
Bachelor Thesis
January 13, 2013

Happy Coder

André Meyer
of Uster, Switzerland (09-736-398)

supervised by
Prof. Dr. Thomas Fritz

software evolution & architecture lab

Bachelor Thesis

Happy Coder

André Meyer

software evolution & architecture lab

Bachelor Thesis

Author: André Meyer, info@andre-meyer.ch

URL: www.andre-meyer.ch/happycoder

Project period: 16.07.2012 - 16.01.2013

Software Evolution & Architecture Lab
Department of Informatics, University of Zurich

Acknowledgements

I would like to thank all the people who were involved in this thesis. First of all, I thank Prof.
Dr. Thomas Fritz for giving me the opportunity to write this thesis at the software evolution and
architecture lab and for his excellent support. Moreover, I want to thank the other members of
the lab for their valuable comments and ideas. Further appreciation goes to the developers of
the tools and frameworks I have used for the creation of Happy Coder including Reverb, Rabbit,
Mylyn, Wamon, jQuery mobile, canvasXpress, and a lot more. Many thanks also go to all the par-
ticipants of the studies. I also would like to express many thanks to my parents, my girlfriend and
my friends who gave me insights and comments from other non IT-related perspectives. More-
over, many thanks to my father, Dr. Peter Meyer, who supported me with his knowledge and
insights in the writing phase of my project. Finally, I want to thank Dr. Kaspar Zimmermann
(Head of Operations, Global Discovery Chemistry, Novartis) and Paul Meyer (emer. research sci-
entist, Lawrence Livermore National Laboratory) for proof-reading my work.

Abstract

Recent advances in small inexpensive sensors, cheaper storage, and low-power processing cause
an increasing popularity of trackers that quantify a user’s activities throughout his everyday life.
The Fitbit and the Nike+ Fuelband are two examples of commercial approaches that motivate
a user to be more active by tracking his activity and visualizing the analyzed data. In the area
of software engineering there are similar tools to support a developer in a single domain of his
work, such as planning tools or bug repositories. Only little research has been performed on how
to integrate the available data and how to focus on providing a retrospection of a developer’s
work day.

In order to contribute to overcome this shortcoming we introduce a tool, Happy Coder that
provides developers with a retrospective analysis of their work day, by tracking predefined met-
rics and visualizing them on a web client. This includes a front-end with consolidated data analy-
sis, visualizations and representations of the collected data. Two studies revealed that developers
assess their productivity based on a personal evaluation of their work day. This assessment is
dominated by personal preferences of different metrics like work items, meetings, web searches
or activities on the computer.

Zusammenfassung

Fortschritte in der Herstellung von kleinen, leistungsstarken Sensoren und günstige Speicher-
möglichkeiten erlauben eine stetige Verbreitung von Loggern, die den Alltag eines Users quan-
tifizieren. Fitbit und das Nike+ Fuelband sind zwei Beispiele solcher kommerziellen Ansätze, die
den Benutzer fördern aktiver zu sein, indem sie seine Aktivität aufzeichnen und visualisieren.
Ähnliche Ansätze sind auch im Softwareengineering zu finden. Diese Tools unterstützen einen
Programmierer in einem einzelnen Bereich seiner Arbeit; beispielsweise in der Planung oder beim
Organisieren von Bug-Reports. Allerdings gibt es bislang noch wenige Erkenntnisse darüber, wie
die verfügbaren Daten vereint und integriert werden können und einen Rückblick auf den ver-
gangenen Arbeitstag erlauben.

Um einen Beitrag zur Lösung dieses Problems zu erbringen, haben wir Happy Coder en-
twickelt, das Programmierern eine retrospektive Analyse ihres Arbeitstages ermöglicht, indem
es vordefinierte Metriken misst und in einem Web-Client darstellt. Dieser beinhaltet eine kon-
solidierte Datenanalyse sowie Visualisierungen und Repräsentationen der gesammelten Daten.
Zwei Studien haben gezeigt, dass Entwickler ihre Produktivität aufgrund einer persönlichen
Evaluierung des vergangenen Arbeitstages machen. Diese Evaluierung basiert auf persönlichen
Vorlieben der verschiedenen Metriken wie zum Beispiel Aufgaben (Work Items), Meetings, Re-
cherchen im Internet oder Aktivitäten am Computer.

Contents

1 Introduction 1

2 Related Work 3
2.1 Activity Sensing . 3
2.2 Developer Motivation . 4
2.3 Developer Productivity . 5

3 Retrospective Developer Analysis 7
3.1 Tracked Developer Metrics . 8

3.1.1 Measuring Activities . 8
3.1.2 Measuring work with Java Elements . 9
3.1.3 Measuring work with Work Items . 9
3.1.4 Measuring Meetings . 10
3.1.5 Measuring Web Searches . 10
3.1.6 Measuring Change Sets . 11

3.2 Visualization of the Metrics . 11
3.3 Future Metrics . 14

4 Prototype 15
4.1 Architecture Overview . 15
4.2 Developer Monitoring . 17

4.2.1 Activities Tracker . 19
4.2.2 Java Elements Tracker . 19
4.2.3 Work Items Tracker . 20
4.2.4 Meetings Tracker . 20
4.2.5 Web Searches Tracker . 21
4.2.6 Change Sets Tracker . 21

4.3 Server . 22
4.3.1 Database . 22
4.3.2 Data Upload Service . 22
4.3.3 Data Web Service . 24

4.4 Web Client . 26

5 Usage Study 29
5.0.1 Results . 29
5.0.2 Limitations and Conclusions . 30

viii Contents

6 Metrics and Productivity Studies 31
6.1 Productivity Study . 31

6.1.1 Results . 31
6.1.2 Limitations and Conclusions . 32

6.2 Metrics and Productivity Study . 33
6.2.1 Results . 33
6.2.2 Limitations and Conclusions . 37

7 Discussion 39
7.1 Discussion . 39
7.2 Future Work . 41

8 Conclusions 43

A Tools and Environments 45

B Visualization of the Metrics in the Web Client 47

C Usage Study: Results 55

D Productivity Study: Results 59

E Metrics and Productivity Study: Questionnaire 61

F Metrics and Productivity Study: Results 65

G Contents of the CD-ROM 69

Contents ix

List of Figures
3.1 Visualization of multiple metrics with a Chernoff faces. 12
3.2 Visualization of the most important metrics on the overview page of the web client. 13

4.1 Architecture of Happy Coder. 16
4.2 Status view of the Happy Coder Eclipse plug-in. 17
4.3 Preferences view of the Happy Coder Eclipse plug-in. 18
4.4 Entity Relationship Model of the database. 23
4.5 UML activity diagram of the data upload to the server’s database. 25
4.6 Overview page of the Happy Coder web client. 27

7.1 Ask the user for his mood after his work day. 42

B.1 Web Client Activities visualizations. 48
B.2 Web Client Java Elements visualizations. 49
B.3 Web Client Work Items visualizations. 50
B.4 Web Client Meetings visualizations. 51
B.5 Web Client Web Searches visualizations. 52
B.6 Web Client excerpt of the log-in and the about page. 53

List of Tables
2.1 Comparison of commercial and noncommercial, wearable activity sensors. 4

5.1 Results of the usage study where the Happy Coder prototype was evaluated. . . . 29

6.1 Results for the question if the developer’s last work day was productive. 32
6.2 Categorized answers to the open question (Question 2) of how developers assess

productivity. 32
6.3 Results for metrics in the category Activities. 33
6.4 Results for metrics in the category Work Items. 34
6.5 Results for metrics in the category Java Elements. 34
6.6 Results for metrics in the category Change Sets. 35
6.7 Results for metrics in the category Web Searches. 35
6.8 Results for metrics in the category Meetings. 35
6.9 Categorized answers to the open question of how developers assess productivity. . 36

A.1 Tools and frameworks used to monitor developers. 45
A.2 Tools used to run the server. 46
A.3 Frameworks used to present and visualize the data on the web client. 46

List of Listings
4.1 Java snippet showing the composition of the url on the example of the activity tracker. 24
4.2 PHP snippet showing how the submission type and file is obtained. 24

x Contents

Chapter 1

Introduction

‘When you can measure what you are speaking about, and express it in numbers,
you know something about it; but when you cannot measure it, when you cannot
express it in numbers, your knowledge is of a meager and unsatisfactory kind.’
- Lord Kelvin

With increasing sensing capabilities, cheaper storage space and better capacities to analyze
the collected data, more and more people use trackers to quantify parts of their lives. There are
several commercial approaches to track the activity of a person’s life, such as Fitbit1, Nike+ Fuel-
band2, or Zeo3. The Fitbit and Nike+ Fuelband track the number of steps a user4 walks during a
day and quantify useful information such as calories burned, the number of stairways climbed or
scoring points. Zeo is a sleep tracker which wakes the user in a lighter phase of sleep. Common to
all of these tools is that they measure everyday data, analyze it and try to give the user a better in-
sight in his activities with the help of visualizations. These insights often motivate a user to adapt
his habits. For example, Fritz et al. [FM12] found that Fitbit users “described using a device for
the awareness and reflection of their activity and for providing a continuous motivational factor
to be more active”.

In the area of software engineering there are numerous products and services available that
assist a developer in his daily work. For example, there are tools to plan a developer’s work and
track his work tasks (e.g. Mylyn5 or Outlook6), to track the Java elements a developer worked
on (e.g. Rabbit7), and many more. While all of these approaches support a developer in a single
domain of his work, only little research has been performed on how to integrate the available data
and how to focus on providing a retrospection of a developer’s work day. However, it is difficult
for a developer to objectively appreciate his own work progress. This assessment is necessary to
motivate him for the coming day. No approaches are known which combine multiple aspects of
a developer’s achievements, focussing on providing a review of his work day with meaningful
visualizations.

1http://www.fitbit.com, verified 01/10/13
2http://www.nike.com/fuelband, verified 01/10/13
3http://www.myzeo.com, verified 01/10/13
4The term developer and user can describe a female or male person. For simplicity reasons the male form was used

throughout this thesis.
5http://www.eclipse.org/mylyn, verified 01/10/13
6http://microsoft.com/outlook, verified 01/10/13
7http://code.google.com/p/rabbit-eclipse, verified 01/10/13

http://www.fitbit.com
http://www.nike.com/fuelband
http://www.myzeo.com
http://www.eclipse.org/mylyn
http://microsoft.com/outlook
http://code.google.com/p/rabbit-eclipse

2 Chapter 1. Introduction

Considering the just described problem, we formulated the following research question to
summarize the goal of this thesis:

RQ: Can we provide a retrospective analysis of a developer’s work that integrates useful metrics of his
work day to provide a meaningful analysis of his productivity?

In this paper, we introduce a tool, called Happy Coder that allows a software developer to
quickly get a summarized overview of his daily work and achievements. One part of this thesis
work was to examine the feasibility of collecting data on various aspects of a developer’s work,
to visualize them within the prototype and evaluate it.

To this end, we developed an approach comprised of:

• A monitoring component to collect relevant data of a developer’s work. For better extensi-
bility, we defined an abstraction and modularized the implementation where it was possi-
ble.

• A data storage component to make the data available to the developer. This is implemented
using a web server which aggregates and prepares the data and a database storing it. Fur-
thermore, necessary gateways to access the data by a client are provided.

• Finally, a component to provide a front-end to visualize the collected data to the devel-
oper. Amongst others, we visualized the work items a developer worked on, the meetings
a developer attended and the Java elements a developer touched. Moreover, the developer
can compare the current day to previous work days to evaluate trends. The information is
made available for multiple devices for convenient access from everywhere with the use of
a multi-platform website.

In a second step, we carried out two studies with multiple developers to evaluate the met-
rics that are useful to a developer and to find out how he assesses his productivity. In a future
study we want to check whether or not the use of Happy Coder assists the developer to increase
the awareness of his daily activity and helps him to reflect the work day. Moreover, we want
to investigate if our prototype leads to a higher motivation of the developer towards achieving
personal as well as software project goals.

