
Bachelor
June 14, 2012

Facets of Software
Evolution

Aggregation and Visualization

Carol Alexandru
of Zurich, Switzerland (07-926-744)

supervised by
Prof. Dr. Harald C. Gall

Giacomo Ghezzi

software evolution & architecture lab

Bachelor

Facets of Software
Evolution

Aggregation and Visualization

Carol Alexandru

software evolution & architecture lab

Bachelor

Author: Carol Alexandru, carol.v.alexandru@gmail.com

Project period: 20.12.2011 - 20.06.2012

Software Evolution & Architecture Lab
Department of Informatics, University of Zurich

Abstract

SOFAS is a service oriented platform for analysing software projects, which can be reached over
the internet. It consists of several different services, each of which is able to analyze a different
aspect of the source code, such as its structure, size and complexity as well as the quality of its
design. The services produce raw data stored in RDF graphs and it is up to the user to process the
data, for example to produce Visualizations or to draw conclusions. The Facets application fills
this gap by offering an easy to use web interface where people can submit the URL to their code
repository, upon which Facets will start a complex workflow involving several SOFAS services to
create a comprehensive analysis of the software project. Once the analysis is complete, the user
can use a web browser to explore the results using a number of visualizations which offer an
insight on several facets of software evolution: The large-scale shape of a project, the quality of
its design, the metric properties of each and every entity of the source code and history-related
information such as the changes in size and developer activity. While traditionally, developers
are required to invest time and effort into the setup of analysys software and the preparation of
analyses, Facets offers a simpler and more straight-forward approach for people to analyze their
software projects with very little effort on their own part.

Zusammenfassung

SOFAS ist eine Service-Orientierte Plattform zur Analyse von Software-Projekten, welche über
das Internet erreichbar ist. Sie besteht aus mehreren Diensten, wobei jeder Dienst einen anderen
Aspekt des Quell-Codes analysieren kann, wie zum Beispiel dessen Struktur, Grösse, Komplex-
ität oder die Qualität des Designs. Die generierten Daten werden in RDF-Graphen gespeichert
und es ist dem Nutzer überlassen, die Daten zu verarbeiten, um zum Beispiel Visualisierungen
zu erstellen oder Schlüsse zu ziehen. Die Facets-Applikation erfüllt diese Aufgabe, indem sie eine
einfach zu bediendende Webapplikation zur Verfügung stellt, wo der Benutzer die URL zu einer
Code-Repository eingeben kann, worauf Facets einen komplexen Arbeitsprozess startet, welcher
eine Vielzahl an SOFAS-Diensten involviert, um eine umfangreiche Analyse des Software-Projekts
zu erstellen. Sobald die Analyse abgeschlossen ist, kann der Benutzer den Web-Browser verwen-
den, um die Ergebnisse mittels einer Auswahl an Visualisierungen zu erkunden, welche einen
Einblick in mehrere Facetten von Software-Evolution geben: Die grobe Form des Projekts, die
Qualität des Designs, die metrischen Eigenschaften aller Bestandteile des Quellcodes sowie den
Verlauf des Projekts, zum Beispiel im Bezug auf Grössenveränderungen oder Entwickleraktivität.
Während traditionelle Lösungen dem Entwickler einiges an Zeit und Arbeit abverlangen, um
Werkzeuge zur Analyse von Software zu installieren und Analysen durchzuführen, bietet Facets
eine einfachere und direktere Möglichkeit für Entwickler, ihre Software-Projekte mit geringem
Aufwand zu analysieren.

Contents

1 Overview 1
1.1 Problem Description . 1
1.2 Introducing «Facets» . 1
1.3 Thesis Outline . 2

2 Introduction 3
2.1 Software Analysis as a Service . 3
2.2 Facets of Software Evolution . 4
2.3 Requirements . 5

3 The «Facets»Web Application 7
3.1 Overview . 7

3.1.1 Grouping of Visualiztions . 7
3.1.2 Issuing New Analyses . 8
3.1.3 Browsing Existing Analyses . 8

3.2 Cross-Visualization Features . 9
3.2.1 Basic Features . 9
3.2.2 Indicating Code Disharmonies . 9

3.3 Individual Visualizations . 11
3.3.1 Overview Pyramid . 11
3.3.2 Overview Pyramid Evolution . 12
3.3.3 Treemap . 13
3.3.4 Treebrowser . 14
3.3.5 Project Evolution Graphs . 18

4 Design & Implementation 21
4.1 Overview . 21
4.2 Architecture . 21

4.2.1 Analysis Work Flow . 22
4.2.2 Job Management . 22
4.2.3 Analyzer and Sofas Agent . 23
4.2.4 Database . 23
4.2.5 Extending «Facets» . 24

4.3 Report Generation and Printing . 25
4.3.1 Off-Screen Rendering of a dedicated HTML template 26
4.3.2 Annotate & Print . 26
4.3.3 Server-Side Rendering of Client-Side HTML 27

vi Contents

4.3.4 Rendering a Dedicated LaTeX Template . 27

5 Related Work & Reflections 29
5.1 Related Work . 29
5.2 Web-Based Visualization Tools in Practice . 30
5.3 Working with SOFAS . 30
5.4 Extending «Facets» . 31
5.5 Future Work . 31

6 Conclusion 33

7 Appendix A: Technical Documentation 37
7.1 Deployment . 37

7.1.1 Installing Dependencies . 37
7.1.2 Installing «Facets» . 38
7.1.3 Configuration . 39
7.1.4 Operation . 40

7.2 Extending «Facets» . 40
7.2.1 Writing Visualizations for «Facets» . 40
7.2.2 Writing Additional Representations . 43
7.2.3 Writing Additional Steps During Synthesis 44

7.3 Miscellaneous Additional Information . 45
7.3.1 Database Document Templates . 45

7.4 Work Flow Diagram . 45

Contents vii

List of Figures
3.1 The submission form that is placed on the main page. Its simplicity should entice

visiting users to give Facets a try. 8
3.2 List of existing analyses in Facets with their most important cornerstone data points. 9
3.3 Overview of disharmonies in the Craft Bukkit project. Clicking on an icon reveals

the individual disharmonies. 10
3.4 An Overview Pyramid for one release of the Craft Bukkit project as generated by

Facets. In this screenshot, the user is hovering over the FANOUT/CALLS ratio and
is hence receiving additional context information in a tooltip. 11

3.5 The evolution of the Overview Pyramid for Project Grizzly. 12
3.6 A Treemap for gstreamer-java as drawn by Facets. The metrics of the current entity

are displayed on the right side. In this screenshot, the class Element has been se-
lected. It suffers from two disharmonies. Upon hovering over the shotgun surgery
icon in the lower right corner, an overlay points out the reasons for this particular
disharmony. 13

3.7 A kiviat diagram in stacking mode for the CraftLivingEntity class of the CraftBukkit
project. Releases newer than the selected release 1.7.2.R1 are hidden and all older
releases are visible below it. This is illustrated by the yellow fill of the slider. Ap-
parently, this class has shrunk in many regards such as the number of methods,
complexity and lines of code but on the other hand the base class usage ratio and
the Fanin have increased. This could indicate that the developers may have moved
functionality to the base class. 15

3.8 Two ownership Treemaps for the same commit. In A, the size of cells is deter-
mined by the number of commits and in B by the number of lines of code added.
It becomes clear that especially for smaller contributions, the different base metrics
reveal very different ownership values. For example, Travis Watkins (red) added
more lines of code than Tahg (orange), but has far fewer commits. 16

3.9 The number of lines of code from the first to the last commit. The overlay gives
information on the commit currently under the cursor. It happens to be a commit
that was followed by release 1.1.R6. Note that 752 equally distributed commits
have been hidden to fit all commits within the 910 pixel width of the drawing. . . 18

3.10 The number of commits for each month since the beginning, broken up by com-
mitter. The color of each committer stays the same in each month, which allows
keeping track of specific people. In this screenshot, the user is hovering over the
green area of the tallest column (February 2011), which belongs to Andrew Ardill.
It becomes apparent that he hasn’t been contributing much after March but that he
came back in December. 19

7.1 A crude sample visualization that shows the number of lines of code for each release. 43
7.2 Flow diagram illustrating the process of issuing analyses to SOFAS, retrieving the

data, synthesizing it and cleaning up afterwards . 46

List of Tables
3.1 Ownership percentage O and lines of code owned N for committers 1, 2 and 3

depending on different deletion and measuring scenarios. 17

viii Contents

4.1 The metric properties and physical storage needed in different contexts of three
analysed projects. 23

List of Listings
4.1 ‘facets’ section of the configuration file. 25
4.2 Minimal Javascript template for writing a new visualization. 25
4.3 A snippet from the Jinja2-LaTeX template which generates a table of the top ten

entities for each type of exceptionality. 28
7.1 Sample visualization HTML code. 41
7.2 Sample visualization Javascript code. 41
7.3 visualizations section of the configuration file with the newly registered visualization. 42
7.4 The complete facets.html template, showing how visualizations are placed in dif-

ferent facets. 43
7.5 One of many possible store functions. 44
7.6 An example of how data can be stored in MongoDB. 45

Chapter 1

Overview

1.1 Problem Description
SOFAS1 is a service oriented platform for analyzing software projects. It provides various ser-
vices for extracting source code from repositories, building object models from the source code,
measuring code metrics and running even complex analyses that can make a statement about the
quality of the code. However, SOFAS only generates raw data and until now there has been no
tool that took the data produced by SOFAS and turned it into visual representations that can be
interpreted without much effort.

The goal of this bachelor thesis is to develop an easy-to-use web application that can be used
directly via a web browser. It should enable the user to easily analyze their own code without any
help from third parties such as the SOFAS developers or dedicated personnel. The user should
simply be able to supply the URL of a code repository and after some time, be presented with the
final results. It should cover not only one aspect of software evolution but rather involve several
different facets, such as code complexity, ownership, version control history and quality.

1.2 Introducing «Facets»
The Facets application proposes a solution to this problem. It is a web service designed for end
users and it can be visited using a modern web browser upon which the user is greeted with a
simple submission form. The user enters the URL of a publicly accessible git or SVN repository
and after a number of analyses have been performed, the user can browse and view a variety of
visualizations. Visualized are a large number of metric properties such as the size, complexity,
internal coupling and hierarchy of the code as well as version control properties of the project,
such as how many lines of code were modified in any given commit or how many developers
were active during a certain month. Facets also yields some information on problematic structures
of the code: Code disharmonies or smells are structures in the code that may pose a problem to
the smooth evolution and growth of the project [20] and Facets will point out all disharmonies for
each release in the project. Finally, a PDF report can be generated and downloaded from the web
application and a printer-friendly version of the interactive web application is available as well.

The Facets application server back-end sports a simple, yet extendable implementation that
allows developers to write additional visualizations.

1An acronym for "SOFtware Analysis Services". SOFAS has also been developed at the software evolution and archi-
tecture lab at the University of Zurich.

2 Chapter 1. Overview

1.3 Thesis Outline
Within the following chapters we first unravel at the reasons that warrant the implementation of
such a tool, after which the solution will be presented in detail. Chapter 2 discusses the work this
thesis builds on, explains some of the difficulties with existing solutions and finally formulates
the requirements for the newly created tool. In chapter 3, the front-end of the web application
will be discussed, describing general ideas and giving detailed descriptions of each visualiztion.
We will discuss the background and purpose of each visualization. After the surface of the appli-
cation has been explained, chapter 4 will look at the back-end. We will elaborate on the work flow
that leads to the final product and reason for the essential design choices that have been taken.
There will also be a brief explanation of how Facets can be extended and we will look at differ-
ent methods of creating PDF reports from the analysis data. In chapter 5, we will evaluate the
solution, establishing how it differs from existing ones and explain why it may be advantageous,
before coming to a conclusion in chapter 6. The appendix contains a more detailed description
of the architecture, installation instructions and a guide on how to develop additional visualiza-
tions. The development guide includes code samples and a sample visualization, both of which
illustrate the process.

