysis workflows. In fact, such workflows are usually
made up of long running, asynchronous web services. Thus,

2https://seal.ifi.uzh.ch/sofas

in order to effectively handle them, every single service needs
to be logged and monitored to check if is up and running, if it
is in an erroneous state, if it completed a required operation,
etc.

D. Supporting Replication with SOFAS

A successful study replication can occur only if the follow-
ing three aspects are fulfilled:

• Availability of ground data. The data on which the study
is based should be easily and readily accessible in some
form, preferably over the Internet.

• Availability of the analysis itself. The tools or scripts
used to perform the study–which handle and analyze
the ground data to produce the final results–should be
publicly available and usable. If not, detailed instructions
on how to perform the analysis, or the algorithms, should
be provided.

• Availability and traceability of results. The results
produced in the study should be available in the same
way as the ground data. While not essential for the actual
replication, it facilitates the verification of the results and
claims of the original study, and the comparison with the
results of the replicas.

Wuersch et al. [37] already made a case for using the
Semantic Web to obviate the issue of availability and trace-
ability of the results in mining software repositories analyses.
The experience we gained in implementing different software
analysis approaches shows that the combination of semantic
web and REST, which is the core foundation of SOFAS , is
a perfect fit in fulfilling the three aforementioned aspects and
thus facilitating and supporting replicability.

Having analyses as RESTful web services with a uniform
interface improves their accessibility. Users do not have to
install or configure any tool, but just need to supply the
analysis service with the necessary data. Moreover, services
can also be easily integrated into custom user application
and scripts. In fact, being RESTful, they can be called with
simple HTTP methods, without the need of custom libraries
or frameworks. For example, this could come down to a single
command issued to a simple command-line tool like cURL 3.
With this solution, also the results are available online to all
the other SOFAS users as they can be retrieved straight from
the analysis itself. For example, given one of the services
extracting the complete history of a version control repository
reachable at http://habanero.ifi.uzh.ch/gitImporter, the results
of specific analyses are available at http://habanero.ifi.uzh.
ch/gitImporter/analyses/〈analysis name〉. Depending on the
user’s needs, these results can be browsed online, downloaded
in their RDF form or queried online using SPARQL. In this
last case, the user has to encode the query in the URL,
e.g., http://habanero.ifi.uzh.ch/gitImporter/analyses/〈analysis
name〉?query=〈sparql query〉, or use the service web UI that
has a form through which queries can be composed and ran.

The use of public semantic web ontologies to describe
these analysis results facilitates their interpretation. In fact,

3http://curl.haxx.se/



not only they describe in a clear way the domain of discourse,
both semantically and syntactically, but they also come with
a powerful, standard query language, SPARQL [29]. This
means that researchers can also make the queries they used
to extract and aggregate the final results public, to be re-
used or verified straight away. Moreover, the semantic web
concept of statements represented by triples of URIs enables
us to link and query data that is stored on different services
and build an internet-scale graph of analysis information. All
SOFAS services, in addition to a standard SPARQL endpoint
to query the analysis data, also expose a URI for every piece
of information they extracted so that it can be dereferenced
over the Internet. For example, let us consider one of SOFAS ’
issue-revision linker services which, given the issue tracking
and version histories of a specific software project (extracted
by other services), reconstruct the links between issues and the
revisions that fixed them. Such service would produce triples
like this:
bugzillaImporter/analyses/project_x/issues/124
se-on.org/ontologies/integration-history-issues/isFixedIn
gitImporter/analyses/project_x/changesets/1239

This triple states that the issue number 124 (as imported
by service bugzillaImporter) of project x was fixed during
its revision 1239 (as imported by service gitImporter). From
triples like this, client applications, as well as humans, can
easily follow the links to access the actual resources involved
or use them as an input for further SPARQL queries. From a
very small initial piece of information, users can incrementally
navigate the information space and expand their knowledge
about the system being used.

SOFAS includes an entire family of analysis services called
data gatherers, which we already introduced earlier and
which sole purpose is to import raw, ground data in SOFAS to
be used by other services, as well as human users. In this way,
the ground data can be easily extracted, accessed and used as
we just described for the other analysis services.

Finally, the ability to compose services into workflows
allows users to execute more complex analyses building on
the existing offering. This not only broadens the amount of
existing studies and analyses that can be replicated, but can
also be exploited in creating and executing novel ones.