This thesis makes two contributions:

• it introduces a tool, Happy Coder that provides developers a retrospective analysis of their
work day, by tracking predefined metrics and visualizing them on a web client, and

• it presents the results of two studies suggesting that important metrics and the assessment
of productivity is based on a personal evaluation of the developer’s work day.

This thesis is structured as follows: In Chapter 2 we present related work in the fields of activ-
ity sensing, developer motivation and developer productivity. Chapter 3 focuses on the metrics
that are being tracked and visualized. In Chapter 4, the architecture and implementation of the
three components of the prototype are explained. After the implementation of the prototype a us-
age study of Happy Coder was conducted which is described in Chapter 5. The metrics that are
being tracked and approaches to measuring productivity are evaluated in Chapter 6. The imple-
mentation of Happy Coder and possible future work is discussed in Chapter 7. Finally, Chapter
8 concludes the results of this thesis.

In the following thesis, we refer to the developer monitoring trackers as tracker, monitor or
recorder (e.g. activities recorder).

Chapter 2

Related Work

This chapter presents related work in the field of activity sensing, developer motivation and de-
veloper productivity.

2.1 Activity Sensing
Recent advances in small inexpensive sensors, cheaper storage, and low-power processing cause
an increasing popularity of trackers that quantify a user’s activities throughout his everyday
life [CMT+08]. The first quantified self conference being held in 20121 and new commercial
products like Nike+ Fuelband or Fitbit One released in 2012 suggest a common trend towards
quantifying our lives.

A number of studies have been conducted to find the effects and benefits of activity sensing
tools like sports trackers. Delajoux et al. created a social computer game, Fish’n’Steps, to promote
an increase in physical activity [LML+06]. The player’s daily foot steps are counted and animated
with a virtual character, a fish in a fish tank. By adding the fishes of other players, an environ-
ment of cooperation and competition encouraged the players to exercise more. The visualization,
which was considered much friendlier than an Excel sheet, ‘led the users establish new routines
that led to healthier patterns of physical activity in their daily lives’ [LML+06]. Chick Clique, de-
veloped by An et al. [TFAG06], motivated teenage girls to exercise more ‘by exploiting their social
desire to stay connected with their peers’. Moreover, it gave useful tips for healthy nutrition and
exercise. UbiFit Garden is another example of on-body sensing. It consists of a wearable sensor, a
glanceable display and an interactive application on the mobile phone providing detailed infor-
mation about the user’s activity and allows the user to add, edit or delete activities [CMT+08].
The possibility to edit the measured data is a feature that was only found in the UbiFit Garden.
Striiv is another pedometer that, unlike to other commercial trackers such as Fitbit and the Nike+
Fuelband, motivates users to do exercise more by providing mini-games powered by walking and
donating a little fee for every step made to a charity organization.

While the above-mentioned tools automatically measure steps as the main metric and visu-
alize them in a purposeful manner, they follow different approaches of motivating the user. A
comparison of the most important features of those trackers can be found in Table 2.1. The reason
why people utilize these devices are multifaceted: some want to achieve some personal goals, bet-
ter understand themselves, reflect their activity, or have other social reasons [FM12]. On the other
hand, there are also many users who track an aspect of their life with an unknown goal. ‘They

1http://quantifiedself.com, verified 01/10/13

http://quantifiedself.com

4 Chapter 2. Related Work

continue because they believe their numbers hold secrets that they can’t afford to ignore.’ [Wol12]
This clearly emphasizes the necessity of useful metrics in combination with meaningful visual-
izations and simplifications. For example, the creators of Fitbit tried to abstract the collected data
into a visualization to show recent activity at a glance: the user can see his progress on the device’s
display with a flower that grows leaves. A similar approach can be found on the Fuelband where
Nike abstracted away from the step count and introduced the proprietary ‘Nike Fuel’ measure to
indicate the progress towards a predefined goal.

visualization
of measured
data

group (sharing, co-
operation, etc.)

game character goal setting
and progress
towards goal

Chick Clique X X(measure own
group with other
groups)

X X

Fish’n’Steps X X(see other users
in fish tank)

X X

UbiFit Garden X ? X X
Fitbit (com.) X X(social networks,

high score list)
X(achievements) X

Nike+ Fuelband
(com.)

X X(social networks) X(achievements) X

Striiv (com.) X X X(mini-games, do-
nations to charity)

X

Table 2.1: Comparison of commercial and noncommercial, wearable activity sensors.

In the area of software engineering there are also some tools available to assist a developer
in his daily work. This include tools such as Mylyn, Reverb, Rabbit or Wamon, all covered and
discussed in the following chapters of this thesis.

2.2 Developer Motivation
The tools described in the last chapter can motivate a user to do more of a certain activity (e.g.
walking, programming) and to achieve goals. In software engineering, motivation is considered
as a crucial factor of the overall success of a software project [SSP11, HSB+08]. Developers find
themselves in a difficult situation: they have to cope with difficult projects, a lot of pressure to
perform, quality inspections, fast moving technologies, and much more. Hence, it is very impor-
tant for a developer to be highly motivated to deliver high quality work [HSB+08]. Motivating
developers is considered as one of the most important and most difficult skill managers have
to master [Whi97]. Whitaker, a software project manager for more than two decades, found a
successful way to motivate developers in different teams. He prioritized product features and
must-have features and rewarded selected developers privately as they achieved a certain mile-
stone. As soon as the team achieved the next milestone, several other developers received similar
awards, including a developer that already had received one.

Besides rewards there are many other motivational factors like challenging and creative work,
working in a great team, producing good and useful software, or doing work that is appreciated

2.3 Developer Productivity 5

by others [SSP10,SSP11,HSB+08]. Factors such as repetitive, uninteresting or tedious work, uncer-
tainty, and missing the goals are considered as motivation killers. Moreover, disruptions prevent
a developer to focus on a task and to perform the planned work [KHB06]. A retrospective analysis
tool that automatically collects data relevant to a developer can improve his motivation by pre-
senting everything he achieved during work. It might also give him insights into unproductive
times, like browsing the web or writing emails. This information might help a developer to boost
his efficiency and focus more on the work itself.

2.3 Developer Productivity
In order to find a useful approach to provide a meaningful analysis of a developer’s work day,
the common understanding of productivity in software engineering had to be determined. Re-
searchers have been searching for approaches to measure productivity for almost thirty years2. As
productivity mainly is a personal assessment of the tasks a developer achieved during a period,
it is no wonder that the way to quantify productivity has yet to be found. In general, productivity
is considered as the produced output divided by the resources consumed [Car06]. As it is diffi-
cult to quantify input and output, there are several approaches available to measure productivity
of a developer producing code directly. A simple method is for example to measure the lines of
code a developer writes during a day. However, this is not very accurate as the amount of code
needed to solve a problem differs up to 500% between different programming languages [Jon94].
Moreover, physical lines of code do not correctly represent the effort devoted to a program as
there are comments, blank lines, and other constructs which add no functionality to the code. The
function-point metric is another possibility of measuring developer’s productivity. This metric
is more accurate as it does not depend on different programming languages. However, it only
measures the code a developer produced and does not consider other aspects of the code, like
functionality, complexity, maintainability, size and quality [Jon94, AL03, Dun88]. Moreover, per-
sonal aspects such as the developer’s motivation, the level of arousal [KHB06] or the number of
disruptions are also not measured by this approach. The key finding from a study by Hale et
al. [PSHH04] was to take the code as well and the personal aspects into account to measure pro-
ductivity. Additionally, they found out that teams are more productive when their members work
independently and get disturbed rarely. A new approach was tried by Cui et al. [LXC12] to mea-
sure a developer’s performance with the keystroke as an indicator. They learnt that programmers
with a high performance usually have a high keystroke productivity. In addition, developers are
more productive under pressure. This is really interesting as productivity also heavily depends
on a developer’s own feelings and moods [Car06]. A study by Brinkman et al. [KHB06] has shown
that 86% of the developers believe that their productivity is related to their mood and motivation.

The examples and their justifications above show that no single productivity measure can be
found that will work under all circumstances. This insight is also verified by other studies like the
one by Card [Car06] about the challenge of productivity measurements. Hence, it is important to
define various metrics and combine them appropriately. Moreover, different aspects of a devel-
oper’s work day have to be considered as a developer is not always working in the code, but also
writing documentations or attending meetings. This thesis presents one possible approach which
takes the code, a developer’s meetings, and other metrics into account. The metrics tracked by
our prototype are described in Chapter 3 and the implementation of the prototype in Chapter 4.

2We found a study from 1984 on developer productivity by Lampert [Lam84].

Chapter 3

Retrospective Developer
Analysis

Most of the approaches described in the chapter about the related work are activity sensing tech-
niques for a user’s private life. Although there are tools available to measure a developer’s work
day, they mostly concentrate on a single aspect of his work or do not provide meaningful informa-
tion to the individual developer. In this chapter, we present the metrics currently being tracked
by Happy Coder, discuss their visualization and present other metrics that could be tracked in
the future.

We introduce the metrics with the help of a motivating example describing an imaginary work
day of a software developer. Consider Alan, an experienced software engineer with more than
fifteen years of experience. He arrives at work at half past eight in the morning and writes some
emails after having read the latest tech headlines in the web. He plans his work day before he re-
turns to fix a bug he could not resolve yesterday. After one hour, the bug is fixed and he commits
his work to the source code repository. He then spends the next three hours with the implemen-
tation of a new feature on the project he is currently working on. He meets his boss at one o’clock
for a short talk to prepare the meeting that follows afterwards. Skipping lunch, Alan discusses a
new feature request with a client. After a successful meeting he works on three other bugs that
had been assigned to him recently. Unfortunately, he runs into troubles fixing one of them and
spends all the time searching for the erroneous code and a way to resolve the issue. He uses
the documentation as well as a couple of resources in the internet to search for hints. At five
o’clock, Alan has a headache and decides to leave early; he will not be able to resolve the bug
today anyway. He cannot concentrate anymore and is frustrated. Alan has the feeling of not
having achieved anything today and that time literally ran away. On his way home he takes his
smartphone out of his pocket and navigates to the Happy Coder web client. The metrics that
have been tracked the whole day in the background are now visualized. They are described in
the following chapters. Screenshots of all the visualizations of Alan’s work day can be found in
Appendix B. After looking at the details of his work day, Alan feels a lot better as he realizes that
he has achieved a lot indeed. Being relieved, he can now enjoy his leisure time and recharge his
batteries for tomorrow’s work.

8 Chapter 3. Retrospective Developer Analysis

3.1 Tracked Developer Metrics
‘Software Metrics provide a measurement for the software and the process of software produc-
tion.’ [HWY09]. They provide quantitative attributes which have an effect in the understanding,
forecasting, evaluation and control of a developer’s accomplishments. This section is an overview
of the metrics measured by the prototype. In addition, the importance of those metrics to a de-
veloper is discussed. It is up to future studies to determine whether the chosen metrics provide
useful information to a developer.

To find useful metrics we read the related work on software metrics and included our own
ideas and experience. In addition, we also determined whether measuring a certain metric is fea-
sible or not. The metrics were then categorized into useful and intuitive groups: activities, Java
elements, meetings, work items, web searches and change sets. Each of the groups contains met-
rics that aggregate similar information and represent different parts of a developer’s work. This
includes coding, searching for information in the web or attending meetings. In Chapter 3.3 we
described other possible metrics that could be measured in a future implementation.

3.1.1 Measuring Activities
In contrast to what is often assumed, a developer’s work day does not only consist of writing
code. In fact, there are a lot of other activities a developer works on, such as planning, introduc-
ing the project to a new employee or presenting a milestone to a customer. In our motivating
example, Alan worked for eight hours on his computer and spent most of the time in the IDE
(about two thirds of it in the debug mode), two and a half hours in the browser and reading doc-
umentation and some time on planning and writing emails. Only very little of his time was used
with planning and emails.