Chapter 2

Introduction

Software visualization is a well established field of research [19] and a valuable aid for software
development and maintenance [15]. There exists however a significant problem in the area of
software analysis: Most tools used for analyzing software are devised as independent programs
written by various authors. Some are written as plugins for IDEs and many are stand-alone tools
that need to be installed on the computer of the developer. It is rather difficult to make different
tools inter-operate as parts of a bigger framework or towards a new super-type of analysis. [18]

In this chapter, we will look at a possible solution for this problem - called SOFAS - and explain
its limits and how we can build on top of it. Then we will outline the concepts behind the Facets
application and the requirements the application needs to fulfill.

2.1 Software Analysis as a Service

The creators of SOFAS set out to solve the aforementioned problem of high dispersiveness and
lacking compatibility of software analysis tools: They created a distributed, collaborative platform
on which software analysis tools can be accessed over the internet. All services are registered with
an analysis broker and the data they produce is described by ontologies which are valid across
any category of analyses. Each piece of information is part of an RDF graph - retrievable via a
URL - and it is possible to query data using SPARQL1 queries. SOFAS enables engineers to easily
compose analysis work flows, where the output of one service may serve as the input for another
service. Developers can even create and publish new analysis services to be used by others as
part of their desired work flows. SOFAS services provide a RESTful API, which is kept simple
and practical [18].

SOFAS however does not concern itself with the presentation of the data which is generated by
the different services. While the services are already being used to analyze software projects and
develop further analyses, there hasn’t existed any project that makes the data presentable. Facets
uses the SOFAS framework by creating a complex work flow, starting with just a code repository
URL and ending up with an extensive visualization of several important aspects of a the given
software project. Within this work flow, several SOFAS servers are inter-operating in order to
create the required data. As such, this project also serves as a practical trial of the service oriented
software analysis architecture.

1SPARQL is a query language for querying and modifying data stored in RDF graphs.

4 Chapter 2. Introduction

2.2 Facets of Software Evolution
Software evolution is a multifaceted topic: It’s possible to focus on the historic aspects, describing
how the code base changes over time. Tools like SvnStat2 or oloh3 already that do this - Code
Swarm4 and Gource5 are more extravagant examples. It’s also possible to look at how the quality
and maintainability of the project rises and falls over the lifetime of the product. Squale6 and
Sonar7 are example for such tools. Finally it’s possible to gain insights on the structure of the
code itself, looking at code metrics. There are many tools which do this, often as plugins for
the more popular IDEs, such as Metrics8 for Eclipse. The Facets application is trying to bring
together the different facets of software evolution in one place, harnessing the functionality and
flexibility of SOFAS. We shall take a quick look at the individual facets proposed by the initial
thesis description:

• The metrics facet: Code metrics are often used in an attempt to directly derive the quality
of the given project. However they can only ever be used as indicators for potential issues
with the design and should be used with care. The upper and lower thresholds for a metric
to be considered reasonable will certainly differ depending on several factors: It matters
which programming language is used to write the code, what kind of entity was measured
and what the semantic purpose of the code is. Metrics can however still be useful to gain
an overview over the project and identify hot spots which need to be investigated more
thoroughly [20].

• The code smells facet: When analyzing a software project, one of the ultimate answers being
sought after is whether or not the code lives up to certain quality expectations. Code smells
are an indicator for possible problems in the design and they can be derived from code
metrics [20]. This facet is somewhat special in the context of this thesis because it is not very
visual. Of course it is possible to plot the number of disharmonies for a class, but ultimately,
the information conveyed is purely semantic. In chapter 3 it will become clear, how the code
smells do not only appear in a single visualization but stretch across several visualizations.
As the user is not only interested in the presence of code smells, but more importantly their
causes, the reasons for each smell are also being presented to the user.

• The project history facet: Analyzing the history of a project can yield interesting results. For
example, plotting the number of commits per developer per month can give an impression
of developer activity and involvement in a project during a certain period. In larger projects,
developers may leave or join a project during its lifetime. As such, the code ownership of
any entity in the software project may change over time. Both of these aspects are important
in order to know which developer has the required knowledge on a given entity if questions
should arise [6, 13].

• The projects future facet: Developers and project managers alike are longing for methods
that allow them to predict and avoid problems before they happen. One example is the
Yesterdays Weather algorithm, which attempts to predict the likelihood of changes happening
in any given file. The base for the algorithm is the empirical observation that entities which
have changed the most in recent time are more likely to undergo important changes in the
future [16].

2http://svnstat.sourceforge.net/
3http://www.ohloh.net/
4http://code.google.com/p/codeswarm/
5http://code.google.com/p/gource/
6http://www.squale.org/
7http://www.sonarsource.org/
8http://metrics.sourceforge.net/

2.3 Requirements 5

2.3 Requirements
Software Analysis as a Service9 was the initial thesis idea that sparked this project to develop a mod-
ern, interactive web application that visualizes the data gathered by SOFAS, giving the user the
chance to get an overview over the shape, history and quality of a given software project. Under
this pretext, the application should set itself apart among the software analysis tools designed for
end users by a number of advantages:

• It should be profoundly easy to use. The user should not need to install the software or be
required to do pretty much any work at all other than visiting a website and entering the
URL to a repository. In other words: The tool should pose minimal entry barriers for users
to participate.

• The tool should focus not on only one specific type of analysis or visualization but rather
encompass a larger number of facets of software evolution.

• Given that SOFAS can grow in the future, additions to both the Facets data aggregation
services as well as the visualizations should be possible. There should be an easy way for
developers to write additional visualizations or configure the back-end services for different
SOFAS services later-on.

• In addition to the interactive front-end it should be possible to generate a report that can be
printed for use in meetings or which can be sent via Email.

9In this case, service does not refer to a software service but to the idea of outsourcing a workload.

Chapter 3

The «Facets»Web Application

3.1 Overview
In this chapter, we look at the features and usability features of the Facets web interface. There
exists a multitude of visualizations that are being used to visualize different aspects of software
evolution [17]. For this thesis, the majority of visualizations were already part of the thesis de-
scription. Nevertheless, we take a closer look at the individual visualizations, justifying their use
and illustrating their purpose. As an extra feature, Facets allows users to download or print a PDF
report on their project by the click of a button. Since the details on this feature are almost entirely
of an implementational nature, they will be discussed in chapter 4.

3.1.1 Grouping of Visualiztions
Early on into the design of the Facets application, quite a few realizations took place, indicat-
ing that a split into the facets outlined in the thesis description is not particularily beneficial to
the clarity of the presentation and that a slightly different grouping should be used. The actual
contents of the aforementioned semantic facets is still present in the final application, but they
have been distributed differently, because the facets are actually interconnected more strongly
than anticipated. In particular, it is beneficial to display the code disharmonies along with the
entities when viewing their metric information. This is equally valid for pointing out per-entity
code ownerships. The project future facet has been dropped entirely very early in the project
because it became clear that the library providing the predictions is not working reliably yet and
re-implementing the algorithm would be outside of the scope of this project. All this leads to the
following views inside the application:

• Overview: This is the entry-point when visiting the analysis of any project. It includes the
Overview Pyramid, which gives a concise view over the complexity, coupling and hierarchy
of a system, the Overview Pyramid Evolution, which is a flat representation of all pyramids
of all releases and the Code Disharmony List, which displays the code disharmonies of each
type for all releases.

• Entity Metrics: This view contains two different browsers, namely the Treemap and the Tree-
browser. Both browsers work on an entity level, meaning that the user can explore individual
packages and classes, viewing their metrics and disharmonies. However, both browsers also
display the code disharmonies of the entities. The Treebrowser also includes the display of
the ownership history of each entity.

8 Chapter 3. The «Facets»Web Application

• Project Evolution: This view displays the commit history and the changes in lines of code for
the entire project from the very first to the last commit.

3.1.2 Issuing New Analyses

When visiting the main web page of the Facets front-end, the visitor is presented with a simple
submission form. The user enters the URL to a repository, selects if it’s a git or SVN repository,
and enters a name for the project. The analysis request is submitted by the click of a button. The
back-end first does a quick check if the repository actually exists and if there are valid release tags
present. This is done because the first SOFAS service being used - the git or SVN importer - does
not check for this condition and if there are no release tags, later services will fail and the analysis
will have been started for naught in the first place.

Figure 3.1: The submission form that is placed on the main page. Its simplicity should entice visiting users
to give Facets a try.

If the preliminary checks pass, the user is supplied with two URLs. Both lead to the analysis
page, however one of the links contains an additional argument that contains a token. Using
the link with the token will allow the visitor to delete the analysis. By this simple method, only
the creator of an analysis can delete it, without the need for a user registration form or a user
database. The token is generated using a simple but randomly salted hash.

3.1.3 Browsing Existing Analyses

All analyses on Facets are publicly viewable. The Browse button takes the user to a list of existing
analyses, which includes the most important data points that allow the user to quickly glance
over the list and find out what might be interesting. It also includes analyses that are still running
or which have failed. Figure 3.2 displays a screenshot of such a list and illustrates that it is easy
for a browsing visitor to get an impression of the existing analyses without visiting each one of
them.

3.2 Cross-Visualization Features 9

Figure 3.2: List of existing analyses in Facets with their most important cornerstone data points.

3.2 Cross-Visualization Features
Some of the features in Facets stretch across many visualizations, either because they are usability
features that apply to most visualizations or because the information conveyed may be useful in
more than one context. These features shall now be explained in more detail.

3.2.1 Basic Features
Duplication of Visualizations

The architecture of the web application makes it possible to easily duplicate each visualization.
Each interactive visualization initially has a small [+] symbol on their right edge. Clicking it will
open another instance of the visualization. Duplicates also have a small [-] symbol which can be
used to destroy the additional instance. Each copy is fully functional. This feature enables the user
to investigate different entities at the same time, for example in order to compare them. When
opening the print view for an analysis, the duplicates and their state will remain present, which
means that a user can set up several visualizations portraying a selection of the most relevant and
interesting entities and then print those visualizations.

Contextual information

Most visualizations provide context sensitive information in the form of tooltips1. This is in-
formation usually eases the understanding for new users who are not familiar with the given
visualization. On the other hand, tooltips can sometimes be used to reveal more details about an
entity.

3.2.2 Indicating Code Disharmonies
A software system has to evolve in order to maintain a level of usefulness and as a consequence, it
is bound to become more complex [5]. The number of people working on it and their capabilities
as well as the tools used during development and the constraints of the project affect the design of
a system [8,9]. Because of these factors, it is very difficult if not impossible to have a clear picture

1A tooltip is a small box containing text that will appear near the mouse pointer when the user hovers over an element.

10 Chapter 3. The «Facets»Web Application

of the entire design. Lanza et al. propose a method of assessing the soundness of the design of
object-oriented software systems using code metrics.

They define three types of harmonies which certain entities in an object-oriented system should
exhibit. Each harmony can be disturbed by a combination of different factors that are measurable
via code metrics. Such a harmonic disturbance leads to a code smell which may cause trouble if
it is not corrected. The harmonies can be briefly outlined as follows [20]:

• Identity harmony requires that an entity can justify its existence by implementing a dis-
cernible concept. Identity harmony is disturbed if an entity is unreasonably small or big
or if it’s bearing several unrelated responsibilities. As much as possible, classes should only
use and modify their own data and distribute their complexity among their operations.

• Collaboration harmony ensures that entities in the system interact appropriately with each
other, avoiding any extremes such as classes being used by an excessive number of other
classes or classes using other classes in a majority of operations, both of which increase the
coupling in a system.

• Classification harmony concerns itself with the placement of classes and functionality within
the inheritance tree. Hierarchies shouldn’t be too wide or too tall and sub-classes should
always maintain a balance between inherited and new functionality. The level of abstraction
should be high at the top of the hierarchy and low at the bottom.

Figure 3.3: Overview of disharmonies in the Craft Bukkit project. Clicking on an icon reveals the individual
disharmonies.

SOFAS has implemented the detection strategies devised by Lanza et al. and can yield all
ten different types of disharmonies they describe. In Facets, each disharmony has a descriptive
and recognizable icon associated with it. There are different ways of exploring the disharmonies
of a software project: A dedicated Code Disharmonies plugin gives an overview over all the
disharmonies. The user can click on a disharmony icon at which point a list of all disharmonies
of the selected type appears, together with their locations and reasons. In addition to this, the
Treemap and Treebrowser plugins contain the same icons and upon hovering on an entity, any
applicable icons are highlighted if the entity suffers from disharmonies. Hovering over an icon
will again reveal the reasons for the disharmony. In the Treemap and Treebrowser plugins it is

3.3 Individual Visualizations 11

also possible to highlight all entities that contain disharmonies. These tools facilitate the process
of finding weak points in a software project, because the user has several methods of exploring
them at his disposal. He can either look for specific disharmonies by using the disharmony list or
he can take a different approach, browsing entities freely by looking at their size or other metric
properties while still being informed about disharmonies that appear in said entities.