III. REPLICABILITY EVALUATION

To show the applicability of our framework in replicating
mining studies, we performed a complete review of all the
studies published in the proceedings of the MSR conferences
from 2004 to 2011 (a total of 8 editions). We then filtered
out the non-experimental studies for which replication cannot
be achieved. These papers, which actually account for the
51% (88 papers) of the total, typically propose new methods,
analysis tools and frameworks, visualizations, case studies,
etc. The remaining papers were then classified into 6 broad
categories. These categories were subjectively constructed and
were kept rather generic on purpose. In fact our goal was to
identify the main “macro” empirical research areas and check
whether our approach was particularly successful on any of

those. We did not intend to perform a thorough and detailed
review of the field.

9% of the 84 studies found, deal with the plain mining of
version history data from version control systems for different
purposes; to shed light on the development process [24],
to better understand how developers work [38] and their
dynamics [35]. The same number of studies addresses the
issue of bug prediction, i.e., finding code entities that are most
likely to be fixed or to be buggy based on different historical
information. The work by Giger et al. [13] or by Sliwerski
et al. [33] are two prime examples of this category. The two
largest categories, both accounting for 22% of the total, are
defect analysis and social networks and team analysis. The first
one deals with the analysis of all sort of defects and flaws, e.g.
clones [30], reported bugs [1], etc. and the exploitation of such
data. The second one deals with the extraction and analysis
of the social networks associated to a software project [5]
and the team/development dynamics of it [25]. 20% of the
studies belong to a more generic historical mining category,
which encompasses studies exploiting all sorts of software
development-related historical data for a wide range of appli-
cations. For example, deducing a developer’s expertise based
on its source code contributions to ease bug assignment [23]
or finding license violations [18]. The remaining 15% deal
with change analysis. That is, the analysis of the changes
performed on the source code to uncover or extract more
information about how the software changed. For example,
studying how identifiers are renamed [6] or extracting and
analyzing commonly occurring change patterns [20].

Every study was then inspected in detail to assess if and
how it could be replicated using SOFAS . As a result, the
studies were then qualified as replicable, partially replicable
and not replicable. A study was considered replicable if the
same results can be replicated or if all the necessary data
can be computed with the exception of their final aggregation
or interpretation. On the other hand, a study was considered
partially replicable if the results cannot be replicated out of
the box, but the ground data from which they are derived can
be computed. Finally, a study was deemed not replicable if
no, or very little, ground data could be computed.

Replication is usually divided in two main categories: exact
and conceptual. Exact replication is when the procedures of
the experiment are followed as closely as possible. Conceptual
replication is when the experimental procedure is not followed
strictly, but the same research questions or hypotheses are
evaluated, e.g. different tools/algorithms are used or some of
the variables are changed [32]. In this paper, we did not distin-
guish between exact and conceptual replication. A study was
considered replicable whenever it could be replicated, either
conceptually or exactly, using services currently available in
SOFAS .

The results of our replicability assessment are reported in
Table I. The level of replicability is spread evenly across the
different research categories and there is no category for which
SOFAS was significantly more or less successful. The only
exceptional category is History Mining, as no full replicability



Research category Number of
studies (in %)

Replicable
studies

Partially repli-
cable studies

Not replicable
studies

Version History
Mining

8 (9%) 4 0 4

History Mining 17 (20%) 0 8 9
Change Analysis 13 (15%) 5 6 2
Social Networks
and People

19 (22%) 6 5 8

Defect Analysis 19 (22%) 8 6 5
Bug Prediction 8 (9%) 2 2 4

88 (100%) 25 (30%) 27 (32%) 32 (38%)

TABLE I
REPLICABILITY OF MSR STUDIES FROM 2004–2011

could be achieved for it. This is most likely due to the fact that
it is a quite broad category encompassing rather diverse studies
each requiring their own specific analyses. If such analyses are
not available in SOFAS , the studies cannot be yet replicated.
However, simply adding services implementing these analyses
would fix this shortfall. Nevertheless, 49% of such studies can
already be partially replicated. This is because a lot of them
are based on data extracted from software repositories such
as version control, issue tracking, mailing lists or plain source
code, which are well covered by SOFAS . The other categories
are more specific and deal with common issues in software
evolution analysis. That means that analyses dealing with such
issues are likely to already exist in SOFAS . Moreover, studies
in these categories are often similar to each other and can thus
be conceptually replicated using the same analyses.

In the following section, we replicate one of the studies to
better show and prove how SOFAS supports such replication.

IV. REPLICATION STUDY

Next, we present in detail the replication of the study by
Eyolfson et al. [7] entitled: ”Do time of day and developer
experience affect commit bugginess?” published in MSR 2011.
In particular, we (1) introduce the original study, (2) describe
what we replicate, (3) show how it is done and extended
with SOFAS , and (4) present and discuss the results of the
(extended) replication.