It is important to a developer to know how much time he spent for coding and to know what
else he did. Hence, we have introduced an activity metric which measures how much time a
developer spends in which program on his computer. As we did not want to provide every single
detail but a readable and meaningful abstraction of a developer’s work day, certain activities are
grouped together into the following sub categories:

• Coding (code): This is the time a developer spent in an IDE minus the time he spent debug-
ging.

• Debugging (debug): The time a developer spent in the debug-mode. In the current imple-
mentation of the prototype for Eclipse, the display time of the debug-perspective is mea-
sured.

• Browsing (research): All browsers (e.g. Internet Explorer, Google Chrome, Mozilla Firefox)
as well as reading PDF’s or editing a Microsoft Word or Excel document fall into that cat-
egory. With the term ‘research’ not exactly ‘scientific research’ is meant but browsing the
web to search for solutions or to read some documentation.

• Planning (plan): Coordinating with others (e.g. team members or customers) through Mi-
crosoft Outlook, communicating through Skype or Microsoft Lync or taking notes in Mi-
crosoft OneNote or Evernote fall into the category of planning.

3.1 Tracked Developer Metrics 9

• Navigating (nav): Every time a user is searching a document, managing his document with
the Windows Explorer or using other similar file managers, the duration is counted in this
category.

• Other activities (other): All programs that are currently unassigned or do not fit in one of
the categories above are listed here.

As this categorization does probably not fit in all situations, the categorization could be further
split into subcategories, like documenting, testing or communicating. Moreover, it might make
sense to let the developer categorize his programs on his own.

3.1.2 Measuring work with Java Elements
While a developer is programming in a software project, he usually selects and edits many differ-
ent elements in the code. A typical Java project in Eclipse is organized into packages containing
classes and methods. The Java elements metric does not only measure the time a developer spent
writing code, but also how long he was reading code. This information can be useful to a devel-
oper to see all the different Java projects he worked on and also the other elements he touched
during his work. When Alan browses to the Happy Coder web client, he sees that he had only
worked in one single project but on multiple packages during the day. Moreover, he had viewed
a lot of code whose code ownership was not his and wasted a lot of time in understanding this
code, as it is not properly documented.

Additionally, one could also track other metrics of a developer within the IDE, such as the
number of debug sessions a developer starts, the number of different files he touches, how many
copy and pastes he did and the number of breakpoints he set.

3.1.3 Measuring work with Work Items
Work items such as tasks, bugs or feature requests are important measures for a developer to plan
his work and to see if he achieved his duties and responsibilities (on time). Besides writing a list
to record all the tasks, there are professional tools to do so. Some of them (e.g. Bugzilla or Mantis)
have specialized to track bugs and feature requests while others (e.g. Microsoft Outlook) provide
a more common way to manage tasks. The Happy Coder prototype focuses on the work items a
developer has to handle while he is programming. Currently, the work items are tracked through
the Mylyn plug-in for Eclipse. In this pre-installed plug-in a user can add a task repository like
Bugzilla, Jira, Microsoft TFS, Mantis or Hudson/Jenkins. The task repository can be shared and
updated by other team members or users. The developer can add his own tasks, bugs or open
issues and plan their execution. When a developer activates a work item Mylyn automatically
maintains a task context by monitoring the interaction. Mylyn also tracks the time a user spent
working on a certain work item. The work items a developer worked on, their details, current
status and the time he spent on solving them is extracted from the collected data.

In the example of Alan, the web client lists all work items Alan worked on today together with
the just explained details. He now recalls that he had actually successfully fixed an old bug and
implemented a new feature. In addition, he had created a new feature request (work item) after
discussing it with the costumer in the meeting. Alan now also realizes that he had only spent
about one third of his time trying to fix the bug he could not resolve and did not waste as much
time as he feared.

10 Chapter 3. Retrospective Developer Analysis

In future versions it could also be interesting to see the number of work items a developer
created, edited, viewed, deleted and solved. Moreover, a measurement of the complexity of the
work item could be included. This additional information could provide the developer with bet-
ter insights into his work. Other code unrelated task management systems like Microsoft Outlook
or Google Tasks1 could be added to capture tasks usually not stored in a repository like Bugzilla.
This could be achievements like a presentation of a finished project in front of a customer, a con-
ference call with a supervisor or the introduction into the project to a new employee.

3.1.4 Measuring Meetings
Besides coding and other duties, a developer has also to attend some meetings. Hence, the time
a developer spends in meetings as well as the number of meetings he attends are tracked. To that
end, we connect to a developer’s calendar to get his events. After applying the following two
heuristics, all appointments are filtered and only meetings are left to be stored:

• If the event title contains a certain keyword such as ‘meeting’, ‘gathering’, ‘conference’,
‘discussion’, ‘talk’, it is treated as a meeting.

• If an event has one or more invitees it is considered a meeting. That could for example be
an informal lunch with a customer.

Alain also navigates to the meetings page in the Happy Coder web client. The visualizations
reveal that he had spent one and a half hours in meetings, which is about the average time he
usually spends in meetings each day.

3.1.5 Measuring Web Searches
‘Software developers use information resources on the web to help perform many different pro-
gramming tasks, including learning new programming concepts, reminding themselves of syn-
tactic programming language details and clarifying error messages, amongst others.’ [SMJ12] As
those web searches are a relevant part of the developer’s daily work on the computer, the time
he spends searching the web (i.e. the time spent in the web browser) is tracked with the activity
metric described in Section 3.1.1. Furthermore, it might also be interesting to see whether the web
searches were relevant or irrelevant to the code the developer worked on. The Reverb plug-in (see
4.2.5 and [SMJ12]) connects the code with the web pages a user visited by recommending previ-
ously visited web pages. The algorithm determines whether a web site was relevant to the code
or the Javadoc or not. The search history of Mozilla Firefox2 and Google Chrome3 gets indexed,
the content of each website downloaded and the text searched for matching certain heuristics.
Those heuristics are patterns that are written in camel case or contain an underscore. Moreover,
if the pattern resembles a method declaration or an invocation with parameters, it is considered
as relevant to the code. If at least two of those patterns are found on a web site it is classified
to be code related. Reverb uses those matching patterns to recommend useful web pages a user
might revisit. However, Happy Coder only needs the list of all code relevant and irrelevant web
searches.

Alan gets useful insights into his productivity, by looking at the information in the web searches
section on the web client. Of the eight hours Alan worked on his computer, he spent about two

1https://mail.google.com/tasks, verified 01/10/13
2http://www.mozilla.org, verified 01/10/13
3https://www.google.com/chrome, verified 01/10/13

3.2 Visualization of the Metrics 11

and a half hours in the browser. The visualizations reveal an unexpected fact: most of his web
searches had been irrelevant to the code he was working on. This comes as a surprise to Alan
as he thought he had spent his time efficiently searching for solutions to the bug. He recalls that
he had not always immediately found what he was searching for and that he actually had spent
some time on news web sites, seen a couple of movies on YouTube and updated his Twitter status
a couple of times. He decides to carefully check his browsing behavior - probably he loses more
time there than he thought.

3.1.6 Measuring Change Sets
A change set is a container which stores everything related to a check-in operation in a version-
control system. This can be file or directory revisions, check-in notes, links to related work items
or the change owner details. It is a powerful instrument to a developer to have different versions
of the code, for example to find a bug that occurred after recent code changes. Moreover, it helps
a developer to stay aware of what other team members are currently working on. The current
implementation of Happy Coder does not track any change sets, but we plan to implement this
metric in the near future. We intend to measure the code churn of the commits and the number of
commits a user made. Moreover, it might be interesting for a developer to see the classes, meth-
ods and variables he edited, removed or added. Petre et al. [SSP11] found out that a developer’s
motivation rises when he successfully solves a problem or assists someone in solving his prob-
lem. Developers like to mark a work item as resolved and to commit the changes to the source
code repository. This ‘happiness’ or on the contrary ‘anger’ could probably be determined by
reading the commit messages. Comments like ‘:)’, ‘yeah’, ‘I had problems’ or ‘shit’ might reveal
information of a developer’s mood and arousal towards the committed work to draw conclusions
of his work performance.

Assuming the feature is implemented, Alan would see a couple of commits which show him
the bug he successfully resolved in the morning and the new feature he added. As he could
not resolve the second bug in the afternoon, there is no change set available for this changes.
Furthermore, he might also see what his team mates achieved in the meantime to be aware of
their work.

3.2 Visualization of the Metrics
Software visualizations are a great help as they can sum up large quantities of data with simple
and meaningful ways. Our goals for the visualization of the collected data are twofold. First, the
essential information has to be summarized in an overview to be visible at first sight. Second, a
retrospection of a developer’s past work day is needed to give him the possibility to recapitulate
his productivity and achievements.

There are some approaches to summarize the user’s activity with one single metric, as pre-
viously described in the related work section (see Chapter 2.1). In the case of Fitbit this was the
growing flower and Nike+ Fuelband has its ‘Nike Fuel’ which visualizes the progress. We tried
to find a similar abstraction of a developer’s work and recognized that it is not possible to sum-
marize all data with a single numeric value in a useful way. This finding was also supported
by the related work on developer productivity (see Chapter 2.3) and the productivity studies we
conducted (see Chapter 6). We decided to visualize multiple metrics and found a way to visualize
them with one single representation. One way to achieve this visualization is the use of Chernoff
faces, invented by Herman Chernoff in 1973 [SMJ12]. Chernoff faces represent multivariate data

12 Chapter 3. Retrospective Developer Analysis

(a) Homer Simpson ideal Chernoff face. [Sim12] (b) Happy Coder prototype Chernoff face.

Figure 3.1: Visualization of multiple metrics with a Chernoff faces.

in a manner that is easily perceptible by the human viewer. The individual parts of a face, such
as the mouth, nose, ears, eyebrows and eyes, represent values of the variables by their shape,
size, placement and orientation. In the original version, they consisted of two-dimensional line
drawings and could represent up to eighteen distinct facial parameters. According to Ebert et
al. [MER00], humans have the ability to easily recognize faces and small changes in facial char-
acteristics. Therefore, Chernoff faces were considered as the ideal solution to the poly-metric
approach. A fun face to improve a developer’s attitude towards his past work day that always
smiles and probably makes the developer happier was needed. This could probably be achieved
with the design of a face which resembles Homer Simpson. An example of the original Homer
Simpson face can be found in Figure 3.1(a)4. Figure 3.1(b) shows a prototype of the visualization
of three metrics in a Happy Coder Chernoff face. The mouth (which is always laughing) remains
closed if the developer had no meetings, i.e. if he did not talk a lot. The more time a developer
spends in meetings, the wider the mouth opens. According to a common saying ‘to poke one’s
nose into something’, the number of different projects a developer worked on is represented with
the length of Homer’s nose. As Homer’s beard grows during the day, the face grows more stub-
bles the longer the developer worked. In the future, it is intended to include more metrics whose
meanings can be assigned to a part in Homer’s face.

Besides this poly-metric approach another overview visualization was implemented to show
the most important metrics on the web client’s front page (see Figure 3.2). The overview consists
of a stacked line graph which shows how much time a developer spent on which activity on his
computer. For the time a developer worked in the IDE (to either debug or code), the visualization
is expanded to show the work items a developer worked on and the Java elements he selected or
edited. Moreover, the visualization displays the meetings a developer attended. By looking at the
Chernoff Happy Coder face and the stacked line graph, the developer gets an initial impression
of his work day and might now be interested in some details. Multiple visualizations on the sub-
pages reveal more information on the developer’s activities, meetings, work items, Java elements
or web searches. Every page visualizes the information of today and the last seven days from one
category (e.g. web searches). As trends are usually more important than absolut numbers, the
difference to the average is presented next to each metric. Additionally, there are some visualiza-

4Hint: In this example, Homer is not smiling but looks a bit puzzled. As previously mentioned, it is intended to let the
Happy Coder Chernoff face always smile to cheer the developer up. As this image shows an ideal sector of the front of
Homer’s face, this image was chosen.