3.3 Individual Visualizations
Having explained the basic features of the web application and how some of the visualizations are
accompanied by code disharmonies, we shall now look at each of the remaining visualizations.

3.3.1 Overview Pyramid
The Overview Pyramid - also developed by Lanza et al. - is a method of objectively presenting
some of the most relevant properties of a project and is used to give an overall characterization of
its design [20]. The pyramid consists of four basic parts:

• Inheritance properties - the average number of descending classes and the average hierarchy
height - are displayed in the green area at the top.

• Size and complexity metrics - the cyclomatic complexity as well as the numbers of lines of
code, methods, classes and packages - are listed in the yellow area on the left side.

• Coupling information - the number of operation calls and the number of called classes - is
listed in the blue part on the right side.

Figure 3.4: An Overview Pyramid for one release of the Craft Bukkit project as generated by Facets. In this
screenshot, the user is hovering over the FANOUT/CALLS ratio and is hence receiving additional context
information in a tooltip.

Lanza et al. developed the Overview Pyramid after realizing that the characterization of a
project by single metrics such as the number of lines of code or the number of classes is often
insufficient and misleading. How the values relate to each other can actually give a much better
impression. For example a project with 500 methods and 5’000 lines has quite a different shape
compared to a project with 500 methods and 10’000 lines of code. Lanza et al. also note that it’s
important to have reference points when looking at metric data. A project written in C++ will
probably have more lines of code than an equivalent Java project. They analyzed 45 Java and
37 C++ open and closed source projects of varying size and from various application domains,

12 Chapter 3. The «Facets»Web Application

determining thresholds for unusually low and high ratios as well as an average for each ratio. For
example the number of lines of code per method in a Java project has a lower threshold of 7 and
an upper threshold of 13, with 10 being the average [20].

Figure 3.4 tells us for example, that the project in question seems to have an average shape
concerning the number of lines of code per method, the number of classes per package, the
hierarchical figures and the number of function calls per method. However, three of the ra-
tios are exceptional: The project is rather complex because the CYCLO/LOC ratio is 0.28 (Up-
per threshold: 0.24) and each class contains an above-normal number of methods because the
NOM/NOC ratio is 11.97 (Upper threshold: 10). These two values are exceedingly high. On the
other hand the project exhibits a positive exceptional value as well: It is loosely coupled, because
the FANOUT/CALLS ratio is 0.23 (Lower threshold: 0.56).

The Overview Pyramid not only gives a clear picture of the complexity, coupling and hier-
archy of a project but it also tries to allow for an objective assesment of the measurements. The
ratios are color coded to further ease the visual interpretation. In Facets, one Overview Pyramid
is generated for each release and the user can use a slider to browse releases. Hovering over a
ratio gives the user an additional explanation of what it means. As mentioned before and as with
all visualizations, the user can duplicate the pyramid in order to be able to compare different
releases.

3.3.2 Overview Pyramid Evolution
The Pyramid Evolution graph is a previously unproposed method of indicating the change of
the Pyramid over the lifetime of the project. It takes each kind of ratio of every pyramid in the
history of the project - one for each release - and plots them side by side. The vertical scale is
multilinear and individual for each plotted line, but all the scales have common points where the
thresholds are and at the top and bottom. This means that the purpose of this graph is on one
hand to make the different ratios comparable and on the other hand to illustrate the change of
each individual ratio over time. If a line crosses over from the blue to the red part, it means that
it is now exceptionally high. Likewise crossing over from the blue to the green part means that
the value is now exceptionally low. The red line in the given example in Figure 3.5 illustrates that
the number of methods per class was exceptionally high in the beginning which was remedied
early on, making it hover just over the threshold for the rest of the project lifetime. On the other
hand, the coupling intensity in the project - indicated by the purple line - seems to have grown
severely since the beginning. It went from the brink of being exceptionally low to clearly being
exceptionally high.

It is easy to get an impression on how the project evolved, specifically if the metric ratios have
gotten better or worse over time, which is why I think that this flat representation provides a
valuable addition to the concept of the Overview Pyramid.

Figure 3.5: The evolution of the Overview Pyramid for Project Grizzly.

3.3 Individual Visualizations 13

3.3.3 Treemap
The Treemap is a dense visualization of all the leaf nodes in a tree, with the size of each cell
corresponding to some metric or another. The color of a cell can be used as a second dimension.
Treemaps have long been popular for visualizing not only software-related figures but statistical
tree-structured data in general [3].

Figure 3.6: A Treemap for gstreamer-java as drawn by Facets. The metrics of the current entity are displayed
on the right side. In this screenshot, the class Element has been selected. It suffers from two disharmonies.
Upon hovering over the shotgun surgery icon in the lower right corner, an overlay points out the reasons for
this particular disharmony.

In our case, the leaf nodes are classes in a project. The user has the choice of changing the
base metric used for the cell dimensions and the cell color. Both the color and size can be chosen
to correlate to the lines of code, cyclomatic complexity, number of methods, number of attributes
and weighted method count. These metrics were chosen because they are usually available for
the majority of entities in a project2. The color has two additional choices: Whether or not there
are disharmonies in a class and a colorization by package or sub-package that a class belongs to.
It is also possible to zoom into a single package by selecting an entity in that package and clicking
on Show only one package. This is especially useful when viewing very large projects where the

2SOFAS computes different metrics depending on the type of entity. Abstract classes have a different set of calculated
metrics compared to for example packages or regular classes.

14 Chapter 3. The «Facets»Web Application

Treemap becomes increasingly cluttered. The controls for size and color continue to work as
expected when viewing a single package.

Hovering over a cell updates the statistics displayed on the right side of the Treemap with un-
available metrics being grayed out. If the class contains disharmonies, the corresponding dishar-
mony icon will be shaded in red. This purely hover-based navigation allows the user to quickly
glance over a number of classes, without even clicking once. Clicking on a cell focuses the class
and causes the statistics and disharmony indicators to become sticky. Hovering over other cells
will no longer have any effect. Now, the user can hover over a disharmony icon which causes
an overlay to appear with more details on the disharmony, such as a description and the dishar-
mony and a list of reasons which cause the disharmony. Again, minimal clicking is required, as
the overlay will simply stay visible as long as the user is hovering over the disharmony icon or
the overlay itself. If the cursor leaves any of these these areas, the overlay will fade out. The idea
here is that the user should be able to browse the Treemap very quickly and the classical method
of providing pop-ups that need to be closed manually has been avoided.

3.3.4 Treebrowser
The Treebrowser serves as a browser for two different visualizations which are drawn per-entity:
metric kiviat diagrams and code ownership Treemaps. In contrast to the Treemap, which can only
represent the leaf nodes of a tree, the Treebrowser also contains packages and sub-packages as
selectable entities. Another difference is that the tree contains all entities that ever existed in the
project. In other words, the trees of all releases have been merged into a single tree. In turn,
for both kiviat diagrams and code ownership treemaps, individual sliders are provided to move
through their history.

The browser itself has a number of controls that resemble the ones from the Treemap. The
nodes in the tree can be colored by the same criteria as the cells of the Treemap. Additionally,
the tree can be searched as-you-type and there are a couple of additional controls: One is used to
switch between kiviat diagrams and the ownership visualization. The others are used to adjust
the selected visualization itself.

Kiviat Diagrams

Kiviat diagrams3 provide a way of visualizing changes over time in a collection of n-ary tuples.
In our case, the tuples contain metrics of a given entity, there being one tuple for each release
the entity existed in. For the purpose of making it easier to distinguish between releases, each
release has a different color. Below the diagram there is a slider that allows the user to highlight
a specific release in the diagram and to view its metrics. The user can choose between three
different drawing styles for the kiviat diagram:

• Single: Only the selected release is displayed while all other releases are hidden from the
diagram.

• All: Every release is drawn, the oldest at the bottom and the newest at the top. All releases
except the selected release are semi-transparent, in order to allow for overlapping sections
to be visible. The slider selection highlights a release by making it fully opaque.

• Stacking is similar to All, but when using the slider, all releases newer than the selected one
are hidden. As such, the selected release is always on top and selecting the oldest release
means hiding all other releases. Sliding from the oldest to the newest release will stack each
new release on top. This makes is easy to observe how an entity changed over time.

3also known as spider, polar or radar graphs

3.3 Individual Visualizations 15

Figure 3.7: A kiviat diagram in stacking mode for the CraftLivingEntity class of the CraftBukkit project.
Releases newer than the selected release 1.7.2.R1 are hidden and all older releases are visible below it.
This is illustrated by the yellow fill of the slider. Apparently, this class has shrunk in many regards such as
the number of methods, complexity and lines of code but on the other hand the base class usage ratio and
the Fanin have increased. This could indicate that the developers may have moved functionality to the base
class.

Using the data supplied by SOFAS for kiviat diagrams poses two minor problems: First, the
values tend to be zero for a significant number of metrics. This is expected but not very interest-
ing. Hence to keep the content of the diagrams informative, any metric that contains zero in more
than two thirds of the releases is ignored and not drawn on the diagram. Secondly, SOFAS nat-
urally does not supply the same kind of metrics for different types of entities, such as packages,
classes or methods. Facets makes an effort to draw an entity, but if there are only two metrics left
after removing metrics with too many zeroes or if the entity only ever had two metrics to begin
with, the diagram will not be drawn and a message will be displayed, saying that there is not
enough information available on the entity. A possible alternative would be to plot the values on
a regular line chart instead.

There are however some additional problems with kiviat diagrams in general as they can
be rather difficult to work with in a number of cases: If in n releases the data values are not
always rising but also falling, the circular lines will start to overlap and this can cause significant
confusion. Also, at least 3 metrics are needed to draw a meaningful diagram and since many
entities don’t have the same kind of metrics because of their nature (interfaces, abstract classes
etc.), each kiviat diagram looks different. In order to curb these negative implications, Facets
offers different ways of drawing the kiviat - stacking, all and single. Still, it’s debatable if the

16 Chapter 3. The «Facets»Web Application

perceived ‘fanciness’ of the kiviat diagram really merits the increase in complexity. Simple line
graphs may not be as exciting to look at, but they do a very good job at conveying the information
and they are much easier to implement.

Figure 3.8: Two ownership Treemaps for the same commit. In A, the size of cells is determined by the
number of commits and in B by the number of lines of code added. It becomes clear that especially for
smaller contributions, the different base metrics reveal very different ownership values. For example, Travis
Watkins (red) added more lines of code than Tahg (orange), but has far fewer commits.

Ownership Treemaps

D’Ambros et al. illustrate how code ownership can be visualized using fractal figures [13]. How-
ever, fractal figures suffer from aspect-ratio problems and can produce very tall or very wide
rectangles, making the visualization look very imbalanced [3]. The Treemap is nothing but a frac-
tal figure with added squarification in order to avoid these problems, which is why it has been
chosen for this visualization instead of the fractal figures used by D’Ambros et al. The size of each
cell in the Treemap represents the level of ownership. Committers with larger cells have stronger
ownership than those with smaller cells.

Determining the code ownership of an entity is not straight-forward. SOFAS provides for each
entity and each commit the number of lines added and deleted by the committer. But when delet-
ing lines, the user may be deleting his own code or the lines of other people and SOFAS doesn’t
keep track of this information. This means that it’s impossible to unambiguously determine how
many lines of the code any specific person actually owns. As such, trying to come up with a rep-
resentative indicator for class ownership percentages from the data provided is challenging. In
research, it seems like the number of commits is the most widely used metric for ownership [6,13]
although in some cases, more recent commits are weighted more than older commits, the reason
for this being that a developer who has recently worked on an entity is more likely to remember
details about it than a developer who might have created the entity a while ago [21].

To illustrate that it should not be taken for granted that this single measure is correct, a simple
thought experiment can be made. Given a software project with three developers and a number

3.3 Individual Visualizations 17

Table 3.1: Ownership percentage O and lines of code owned N for committers 1, 2 and 3 depending on
different deletion and measuring scenarios.