The original study, performed by Eyolfson et al. [7], inves-
tigates the correlation between the bugginess of a commit and
a series of factors: the time of day of the commit, the day
of week of the commit, the experience and commit frequency
of the committer. Such analysis is based solely on the history
of a project extracted from its version control system. The
authors consider as bug-introducing commit any commit for
which there exists another commit explicitly fixing it later in
time. To find them, they first detect all the bug fixing commits
using a standard heuristic used in the field. That is, finding the
ones that have specific keywords (e.g. “fix”, “fixed”, etc.) in
their commit message. Buggy commits are then the ones that
changed files that were involved in such fixes.

In their investigation, the authors studied the version control
histories of the Linux kernel and PostgreSQL and uncovered
four main findings. First, about a quarter of the commits in a
project history introduce bugs. Second, the time of the day
influences the introduction of bugs, as late night commits

Fig. 1. Principle workflow used to replicate the targeted study

(submitted between midnight and 4 AM) are significantly
more bug-prone and commits between 7 AM and noon are
less buggy. Third, regularly committing developers (daily-
committers) and more experienced committers introduce fewer
bugs. Last, the influence of the day of the week on the commits
bugginess is project dependent.

For our paper, we verify these four findings by fully
replicating the original study. We also extend the study by
testing if such findings hold for three other popular OSS
projects: Apache HTTP, Subversion and VLC. The results of
this replication are available online from the services used in
the study.

A. Replication Set-up

To replicate this study, we create and execute an analysis
workflow that consists of the following main steps:

1) Extract the complete project version control history.
This is accomplished using one of the version control
history extractors currently registered in SOFAS . As
of now, six of such services targeting different version
control systems exist. They handle Git (two of them),
CVS, Mercurial and SVN (two of them) repositories. In



this case, we used one of our Git services. The results are
available at habanero.ifi.uzh.ch/newGitImporter/<project
name> with project name being either httpd, postgresql,
linux, subversion or vlc.4

2) Find all the bug-introducing and bug-fixing commits
(a.k.a. revisions) from such history. This is also accom-
plished by one of the currently registered bug-revision
linkers. These services extract such information from a
project history extracted by one of the aforementioned
version control services. Currently, five of them exist.
Three of them are version control system independent but
only find the bug-fixing commits. This is because this is
the only information that can be recovered directly from
version control history alone. Finding bug-introducing
commits is, on the other hand, more complex to recover
and the process to do so is version control system-
dependent. The two linkers currently supporting this
feature target Git and Mercurial-based repositories. These
services are based on algorithms that are very similar to
the ones used in the original study. The main difference
lies in the heuristics used to detect bug-fixing commits.
In fact, we use a larger set of terms to classify a commit
as a bug fix based on its commit message.

3) Extract the commit frequency and experience of all
users who introduced bugs (calculated from the bug
introduction date). This is achieved by querying the data
extracted in the first step with specific SPARQL queries.

4) Aggregate the buggy commits by time of the day,
day of the week, developer experience and commit
frequency. This is also achieved with SPARQL queries.

5) Final results interpretation. SOFAS simply supports
the extraction and combination of analyses and data.
The conclusions still have to be manually drawn
by the initiators of such analyses, depending on
their specific needs. The links found are available at
habanero.ifi.uzh.ch/bugFixesLinker/<project name> (the
project names are the same as in Step 1.

Figure 1 depicts the principle view of the workflow we used
for the replication.

B. Results

Next, we describe the results of this replication grouped into
the original four main findings. All the projects were analyzed
between July 1st and July 10th, 2012.

1) Percentage of buggy commits: Our replication confirms
the results of the original study for both Linux and Post-
greSQL. The slightly different values can be explained by the
different heuristic used to detect bug fixes and the different
analysis date (the projects were analyzed a year later than the
original study to also provide some added value). Moreover, all
the other analyzed projects exhibit similar values (22-28%), as
shown in Table II. These results seem to indicate a trend worth
investigating more in detail, with a larger body of projects.