3.2 Visualization of the Metrics 13

tions of the collected data and descriptions to explain the metrics. More information of the web
client is described in Chapter 4.4. Screenshots of the different pages as well as a short description
are attached in Appendix B.

Figure 3.2: Visualization of the most important metrics on the overview page of the web client.

14 Chapter 3. Retrospective Developer Analysis

3.3 Future Metrics
In Chapter 3.1, we presented metrics that are tracked by Happy Coder. The architecture of the
developer monitoring component allows Happy Coder to be extended with other trackers. This
renders it possible to think about adding other metrics measured. Where suitable, some other
metrics were already described in the corresponding category. Nevertheless, there is a couple of
other innovative ideas that could and maybe should be implemented in a future version of Happy
Coder. The most important ones are specified in this chapter.

It could be interesting to measure the level of collaboration the developer has together with
his team mates or customers. For example, the number of times he helped a colleague by giving
useful hints. Moreover, the means of communication a developer used, how often and the total
time he communicated as well as the topics he talked about could be worth tracking. As good
communication is a crucial part for the success of a software project, one could probably improve
the user’s communication effectiveness by indicating and interpreting those details. After each
interruption, a developer usually needs a couple of minutes to get back to the topic he was work-
ing on before. While it is not always possible to work without getting disturbed, measuring the
number of interruptions could help finding reasons for the frequent interruptions and improving
the concentration on one topic.

Today, there is an increasing trend to work at home or in several other places. By tracking the
user’s location throughout the day one might reveal when a developer works where, how much
time he travels, what kind of tasks he does at which location and where he is the most productive.
As an example, one can imagine that a developer needs a quiet place to think about solving a bug.

Other interesting data like blood flow, brain waves or eye movement patterns could be gath-
ered from the user’s body and give feedback on the concentration level of the developer and his
overall well-being. Other data like sustentation or healthiness could give further insights into
a developer’s productivity level. A combination of this data and a suitable visualization could
reveal the circumstances that allow a developer to be the most productive.

Measuring software quality is a very important quantification of a developer’s achievements
and abilities nowadays [SSP11]. By identifying a quality metric, Happy Coder could assemble in-
formation of the code quality and give insights under what circumstances a developer produces
good or bad code. According to Petre et al. [SSP11], it is very motivating for a developer to see
people use the code he produced or if people find the code useful to solve their problems. Hence,
it could be very rewarding to give the developer feedback on his source code, such as the number
of times it was selected or edited or the number of times it was reused by others.

It was one intention of this thesis to find suitable ways to visualize multiple metrics with one
representation. As constituted in Section 3.2, it is very difficult to find one single metric to sum-
marize all achievements with a single quantitative number. The solution to this problem was to
present the data with one poly-metric visualization using the Chernoff faces and a couple of vi-
sualizations showing single metrics. To find the most/least productive days in a week, we want
to think further about approaches to calculate such a poly-metric.

Yet, there are many other metrics that could be measured with Happy Coder. Moreover, it is
unclear if any of this metrics reveal useful information to the developer. This is the reason why
we conducted a small study to find the metrics developers want to be measured (see Chapter 6.2).

Chapter 4

Prototype

The first implementation of Happy Coder is presented in this chapter. Its basic structure and the
architecture as well as some implementation details on each of the components are described.

4.1 Architecture Overview
In general, the Happy Coder prototype consists of three parts: A part where the metrics are
collected by an Eclipse plug-in. Moreover a server part where the data is stored in a database and
where some web services are provided for data requests. The last part consists of a web client
which visualizes the data on a multi-platform website. In Figure 4.1, the architecture of the initial
version of Happy Coder is visualized.

How are those three components connected to each other? When the user starts Eclipse,
given that Happy Coder is installed and activated, it immediately starts tracking. When the plug-
in or Eclipse gets closed, and once every hour 1, the data gets automatically uploaded to the server.
In order to upload it, the plug-in serializes the assembled data into files and transmits them to the
server where the data is analyzed and stored in the database. When the user wants to access the
Happy Coder client he navigates to the multi-platform website, using the browser on his tablet,
smartphone or computer, and logs in. The server fetches the data necessary for the visualization
from the database, prepares it and sends it to the device where it is immediately presented to the
user.

Appendix A shows an overview of the used tools, frameworks and environments. The differ-
ent components of Happy Coder are explained in the following chapters.

1This interval can be set in the code of the plug-in.

16 Chapter 4. Prototype

Figure 4.1: Architecture of Happy Coder.

4.2 Developer Monitoring 17

4.2 Developer Monitoring
The process of collecting the measured data from different sources is described in this section. A
list of the metrics currently being tracked by Happy Coder is presented in Chapter 3. The devel-
oper monitoring is structured into multiple autonomous services, called trackers. Each of them
registers itself to the Recorder where the correspondent commands get called. They all implement
the same interface IRecorderObject which provides the important functions to prepare and
collect the data. Three of those methods are important to mention: getServiceIsAvailable
checks if the user enabled the tracker in the preferences and if the data can be accessed before
each submission. saveSubmissionData assembles the data from the correspondent data stor-
age (database or file) and serializes it to an XML file (one separate file for each tracker). Finally,
the function submitData gets called by the Recorder to submit the just generated XML file
to the server, assuming that a connection to the server can be established. The other functions
are necessary to visualize the status in the view and coordinate the communication. A class
called FragmentStartClass is implemented in each tracker project. This class has an exten-
sion point to org.eclipse.ui.startup. It creates a new service recorder and registers it to
the Recorder.

Figure 4.2: Status view of the Happy Coder Eclipse plug-in.

The Recorder coordinates the submissions and all the trackers. The structure of the whole
Eclipse project is as follows: There is one master project (parent project) ch.uzh.ifi.seal.
happycoder.parent where all sub-projects are saved. In addition, there is a plug-in project
(ch.uzh.ifi.seal.happycoder) which stores the views, the recorder and all common li-
braries, models and helper classes. It also enables the whole prototype to be determined as a
plug-in by Eclipse. Each of the trackers is a separate fragment project (e.g. ch.uzh.ifi.seal.
happycoder.activitiesRecorder).

18 Chapter 4. Prototype

Happy Coder consists of one service status view and a preferences view. The service status
view can be seen in Figure 4.2 and lists all registered services together with their current status.
The status displays the last upload time or error messages. It is designed very simple to disturb
the user as little as possible. After an initial setup, it could even run in the background without
the need of user input. Moreover, the status view offers the possibility to manually upload the
collected data and to get more information via the web client (see Section 4.4).

The preferences view (see Figure 4.3) can be accessed via Window > Preferences > Happy
Coder. It provides the possibility to edit a user’s credentials, enable/disable certain trackers and
edit storage location paths. Disabling a tracker in the preferences does not stop the tracking (as
this is done by other plug-ins), but prevents the data from being collected by the Happy Coder
plug-in and uploaded to the server. It also determines what information is visualized on the
Happy Coder web client.

Figure 4.3: Preferences view of the Happy Coder Eclipse plug-in.

4.2 Developer Monitoring 19

4.2.1 Activities Tracker
To track the time a developer spends in each program on his computer, a third-party tool was
evaluated. The Windows Activity Monitor (Wamon) is an open source tool that runs on the
Windows operating system which allows the access of the data it measures. Wamon was de-
veloped in CSharp and tracks active windows and processes. Once a minute, it checks what
program (process) is currently active or if it is idle and saves the data into a SQLite database.
The database is stored in the ProgramData on the user’s computer from where it is accessed by
the ActivitiesRecorder. By default, Wamon does not track idle times. By changing one
boolean in the setting, this feature can be enabled. The ActivitiesRecorder in the Happy
Coder plug-in automatically attempts to enable this feature to make the activity measuring much
more accurate. While it is difficult to determine the times the computer did not run, Wamon
solved this problem niftily: As there is one entry every minute (program or idle) no entry will be
made if the device is off. If the timespan between two entries is more than two minutes, this must
have been a time the computer was unused.

When the saveSubmissionData function gets called, the tracker queries the database to get
all today’s entries. For each entry a helper class (WamonProcessMapper) is used to determine
the program name. This step is executed with a simple mapper because Java does not allow to re-
ceive the file description name from the operating system like it is possible using CSharp 2. Most
of the programs a developer uses on a daily basis are covered by this mapper. The mapper’s list
could be easily extended if required. As previously mentioned in 3.1.1, the processes are also
grouped into some sub categories like CODE, RESEARCH, PLAN. This grouping is also managed
by the WamonProcessMapper.

The DEBUG category is a bit different and will be explained in the following paragraph. Wa-
mon cannot determine if a user is coding or debugging as he works within one or more instances
of Eclipse. After the user set some breakpoints and started a debugging session, Eclipse asks (by
default) to open the debug perspective. In order to determine the debug time, the time a devel-
oper spent in this perspective is measured. This approach of measuring the debug time only in the
debug perspective is actually not very accurate. For example, if a user debugs in the ‘normal’ Java
or Plug-in Development perspective, this time will not be measured. This issue could presumably
be further addressed in a later implementation. The Rabbit plug-in, which is also used to track
Java elements (see Section 4.2.2), offers the possibility to get the duration a user spent in each per-
spective within Eclipse. By accessing the perspective store (DataStore.PERSPECTIVE_STORE),
the debug time is extracted and added to the submission item which gets serialized afterwards.

Another metric that is measured by the activities tracker is the total time a developer worked
on his computer. This measurement is calculated by summing up all activities’ durations and
subtracting the idle time. Moreover, the web searches metric contains the total duration a user
spent in the browser which is also determined with the activities tracker.

4.2.2 Java Elements Tracker
The Java elements tracker collects all the projects, packages, classes and methods and the duration
a developer worked on during his work day. This can be achieved by reading all the elements
from the Java data store (DataStore.JAVA_STORE) via Rabbit. The DataStore.JAVA_STORE

2In CSharp one could simply call String fileDescription = System.Diagnostics.FileVersionInfo.GetVersionInfo(file).FileDescription;
to get the file description property.

20 Chapter 4. Prototype

returns a list where the needed elements are selected by accessing hardcoded indices. This might
not be the best method, but was the only one that worked. The duration of each of those items
gets added up and serialized for the submission.

4.2.3 Work Items Tracker
The work items are managed by Mylyn and are either stored locally or within a task repository.
Due to some problems with the Mylyn API and the lack of documentation, the access to the work
item repository is established via the DataStore.TASK_STORE from the Rabbit plug-in, similar
to the approach in the Java elements tracker. The data obtained via the Rabbit plug-in offers the
information needed, such as the duration a developer worked on each work item. It could op-
tionally also present all Java elements that are connected to the work item. To get updated work
item data from Rabbit, the work item repositories are updated before they are accessed. The data
is then gathered and subsequently serialized to the XML file. This workaround functions stably
and fulfills the goals. In a future implementation we plan to directly access the Mylyn task repos-
itories through the Mylyn APIs (using the ITaskDataManager API). With that change we could
also get other interesting metrics like the number of work items a user added, edited, deleted and
resolved.

To avoid an information overflow and to reduce the submission time, only the following nec-
essary data is submitted to the server’s database:

• The work item id

• A web link to the online representation of the work item

• The duration the developer worked on a work item

• A short description of the work item

• A boolean to show if the work item was completed or not

4.2.4 Meetings Tracker
The developer’s digital agenda has to be accessed to track the number of meetings he attended
during a work day. In the current implementation of Happy Coder, the developer’s calendar
is accessed by using the Google Calendar API. This API offers client libraries for all major pro-
gramming languages including Java. In order to access the calendar, a free API key (with 10’000
requests a day) has to be obtained. The Java client offers an authentication functionality which
works after some workarounds3. The API needs a file called calendar_api_secrets.json
where the API key is saved and it then creates a calendar_api_user_credentials.json
where the user credentials are saved in a hashed format together with an expiration date. If the
user authorization expires, the API automatically starts a new authorization with the Google ac-
count. After successfully authenticating with the Google calendar, appointments can be added,
removed, edited and fetched. Happy Coder currently only needs a list of all appointments a de-
veloper has a day. After fetching the list of appointments from Google, some heuristics had to be
applied to each appointment to find out whether it is a meeting or not. For details, see Section
3.1.4.