O1 N1 O2 N2 O3 N3 Total lines

Statistics before commit - gathered by keeping track of individual lines:
Actual lines owned 10% 120 80% 960 10% 120 1200
Total lines added 10% 240 80% 1920 10% 240 2400
Total lines deleted 10% 120 80% 960 10% 120 1200
Commits 30% 3 50% 5 20% 2 10

Q1: Actual lines owned if P3 adds 100 lines, deleting 300 lines in four different ways:
100 each from P1, P2 and himself 2% 20 86% 860 12% 120 1000
120 from P1, the rest from P2 0% 0 78% 780 22% 220 1000
300 from P2 12% 120 66% 660 22% 220 1000
120 from himself, 180 from P2 12% 120 78% 780 10% 100 1000

Q2: Calculating the ownership without knowing which lines got deleted:
By lines added 10% 240 77% 1920 13% 340 2500
By lines deleted 8% 120 64% 960 28% 420 1500
By lines added and deleted 9% 360 72% 2880 19% 760 4000
By number of commits 27% 3 46% 5 27% 3 11

of commits, we can look at what happens when a new commit is made by one of the developers.
Table 3.1 illustrates the thought process. In this example, we make the following preliminary
assumptions: Three people have been working on the project until now and conveniently, each
person has added twice as many lines to the project as they had deleted, giving us simple values
to work with. Now the following questions can be raised, when a developer commits, indicated
by Q1 and Q2 in the table:

1. Which lines does a committer delete? Do they only delete the code of other people, only
their own, or a combination of these? If they delete foreign code, which other developers
are affected? How much does the actual code ownership by lines of code change?

2. How do we calculate the ownership? We can only keep track of how many lines a person
added or deleted and of the number of commits the person has performed. What results do
we get when using different calculation methods?

When taking the number of lines of code owned as an objective measure of ownership, none
of the estimates are accurate as they may significantly differ from the actual figures. For example,
looking at the first deletion scenario - if P3 did in fact delete most of P1’s code - only 20 lines of
his code would be left. Yet calculating the ownership by the number of commits, P1 would still
own 27% of the entire code.

Because of the large amount of ambiguity revolving around the exact measurement of code
ownership, we have to remind ourselves of the purpose of calculating it in the first place: Usually,
it’s to gain knowledge on which developer may have the most expertise on an entity so that they
can be contacted if problems arise with a module [21]. I ultimately take no stance and instead
offer a switch to choose any of the four methods outlined above. The ownership of a module can
be displayed by the number of commits, but also by the number of lines added, deleted or both.
This leaves the user with deciding how to interpret the available data depending on their needs.
As a rough estimate, any of the measures do a fair job, but for an accurate estimation of code
ownership, further research is required.

18 Chapter 3. The «Facets»Web Application

There is one more problem that cannot be solved easily: Some committers will change their
username while working on the project. In one use case, Project Grizzly, a person would commit
as rlubke for several months but then change his username to Ryan Lubke. For a human it is clear
that this must be the same person but Facets works with the data it gets from SOFAS and this is
why these users will not be recognized as the same person but as different users.

3.3.5 Project Evolution Graphs

Two visualizations in Facets illustrate the history of the project ever since the very first commit.
The information presented in this facet is all extracted from SOFAS’ repository services, meaning
that unlike in other views, the data is not presented per-release but continuously4. The project
evolution facet gives an impression on how the project has evolved since its inception.

Lines of Code

The commits are plotted on the X axis while the Y axis represents the number of lines of code.
As such, the X axis does not represent linear time. However, time stamps are provided at regular
intervals to ease orientation. Hovering over the plot will show the commit information at any
point on the graph, such as the date, the name of the committer, how many lines of code the
project has at this point, and if the commit was followed by a release, the name of the release
will be shown as well. As the plot is 910 pixels wide, a choice had to been made what to do if
a project has more than 910 commits. The obvious choice is to add a scroll bar5, however in this
case a more simplistic approach has been chosen: If there are more than 910 commits, every few
commits a commit will not be available for hovering such that over the entire graph, the skipped
commits will be evenly distributed. This makes it possible to represent the entire history of the
project within 910 pixels without sacrificing too much accuracy. Because the data used for this plot
comes directly from the SOFAS version control services, the number of lines includes comments
and files other than source code, such as documentation or Makefiles.

Figure 3.9: The number of lines of code from the first to the last commit. The overlay gives information on
the commit currently under the cursor. It happens to be a commit that was followed by release 1.1.R6. Note
that 752 equally distributed commits have been hidden to fit all commits within the 910 pixel width of the
drawing.

4This is also true for the code ownership Treemaps in the Treebrowser facet.
5Ohloh has implemented this approach, for example: http://www.ohloh.net/p/firefox/analyses/latest

http://www.ohloh.net/p/firefox/analyses/latest

3.3 Individual Visualizations 19

Commits per Month

Another popular piece of information when looking at the evolution of a project is how people
contributed. This graph plots for each month the number of commits and divides the columns
by committer. If there are many committers with very few commits - too small to draw them -
they will be grouped as "Others". Hovering over the column sections reveals information on the
respective committer as portrayed in the screenshot in figure 3.10. Again, the decision was made
to avoid scroll bars and as such, months will shrink in width to fit on the plot. Still, more than a
decade of history fits on this graph.

Figure 3.10: The number of commits for each month since the beginning, broken up by committer. The
color of each committer stays the same in each month, which allows keeping track of specific people. In this
screenshot, the user is hovering over the green area of the tallest column (February 2011), which belongs
to Andrew Ardill. It becomes apparent that he hasn’t been contributing much after March but that he came
back in December.

Chapter 4

Design & Implementation

4.1 Overview
Facets1 consists of a number of discernible parts: A service application written in Python commu-
nicates with SOFAS, issuing analyses and querying results to be stored in a local database. Then
there’s the substantial amount of Javascript code necessary for visualizing the data. In-between,
a very simple CherryPy web server instance acts as an interface for users to issue new analyses
and view existing ones. This is an overview over the libraries and tools used:

• CherryPy is a small web framework library which supplies the bare minimum of necessary
tools to create web applications written in Python. It provides a plugin system which is
instantiated by the Facets job manager and it handles requests by the web clients.

• Jinja2 is a templating engine for Python. It is used to customize HTML and Javascript code
served to the client where necessary and it is also used to generate HTML and LaTeX tem-
plates rendered to PDF when requesting a report.

• PhantomJS is an off-screen renderer that uses the WebKit engine and makes it possible to
render websites or HTML documents programatically on a server. It is used to render the
visualizations for the PDF reports.

• lxml is an XML parsing library for Python. When querying SOFAS via SPARQL, one of the
possible response formats is XML and lxml is used to parse these responses.

• JQuery is used on the client side for basic presentational tasks and Ajax-style interaction
with the web server.

• d3 is Javascript framework for creating visualizations using Javascript, HTML and SVG. It’s
a relatively young project and successor to the Prototype library.

• MongoDB, a high-performance NoSQL document store is used for storing the data extracted
from SOFAS. Bindings for Python are available through the pymongo library.

4.2 Architecture
The core component of Facets is a small CherryPy application. Upon start-up, it instantiates the
JobManager - which is written as a CherryPy plugin - and creates an instance of pymongo.Connection,

1The technical documentation for Facets covers some of the components in greater detail. It can be found in the ap-
pendix

22 Chapter 4. Design & Implementation

which provides all the necessary tools to communicate with the database. After starting up, the
application listens to client requests just like any other web server. It serves the Facets client ap-
plication, giving users the possibility to view existing analyses or starting new ones. In case a
new analysis should be started, it performs a few preliminary checks - most importantly, if the
supplied repository URL contains at least two releases - and sends it off to the JobManager.

4.2.1 Analysis Work Flow
When a new analysis is issued via the web application, the JobManager makes a new entry in
the database and creates a Job thread for it. This means that for one code repository that shall
be analyzed, there is one separate thread. The work flow carried out by the Job thread can be
described as follows:

1. Create a new version control analysis on SOFAS using the Git Importer or SVN Importer
service and wait for it to complete. The version control services extract the entire version
control history from the source code repository.

2. Supply the SOFAS Release Famix service with the URL of the finished version control analysis
to create a new analysis and wait for it to complete. The releaseFamix service constructs a
FAMIX2 model of the Java source code for each release discovered in the repository.

3. Retrieve the list of releases from the Release Famix service, including the URL at which their
FAMIX model resides.

4. For each of these releases, create two new analyses on SOFAS, one on each of the two met-
ric analysis services and wait for all analyses to complete: The Size and Complexity Metrics
service will calculate metrics such as the lines of code and McCabe’s cyclomatic complexity.
The Object-Oriented Metrics service will calculate a plethora of roughly 30 more metrics, such
as the number of classes, packages or methods, the number of operation calls, inheritance-
related information, such as base class overriding ratios or hierarchy heights and coupling-
related information, such as class cohesion and access to foreign data.

5. For each pair of metric analyses that belong to a release, issue a new analysis with the Code
Disharmonies service, which will use the detection strategies proposed by Lanza et al. to find
problematic entities within the design of the project.

6. Gather all data that is relevant to the Facets application from the different services, syn-
thesize it appropriately and store it in the local database. Once this is done, the analysis
becomes available in the frontend.

7. In a last cleanup step, delete all analyses on SOFAS since they are not needed anymore.

4.2.2 Job Management
Because the JobManager is a plugin, it will be signaled in case that CherryPy is shutting down.
This means it can finish any outstanding business and exit cleanly. Break points are scattered all
throughout the analysis code so that any running analysis can stop within a few seconds if the
server is signaling that it’s shutting down. The analysis will be resumed at the point of interrup-
tion when the server is started anew. For the most part, functionality is safe, meaning that a step
during an analysis can be executed several times without introducing inconsistencies, meaning

2FAMIX is a meta model for representing object-oriented software systems. [14]

4.2 Architecture 23

that even if the job manager is killed unsafely, it will pick up the process just before it was inter-
rupted. The owner of an analysis can delete it directly from the web interface, be it in progress or
finished. At that point, any existing data will be deleted from the local database and the analyses
on SOFAS will be deleted as well.

4.2.3 Analyzer and Sofas Agent
The aforementioned Job Manager controls the flow of an analysis. However the code for carrying
out individual steps is contained within the Analyzer Class. Similarly, actual Network calls are
not carried out by the Analyzer but by the Sofas Agent. This three layered approach separates
different types of functionality in a transparent way.

4.2.4 Database

Access SOFAS directly or store a copy in a local database?

Once an analysis on a SOFAS service is complete, it is possible to retrieve the data in a number
of ways. One could simply download a zip file containing the entire RDF graph as an RDF/XML
file. This file could be parsed locally to retrieve the necessary data. On the other hand, it is
possible to query the RDF graph directly on the server by doing a SPARQL query. This has several
advantages: The data is only stored in one place and the amount of data transferred for a single
piece of information is largely reduced. On top of this, the RDF graphs produced by SOFAS can
be very large and parsing RDF graphs can be a taxing task for the server. The SOFAS server is
already well equipped for this as it has the necessary computing power and as it is using a fast
triple store. On the other hand parsing the RDF/XML files from the zip files tends to be very
slow. This means that it’s imaginable to create a visualization front-end that does not depend on
its own database, because any information can be retrieved directly from Facets.

However, querying SOFAS directly also a few significant disadvantages: First and foremost,
it is not easily possible to query more than one service at a time via SPARQL. This means that it’s
not possible to extract information from one service depending on information from another ser-
vice. This means that in some cases, large amounts of data would need to be downloaded from all
relevant services and then processed locally, every time the analysis is retrieved. A second prob-
lem is that while the SOFAS services can respond fairly quickly even when there are millions of
triples, the time it takes to query all services quickly adds up. Lastly, a lot less data is required for
the visualizations compared to what SOFAS stores on each analysis. After all, SOFAS is intended
as a tool for analyzing software and not as a permanent database.