4This data can be accessed in restricted read mode with username: RE-
PLGUEST, password: REPLGUEST2013.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

5

10

15

20

25

30

Hour of the day

Pe
rc

en
ta

ge
of

bu
gg

y
co

m
m

its

Fig. 2. Percentage of buggy commits versus time-of-day for PostgreSQL

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

5

10

15

20

25

30

Hour of the day

Pe
rc

en
ta

ge
of

bu
gg

y
co

m
m

its

Fig. 3. Percentage of buggy commits versus time-of-day for Linux

2) Influence of time of the day on commit bugginess:
Figures 2 to 6 show the correlation of the time of the day
of a commit with its bugginess for the analyzed projects. The
graph compares the time of the day of each commit on a 24-
hour clock (in the committers local time) to the percentage
of bug-introducing commits. The horizontal line in the graphs
indicates the overall percentage of buggy commits for each
project. Our replication confirmed the results of the original
study for both original projects. Moreover, the analysis of the
additional projects corroborates the finding that the amount of
commits introducing a bug is particularly high between mid-
night and 4 AM and that then it tends to drop below average in
the morning and/or early afternoon. However, these ‘windows’
of low bugginess greatly vary between projects. Furthermore,
the projects’ commit bugginess follows very different patterns,
which do not allow any further generalization on the influence
of the time of the day on the commit bugginess.

3) Influence of developer on commit bugginess: Figures 7
to 11 correlate author experience at time of commit (elapsed
time between the author’s first ever commit and the commit
being examined) to the bugginess of the commit. Our repli-
cation confirms the original results that bugginess decreases

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

5

10

15

20

25

30

35

40

Hour of the day

Pe
rc

en
ta

ge
of

bu
gg

y
co

m
m

its

Fig. 4. Percentage of buggy commits versus time-of-day for Apache HTTP
Server

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

5

10

15

20

25

30

35

40

Hour of the day

Pe
rc

en
ta

ge
of

bu
gg

y
co

m
m

its

Fig. 5. Percentage of buggy commits versus time-of-day for Subversion



# commits # bug-introducing commits # bug-fixing commits

Original Study Linux 268820 68010 (25%) 68450
PostgreSQL 38978 9354 (24%) 8410

Extended Study
Apache Http Server 30701 8596 (28%) 7802

Subversion 47724 12408 (26%) 10605
VLC 47355 10418 (22%) 10608

TABLE II
SMALL SUMMARY OF THE CHARACTERISTICS OF THE ANALYZED PROJECTS

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

5

10

15

20

25

30

35

40

Hour of the day

Pe
rc

en
ta

ge
of

bu
gg

y
co

m
m

its

Fig. 6. Percentage of buggy commits versus time-of-day for VLC

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68

5

10

15

20

25

30

35

40

Month of experience

Pe
rc

en
ta

ge
of

bu
gg

y
co

m
m

its

Fig. 7. Percentage of buggy commits versus author experience for Linux

with increased author experience for all the projects analyzed.
In all projects, a drop in commit bugginess is evident with the
increasing amount of time a developer has spent on a project.
In four of the projects such drops happen between 32 and 40
months of experience, while in the case of PostgreSQL such
a drop takes place much later, at 104 months of experience.

4) Influence of day of the week on commit bugginess:
Figures 12 to 16 show the correlation between the day of the
week with the commit bugginess on that day. As before, the
solid horizontal line represents the overall commit bugginess
of the project. Our results confirm the results of the original
study. However, the additional projects’ bugginess present

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 136 144 152 160 168 176

5

10

15

20

25

30

35

40

Months of experience

Pe
rc

en
ta

ge
of

bu
gg

y
co

m
m

its

Fig. 8. Percentage of buggy commits versus author experience for PostgreSQL

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

5

10

15

20

25

30

35

40

Months of experience

Pe
rc

en
ta

ge
of

bu
gg

y
co

m
m

its

Fig. 9. Percentage of buggy commits versus author experience for Apache
HTTP server

4 8 12 16 20 24 28 32 36 40 44

5

10

15

20

25

30

35

40

Months of experience

Pe
rc

en
ta

ge
of

bu
gg

y
co

m
m

its

Fig. 10. Percentage of buggy commits versus author experience for Subver-
sion

4 8 12 16 20 24 28 32 36 40 44 48 52 56

5

10

15

20

25

30

35

40

Months of experience

Pe
rc

en
ta

ge
of

bu
gg

y
co

m
m

its

Fig. 11. Percentage of buggy commits versus author experience for VLC

different patterns. Apache HTTP server and Subversion tend
to have two commit bugginess “phases”: a higher than average
one from Tuesday to Friday and a lower than average one from
Saturday to Monday. On the other hand, the bug introduction
in VLC is almost the opposite, as it is lower in the middle
of the week (Wednesday to Friday). The analysis of these
additional projects shows that the finding of the original
project, that commits on different days of week have about
the same bugginess, is not generalizable. Moreover it also
shows that the results of a previous similar study [33] that
showed the Friday was the day with the most buggy commits
(based on the analysis of Mozilla and Eclipse) also cannot be
generalized.