3The Google API’s authentication method does not work in an Eclipse plug-in project but now works in the fragment
project. In order to write the user credentials into the mentioned JSON file, the file has to be generated first and ‘{}’ has to
be added. Otherwise a ‘java.io.IOException’ is thrown because it is unable to set file permissions.

4.2 Developer Monitoring 21

In a future implementation we intend to add native Microsoft Outlook support to provide
a broader range of supported calendar products, as Outlook probably is the most widely used
calendar tool at the moment. A short while ago, Outlook users could have installed a sync tool
between Outlook and the Google Calendar, but Google recently ended the support of this tool 4.

4.2.5 Web Searches Tracker
To track the websites a user visits during his work, the data is gathered from the Reverb Book-
marks plug-in for Eclipse. The Reverb Bookmarks service consists of three components:

• The indexing service. This service is used to index the content of web pages a user visits
and to respond to queries from the Eclipse plug-in.

• The browser extension. A browser extension for Google Chrome and Mozilla Firefox runs a
background agent which transfers the page content of the web sites to the indexing services.
As there are only two browsers supported, the user has to use them in order to be able to
get information about his web searches.

• The Eclipse plug-in. The plug-in recommends related web pages according to the Java code
a developer is currently working on by generating queries.

Reverb stores the collected data in a SQLite database, where it is accessed by the web searches
tracker. Reverb only stores a summary of the visits of different web searches: for each visited
web site there is one entry containing the last visit time, the number of visits and two flags if the
web site is code or Javadoc relevant or not. As Happy Coder only needs the number of visits
today and not the total number, this makes it more complicated to obtain the needed data. Upon
start-up of the Happy Coder plug-in, the tracker creates a backup list of all web requests a user
conducted. This list is then serialized to an XML file to restore it if the user closes Eclipse and
restarts it the same day to restore the original data. To prepare the submission data, the current
database entries (i.e. the visits count) is compared to the visits count from the yesterday backup
list. The difference is the number of times a user visited the web site today. Using the code or
Javadoc relevance flag it is determined if this web site is relevant to the written code or not. This
data is subsequently stored in the submission item and serialized for the submission.

4.2.6 Change Sets Tracker
As previously mentioned, the change sets tracker is currently not implemented in Happy Coder,
but has a high priority for a future release. The Mylyn plug-in used in the work items tracker
offers a task-focused view of the change sets; the Synchronize view. It contains information of the
change sets of all code changes in combination with a work item. Multiple connectors offer access
to a broad range of source code management systems like SVN, CVS or Git. Another advantage
is, that no additional plug-in has to be installed.

4http://support.google.com/calendar/bin/answer.py?hl=en&answer=98563, verified 01/10/13

http://support.google.com/calendar/bin/answer.py?hl=en&answer=98563

22 Chapter 4. Prototype

4.3 Server
The server and its database are responsible for the management of the data feeds, either incom-
ing or outgoing. The infrastructure utilized to run the server and the database is described in
Appendix A. Generally, the server offers two access points:

• The data upload service. This service is used to transfer the collected data from the Eclipse
plug-in to the server’s database. Each of the plug-in’s services has one XML file to submit
to the server. The data is then saved in at least one SQL table.

• The data web service offers a web service to access the saved data from the database. A
user can authenticate with the system via the multi-platform web site where his personal
data is visualized. The service is offered in form of a REST5 web service.

Before going into further details of those web services, the database structure is presented
which is crucial for the understanding of those web services.

4.3.1 Database
The database stores all the data necessary for the visualization to provide the developer with
a retrospective analysis of his work day. Just as the web server, it is currently hosted on www.
andre-meyer.ch. It basically contains a table for the users, the uploads and at least one table
for each tracker. The hc_users table stores all necessary information of the user: some personal
information like the name or the username, a flag if the user is enabled or blocked, a password
(which is MD5 hashed), and a unique id. As the user wants to submit the collected data he first
sends the configuration file to the server which is double-checked with the data in the database.
The hc_uploads table stores the settings data of each submission. It also contains a unique id to
identify the upload as well as a connection to the user. Moreover, it has a flag for each tracker to
store if it was enabled or not at the time of the submission. In addition, it has a record of the exact
date and time (timestamp) of the submission as well as a flag to see whether the upload is the
today’s latest. As soon as a new submission overrides the old one, this flag gets changed for all
previously uploaded submissions of the correspondent day. Finally, there are multiple other ta-
bles storing the data of each tracker, like hc_activities, hc_meetings, or hc_websearches.
A detailed representation of the database, its entities, relationships and attributes can be found in
Figure 4.4. The visualization is in the form of an entity-relationship model (ERM).

4.3.2 Data Upload Service
The data web service consists of a couple of PHP files and a connection to the database. The pro-
cess of uploading the data is visualized in Figure 4.5 and is described in this chapter.

As previously described, the data upload gets initiated through the Recorder as soon as
Eclipse or the plug-in shuts down, and in a certain interval (e.g. once an hour). In order to start
a new submission the configuration gets serialized and transferred to the server. To initiate the
XML data upload from the Eclipse plug-in to the database, the ServerUploader connects to the
server by creating a new HttpClient. It adds the url to access, some request headers and the
file input stream of the XML file. Moreover a submission type is added to the url. For example,
this could be ‘CONFIGURATION’, ‘WORKITEMS’ or ‘ACTIVITIES’.

5SOAP and XML-RPC are the most common types of web services. REST (Representational State Transfer) is another
web service which receives requests via parameters in the url and returns the data as XML, JSON or HTML.

www.andre-meyer.ch
www.andre-meyer.ch

4.3 Server 23

hc_users

hc_uploads

id

name

prename username password

mail

isEnabled

uploads

1

N

from

from

from

from

from

1

N

from 1

1

N

1

N

1

1

1

1

hc_activities_categories N

id

programName

category

duration

id category duration

noCommitsnoLocAdded

noLocEditednoLocRemoved

hc_changesets

hc_workItems
hc_javaElements

hc_websearches

hc_meetings

id

id

id

id

id

wiId

description

link isCompleted duration

sourceMethod

duration

sourceTypepackageNameprojectName

from

1

N

description

startTs

endTs

duration

noRelevant noIrrelevant

timestamp

wasLastDailyUpdate

websearchesEnabled

meetingsEnabled

javaElementsEnabled

activitiesEnabled

workItemsEnabled

changesetsEnabled

id

hc_activities

Figure 4.4: Entity Relationship Model of the database.

24 Chapter 4. Prototype

The following snippet (see Listing 4.1) shows the composition of the url:

String baseUrl = "http://www.andre-meyer.ch/BA/Server/services"

+ "/dataUploadService.php";

SubmissionType type = SubmissionType.ACTIVITIES;

String inputUrl = String.format("%s?type=%s", baseUrl, type.toString());

// the resulting url looks like this:

// http://www.andre-meyer.ch/BA/Server/services/

// dataUploadService.php?type=ACTIVITIES

Listing 4.1: Java snippet showing the composition of the url on the example of the activity tracker.

The dataUploadService.php receives the request containing the submission type and the
submission data (see Listing 4.2).

$getSubmissionType = Helper::getGETValue("type");

$getSubmissionData = file_get_contents(’php://input’);

Listing 4.2: PHP snippet showing how the submission type and file is obtained.

As the server gets the configuration file it verifies the user and saves the submission in-
formation to the database. The information includes the user id and the enabled trackers. If
no error occurred, the submission id will be returned and the submission can proceed. The
server will then response to the request. We introduced a simple response protocol in the form
STATUS#ID#MESSAGE. The status is either SUCCESS, WARNING or ERROR. The id represents
the submission id needed to authenticate the submission of the files. The message is used to tell
the plug-in some details in case of errors which will be saved into the log files. As soon as the
Recorder knows the submission id, it spreads the command to each registered tracker to submit
their data. Every tracker collects the necessary data and serializes it (including the submission
id) to an XML file. Those XML files are then transferred in the same way as just explained: the
server needs a submission id, submission type and the submission data. The XML data will be
parsed and stored in the database. Finally, the server returns the status of the request. Back in the
plug-in, the server updates the view to show the status of the submission and writes the status
into the log file. It then resets the interval timer to start a new submission once it expires.

4.3.3 Data Web Service
The web service receives the request details via the GET variables from the web client. After a
successul authentication the web client sends requests to the server when a user navigates to
different pages. Each request contains the user id, the request type, and a sub-request type if nec-
essary. The inquiry is then checked and sent to the database connector (database.php) which
handles all requests to the database with correspondent methods. The predefined query is exe-
cuted and the result prepared and enriched with status information to the wished format. The
answer object is serialized to the JSON format and printed by PHP. JSON has the advantage of
minimized data usage which is ideal for data transmission to mobile devices. Furthermore, it
is based on JavaScript and offers direct access on the data objects via JavaScript. In some cases
(e.g. to draw the work items pie), the web client starts a request where the server directly outputs
the answer as JavaScript code which is the web client runs. This is due to some limitations of
the CanvasXpress visualization framework. This is probably not the best way to implement, but
works very stable and was recommended by the creator of the framework.

4.3 Server 25

Data Upload (UML Activity Diagramme)

Server
(Apache, PHP)

Developer Monitoring
(Eclipse plug-in)

Database
(MySQL)

Prepare Submission
(serialize config file,

upload to Server)

Start submission
authentication

Check user data

Request submission
ID

Save submission
information and

return ID

Assure that only
one submission a

day is active

Set flag
wasLastDailyUpdate

to ‘0’ from other
today’s uploads

Respond to request
(return ID or error)

Get response

Prepare submission
(collect data,
serialize data,
submit data)

Receive XML files
and submission ID

Prepare data for
insertion into

database

Save data in the
database

Respond to request
(success or error)

Handle response
(show status of

submission)

NOK

OK

OK

NOK

NOK

OK

error OK

For each
service

More
services

No more services

Figure 4.5: UML activity diagram of the data upload to the server’s database.

26 Chapter 4. Prototype

4.4 Web Client
While the Eclipse plug-in and the server work predominantly in the background, the web client
is the most important component to the user. It visualizes the collected data to the developer
in a comfortable way on almost all browser enabled devices, such as smartphones, tablets and
computers. This has the advantage of offering almost device and location independent access.
Moreover, the client can be updated and maintained without redeploying it to the user. Disad-
vantages of using a web site are the single point of failure (server), some privacy concerns and
the complex development (e.g. difficulty of debugging and testing). As web clients usually have
browser compatibility issues, this problem could mostly be solved with jQuery mobile. Addition-
ally, the rapid evolution of the technologies, libraries and tools need a consistent maintenance.

One could imagine that a developer wants to see the retrospection of his work day on the
elevator ride down to the exit of the company’s building or while commuting home by train.
Therefore, the visualizations are optimized for viewing on a device with a small screen, like a
smartphone, and for viewing on a bigger screen like a tablet or computer. To that end, we eval-
uated multiple frameworks to create browser independent websites and decided to use jQuery
mobile because of its broad and stable use in other commercial and non-commercial applications.
To generate the visualizations, we use canvasXpress because of its easy-to-use library. Due to
some drawbacks including scrolling issues on certain devices and limited adjustment capabili-
ties, we will use the more powerful and stable D3 framework in a future implementation. The
Chernoff face is also created with the D3 framework.