Table 4.1: The metric properties and physical storage needed in different contexts of three analysed projects.
Storage method gstreamer-java GS-Collections3 Cordova Android
Number of releases 7 3 29
LOC in latest release 15503 101455 8718
Classes in latest release 310 750 77
Methods in latest release 8955 13001 659
SOFAS RDF/XML (uncompr.) 355.8 MB 818.7 MB 292.4 MB
SOFAS RDF/XML (zipped) 15.9 MB 31.9 MB 12.6 MB
MongoDB documents (uncompr.) 4.5 MB 2.0 MB 1.8 MB
Transferred to web client (gzipped) 0.15 MB 0.16 MB 0.09 MB

24 Chapter 4. Design & Implementation

For these reasons, Facets opts for using SOFAS to generate the necessary data, retrieving only
the parts that are needed for the visualizations and then deleting the analyses on the individual
services, freeing the resources and cleaning up after itself. Table 4.1 shows the physical amount
of space needed to store the analysis data on SOFAS as compared to Facets’ MongoDB and to how
much data is transferred to the Javascript web client. The three projects used as examples are the
Java bindings for gstreamer4, GS-Collections5 and Cordova Android6. The table illustrates that
the the data stored in MongoDB is smaller than the compressed RDF/XML data by a factor of at
least three. The data that is finally transferred to the client - including the mentioned redundan-
cies - is gzip compressed and hundred-fold smaller than even the compressed data that can be
retrieved from SOFAS in the case of downloading the entire graphs. Of course, when querying
SOFAS directly for the data being visualized, not the complete set of data would need to be trans-
ferred from SOFAS to the visualization application, but still all of the data will need to remain
stored on the services.

Data storage and representation

The most important requirement towards a database in case of the Facets application is perfor-
mance. After all, this is one of the reasons why the data is stored locally. MongoDB is a high
performance document store with support for indexes. Apart from its performance, MongoDB
has a number of advantages. Since the documents resemble Python dictionaries7 there is no need
for an object-relational mapping. There are no table declarations in MongoDB and data is instead
stored in so-called collections which may contain documents of arbitrary shape.

For Facets, one collection is used for each kind of data: the hierarchy of packages, sub-packages
and classes, class metrics, commits, changesets and project-wide metrics. Two additional collec-
tions are used for internal data such as the information on submitted analyses and running jobs
as well as the generated PDF reports. Indexes on exactly the right keys ensure fast loading times
when querying the data. The documents stored in each collection will of course need to contain a
certain set of information for the Facets application to work correctly.

The data that is stored is not handed to the client directly but instead, various representations
can be generated using the Representer class. The data is stored is almost redundancy-free, while
the representations transferred to the client contain some duplicated data. This is done to offload
some of the calculatory strain to the server - which prepares the representations - so that the
Javascript client can work more quickly. For example, the Treemap visualization requires one
entity tree for each release. The Treebrowser visualization on the other hand requires all entities
from all releases to be placed in a single tree. This is why both trees are generated on the server,
using the same data from the database but generating different representations of it. The amount
of redundancy is still rather low and it does not impact the transfer speeds significantly.

4.2.5 Extending «Facets»
The visualization code in Facets is decoupled from the main functionality of the site in such a way
that it is very easy to write new facets. Facets are registered in the main configuration file with
their representational dependencies stated. Listing 4.1 shows the default set-up. For example, the

3The reason why the amounts transferred to the client are similar for gstreamer-java and GS-Collections even though
the amount of data stored differs significantly is that GS-Collections has few releases but many entities while gstreamer-
java has several releases but fewer entities. The redundancy caused by transferring an additional entity tree for all releases
is more noticable for large projects with few releases.

4http://code.google.com/p/gstreamer-java/
5https://github.com/goldmansachs/gs-collections
6https://github.com/apache/incubator-cordova-android
7http://docs.python.org/tutorial/datastructures.html#dictionaries

http://code.google.com/p/gstreamer-java/
https://github.com/goldmansachs/gs-collections
https://github.com/apache/incubator-cordova-android
http://docs.python.org/tutorial/datastructures.html#dictionaries

4.3 Report Generation and Printing 25

Overview Pyramid visualization requires the list of releases and the project_metrics representation.
When a user loads an analysis, the representations are downloaded in parallel and the visual-
izations will be loaded automatically as soon as their required data representations are available.
The facet visualizations themselves consist of two files each: One contains an HTML snippet, the
other contains a function. The developer can position the visualization in a view by placing it into
a simple HTML template. Again, Facets will automatically locate and serve the visualization as
soon as it’s mentioned in the configuration file.

1 [facets]

2 pyramid=releases,project_metrics

3 disharmonies=releases,disharmonies

4 treemap=releases,trees,disharmonies

5 treebrowser=releases,tree,commits,disharmonies

6 history_loc=commits,release_dates

7 history_commits=commits

8 history_metrics=releases,project_metrics

Listing 4.1: ‘facets’ section of the configuration file.

The HTML snippet will probably at the very least need a single container element which can
be manipulated by the corresponding Javascript code. The Javascript file follows the very simple
template outlined in 4.2. As such, all that is needed is a function that should be registered by
saving it as a property of facets.vis.

1 var setup_myvis = function(container) {

2 // Code reading from representations variable and

3 // drawing the visualization goes here.

4 }

5 facets.vis.myvis = setup_myvis;

Listing 4.2: Minimal Javascript template for writing a new visualization.

This method is particularly elegant because it doesn’t require any special server side handling
of the content. The developer simply writes one HTML snippet and one Javascript function and
registers the visualization in the configuration file. There is no necessity to modify any of the code
that actually serves the analyses. It is also very easy to write new representations: The Representer
class contains one function for each representation. Representation functions are automatically
located if they are specified as required in the configuration file.

4.3 Report Generation and Printing
The user has the option to generate a PDF report for the entire project. Actually, several methods
for creating a report have been explored. In the final version of Facets, there are three possible
ways: The Generate HTML-PDF Report button will initiate a procedure on the server that will
render a dedicated HTML template which is optimized for printing8. The Download PDF Report
button does the same but uses a LaTeX template. Finally, the user can use the Annotate & Print
functionality, which opens an additional browser window where all visualizations - including
any changes done or duplicates created by the user - are present. The user can then add some
annotations and print the result using regular printer or a virtual PDF printer. Another method
which is not available in the final product is the server-side rendering of the client-side HTML,

8This functionality has been hidden from the front-end because of bugs in the third-party rendering engine (Phan-
tomJS) used to generate the report. The bugs are outlined in section 4.3.1. Once these bugs are fixed by the developers, it
is possible to re-enable the functionality by uncommenting a few lines of HTML.

26 Chapter 4. Design & Implementation

which is subject to many security implications, which will be outlined shortly. We shall now look
at the different methods in detail.

4.3.1 Off-Screen Rendering of a dedicated HTML template
When the user requests a PDF report through the front-end, the server will use a special HTML
template dedicated for printing and fill it with content. The content of a PDF Report for a given
project analysis will always be the same. The Treemap, Treebrowser and Disharmony visualiza-
tions are not present and instead, additional textual content is being generated. A list of dishar-
monies for the latest release will be compiled and additionally, the top 10 entities for the most
important metrics will be gathered. As such, the report will for example include the entities with
the most lines of code or the highest method count. The HTML is parsed and rendered to PDF
using bleeding edge technology, namely by the use of so called off-screen or head-less render-
ers. Two of the most actively developed off-screen renderers are PhantomJS9 and wkhtmltopdf10.
Both of them use the Open Source WebKit11 browser engine. Unfortunately, these solutions still
suffer from significant bugs. At the time of writing, PhantomJS v1.5 does not render page breaks
smoothly and causes lines to be cut in half12. It also ignores the important page-break-before
and page-break-inside CSS directives, which in our case can be used to avoid page breaks
inside visualizations13. Hence, the generated PDF report is not of very good quality.

As the off-screen rendering engines improve, this method may become a more viable option
because after all, it is very easy to implement and it avoids a lot of duplication since one can use
almost the same templates instead of writing additional export functions.

4.3.2 Annotate & Print
To complement the inflexible server-side PDF report generation and to still offer the user the
option to print the interactive version of the visualizations in a useful fashion, an additional func-
tionality is provided: As described earlier, the user can view single packages in the Treemap and
focus specific cells. In the Treebrowser users can select a specific package to view its metrics and
ownership history and the disharmony list is configurable as well. Coupled with the duplication
functionality, this gives the user the power to focus on specific parts of the system. Clicking on
Annotate & Print, the exact configuration as seen in the browser will be copied and modified to be
better suited for printing. A few modifications are made to the body, removing some things that
have to be omitted from the report (such as the menu), and additional text fields for annotation
are added below each visualization. This allows the user to explain his entity choices and further
comment on the report.

This solution has however one significant usability issue: Most browsers are configured by
default to not print background colors of elements and they also add unappealing headers and
footers to each page. It is not possible to change these settings via Javascript and the user him-
self has to know where to change them. If printing background colors remains disabled, the
visualizations will not be printed correctly. Chrome/Chromium users will not need to worry as
the browsers offers a -webkit-print-color-adjust: exact; CSS directive that will enable
the printing of background colors. For users of other browsers, short instructions are provided
on how to enable it.

9http://phantomjs.org/
10http://code.google.com/p/wkhtmltopdf/
11http://www.webkit.org/
12http://code.google.com/p/phantomjs/issues/detail?id=551&sort=-id
13http://code.google.com/p/phantomjs/issues/detail?id=506

http://phantomjs.org/
http://code.google.com/p/wkhtmltopdf/
http://www.webkit.org/
http://code.google.com/p/phantomjs/issues/detail?id=551&sort=-id
http://code.google.com/p/phantomjs/issues/detail?id=506

4.3 Report Generation and Printing 27

A noteworthy implementation detail is the fact that for each visualization, the developer can
add a function to the global facets.plain Javascript object. This function will be called on the visu-
alization container when transforming the HTML to the printer-friendly version. This means that
the developer can influence the print view of his visualization without modifying any files other
than his Javascript visualization code.

4.3.3 Server-Side Rendering of Client-Side HTML

Initially, the PDF report generation was implemented differently and even more ambiciously than
in the final product: The server wouldn’t generate any content but instead, the actual state of
the client HTML - including duplicates and selections - would be sent to the server where it
would be rendered to PDF just like it is now the case with the Annotate & Print functionality. The
entire <body> of the web application was duplicated on the client side and a different <head> was
prepended to the copy. Again, modifications were made to the body to make the HTML better
suited for printing - all by the use regular JQuery methods. This modified copy was then sent to
the server where it was be rendered to PDF using PhantomJS. As such, the report generation was
not a decoupled functionality, which is static per-project and generated on the server, but instead
it would actually depend on the state of the web applications. The advantage of this approach is
that the user does not need to have a virtual PDF printer in order to be able to save the modified
visualizations. Not all operating systems have a virtual PDF printer installed by default.

The main issue with this approach is security: There is no sane way to prevent the user from
sending any HTML content to the server for rendering. It’s possible to disable Javascript in the off-
screen renderer but still, there’s no sandboxing and by including other directories in the HTML,
the user could view server system files. The only thing preventing this would be the creation of
a strict schema, however that is very difficult given the complexity of the visualizations. Another
option would be to record the configuration of each visualization as it is modified and then replay
the modifications upon generating the visualization on the server but again, this adds a lot of
complexity and overhead. For this reason, the idea of rendering the client side HTML on the
server was abandoned. Even though it actually works in practice, the security implications are
too severe and unpredictable.

4.3.4 Rendering a Dedicated LaTeX Template

Since both the sever-side HTML rendering and the manual printing functionality each suffer from
a few issues, it becomes clear that the media discontinuity between the web and paper is still very
harsh. It’s rather difficult to mend and bend the HTML-based presentation into something that
still looks attractive when viewed in a PDF or on paper.

For this reason, an additional method has been developed: Similarily to the server-generated
PDF report, this method produces a report that cannot be influenced by the user. However, it only
renders the individual visualizations using PhantomJS, exporting them as PDF-documents. After
this they are re-embedded into a LaTeX template which is rendered using pdflatex. This produces
a very tidy report, since LaTeX is a superb typesetting engine and the visualizations look sharp
because the PhantomJS’ rasterization produces vector based shapes. The LaTeX template is also
processed by Jinja2, just like the HTML templates. Because LaTeX uses curly braces extensively,
the templating tokens are modified from {% %} to ((* *)) for block statements and from {{ }}
to ((())) for inline statements. To illustrate the process, listing 4.3 contains an example snippet
from the template. This snippet is responsible for generating the Exceptional Entities section.