Mon Tue Wed Thu Fri Sat Sun

5

10

15

20

25

30

Day of the week

Pe
rc

en
ta

ge
of

bu
gg

y
co

m
m

its

Fig. 12. Percentage of buggy commits versus day-of-week for PostgreSQL

Mon Tue Wed Thu Fri Sat Sun

5

10

15

20

25

30

Day of the week

Pe
rc

en
ta

ge
of

bu
gg

y
co

m
m

its

Fig. 13. Percentage of buggy commits versus day-of-week for Linux



Mon Tue Wed Thu Fri Sat Sun

5

10

15

20

25

30

Day of the week

Pe
rc

en
ta

ge
of

bu
gg

y
co

m
m

its

Fig. 14. Percentage of buggy commits versus day-of-week for all Apache
HTTP server

Mon Tue Wed Thu Fri Sat Sun

5

10

15

20

25

30

Day of the week

Pe
rc

en
ta

ge
of

bu
gg

y
co

m
m

its

Fig. 15. Percentage of buggy commits versus day-of-week for Subversion

V. INTERPRETATION OF THE RESULTS

In the interpretation of our results we consider the aspects
of feasibility of replication, the scalability using more than
the original projects for the study, and the extensibility with
additional services to enrich the results. We discuss them in
turn.

Feasibility
We performed a feasibility assessment of using SOFAS as

a platform to replicate mining studies. By exploiting SOFAS
ability to compose a wide range of software evolution anal-
yses into structured workflows we can replicate 30% of the
analyzed studies and compute the ground data needed for
another 32% of them. The studies we can replicate do not
predominantly belong to any of the macro categories presented
in Table I. However, they all use historical data extracted from
different repositories (mainly issue trackers and version control
systems) as their basis. This is because SOFAS original goal
was the support of software evolution analysis, which cuts
across the categories we identified.

Scalability
To better show how replication with SOFAS works, we

replicated a selected study using five software projects. How-
ever, the approach can scale up to hundreds of projects. Once
the workflow introduced in Section IV-A is defined, it can
then be automatically run with different project repositories
as input. The only limitation for such a substantial corpus
of projects would be the total execution time. In fact the
analysis of a single long standing project such as the Apache
HTTP server takes around 8 hours. However, the fact that

Mon Tue Wed Thu Fri Sat Sun

5

10

15

20

25

30

Day of the week

Pe
rc

en
ta

ge
of

bu
gg

y
co

m
m

its

Fig. 16. Percentage of buggy commits versus day-of-week for VLC

the analysis services are deployed on industry-grade servers
allows us to run several workflows in parallel without a
noticeable performance degradation to alleviate this problem.
Thus, even though it we did not specifically target performance
improvement of software evolution analysis, the architectural
features of our approach present serious advantages over
similar approaches.

Extensibility

We only focused on the replication of existing studies.
However, with SOFAS , experiments can also be extended and
enriched with data produced by additional analyses, which
were unaccounted for in the original study. Once the historical
data has been imported into SOFAS and analyzed with the
chosen analyses, the results–along with the ground data–can
be fed to other services. They can also be used by third-party
analyses and tools outside SOFAS with data from repositories
such as PROMISE [8] or FLOSSmole [19]. For example,
we could easily expand the study we replicated in Section
IV by also taking into account code ownership measured
using the Gini coefficient, as proposed by Giger et al. [14].
In that study, the authors calculated the Gini coefficient for
every source code file in their dataset (the version control
history of a selected group of Eclipse core plugins) based
on the distribution of the changes to that particular file by
all developers. They showed that, in the case of the selected
projects, the more changes to a file are done by a few
developers (high Gini coefficient) the less likely it will have
bugs. The study we replicate would thus be extended to “Do
time of day, developer experience and file ownership affect
commit bugginess?”.

Since there is already a Gini coefficient calculator registered
in SOFAS , this study extension would come down to feeding
the previously extracted version control histories to it. This
service computes the distribution of changes to source code
files between the developers in a given version control history
using the Gini coefficient. To actually find out whether file
ownership computed with this method has an influence on
commit bugginess, the user would have to manually query the
bug-revision linker used and the Gini coefficient calculator to
check whether the files in the previously found buggy commits
exhibit high Gini coefficients. As of now, SPARQL does not
support federated queries (i.e., writing and executing a query
on different, distributed endpoints). This means that the user
would have to query the two services separately and manually
aggregate the results. However, a W3C recommendation about
federated SPARQL queries is being currently worked on [28]
such that in the future also this last step could be automated.