The web client consists of multiple pages, all designed with the same layout; optimized for
touch, user friendly and containing animations. The user is always redirected to a log-in page if
he was not yet authenticated. He can insert his credentials which are immediately checked with
the database. After a successful log-in the overview page is the usual entry point to the website.
As discussed in Chapter 3.2, it summarizes the collected information of the developer’s work day
using the Happy Coder Chernoff face and a stacked line graph. On the bottom of the main page
there is also a list containing all services that are currently supported by Happy Coder together
with their current status (enabled or disabled). By clicking on one of the enabled services, the
user is redirected to a new page containing detail information of the selected service. A toggle
button enables the possibility to switch between today and the last seven days. On every page
are buttons to open the navigation menu, to log-out, to get help and to get information about the
authors. A screenshot of the overview page is presented in Figure 4.6. Screenshots of the other
pages are attached in Appendix B. In the current implementation of the web client, the data is
presented in boxes in a list and the user needs to scroll to see all visualizations. In a future ver-
sion, it is planned to enhance the web client to better use the available width of the window by
presenting the boxes side by side as it is represented in the screenshot.

This paragraph describes the most important details of the implementation of the web client.
The website is based on the index.php file. The majority of the code is HTML, and there is also
some JavaScript and PHP code in it. To follow the jQuery framework guidelines, the whole web-
site is stored in this single file. Thus, the file is more than a thousand lines long. This drawback
gets rather insignificant in regard to all the advantages that jQuery offers with its out-of-the-box
features. The index.php file contains multiple div-tags, one for each page. This has the ad-
vantage that after an initial loading, the page can be navigated back and forth very fluently and
nimbly. The visualization data is fetched from the server as soon as the user navigates to a certain
page to reduce the initial loading time. A loading sign and some status texts are displayed while
the data is downloading. data.js is another file worth mentioning. It is responsible for the com-

4.4 Web Client 27

Figure 4.6: Overview page of the Happy Coder web client.

28 Chapter 4. Prototype

munication between the server and the web client. The web client runs a PHP method (described
in Chapter 4.3.3) via Ajax call and prepares the received data to visualize it on the website in a
list or graphical representation. If a visualization contains a dynamical number of items (e.g. if all
projects a user worked on are visualized), it is generated on the server and then sent to the client
to be run. In the day view, the numbers (e.g. number of web sites a developer visited) are usually
presented together with an average value and illustrate trends. Long lists, like the Java elements,
are presented in a collapsible list to reduce the need to scroll in long lists and to let the user see
only what is important to him. Apropriate messages are shown in case of errors or if no data is
available.

The web client can be accessed on http://www.andre-meyer.ch/hc-web-client. Alan’s
imaginary work day, which was introduced in this chapter, is presented with a demo account. The
username is developer and the password is isHappy.

http://www.andre-meyer.ch/hc-web-client

Chapter 5

Usage Study

After the implementation of the prototype a usage study of Happy Coder was conducted. The
goal of this study was to investigate if productivity could be measured with the chosen metrics.
Therefore, the importance of the metrics and the correlation of each metric with the productivity
was evaluated. For 30 days, the author of this thesis collected data of the predefined metrics
together with an estimation and justification of his productivity.

5.0.1 Results
Table 5.1 specifies the metrics that were measured together with the correlation coefficient be-
tween the metric and the personal rating of the productivity. Moreover, the p-value from the t-test
was calculated to determine if the correlation coefficient is significant or not. Most of the metrics
are already measured by the prototype while others were measured out of curiosity (marked with
a ‘*’). To prevent outliers to distort the correlations and to get more accurate results, two days
were ignored from the calculations. On those two days the author of the thesis did not work. An
overview about all the results of the study can be found in Appendix C.

Metric Correlation p-value
Correlation meetings <-> personal rating -0.299 7.682E-13
Correlation total time worked <-> personal rating * -0.163 1.155E-05
Correlation time on computer <-> personal rating -0.077 5.039E-04
Correlation time planning & communicating <-> personal rating -0.349 1.448E-10
Correlation time coding <-> personal rating 0.043 1.077E-07
Correlation time debugging <-> personal rating 0.210 2.518E-14
Correlation time researching <-> personal rating -0.332 2.853E-08
Correlation time navigating <-> personal rating -0.236 2.779E-14
Correlation time doing other things <-> personal rating 0.145 1.377E-13
Correlation number of solved tasks (Mylyn, Outlook, OneNote) <->
personal rating *

-0.135 1.318E-04

Correlation different Java projects <-> personal rating -0.106 5.679E-10
Correlation number of commits <-> personal rating 0.246 5.605E-10
Correlation lines of code committed <-> personal rating 0.147 7.126E-06

Table 5.1: Results of the usage study where the Happy Coder prototype was evaluated.

The results, all with a p-value smaller than 0.05 and thus considered as significant, indicate

30 Chapter 5. Usage Study

the tendency that there is no single metric to measure productivity. No metric had a very high
correlation towards the personal rating of productivity. Some results are interesting to point out
though. The highest correlation is calculated between the time a developer spent planning and
communicating (-0.349) and the personal rating of his productivity. This negative correlation
shows that it is difficult for a developer to concentrate on his work if he has a lot to plan, coor-
dinate and communicate. The time a developer was searching for information has also a high
negative correlation to productivity (-0.332). This was expected, as searching the web for help or
answers related to a problem is very time consuming and sometimes painful. If the developer
finds the right answer and is able to solve the problem (i.e. fix the bug, complete the work item),
we expected this to have a positive influence on the assessment of the productivity. According
to a correlation of only -0.135, the number of solved tasks has almost no influence on how pro-
ductive a developer was. This is an unexpected result. We assume the reason to reside in the
definition of a work item. In this self-evaluation, we considered Mylyn tasks, Microsoft Outlook
tasks, emails flagged to answer and some to-do’s in Microsoft OneNote as work items. A day full
of important emails to answer would lead to a lot of completed work items but probably not to a
feeling of a productive work day. Another interesting correlation was observed between the total
time a developer worked and the personal rating of his productivity. The negative correlation of
-0.163 could indicate that sometimes a short but intensive work day might also be a productive
one.

5.0.2 Limitations and Conclusions
The usage study suggested that the productivity cannot be measured with a single metric. The
results indicate that there is a certain correlation between the metrics and the personal rating of
productivity. This supports our decision to visualize all the metrics with a poly-metric approach
and let the user choose the metrics he wants to be measured. Limitations in this study could occur
due to the fact that only one participant was tracked and due to the relatively short period of the
study (30 days). Moreover, removing two outliers could also have an effect on the results as well
as the fact that some metrics were manually measured at that time. Additionally, only the metrics
were tracked that were already implemented in the prototype at the time of the study or could be
tracked by hand. As described in Section 7.2, we intend to conduct a bigger study over a longer
period of time and with more participants to learn more about the correlation between the metrics
and a developer’s productivity.

Chapter 6

Metrics and Productivity
Studies

In the last chapter, we introduced a tool, called Happy Coder that allows a software developer
to get a summarized overview of his daily work and achievements. We examined the feasibility
of collecting data on various aspects of a developer’s work, visualized them on a multi-platform
website and evaluated it with a usage study. In a second step, we conducted two small stud-
ies with multiple developers to evaluate the metrics that are useful to a developer and how he
assesses his productivity. The results are explained in this chapter.

6.1 Productivity Study
In a first study, professional software developers were asked about their productivity as a part
of a software engineering training course. They had to answer eight questions about their work
routines. Two of the questions concerned the productivity of a developer and are listed as follows:

• Question 1: Do you think that you have been productive during your last work day?
(very unproductive, unproductive, undecided, productive, very productive)

• Question 2: How do you assess your productivity at the end of a work day?
e.g. number of achieved tasks, etc.

The participants group consisted of the seventeen participants of the seminary who work for
the same company. They were asked to answer the questions on an online survey website. The
first question consisted of the question itself and five given answers using the Likert scale (1 =
‘very unproductive’, 5 = ‘very productive’). The second question included an example and had
to be answered in an empty text box.

6.1.1 Results
The results for Question 1 are presented in Table 6.1. We categorized the answers for Question 2
and counted the number of mentions. The results for Question 2 are presented in Table 6.2. An
overview about all the results of the study can be found in Appendix D.

An average of 3.29 and a standard deviation of 0.75 indicate that developers have difficulties
assessing their productivity and therefore are mostly ‘undecided’. They have the feeling that they

32 Chapter 6. Metrics and Productivity Studies

Metric Mean Median STDV Min Max
Do you think that you have been productive during
your last work day?

3.29 3.00 0.75 2.00 4.00

Table 6.1: Results for the question (Question 1) if the developer’s last work day was productive. (1 = ‘very
unproductive’ / 5 = ‘very productive’)

tended to be productive. The same conclusion could be made of the answers of the second ques-
tion. 4 of the 17 asked participants (24%) did not have an idea how they assess their productivity
although an example was given with the question. Most of the others gave their answer based
on this example. One participant gave an answer that was mentioned only once and therefore is
listed in the category ‘other’. He assesses his productivity just on his ‘personal feeling’. This is
probably the technique that the other developers with no idea of their productivity also do.

Answer Number of
mentions

Hints

Number of finished planned tasks 7
Number of completed work items (no
planning)

2

Coding versus communication time 2
Depends on the kind of the task 2 current phase of a project, e.g. bug fix-

ing near the end, last minute changes
the customer wants, ensure the team
knows the plan in the beginning

Other 1 personal feeling
None 4

Table 6.2: Categorized answers to the open question (Question 2) of how developers assess productivity.

6.1.2 Limitations and Conclusions
The study’s participants work for the same company. Due to this selection, it remains unclear
whether the results can be applied to software developers in general or not. It was unexpected
to see most of the participants not knowing if their previous work day has been productive or
not. The results of the second question might be a bit biased as an example was attached to the
question. Most of the developers gave their answer based on this example and did not come
up with other explanations of their productivity assessment. Additionally, some answers do not
further specify what a developer defines as a task. This could be tasks within a bug repository like
Mylyn, a task management system like Outlook and might even include the number of answered
emails. Finally, the answers given in this study indicate the trend of heavily relying on the tasks
the developers completed; sometimes in comparison with the work they planned to do.

6.2 Metrics and Productivity Study 33

6.2 Metrics and Productivity Study
We performed a second study to probe the metrics that are important to a developer. To use
the opportunity to perform a survey with developers, we again asked them to explain how they
assess their productivity. For this purpose, a questionnaire was designed that consists of three
parts. In the first part the participants received a list containing the same metrics that are catego-
rized and described in Chapter 3.1. There are also some additional metrics, we intended to add
to Happy Coder in the future but first wanted to find out if they are important and relevant to the
developer. The participants had to rate each metric on a scale from 1 (‘not important’) to 5 (‘very
important’). In each category, they had the possibility to suggest other metrics. The second part
of the questionnaire consists of a single open question on how the developer assesses his produc-
tivity. The third part is an empty text field where the participant could write some comments or
suggestions. The suggestions are already included in the future work as described in Chapter 3.1.
The questionnaire can be found in Appendix E.

The study was performed with 10 members of our software engineering and architecture lab
(s.e.a.l.). Two of the participants are professors, two are senior research assistants, two are re-
search assistants and four are master students all with a background in computer science. Due to
the limited amount and easy to answer questions, all participants answered the questionnaire in
less than 10 minutes.

6.2.1 Results
In this chapter the study’s results are presented in more detail. An overview about all the results
of the study can be found in Appendix F.

Metrics

The first part of the questionnaire addresses the metrics that are important to a developer. The
participants had to rate each metric on a scale from 1 (‘not important’) to 5 (‘very important’).

Activities The results in Table 6.3 indicate that for most participants measuring the activity
on the computer is very important. Participants also suggested to measure the time spent for
communication (e.g. chat, voice-over-ip), reading or writing the documentation and testing. In a
future study, it would also be interesting to find out if the developer likes the categorization as it
is provided now, or if he prefers another categorization.