28 Chapter 4. Design & Implementation

1 \section{Exceptional Entities}

2 ((* for type in extypes *))

3 \Needspace*{4cm}

4 \subsection{Top 10 entities by (((type["label"]))).}

5 \begin{longtable}{|p{0.10\textwidth} p{0.60\textwidth} p{0.15\textwidth}|}

6 \hline \textbf{(((type["name"])))} & \textbf{Entitiy} & \textbf{Disharmonies} \\

\hline

7 \endfirsthead

8 \hline \textbf{(((type["name"])))} & \textbf{Entitiy} & \textbf{Disharmonies} \\

\hline

9 \endhead

10 \hline

11 \endlastfoot

12 ((* for d in exceptionals[type["id"]] *)) (((d["metrics"][type["id"]]|int))) & (((d["

class"]|limitLength|escapeTex))) & (((d["disharmonies"] | countwNone))) \\

13 ((* endfor *)) \hline

14 \end{longtable}
15 ((* endfor *))

Listing 4.3: A snippet from the Jinja2-LaTeX template which generates a table of the top ten entities for each
type of exceptionality.

Chapter 5

Related Work & Reflections

We have shown how Facets levarages the capabilities of the individual SOFAS service to create
an extensive analysis of a software project. In this chapter, we shall mention a few similar ap-
proaches that try to carry the subject of software analysis and visualization to the web. Based on
the experience gathered by implementing Facets, we will also point out some of the shortcomings
of certain visualization techniques in use today. Finally, we will come back to some closing re-
marks on the application itself and comment on the difficulties that were encountered along the
way.

5.1 Related Work
D’Ambros et al. have developed a set of tools aiming in a similar direction as the SOFAS/Facets
combination. Churrasco1 is a collaborative, web-based platform that can create models of soft-
ware systems and record their version control history. As opposed to SOFAS, Churrasco is not
only a service application used to analyze data but instead it also includes ways for users to inter-
act with existing analyses, for example to annotate their object model. Churrasco also contains a
visualization module. It can be said that Churrasco is intended as a complete tool targeted at end
users while SOFAS is more of a flexible service platform, reachable via an API and to be used in
any software project that might want to benefit from the analyses provided by it, like it is the case
with Facets [10].

At the University of Auckland, Tempero et al. are exploring ways to deliver visualizations
over the web using technologies and tools that already exist today. A number of smaller projects,
prototypes and use cases have been developed to evaluate how well existing visualization ser-
vices such as Google’s Visualization API2 or IBM’s «Many Eyes»3 can be used to visualize soft-
ware systems. An example is LiveJ4, which is a collection of visualizations created by uploading
spreadsheet data to the Google Visualization Plattform. For the most part, they conclude a lack of
software visualization techniques, but since the Plattforms themselves work very well, they may
include some of the Visualizations in future projects [1, 2].

There is also a number of implementations for single visualizations which are not embedded
into any specific tool. For example, Ogawa et al. have developed an SVG visualization called
«Storylines», which is able to visualize developer interaction throughout the lifetime of a project
[22]. Another SVG visualization has been developed by Beyer at al.: «Storyboards» illustrates

1http://churrasco.inf.unisi.ch/
2https://developers.google.com/chart/interactive/docs/reference
3http://www-958.ibm.com/software/data/cognos/manyeyes/
4http://homepages.ecs.vuw.ac.nz/~craig/livej/

http://churrasco.inf.unisi.ch/
https://developers.google.com/chart/interactive/docs/reference
http://www-958.ibm.com/software/data/cognos/manyeyes/
http://homepages.ecs.vuw.ac.nz/~craig/livej/

30 Chapter 5. Related Work & Reflections

structural changes in software systems by the use of animates panels. Both of these visualizations
could be included in an application like Facets because they are purely web based [4].

A surprisingly early solution, REportal, by Mancoridis et al. was build in 2001 as a web site
where users could upload their C, C++ or Java source code to have it analyzed. The platform
consisted of several reverse engineering tools that the user could access to browse and understand
the project. Again, one of the main motivations for the project was the fact that users would not
need to install analysis and reverse engineering software on their own computers, hence saving
time and effort [7].

5.2 Web-Based Visualization Tools in Practice
On the more general topic of porting software analysis and visualization tools to the web, a num-
ber of opinions already exist. D’Ambros et al. dedicated a paper to describing the promises and
perils of such an undertaking. They had previously developed a variety of desktop-based visual-
ization tools and ported them to the web forming the previously mentioned Churrasco platform.
They come to the following conclusions: Web applications are more readily available than tools
that need to be installed for each user and since Churrasco allows users to annotate existing anal-
yses, it also facilitates the collaboration between developers. The ability to gather usage statistics
for the web service may be advantageous to see how developers interact. They say that through
the web service, third party libraries and components can be used more easily since they don’t
need to be distributed to each client and are instead only used on the server instance. D’Ambros
et al. also describe a number of perils which need to be evaded carefully: For example, sensible
information about the analyzed software systems needs to be kept safe from unauthorized visi-
tors to the site. The remaining issues they list are very typical for any kind of web service: There
are performance penalties stemming from both the server-client architecture and the increased
load on the server in case several visitors are using the platform at the same time. The web ser-
vice is also a single point of failure. And of course one of the most well known problems with
developing web services is the fact that different web browsers never exhibit identical behavior
and as such, compatibility issue need to be handled. Finally, web technologies are still evolving
rapidly and the longevity of any existing technology isn’t guaranteed [11].

Many of these claims have held true during the development of Facets. The application should
run smoothly in both gecko-based browsers such as Firefox as well as WebKit-based browsers
such as Chromium or Safari. However it does not work in Internet Explorer and of course it’s
neither intended for nor does it work in web browsers for mobile devices. Information security
is not an issue in this particular case since all the analyses are public anyway but as pointed out
when describing the PDF report implementation, there are still some security constraints that
cannot be avoided easily. Finally, a lot of work has gone into making Facets perform well, but the
loading times are still noticable, not primarily because of network bottlenecks but because of the
computational task that put significan strain on the browser’s Javascript engine.

5.3 Working with SOFAS
Facets utilizes a large number of services offered by SOFAS. Whereas until now the services had
mostly been used manually and on small and singular occasions, Facets uses them on a larger
scale. Having had the opportunity to work extensively with SOFAS, I can say that - from a de-
veloper perspective - the service oriented architecture offers a very neat yet still flexible way of
tackling the broad and complex issue of software analysis. There are some bugs left in some of
the services and during the development of Facets feedback was frequently provided on both the

5.4 Extending «Facets» 31

ontologies as well as the data supplied by SOFAS. Numerous bug fixes and improvements were
implemented.

In any case, Facets serves as an example of how new applications can be driven by SOFAS. By
the use of its services, developers are able to concentrate on working with the data, for example to
create visualizations or to create new analyses which can in turn be made a part of SOFAS instead
of having to bother with the installation or even the implementation of libraries that produce the
data.

5.4 Extending «Facets»
It is very easy to write new visualizations using the existing data that is stored in MongoDB.
The process of writing new visualizations is completely unintrusive because no existing files -
other than the configuration file - need to be modified. Not only is it possible to add a new
visualization to the existing analysis page within a single Javascript file, but it is also possible to
specify a function that will be run before the print view is generated.

If a new visualization should require a different representation of the data, it’s very easy to
just add a new function to the Representer class, again without intruding into other components
of the code. Registering the new visualization with its new representation dependency is all it
takes.

Regarding the synthesis of additional data, the situation is more difficult: First, adding visu-
alizations that require new data and hence adding steps to the synthesis function means that all
analyses need to be re-run on SOFAS. If they would not be re-run, data would be missing, since
Facets is not intended to serve different-looking analyses depending on what data is available.
Adding support for different version would have been beyond the scope of this project.

5.5 Future Work
Due to the scope of this project - it being a bachelor thesis - it was not possible to implement every
feature that came to mind.

It would be a good idea to add support for non-public repositories. Right now, a repository
must be publicly accessible for it to be analyzed. It would be useful to provide authentication
mechanisms such as public key uploads or credentials that enable the service to access non-public
repositories. In this case, the user should also be able to choose to hide his analysis from public
viewing. All of these features would still be possible even without user registration by the use of
access tokens.

Shorter turn-around times for new analyses of the same project are desirable: Right now, Facets
is laid out as a tool to analyze a code base in a singular event. If a new version of a tool is
released, the existing analysis will not be reused and the entire project will be analyzed anew.
One of the reasons why many analysis and visualization tools are integrated into IDEs is that
they can supply information continuously and the SOFAS/Facets combination is unable to do
this. A possible solution would be to have the code repository server and analysis services work
hand-in-hand: If a user pushes his commits to the repository, the analyses could be updated
automatically, however this approach is divergent from the modular and decoupled approach of
SOFAS and would require either a significant extension to SOFAS that enables the transmission
of events or an external monitor that would rerun analyses as required.

Of course, Facets could always be extended with new visualizations. There are still plenty of
visualizations that are worthy to be implemented, for example the Evolution Radar [12,20], simple
bar and line charts for additional metrics or the previously mentioned Storylines visualization.

32 Chapter 5. Related Work & Reflections

There are also a few other facets of software evolution which have not even been touched in this
project. Code clone detection, visualized by dot plots [20] is one example.

Chapter 6

Conclusion

Software analysis tends to require preparation and can be rather time consuming. The initial
effort required to even start analyzing software may pose a barrier for development teams that
do not have enough personnel capacities to spend on this topic. Having an easily accessible web
service and being able to analyze several aspects of a software project at the same time by simply
supplying the URL of the code repository tears down this barrier.

The Facets application succeeds at creating a complex work flow using the services provided
by SOFAS, aggregating the data produced by said services and finally visualizing the data. The
web application is visually appealing and very easy to use. Browsing the visualized data of an
analysis happens according to the well established Information seeking paradigm [19]: Overview
first, zoom and filter, and then details-on-demand. The user can get an impression of the shape
of his project by browsing the Overview facets. Further investigating the details of individual
packages or classes is easily possible using the Treemap, where zooming into individual packages
is possible, with further details available upon hovering over individual cells. Finally, the user can
print or export a report. Four different approaches, each with their own upsides and downfalls,
have been explored for this purpose.

For developers, the Facets back-end offers enough flexibility to unintrusively accommodate
new visualizations in the web frontend, which will be available to all existing analyses.

Developing Facets has also procured a number of lessons learned regarding the still rather
novel approach of providing software analysis and visualization services on the web. There exists
a need for short turn-around times, which is likely one of the reasons why many analysis tools are
implemented as plugins for IDEs. Another challenge is coping with the space and performance
constraints given by the network and the web browser. Analyzing software repositories produces
a very large amount of data, yet as little data as necessary should be transferred to the client.
And even though computation resources are limited in the web browser, the demand for very
fast loading times and quick browsing is higher than ever. In Facets, the problem is tackled by
synthesizing the data from SOFAS into another database, which itself increases the complexity of
the solution. Last but not least, some visualizations prove to be difficult to work with, depending
on the size and diversity of the project.