VI. RELATED WORK

The replication of studies is an essential task to expand and
mature the current body of knowledge of any branch of science
or technology. In particular, it is vital in gaining a deeper
understanding on which results or observations hold under
which conditions. However, such task is also intrinsically
difficult, primarily because it is hard to reproduce a setting



that is the same–or extremely similar–as the original study.
This has led to the introduction of lab packages [3] (also
known as replication packages) and data repositories. A lab
package is a detailed description of an experiment, containing
all the material needed to replicate an experiment or at least
simplify the replication. Data repositories, host publicly avail-
able software engineering data sets containing a wide range of
data: error data, failure data, software metrics, analysis tools,
etc. Such repositories are mostly used as commonly accepted
benchmarks to validate models and studies. One of the most
prominent example is PROMISE [8].

Such systematic approaches are still lacking in software evo-
lution analysis and mining software repositories, as reported
by Robles [31]. The main reason behind this lack of replication
being the unavailability of the tools, scripts and instructions
necessary to run the study (80% of the cases) and the actual
results data set.

Similarly to the PROMISE repository, researchers have
established online software evolution data repositories. Floss-
mole [19] contains metadata about more than 500,000 open
source projects extracted from the major code source forges
(sourceforge, github, freshmeat, etc.). The extracted data fo-
cuses on more high-level development information and dy-
namics and is offered “as is” (no actual analysis is performed).
The Ultimate Debian Database [27] follows a similar approach
but only for the Debian Linux distribution and all its binary
packages. However, it focuses on extracting and presenting
more system specific information (package popularity, history
of packages upload, etc.). Mockus [26], on the other hand,
collected and indexed the version control history and the actual
source code of a large sample of software projects from the
most notable forges. With all these repositories we share the
concept of having diverse, automatically retrieved, software
history data easily available on-line. However, with SOFAS
is possible to proactively fetch such data for new projects,
while these repositories handle only a fixed, pre-defined set of
projects.

The lack of proactiveness of data repositories can be over-
come by tools and platforms combining a wide range of
software analyses. Systems such as Kenyon [4] or Evolizer [9]
automatically extract the version control history, bug history
of a software and run additional analyses based on that.
Moreover, they have means to use and interpret such data (e.g.
visualizations, querying interfaces, etc.). These tools allow to
easily replicate studies that are based exactly on the analyses
provided. No other replication is possible as the supported
analyses–and their combinations–are created beforehand and
hardcoded into the tools. Furthermore, none of them makes
the results easily available from outside of the tool, a crucial
requirement for successful replication.

Gasser et al. [10] point out the need for a sharable research
infrastructure and collections of data under common access
points and frameworks. SOFAS , along with FOSSology [15]
and Alitheia Core [16] are systems devised to address that
need. FOSSology is a framework to analyze source code
with different, custom analyses (called agents) that can be

created by users to fulfill their specific needs. The framework
itself is just in charge of extracting the source code from a
given repository which will then be analyzed by these analysis
agents supplied by the framework’s users. To the best of our
knowledge, for now only an agent that detects the code license
exists. Alitheia Core is the approach closest to SOFAS . The
major differences lie in the implementation (plug-in vs. service
based architecture), the analyses currently offered and how
they can be combined. In contrast with SOFAS , Alitheia does
not allow to freely combine analyses. Data plugins retrieve
and process data from version control systems, issue trackers
and mailing lists, which can then used by metrics plugins to
calculate additional knowledge. However, these plugins cannot
be further combined to provide more complex metrics nor their
data be used by other plugins.

The only analogous study existing in the literature is by
Tappolet et al. [34]. In this study, the authors showed that if
the data used by the MSR empirical studies were available
in their software evolution ontology (EvoOnt), 75% of them
could be reproduced with at most two SPARQL queries.
However, no concrete study replication was performed. In fact,
their goal was to demonstrate the potential of the inherent
capabilities of semantic web ontologies in supporting software
evolution research and overcome some of its most significant
obstacles. We share with them the concept of representing
software evolution data with ontologies and the opinion that
they are extremely beneficial in the representation, sharing
and combination of such data. However, we focus on the
replication of actual MSR studies and in proving how that
can be addressed by a platform like SOFAS .

VII. CONCLUSIONS

In this paper, we demonstrated how our SOFAS platform
can be used to effectively replicate mining studies previously
presented at the MSR conference. To identify these studies,
we performed a comprehensive literature review of the papers
published in the proceedings of any of the MSR conferences
from 2004 to 2011. All the respective studies found were then
classified into 6 different categories. For each of them, we
manually assessed whether it can be replicated with a com-
bination of the software evolution analysis services currently
available in SOFAS . As a result, we found that 30% of such
studies could be replicated fully, while and additional 32%
could be partially replicated. A study was considered partially
replicable, if we could not replicate its results straight out of
the box, but we could calculate all the ground data from which
they were derived. To support our claim of replicability with
SOFAS , we presented in detail the replication of one of the
published studies.