Metric Mean Median STDV Min Max
How much time did the developer spend in which
program? (Categorization: Code, Debug, Plan, Re-
search, Navigate, Other)

3.40 4.00 1.28 1.00 5.00

Table 6.3: Results for metrics in the category Activities. (1 = ‘not important’ / 5 = ‘very important’)

Work Items Overall, the participants rated the work items metric between 3 (‘undecided’) and
4 (‘important’). The mean (3.7 and 3.4) and the median (4 and 3.5) indicate that they are mostly
interested in the number of work items a developer worked on and the number of work items he

34 Chapter 6. Metrics and Productivity Studies

solved, edited, created or deleted. The average (3.1) and median (3) as well as the high standard
deviation (1.14) indicate that it is a personal assessment whether the duration a developer worked
on a work item is important or not. One participant suggested to take the difficulty of a work item
into consideration while another proposed to include estimates of the duration to solve a work
item to compare with the actual duration.

Metric Mean Median STDV Min Max
Number of work items a developer worked on 3.70 4.00 0.90 2.00 5.00
How long a developer was working on a certain
work item

3.10 3.00 1.14 1.00 5.00

Number of work items a developer solved/edit-
ed/created/deleted

3.40 3.50 0.92 2.00 5.00

Table 6.4: Results for metrics in the category Work Items. (1 = ‘not important’ / 5 = ‘very important’)

Java Elements The results in Table 6.5 indicate that most participants rate the measurement
of Java elements (projects, packages, classes, and methods) as less important. Nevertheless, the
relatively high standard deviation (between 0.92 and 1.27) shows that some participants value
that featur highly. With an average of 2.2 and a median of 2, most of the participants do not want
the number of commands they executed to be counted. One participant proposed to measure
the access level modifiers (public, private, protected) to know how they influence the rest of the
project. A metric to measure the number of files touched was also desired by one participant.

Metric Mean Median STDV Min Max
Time a developer spent on which project 2.60 2.50 1.02 1.00 5.00
Time a developer spent on which package (Java) 2.40 2.50 0.92 1.00 4.00
Time a developer spent on which class 3.10 3.00 1.14 1.00 5.00
Time a developer spent on which method 2.70 2.50 1.27 1.00 5.00
Number of commands a developer executed (copy,
paste, save, open, close, step-into (debugging), etc.)

2.20 2.00 1.08 1.00 4.00

Table 6.5: Results for metrics in the category Java Elements. (1 = ‘not important’ / 5 = ‘very important’)

Change Sets Measuring the number of commits a developer made was rated as less impor-
tant by most of the participants, with a relatively low mean (2.6) and median (2). Nonetheless,
a relatively high standard deviation (1.11) indicates that some participants think this metric is
important while others would not use it at all. The participants considered the lines of code a
developer submitted, added or removed as a bit more important. With relatively high standard
deviations (1.22 and 1.04) it still remains up to the discretion of the individual developer to decide
if he uses it. With an average value of 3.1 the most important information the participants wanted
to take out of the change set metric was the number of selects and edits a developer made. A
participant indicated that for him, measured data is only important in relation to other metrics.
We assume, that the combination with work items would make sense in this case. Another par-
ticipant suggested to measure the code complexity of the code churn.

6.2 Metrics and Productivity Study 35

Metric Mean Median STDV Min Max
Number of commits a developer made 2.60 2.00 1.11 1.00 5.00
Lines of Code (loC) a developer submitted 2.90 2.50 1.22 1.00 5.00
Lines of Code (loC) a developer added/removed
(Code Churn)

2.90 3.00 1.04 1.00 4.00

Number of classes/methods/variables a developer
added/removed/edited

2.90 2.50 0.94 2.00 4.00

Number of code elements a developer looked at
(selects/edits)

3.10 3.00 0.70 2.00 4.00

Table 6.6: Results for metrics in the category Change Sets. (1 = ‘not important’ / 5 = ‘very important’)

Web Searches Most participants considered tracking the number of code related and code un-
related web searches as important. Nevertheless, a standard deviation of 1.19 indicates that this
metric is not important for all developers. One participant rated the metric with 1 (‘not impor-
tant’) and two participants rated the metric with 2 (‘not very important’). A participant suggested
to include the duration a developer spent browsing the web to the metric. We considered this
suggestion as very important and already implemented this feature. Two of the participants also
wanted to know the types of web searches they did, like searching about code or about documen-
tation. This could be an interesting metric, but very difficult to measure.

Metric Mean Median STDV Min Max
Number of web searches a developer made 2.90 3.00 1.30 1.00 5.00
Number of code related / code unrelated web
searches a developer made

3.30 4.00 1.19 1.00 5.00

Table 6.7: Results for metrics in the category Web Searches. (1 = ‘not important’ / 5 = ‘very important’)

Meetings The results in Table 6.8 indicate that most of the participants want to see the meetings
they attended as well as the duration and topic of each of these meetings. However, a high
standard deviation (1.47) denotes that this metric is not important to all participants - probably,
because they remember it after their work day. One participant wanted to see an overview of his
meetings not per day, but per month. A similar feature is already implemented with the view to
look back at the meetings of the past seven days. Another suggestion of a participant indicates
the need to track the number of support requests a developer has to handle.

Metric Mean Median STDV Min Max
Number of meetings a developer had 3.60 3.50 1.11 2.00 5.00
Duration and topic of each of these meetings 3.20 3.00 1.47 1.00 5.00

Table 6.8: Results for metrics in the category Meetings. (1 = ‘not important’ / 5 = ‘very important’)

36 Chapter 6. Metrics and Productivity Studies

Productivity

In the second part of the study the participants had the possibility to describe how they assess
the productivity of their past work day. This part of the questionnaire consisted of the following
question: ‘How do you assess your productivity at the end of a work day?’. In contrast to the
other productivity study we conducted (see Chapter 6.1), we gave the participant no example
or hint to answer the question as we wanted to get a less influenced answer than we got in the
previous study. To evaluate the answers, they were grouped into the same categories as in the
previous study. The results are categorized in Table 6.9 and counted according to the number of
mentions.

Answer Number of
mentions

Hints

Number of finished planned tasks 5
Number of completed work items (no
planning)

6 number of bugs found/done/re-
solved, number of features imple-
mented

Coding versus communication time 2
Depends on the kind of the task 1
Other 4 soft factors, formula, important, feel-

ing accomplished something
None 0

Table 6.9: Categorized answers to the open question of how developers assess productivity.

One developer stated that he distinguishes between a work day with a lot of meetings and a
day with only a few ones to assess his productivity. In case there were a lot of meetings and little
time to work he considers his day as productive. Otherwise he compares the planned work items
with the completed ones. Four answers could not be classified in the predefined categories and
were only mentioned once by a participant. Those are:

• Soft factors that determine productivity

• A productivity formula: ‘my productivity = solved issues/work items/tasks + effort spent
on classes & bugs - ‘distractions’ by web & chat’

• ‘If I know that I have achieved something important. Does not matter if it is the target I
aimed for at the beginning of the day.’

• ‘If you feel you accomplished something - then it was a good day’

In contrast to the previous productivity study (see Chapter 6.1, all participants reflected on
what they understand of a productive day. This is interesting as we gave no hint or example
this time. The other answers were very similar. Most of the developers assess their productivity
either by the number of work items they solved. In both studies, about half of them compare their
completed work items to the planned ones. Furthermore, both studies contained a participant
who assesses his productivity based on feelings.

6.2 Metrics and Productivity Study 37

Feedback and Suggestions

Only two participants used the field for suggestions. Both of them indicated that most of the
presented metrics are quantitative. They recommended to add some qualitative metrics like soft-
ware quality. This is an important hint we also added to the metrics we want to add in future as
described in Chapter 3.3.

6.2.2 Limitations and Conclusions
Due to the selection of the participants the results of this study could be biased. All participants
work or study in the academic area (software engineering) in our research group. Some work
part-time in a company outside the university or their own start-up. Another possible limitation
could be the relatively small group of participants (10). This could make it difficult to guaran-
tee a representative distribution and find significant relationships. Nevertheless, the answers
were within our expectations from the previous productivity study (see Section 6.1), other stud-
ies (see [Car06, PSHH04]) and our own experience. Relating to the first part of the questionnaire,
there was no metric that they strongly declined or strongly rated as very important. We learnt
that the importance of a metric depends on personal preferences and experience. As there was
no single metric that was significantly more important than the others. We did not find a single
metric to represent the developer’s work day. This was again as expected. The results encourage
our decision of working with a poly-metric approach for the overview visualization and to leave
the choice to the user to see only the metrics he needs. Expecting this outcome, this features are
already implemented in our prototype. Moreover, we got a lot of suggestions for other metrics
that could be implemented in a future version. In the second part of the study the participants
had to explain how they assess a productive work day. Similar to the first productivity study, they
heavily rely on the work items they completed; sometimes in comparison with the planned work.
The very similar answers in both productivity emphasize the versatility of different attitudes to-
wards important metrics and measuring productivity. In a future study, we want to scrutinize
if Happy Coder measures the right combination of metrics and offers enough flexibility for each
individual developer. Furthermore, we want to assess if a developer could evaluate his produc-
tivity with the retrospective analysis, offered by Happy Coder, and if this makes him happier in
the long run.

Chapter 7

Discussion

Major drawbacks and possible limitations of the thesis are discussed in this chapter. In addition,
the importance of the tool is emphasized and some future work concerning the Happy Coder
prototype is presented.

7.1 Discussion
A developer’s work day usually consists of some ups and downs - productive times and produc-
tivity leaks. Especially in a down phase it is important to get some objective information on the
achievements of today’s work. As presented throughout the last chapters, Happy Coder is one of
the first approaches to combine multiple aspects of a developer’s work, focussing on providing
a review of his work day. This makes it almost impossible to compare Happy Coder to another,
similar tool. Other approaches in the area of software engineering concentrate on providing infor-
mation on a single domain of a developer’s work (e.g. debugging). While sport activity trackers
like the Fitbit have a single metric (step count) to analyze and visualize the user’s activity, this
simplification could not be assigned to measure a developer’s productivity. This observation was
also confirmed by the two studies we conducted and the related work. As the participant group
in both studies was relatively small and many of the participants work in the academic area and
not in a company, it remains unclear whether these results could be generalized to all developers.
Moreover, the small evaluation and the two studies did not check if Happy Coder can increase a
developer’s motivation or make him happier. This is to be probed in a future study.

The visualizations in the web client are based on the metrics, the feasibility of the implemen-
tation, and the assumptions of useful combinations of the metrics. In a future study, we intend to
ask developers to reflect if the right metrics are visualized in the appropriate way.

There are some possible improvements concerning the implementation of the tracker, the
server and the web client which could improve the stability and usability of the prototype. They
are described in the next chapter. At the moment, the tracker only works if the plug-in within
Eclipse is activated and it depends on multiple external plug-ins. The installation of those plug-
ins might be tedious and could prevent a developer from using it. After the installation and an
initial configuration, the Happy Coder tracker runs in the background without engaging the user.
This restriction could not be solved otherwise due to the limited duration the project was allowed
to last.

As the Java open source environment offered the most tools whose data could be accessed,
the decision was made to develop for this environment and not for another. This caused some

40 Chapter 7. Discussion

troubles while implementing the prototype. For example, those tools (e.g. Mylyn, Rabbit) are al-
most not documented and it was very difficult to find out how to access their data. Furthermore,
getting help and support for such open source tools was extremely difficult and time consum-
ing. This entailed multiple drawbacks, like delays, postponing features to future releases and
changing the architecture of the prototype. Another example was the Google Calendar API that
offered old documentation and old examples which did not work anymore. Furthermore, it was
difficult to get a contact to inform Google about a bug in their API and to get some help to find a
workaround. In order to get the meetings for as many developers as possible, we initially decided
to use the Google Calendar API. The reason for this decision was that it can access the appoint-
ments from all Google Calendar users and, over the Google Sync Client, from Outlook users.
Unfortunately, a very short time before the release of this thesis, Google discontinued the support
of this tool. As a consequence, only Google Calendar users can currently use the Happy Coder’s
meetings tracker, unfortunately. Such drawbacks might not have occurred with the use of com-
mercial tools, which usually announce the end of a software product many years in advance. In
contrast to open source tools, commercial tools might not allow the use of their tools in a project
like Happy Coder or insist on complex and costly licensing structures.