Bibliography

[1] Anslow C., Marshall S., Noble J., Tempero E.: Towards End-User Web Software Visualization.
In the Proceedings of Graduate Consortium at VLHCC. IEEE (2008)

[2] Anslow C., Marshall S., Noble J., Tempero E.: Web Software Visualization Via Google’s Visu-
alization API. In Proceedings of the New Zealand Computer Science Research Students Con-
ference (NZCSRSC) (2009)

[3] Balzer M., Deussen O., Lewerentz C.: Voronoi Treemaps for the Visualization of Software
Metrics. In the Proceedings of the ACM’05 Symposium on Software Visualization (SoftVis)
(2005)

[4] Beyer D., Hassan A. E.: Animated Visualization of Software History using Evolution Story-
boards. Proceedings of the 13th Working Conference on Reverse Engineering (WCRE’06) (2006)

[5] Belady L., Lehman M. M.: Program Evolution: Processes of Software Change. London Aca-
demic Press (1985)

[6] Bird C., Devanbu P., Gall H., Murphy B., Nagappan N.: An Analysis of the Effect of Code
Ownership on Software Quality across Windows, Eclipse and Firefox. Microsoft Research
TechReport MSR-TR-2010-140 (2010)

[7] Chen Y., Gansner E. R., Korn J. L., Mancoridis S., Souder T. S.: REportal: A Web-based Portal
Site for Reverse Engineering. In the Proceedings of the 8th Working Conference on Reverse
Engineering (2001)

[8] Comstock C., Jiang Z.: The Factors Significant to Software Development Productivity. In the
proceedings of the 19th International Conference on Computer, Information, and Systems Sci-
ence, and Engineering. World Academy of Science (2007)

[9] García E., Harrison R., Rodríguez D., Sicilia M. A.: Empirical Findings on Team Size and Pro-
ductivity in Software Development. Journal of Systems and Software Vol. 85, Iss. 3, p. 562–570
(2012)

[10] D’Ambros M., Lanza M.: Distributed and Collaborative Software Evolution Analysis with
Churrasco. In the Journal of Science of Computer Programming (SCP), Vol. 75. No. 4, p. 276 -
287 (2010)

[11] D’Ambros M., Lanza M., Lungu M., Robbes R.: Promises and Perils of Porting Software
Visualization Tools to the Web. In the Proceedings of the 11th IEEE International Symposium
on Web Systems Evolution (WSE) (2009)

36 BIBLIOGRAPHY

[12] D’Ambros M., Lanza M., Lungu M., Robbes R.: The Evolution Radar: Visualizing Integrated
Logical Coupling Information. In the Proceedings of the 2006 International Workshop on Min-
ing Software Repositories (MSR ’06) (2006)

[13] Demeyer S., Mens T.: Software Evolution. Springer ISBN 978-3-540-76439-7 (2008)

[14] Demeyer S., Steyaert P., Tichelaar S.: FAMIX 2.0, The FAMOOS Information Exchange Model
(1999)

[15] Demeyer S., Van Rysselberghe F.: Studying Software Evolution Information by Visualizing
the Change History. In the Proceedings of the 20th IEEE International Conference on Software
Maintenance (2004)

[16] Ducasse S., Gîrba T., Lanza M.: Yesterday’s Weather: Guiding Early Reverse Engineering
Efforts by Summarizing the Evolution of Changes. In the proceedings of the 20th IEEE Inter-
national Conference on Software Maintenance (ICSM’04), p. 40—49 (2004)

[17] Fischer M., Gall H., Lanza M., Pinzger M.: Visualizing Multiple Evolution Metrics. In the
Proceedings of the SoftVis ’05 ACM symposium on Software Visualization (2005)

[18] Gall H. C., Ghezzi G.: SOFAS: A Lightweight Architecture for Software Analysis as a Service.
Working IEEE/IFIP Conference on Software Architecture, IEEE Computer Society (2011)

[19] Keim, D. A.: Information Visualization and Visual Data Mining, IEEE Transactions on Visu-
alization and Computer Graphics, Vol. 7, No. 1 (2002)

[20] Lanza, M., Marinescu, R.: Object-Oriented Metrics in Practice. Springer ISBN 978-3-540-
24429-5 (2006)

[21] Lanza M., Hattori L., Robbes R.: Refining Code Ownership With Synchronous Changes.
Empirical Software Engineering, Springer (2010)

[22] Ma K., Ogawa M.: Software Evolution Storylines. In the proceedings of the SoftVis ’10 ACM
symposium on Software Visualization (2010)

Chapter 7

Appendix A: Technical
Documentation

7.1 Deployment
Facets is very easy to install given all dependencies have been installed. It is intended to be in-
stalled to a specific directory. For the remainder of these instructions, it will be assumed that the
directory is /opt/facets/. This directory should be created first. If some of the Python libraries
are not available through the repository of your Linux distribution, they are often available via
easy_install, which is almost certainly available in the repositories. If not, easy_install
can be installed manually1.

It is recommended for both safety and transparency to create a new user for running Facets. It
will be assumed that this user is called facets and that its home directory is /opt/facets.

The hardware requirements for Facets can be outlined as follows: MongoDB needs a lot of
memory to perform properly. The bigger the database gets, the more ram is needed. This means
that for testing and development, anything will suffice, however for production, at least 1GB of
ram should be reserved for MongoDB alone, with more being needed if the data set grows. On 32-
bit operating systems, MongoDB cannot store more than about 2GB of data, so a 64-bit operating
system is recommended.

7.1.1 Installing Dependencies
Python

The Facets server application requires at least Python 2.7 and it is not compatible with Python 3.
Python 2.7 is available in all popular Linux distributions and sometimes it is installed by default.

CherryPy

CherryPy is a fast and stable production-grade web development framework. It brings all the
necessary tools - including the web server itself - for writing web applications in Python, yet it
still has a very small footprint. Version 3.2 is the minimum requirement for Facets. If CherryPy 3.2
is not available through a repository, it can be downloaded as a tar file2. It can then be either in-
stalled on the system by running python setup.py install or it can be installed locally and
just for Facets by unpacking only the CherryPy-3.2.2/cherrypy folder to /opt/facets/.

1http://pypi.python.org/pypi/setuptools#cygwin-mac-os-x-linux-other
2http://download.cherrypy.org/cherrypy/3.2.2/CherryPy-3.2.2.tar.gz

http://pypi.python.org/pypi/setuptools#cygwin-mac-os-x-linux-other
http://download.cherrypy.org/cherrypy/3.2.2/CherryPy-3.2.2.tar.gz

38 Chapter 7. Appendix A: Technical Documentation

lxml

SOFAS answers SPARQL queries in XML. lxml is a light-weight XML parser for Python. At least
version 2.3.3 is required. If it is not available through the repositories, it can be downloaded3 and
installed manually or via easy_install --allow-hosts=lxml.de,*.python.org lxml
as outlined by the build instructions.

httplib2

httplib2 is used to communicate with the SOFAS services. At least httplib2 0.7 is required. If this
version is not available through the repository, it can be downloaded and installed manually4

Jinja2

Jinja2 is the templating engine used in conjunction with CherryPy to generate the HTML, Javascript
and LaTeX code being used to generate the documents served to the user. Facets has been tested
with Jinja 2.5 but older version may work. As usual, if it is not available through the repositories,
it can be installed via easy_install Jinja2 or from the latest tarball5.

MongoDB

MongoDB serves as the database for Facets where the synthesized data from SOFAS is stored. It
is a high performance NoSQL document store. Installing it via the repository may directly install
it as a service in which case no further configuration is required. It can also be installed following
the instructions on the website6.

Javascript Libraries

Facets utilizes JQuery7, JQueryUI8 and d39 for its interface and visualizations. The appropriate
version are incorporated in the Facets source tree which means that no manual installation is
required.

7.1.2 Installing «Facets»
Facets does not need to be built and can be grabbed directly from the source code repository.
Simply change to the designated directory and clone the source tree - or if using the version from
the CD, unpack the contents of facets_application.tar.gz. The hierarchy can be described
as follows:

• facets.py: The main executable to run Facets

• cfg: Contains all configuration files

• lib: Contains Facets’ server side libraries
3http://lxml.de/files/lxml-2.3.4.tgz
4http://code.google.com/p/httplib2/wiki/Install
5http://pypi.python.org/pypi/Jinja2
6http://www.mongodb.org/display/DOCS/Quickstart+Unix
7http://jquery.com/
8http://jqueryui.com/
9http://d3js.org/

http://lxml.de/files/lxml-2.3.4.tgz
http://code.google.com/p/httplib2/wiki/Install
http://pypi.python.org/pypi/Jinja2
http://www.mongodb.org/display/DOCS/Quickstart+Unix
http://jquery.com/
http://jqueryui.com/
http://d3js.org/

7.1 Deployment 39

• static: Contains statically served files such as Javascript, HTML and image files.

• static/viz: Contains all visualization Javascript files

• template: Contains templates used to dynamically generate Javascript, HTML and LaTeX
source files.

• misc: Various extra files that are not needed for running Facets but that may prove useful.

7.1.3 Configuration
Configuring CherryPy

By default, Facets will run on Port 8090. If you want to run it on a different port or if you have
installed it to a different directory, you will need to edit the CherryPy configuration file located
at cfg/facets_cp.ini. The file is self-explanatory and the only parameters that need to be
changed are server.socket_port, log.access_file and log.error_file.

Configuring Facets

Many run-time parameters in Facets can be configured. The configuration file resides at cfg/facets.ini.
The configuration file contains the following sections:

• sofas: The options in this section are used to tell Facets where the SOFAS services are
residing. The xml_encoding parameter should match the configuration of the services.

• owl: Stores the locations of the ontologies so they can be adjusted if necessary in the future.

• auth: The username and password used to access the services.

• param: Various options necessary for operating Facets:

– check_interval: Polling frequency in seconds when waiting for analyses to finish.
Each poll is an HTTP call to SOFAS to check the HEAD status of the analysis.

– fail_retries: How many times a failed SOFAS analysis will be restarted before
final failure is admitted.

– mongo_db_name: The name of the database in MongoDB.

– job_verbosity: Logging style for analysis progress. The two possibilities are short
(regular logging) and direct (Print entire job document from MongoDB without for-
matting.

– phantomjs|rasterize|pdflatex: The locations of the binaries for PhantomJS, the
rasterize script and pdflatex.

• visualizations: Each visualization in the client application needs a certain set of data
representations. This section contains the visualization → representation dependencies. The
history of lines of code for example needs to know about the commits and the release dates,
hence the configuration reads history_loc=commits,release_dates. This section is
especially important when extending Facets because new visualizations need to be regis-
tered in it.

40 Chapter 7. Appendix A: Technical Documentation

Configuring MongoDB

In many Linux distributions, MongoDB will not require any configuration. Simply make sure
that it’s running. It’s also unnecessary to create any scaffolding (like tables or users in SQL
databases) because they will be created automatically when Facets is running. Just remember
that the database name for Facets to use can be configured in cfg/facets.ini.

7.1.4 Operation
After everything is installed and configured, it may be best to run a chown facets:users
/opt/facets just for good measure to make sure that all files are owned by the facets user.
After this, the server can either be started manually by running something like python2
/opt/facets/facets.py upon which the output from the application will be logged directly
to the terminal. This is useful while developing and debugging.

Daemonized Operation

To run Facets as a system daemon, you will need to write a daemonizing script for your Distri-
bution. A script for OpenSUSE can be found in the misc folder. Guides for other distributions
can be found in their respective wikis. There’s not much that can go wrong since it’s impossible
to run two instances at the same time. Running Facets when it’s already running will abort early
since it can’t bind to the specified port (8090 by default).

Logging

There are three log files: log/facets.log contains the regular output from the Facets applica-
tion (logging startup, shutdown and new analyses and their progress). log/facets_access is
the regular HTTP log access file and CherryPy logs its own bus and operational information to
log/facets_cherrypy.

7.2 Extending «Facets»
There are three components that can be extended. The first and easiest to extend is the visualiza-
tion part. It is very easy to write new visualizations and incorporate them into the Facets analysis
front-end. The second component is the Representer Class which reads data from the MongoDB
database so that it can be used by the visualizations. There are already a handful representations
that may be reused by newly written visualizations but if the need arises, new representations can
be written without much effort. Finally, it may be necessary to write new steps during synthesis
if the data currently stored in the database does not suffice.

7.2.1 Writing Visualizations for «Facets»
First of all, developers needs to familiarize themselves with the components involved in gen-
erating the visualizations. Chapter 4 of the thesis explains the most important aspects. A new
visualization can be written in three easy steps. In the following sections we will write a triv-
ial sample visualization to illustrate the process. Let’s call it release_loc - it will tell the user the
number of lines of code for each release.

7.2 Extending «Facets» 41

Step 1: Write the necessary HTML and Javascript Code

Visualizations are embedded into the main analysis page as simple snippets. The HTML needs
to go into the template folder, so we create a file template/release_loc.html that may look
like listing 7.1:

1 <h6>Lines of Code per Release</h6>
2 <p>This sample visualization tells us the number of lines of code for each

3 release. Text inside this span will initially be hidden.

4 A [More] button will be available for the user to click on to reveal the

5 contents. Citations can be included using the sup element. Inside it, we

6 place the name of the source. Facets will automatically resolve it and

7 replace it with the appropriate number^{lanza}.</p>
8 <div class="container" id="release_loc_0">
9 <div class="release_loc">

10 <div class="container">
11 <div class="duplicator">[+]</div><div class="deleter">[-]</div>
12 <div class="content"/>
13 </div>
14 </div>
15 </div>
16 <script type="text/javascript" src="/static/viz/release_loc.js"></script>
17 <script type="text/javascript">
18 {{wrapper}}

19 </script>

Listing 7.1: Sample visualization HTML code.