The amount of studies that can be fully replicated amounts
to about one third. However, combined with the partially
replicated ones, we can simplify the replication of up to 62%
of the currently existing studies. We are convinced that this
is a promising results, as our main goal was to prove the
applicability of our platform in tackling an essential issue of
study replication in the software evolution community, namely



uniform availability of analysis and results.
The main limitation of our approach is the breadth of repli-

cation support by the analyses currently offered by SOFAS .
Any further improvement would require the addition of new
services. In the future, we plan to add further services and
analyze a wide corpus of OSS projects with SOFAS to create
an online data repository freely available to researchers to
use as benchmark and for their analyses. We hope that the
availability of such data and the replication framework will
spark interest to tackle replicability in a more systematic and
standardized way.

REFERENCES

[1] J. Anvik and G. C. Murphy. Determining Implementation Expertise from
Bug Reports. In Proceedings of the Fourth International Workshop on
Mining Software Repositories, 2007.

[2] S. Bajracharya, T. Ngo, E. Linstead, Y. Dou, P. Rigor, P. Baldi, and
C. Lopes. Sourcerer: a Search Engine for Open Source Code Supporting
Structure-Based Search. In Companion to the 21st ACM SIGPLAN
symposium on Object-oriented programming systems, languages, and
applications (OOPSLA ’06), pages 681–682, 2006.

[3] V. Basili, F. Shull, and F. Lanubile. Building Knowledge Through
Families of Experiments. IEEE Transactions on Software Engineering,
25(4):456 –473, jul/aug 1999.

[4] J. Bevan, E. J. Whitehead, Jr., S. Kim, and M. Godfrey. Facilitating
Software Evolution Research with Kenyon. In Proceedings of the
10th European software engineering conference held jointly with 13th
ACM SIGSOFT international symposium on Foundations of software
engineering, pages 177–186, 2005.

[5] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swaminathan.
Mining Email Social Networks. In Proceedings of the 2006 International
Workshop on Mining Software Repositories, pages 137–143, 2006.

[6] L. M. Eshkevari, V. Arnaoudova, M. Di Penta, R. Oliveto, Y.-G.
Guéhéneuc, and G. Antoniol. An Exploratory Study of Identifier
Renamings. In Proceedings of the 8th Working Conference on Mining
Software Repositories, pages 33–42, 2011.

[7] J. Eyolfson, L. Tan, and P. Lam. Do Time of Day and Developer
Experience Affect Commit Bugginess? In Proceedings of the 8th
Working Conference on Mining Software Repositories, pages 153–162,
2011.

[8] T. M. G. Boetticher and T. Ostrand. PROMISE Repository of empirical
software engineering data. West Virginia University, Department of
Computer Science, http://promisedata.org/repository 2007.

[9] H. C. Gall, B. Fluri, and M. Pinzger. Change Analysis with Evolizer and
ChangeDistiller. IEEE Software, 26(1):26–33, January/February 2009.

[10] L. Gasser, G. Ripoche, and R. J. Sandusky. Research Infrastructure
for Empirical Science of F/OSS. In Proceedings of the International
Workshop on Mining Software Repositories, 2004.

[11] G. Ghezzi and H. Gall. A Framework for Semi-Automated Software
Evolution Analysis Composition. Automated Software Engineering (to
be published), 2013.

[12] G. Ghezzi and H. C. Gall. SOFAS: A Lightweight Architecture for
Software Analysis as a Service. In Proceedings of the 9th Working
IEEE/IFIP Conference on Software Architecture, 2011.

[13] E. Giger, M. Pinzger, and H. C. Gall. Comparing fine-grained source
code changes and code churn for bug prediction. In Proceedings of the
8th Working Conference on Mining Software Repositories, pages 83–92,
2011.

[14] E. Giger, M. Pinzger, and H. C. Gall. Using the gini coefficient for
bug prediction in eclipse. In Proceedings of the 12th International
Workshop on Principles of Software Evolution and the 7th annual
ERCIM Workshop on Software Evolution, pages 51–55, 2011.

[15] R. Gobeille. The FOSSology project. In Proceedings of the 5th IEEE
International Working Conference on Mining Software Repositories,
pages 47–50, 2008.

[16] G. Gousios and D. Spinellis. A Platform for Software Engineering
Research. In Proceedings of the 6th IEEE International Working
Conference on Mining Software Repositories, pages 31 –40, 2009.