The corresponding Javascript code should go into static/viz/release_loc.js, which
may look like listing 7.2. Note that there is just one function setup_release_loc into which
the visualization code goes. The last line of the file just after the function is very important: It
registers the function which enables the loading and duplication of visualizations.

1 var setup_release_loc = function(container) {

2 // The following condition is needed if you want to use the duplication

3 // eature. It ensures that the original visualization cannot be deleted.

4 if (container.attr("id") != "release_loc_0") {

5 container.select(".deleter").style("visibility", "visible");

6 }

7
8 // You can reference any representation you want. But make sure you don’t

9 // modify them! Copy the values first, if you need to modify them. Note that

10 // the following lines do not copy them and you’d still be modifying the

11 // originals! This is just for convenience.

12 var releases = representations["releases"]

13 var projectMetrics = representations["project_metrics"]

14
15 // The container will refer to the ’container’ class element in the HTML

16 // we created. From here on, do whatever is needed using d3 or JQuery.

17 var vizWidth = 700;

18 var maxLines = 0;

19 d3.values(projectMetrics).forEach(function (a) {

20 if (maxLines < a["LOC"]) { maxLines = a["LOC"] }

21 });

22 var widthMap = d3.scale.linear()

23 .domain([0, maxLines])

24 .range([0, vizWidth]);

42 Chapter 7. Appendix A: Technical Documentation

25 var content = container.select(".content")

26 container.style("width", vizWidth + "px")

27 .style("margin", "0 auto 0 15px").style("position", "relative")

28 .style("font-size", "0.8em").style("padding", "15px");

29 var rows = content.selectAll("div")

30 .data(projectMetrics).enter().append("div")

31 .style("background-color", "#ffdd55")

32 .style("width", function (d) { return widthMap(d["LOC"]) + "px" })

33 rows.attr("class", "release_row").append("span")

34 .style("width", "60px").style("float", "left")

35 .text(function (d, i) {return releases[i] + ":"; });

36 rows.append("span")

37 .text(function (d, i) {return projectMetrics[i]["LOC"] })

38
39 // Make use of duplication feature. You could add more modifications.

40 container.select(".duplicator").on("click",

41 function () { duplicate("pyramid", container); });

42 container.select(".deleter").on("click",

43 function () { deduplicate(container); });

44 }

45
46 facets.vis.release_loc = setup_release_loc;

Listing 7.2: Sample visualization Javascript code.

Note that for efficiency reasons, the CSS declarations have been kept in one file,
static/main.css. You can add you own definitions to that file - prepending all your defini-
tions with the appropriate visualization name class, which in this case would be .release_loc
referring to the div containing your visualization.

Step 2: Register the new visualization in the configuration

As mentioned earlier, all visualizations are registered in cfg/facets.ini together with the
representations they depend on. In our example, we need the list of releases and the list of project
metrics. So we add our new visualization to the respective section:

1 [visualizations]

2 pyramid=releases,project_metrics

3 disharmonies=releases,disharmonies

4 treemap=releases,trees,disharmonies

5 treebrowser=releases,tree,commits,disharmonies

6 history_loc=commits,release_dates

7 history_commits=commits

8 history_metrics=releases,project_metrics

9 release_loc=releases,project_metrics # newly added visualization

Listing 7.3: visualizations section of the configuration file with the newly registered visualization.

Step 3: Embed the visualization into a view page

A special template can be found in template/facets.html. It determines where the visual-
izations are drawn - in which category and at which point. We add it in the Overview section so
that the file now looks like in listing 7.4.

7.2 Extending «Facets» 43

1 <div class="facet" id="facet_overview" data-index="0">
2 {{facets["pyramid"]}}

3 {{facets["history_metrics"]}}

4 {{facets["disharmonies"]}}

5 {{facets["release_loc"]}} <!-- newly added visualization -->

6 </div>
7 <div class="facet" id="facet_metrics" data-index="1">
8 {{facets["treemap"]}}

9 {{facets["treebrowser"]}}

10 </div>
11 <div class="facet" id="facet_vc" data-index="2">
12 {{facets["history_loc"]}}

13 {{facets["history_commits"]}}

14 </div>

Listing 7.4: The complete facets.html template, showing how visualizations are placed in different facets.

Figure 7.1: A crude sample visualization that shows the number of lines of code for each release.

7.2.2 Writing Additional Representations
Each representation is a function in the Representer class, which is contained in lib/represent.py.
If an additional representation is required, simply add a function that gets the data from the
database. There is no further configuration required, as long as this new representation is men-
tioned as a dependency to your visualization. Listing 7.2.2 shows a simple representation function
that will return the number of commits. Of course this is redundant because one could count the
number of commits in Javascript from the commits representation, which already exists, so this is
just an example.

1 def num_of_commits(self,name):

2 nodes = self.db["commits"].find({"name": name})

3 nodes = [node for node in nodes]

4 return len(nodes)

44 Chapter 7. Appendix A: Technical Documentation

7.2.3 Writing Additional Steps During Synthesis
The data which is saved to the MongoDB database is retrieved from various SOFAS services and
during the synthesis step, a lot of data is pulled in at the same time. To store additional data
in the database during synthesis, the synthesize function of the Analyzer class - which is
contained in lib/analyzer.py - can be modified. Before starting, the following things should
be considered and kept in mind:

1. Is the additional data really needed? Can’t it be derived from the existing data? There
are two places where data can be modified further: Either in a representation function or
directly in the visualization code. If possible, stick to the existing data.

2. If additional data is required because of a new visualization, all existing analyses will need
to be deleted and re-run because else, the data would be missing from existing analyses.
Since the data will have already been deleted from SOFAS, it is necessary to resubmit every
analysis.

3. MongoDB documents cannot be larger than 8 or 16MB, depending on the version. It is
usually best to use a new collection for one kind of data and to keep the document size
down.

Retrieving Data from SOFAS

Facets provides a helper function to retrieve data from SOFAS. It takes the following parameters:

• url: The URL to query.

• query: The query to use, but without any prefixes. Only the part starting from SELECT is
needed. If a new prefix is indeed needed, it can be added to the sparql function and inserted
in facets.ini.

• store: This argument takes a function that will be run on each row in the resulting result
table. The store function takes a container - for example a list or dictionary - and a row as
arguments. The store function in listing 7.5 for example takes a dictionary and then stores
the contents of row v using the contents of row k as the key.

• container: The container that is supposed to be filled. Of course the container must be
compatible with the store function. For example one can supply {} in this example, but
one could also supply a dictionary that already contains something, for example a default
key-value pair.

• sanitize: If this is set to True, which is the default, any URLs appearing in the results will
be stripped of their path component so that only the trailing part of the URI will remain.

1 def store_key_value(d, row):

2 """In a dict, store the value from row v under the key in row k"""

3 k, v = row["k"], row["v"]

4 d[k] = v

Listing 7.5: One of many possible store functions.

7.3 Miscellaneous Additional Information 45

Storing Data to MongoDB

Listing 7.6 shows the function that stores the metric information for all classes to MongoDB. The
packages, metrics, disharmonies and children variables all contain different data which
was gathered from different SOFAS services using the above method. Now, for every class in
every package, the children, metrics and disharmonies are collected and stored to the classes
collection in MongoDB. Finally, an index on the "name" key is ensured10.

1 # store metrics, disharmonies and children for all classes

2 for classes in packages:

3 for aClass in packages[classes]:

4 if self.stopped(): return False

5 doc = {"name": self.info["name"],

6 "release": release,

7 "class": aClass,

8 "children": children.get(aClass, None),

9 "metrics": metrics.get(aClass, None),

10 "disharmonies": disharmonies.get(aClass, None)}

11 self.db["classes"].save(doc)

12 self.db["classes"].ensure_index("name");

Listing 7.6: An example of how data can be stored in MongoDB.

If a new collection is created for the new data, note that the delete_local function of the
Analyzer needs to be updated so that any existing data will be deleted when rerunning or deleting
an analysis.

7.3 Miscellaneous Additional Information

7.3.1 Database Document Templates
A description of the shape of the documents used to store data in MongoDB can be found in
misc/documentation/mongodb_documents. The file also contains instructions on how to
explore the database interactively using python2 or the mongo shell.

7.4 Work Flow Diagram
On the following page you can find a flow diagram that illustrates the whole analysis workflow
from the user submitting a URL to the final analysis being presented.

10This means the index is created if it doesn’t exist and updated if it exists

famix

Start

User submits Repo
URL and a Name
for the analysis

Name already
taken

Yes

No POST to repository
extraction service

(git / svn / cvs / hg)

Response Status

HEAD to repository
extraction service

(git / svn / cvs / hg)

Response Status
202*

202

200

POST to FAMIX
extraction service

Response Status
503* or 409

HEAD to FAMIX
extraction service

Response Status
202*

202

200

famix_urls
SPARQL query

to FAMIX service,
get all release URLs

Red Arrow:
 interruptable - exit/resume

Black Arrow:
 uninterruptable flow

202* Asterisk (*):
 sleep before continuing

503* or 409
Response Status

503*

Comments:
 - Each error 400 or 404 is counted as
 an error for that specific URL and the
 analysis will be retried. The maximum
 number of errors allowed can be
 configured in facets.ini
 - Status 503 is simulated by cherrypy
 and means SOFAS was unreachable
 - Status 409 is just a naming conflict
 which is resolved by cherrypy

200

for each URL, sequentially:

POST to
famixMetrics
(OO) Service

Response Status

202

503* or 409

POST to
javaFamixMetrics

(SC) Service

Response Status
503* or 409

202

for each non-status-200 URL, sequentially:

HEAD to
famixMetrics
(OO) Service

No*

HEAD to
javaFamixMetrics

(SC) Service

All Status: 200

Yes

POST to
code disharmonies

service

Response Status

202

503* or 409

for each oometric + scmetric URL pair:

HEAD to
code disharmonies

service

for each non-status-200 URL:

No*
All Status: 200

Yes

Blue Arrow:
 interruptable - exit/resume
 next element in loop

Finish

vc

metrics

disharmo

synthesis

For each release:

SPARQL Queries to
services for

- commit dates
- changesets
- release dates
- class declarations
-

SPARQL Queries to
services for

- metrics
- hierarchy
- classes/methods
- disharmonies

Combine Data and
store into collections:

- classes
- hierarchy
- changesets
- commits
- projectMetrics

DELETE to
URL

for each URL of every service:

cleanup

Analysis available
in Web front-end

Figure 7.2: Flow diagram illustrating the process of issuing analyses to SOFAS, retrieving the data, synthesizing it and cleaning up afterwards

	Overview
	Problem Description
	Introducing «Facets»
	Thesis Outline

	Introduction
	Software Analysis as a Service
	Facets of Software Evolution
	Requirements

	The «Facets»Web Application
	Overview
	Grouping of Visualiztions
	Issuing New Analyses
	Browsing Existing Analyses

	Cross-Visualization Features
	Basic Features
	Indicating Code Disharmonies

	Individual Visualizations
	Overview Pyramid
	Overview Pyramid Evolution
	Treemap
	Treebrowser
	Project Evolution Graphs

	Design & Implementation
	Overview
	Architecture
	Analysis Work Flow
	Job Management
	Analyzer and Sofas Agent
	Database
	Extending «Facets»

	Report Generation and Printing
	Off-Screen Rendering of a dedicated HTML template
	Annotate & Print
	Server-Side Rendering of Client-Side HTML
	Rendering a Dedicated LaTeX Template

	Related Work & Reflections
	Related Work
	Web-Based Visualization Tools in Practice
	Working with SOFAS
	Extending «Facets»
	Future Work

	Conclusion
	Appendix A: Technical Documentation
	Deployment
	Installing Dependencies
	Installing «Facets»
	Configuration
	Operation

	Extending «Facets»
	Writing Visualizations for «Facets»
	Writing Additional Representations
	Writing Additional Steps During Synthesis

	Miscellaneous Additional Information
	Database Document Templates

	Work Flow Diagram