[17] T. R. Gruber. A translation approach to portable ontology specifications.
Knowledge Acquisition, 5(2):199 – 220, 1993.

[18] A. Hemel, K. T. Kalleberg, R. Vermaas, and E. Dolstra. Finding software
license violations through binary code clone detection. In Proceedings
of the 8th Working Conference on Mining Software Repositories, pages
63–72, 2011.

[19] J. Howison, M. Conklin, and K. Crowston. FLOSSmole: A Collaborative
Repository for FLOSS Research Data and Analyses. International
Journal of Information Technology and Web Engineering, pages 17–26,
2006.

[20] S. Kim, E. J. Whitehead, and J. Bevan. Analysis of signature change
patterns. In Proceedings of the 2005 International Workshop on Mining
Software Repositories, pages 1–5, 2005.

[21] S. Kim, T. Zimmermann, E. J. Whitehead Jr., and A. Zeller. Predicting
faults from cached history. In Proceedings of the 29th international
conference on Software Engineering, pages 489–498, 2007.

[22] M. Lanza and R. Marinescu. Object-Oriented Metrics in Practice.
Springer-Verlag New York, Inc., 2005.

[23] D. Matter, A. Kuhn, and O. Nierstrasz. Assigning bug reports using
a vocabulary-based expertise model of developers. In Proceedings of
the 6th IEEE International Working Conference on Mining Software
Repositories, pages 131–140, 2009.

[24] S. McIntosh, B. Adams, and A. Hassan. The evolution of ANT build
systems. In Proceedings of the 7th IEEE Working Conference on Mining
Software Repositories, pages 42 –51, 2010.

[25] S. Minto and G. C. Murphy. Recommending Emergent Teams. In
Proceedings of the 4th International Workshop on Mining Software
Repositories, 2007.

[26] A. Mockus. Amassing and indexing a large sample of version control
systems: Towards the census of public source code history. In Pro-
ceedings of the 6th IEEE International Working Conference on Mining
Software Repositories, pages 11–20, 2009.

[27] L. Nussbaum and S. Zacchiroli. The Ultimate Debian Database:
Consolidating bazaar metadata for Quality Assurance and data mining.
In Proceedings of the 7th IEEE Working Conference on Mining Software
Repositories, pages 52 –61, 2010.

[28] E. Prud’hommeaux and C. Buil-Aranda. SPARQL 1.1 Federated Query.
W3C Proposed Recommendation, 8 November 2012. http://www.w3.
org/TR/sparql11-federated-query/.

[29] E. Prud’hommeaux and A. Seaborne. SPARQL Query Language for
RDF. W3C Recommendation, 15 January 2008. http://www.w3.org/
TR/rdf-sparql-query/.

[30] F. Rahman, C. Bird, and P. Devanbu. Clones: What is that smell? In
Proceedings of the 7th IEEE Working Conference on Mining Software
Repositories, pages 72 –81, 2010.

[31] G. Robles. Replicating MSR: A study of the potential replicability of
papers published in the Mining Software Repositories proceedings. In
Proceedings of the 7th IEEE Working Conference on Mining Software
Repositories, pages 171–180, 2010.

[32] F. Shull, J. C. Carver, S. Vegas, and N. J. Juzgado. The role of
replications in Empirical Software Engineering. Empirical Software
Engineering, 13(2):211–218, 2008.

[33] J. Sliwerski, T. Zimmermann, and A. Zeller. When Do Changes Induce
Fixes? In Proceedings of the 2005 International Workshop on Mining
Software Repositories, 2005.

[34] J. Tappolet, C. Kiefer, and A. Bernstein. Semantic web enabled software
analysis. Web Semantics, 8(2-3):225–240, 2010.

[35] C. C. Williams and J. W. Spacco. Branching and merging in the
repository. In Proceedings of the 2008 international working conference
on Mining software repositories, pages 19–22, 2008.

[36] M. Würsch, G. Ghezzi, M. Hert, G. Reif, and H. Gall. SEON: A Pyramid
of Ontologies for Software Evolution and its Applications. Computing,
pages 1–31, 2012.

[37] D. S. Würsch M., Reif G. and G. H. C. Fostering synergies -
how semantic web technology could influence software repositories.
In 2nd International Workshop on Search-driven Development: Users,
Infrastructure, Tools and Evaluation, 2010.

[38] K. W. Ying Liu, Eleni Stroulia and D. German. Using CVS Histor-
ical Information to Understand How Students Develop Software. In
Proceedings of the 2004 International Workshop on Mining Software
Repositories, 2004.