Sending private data to a server reveals possible privacy concerns. On the one hand, devel-
opers might not want the data to be revealed to their boss and on the other hand, the data must
be secured from unauthorized access. Currently, the data is sent without encryption to the server
but can only be accessed when a user authenticates. Another possible solution to any privacy
concerns could be to save the data only locally and visualize them directly on the work device.
Finally, a possible limitation that comes with all those trackers of this type is that a user might
always work towards the metrics to get better scores and that the metrics are only as good as the
individual evaluating and interpreting them.

According to Delajoux et al. [LML+06], goal-setting, self-assessment and monitoring of the
achieved progress are three techniques to motivate a user to change his behavior towards his
goals. The last two are already implemented with Happy Coder while the goal-setting is an
important feature we plan for a future implementation. The above-mentioned drawbacks and
limitations from above could be solved in future work. Many approaches in the area of software
engineering and other aspects of a person’s life as well as our studies underline the need for a
tool like Happy Coder. If a user decides to use Happy Coder, he gets a great tool to monitor his
achieved work and to self-assess his productivity. After an initial set-up Happy Coder works
in the background without the need to engage. The collected data is visualized with under-
standable, aesthetic representations and contains trending information to give the opportunity
for self-reflection. Those representations might have a positive reinforcement on a developer’s
motivation and might let him integrate Happy Coder into his everyday life. The possibility to
expand Happy Coder with other trackers enables the developer to measure what is important to
him. Therefore, Happy Coder might fit every developer’s needs and interests for metrics.

7.2 Future Work 41

7.2 Future Work
There is a number of other features which could be implemented to extend the Happy Coder
prototype to improve its usability and functionality. As previously mentioned, the plug-in was
developed to be extended by other modules (i.e. trackers). This extensibility has to be refined on
the server and the web client to enable others to easily expand the metrics that are measured and
visualized. In Chapter 3.3 a multitude of metrics that could be measured are described. Among
them is the idea to include other task management systems like Microsoft Outlook or Google
Tasks and to implement the change sets tracker as described in Chapter 4.2.6. One might also
include some human sensing tools to add data like brain waves or eye movement patterns, to in-
clude measures of concentration assessments or means of interruption to improve a developer’s
efficiency. To overcome possible privacy concerns one might add the possibility to see the visual-
izations locally and avoid the need to upload the data to the server.

Most of the activity sensing tools described in the related work (see Chapter 2.1) provide the
functionality to set a daily goal (e.g. 7000 steps) and see the progress towards the goal (e.g. Fit-
bit flower, Nike+ Fuel level indicator). Different studies indicate the motivating effect of setting a
goal and seeing the progress [LML+06,FM12]. We therefore intend to enhance Happy Coder with
a similar feature to add the possibility to forecast today’s work by setting goals in form of tasks.
With this feature, the developer could use Happy Coder not only as a retrospection but also as a
planning tool.

Another interesting feature to cheer a developer on could be the creation of a game feeling.
Using trophies or rewards for achieving certain goals (e.g. successfully solve a bug or accurately
plan the work day) could improve a developer’s motivation to achieve the goal. Moreover, the
dimension could be expanded to include other team members. This could be either accomplished
by competing against the others or by creating teams which compete against other teams. Re-
warding group performance could be a powerful method to motivate a developer to work more
efficiently and to incentivize the team to achieve ambitious goals [TFAG06]. Again, this might
cause some privacy issues or demotivate a developer even more after an unproductive day. This
might be an interesting point to determine with a future study.

In the future, we intend to conduct a user study with multiple developers to find out if Happy
Coder measures the right combination of metrics and offers enough flexibility for each developer.
Furthermore, we want to assess if a developer can evaluate his productivity with the retrospec-
tive analysis offered by Happy Coder and if this makes him happier and motivates him to work.
Additionally, we want to ascertain that the visualizations show useful information and to find
out what developers think of the Chernoff faces approach. Finally, the ease of use of the plug-in
should be assessed. This could be achieved by letting developers use Happy Coder while they
perform their usual work. To determine if Happy Coder has an influence on a developer’s mo-
tivation, it could be interesting to ask him for his mood before showing him the retrospection of
his work day. One could imagine the presentation of several faces where a user can chose the face
that suits his mood best. The faces could look similar to the poly-metric faces approach (resem-
bling Homer Simpson), see Figure 7.1. Afterwards, the developer can reflect his past work day
with the help of the Happy Coder Chernoff face, the overview visualizations and all the detail
pages. Before the developer logs out, he gets again asked about his mood (using the same five
faces from Figure 7.1. The change could indicate if the data visualized by Happy Coder makes a
developer happier. Other findings could be made by interviewing the developer after the instal-
lation, configuration and usage of Happy Coder.

42 Chapter 7. Discussion

Figure 7.1: Ask the user for his mood after his work day.

As Happy Coder collects a lot of important data of a developer’s work behavior, one could
imagine a new project, Happy Analyst, to improve a developer’s productivity by pointing out
tips and suggestions. For example, a developer could be warned if he gets disturbed frequently.
It could be suggested to move to a quieter place or to take a break if he is not able to concentrate
anymore (to reduce the risk of writing erroneous code). The lessons learnt while working on this
thesis revealed the need of an API to gather common metrics from a developer’s IDE. This could
be another interesting task for a future project.

Chapter 8

Conclusions

While there are a lot of studies about supporting a developer in a single domain of his work, only
little research has been performed on how to integrate the available data and focus on providing
a retrospection of a developer’s work day. Our Happy Coder prototype contributes to overcome
this issue. Our approach consists of a monitoring component to collect the relevant data of a de-
veloper’s work and a server component to make the data available with web services. Finally, we
implemented a multi-platform website which provides a front-end with consolidated data analy-
sis, visualizations and representations of the collected data.

The usage study and the two small productivity studies revealed that developers assess their
productivity based on a personal evaluation of their work day. Therefore, it is not possible to
measure productivity with one single metric. Useful information could be provided to the de-
veloper to get a quick overview of his past work day, by visualizing a combination of multiple
metrics within one representation applying the Chernoff faces approach.

For the future we plan to extend Happy Coder with other useful metrics and a feature to
define goals to see the progress towards those objectives. In addition, we intend to conduct a user
study to assess if the use of Happy Coder enables the developer to increase the awareness of his
work and helps him to reflect the work day. Moreover, we want to find out if our prototype leads
to a higher level of motivation of the developer towards achieving personal and software project
goals.

Appendix A

Tools and Environments

In order to implement the three components, previously described in Chapter 4, multiple tools,
third-party libraries and frameworks were required.

Developer Monitoring The Eclipse plug-in was developed using Java in Eclipse (Juno). We also
used a couple of third party libraries like JUnit (4.10) and Hamcrest (1.3) for Unit tests, SQLite-
JDBC (3.7) to access the SQLite databases from other plug-ins, XSteam (1.4) to serialize to XML
files, and others. In the following table, you see the tools and frameworks we used:

Tool Description Version Author(s) Source
Google Cal-
endar API

Used to access a user’s
appointments from the
Google calendar.

3.0 Google https://
developers.google.
com/google-apps/
calendar

Mylyn Used to get the work
items a developer worked
on and the change sets he
committed.

3.8.2 Steffen Pin-
gel, et al.

http://www.
eclipse.org/mylyn

Rabbit Used to get the debug
time, Java elements a de-
veloper edited or selected
and work items a devel-
oper worked on.

1.2.1 Lae Chen http://code.
google.com/p/
rabbit-eclipse

Reverb Used to get the number of
code relevant and irrele-
vant web searches.

2012 Gail Mur-
phy, Nick
Sawadsky

http://code.
google.com/p/
reverb-bookmarks

Standard
Widget
Toolkit
(SWT)

Used to create the single
status view of the Eclipse
plug-in.

4.2.1 Eclipse
Foundation

http://www.
eclipse.org/swt

Windows
Activity
Monitor
(Wamon)

Used to track the time a
user spent in each pro-
gram.

1.3 Archae http://code.
google.com/p/wamon

Table A.1: Tools and frameworks used to monitor developers.

https://developers.google.com/google-apps/calendar
https://developers.google.com/google-apps/calendar
https://developers.google.com/google-apps/calendar
https://developers.google.com/google-apps/calendar
http://www.eclipse.org/mylyn
http://www.eclipse.org/mylyn
http://code.google.com/p/rabbit-eclipse
http://code.google.com/p/rabbit-eclipse
http://code.google.com/p/rabbit-eclipse
http://code.google.com/p/reverb-bookmarks
http://code.google.com/p/reverb-bookmarks
http://code.google.com/p/reverb-bookmarks
http://www.eclipse.org/swt
http://www.eclipse.org/swt
http://code.google.com/p/wamon
http://code.google.com/p/wamon

46 Chapter A. Tools and Environments

Server The server was implemented using PHP (5.2) as the programming language and MySQL
as the query language in the database. The following tools currently run on the server:

Tool Description Version Author(s) Source
Apache The http web server

where Happy Coder
runs.

2.4 Apache Soft-
ware Foun-
dation

http://www.apache.
org

MySQL The database to store the
data.

5.0 Oracle http://www.mysql.
com

phpMyAdmin A useful tool to adminis-
ter the database.

3.5.3 phpMyAdmin
develop-
ment team

http://www.
phpmyadmin.net

Table A.2: Tools used to run the server.

Web Client To implement the web client, we needed PHP (5.2), HTML (5.0), SVG (1.1), CSS
(3.0), Ajax and JavaScript (1.8). We used the following frameworks to visualize the data collected
by the developer monitor:

Tool Description Version Author(s) Source
CanvasXpress JavaScript library used

for visualizations.
7.0 Isaac

Neuhaus
http://
canvasxpress.org

jQuery JavaScript library that
simplifies HTML travers-
ing and other HTML
manipulations.

1.8.3 jQuery
Foundation

http://jquery.com

jQuery mo-
bile

Framework to create
multi-platform websites.

1.1 jQuery
Foundation

http://
jquerymobile.com

Table A.3: Frameworks used to present and visualize the data on the web client.

http://www.apache.org
http://www.apache.org
http://www.mysql.com
http://www.mysql.com
http://www.phpmyadmin.net
http://www.phpmyadmin.net
http://canvasxpress.org
http://canvasxpress.org
http://jquery.com
http://jquerymobile.com
http://jquerymobile.com

Appendix B

Visualization of the Metrics in
the Web Client

The web client can be accessed on http://www.andre-meyer.ch/hc-web-client. Alan’s
imaginary work day, introduced as a motivating example in Chapter 3, is presented with a demo
account. The username is developer and the password is isHappy.

Overview You find a detailed description and a screenshot of the Happy Coder overview page
in Chapter 4.4.

http://www.andre-meyer.ch/hc-web-client

48 Chapter B. Visualization of the Metrics in the Web Client

Activities The first box in the activities day page (see Figure B.1(a)) shows a list of the cate-
gorized activities a user worked on together with the duration. This data is visualized in a pie
chart. The third box contains a detailed list of the programs a developer used during his day.
This categorized list is collapsed and can be expanded to see the details. The activities week view
(see Figure B.1(b)) contains the same information but for the last seven days. The total duration
a developer worked on the computer is visualized in a line chart in the second box. In addition,
the second visualization presents the time a developer spent in each activity category compaired
to the last seven days.

(a) Activities Day (b) Activities Week

Figure B.1: Web Client Activities visualizations.

49

Java Elements The java elements day page (see Figure B.2(a)) presents a pie chart for each
project, the developer worked on and visualizes each package he selected or edited. The second
box consists of a collapsible list presenting all projects, packages, classes and methods a user
selected or edited during his work day. The java elements page for the week view has to be
implemented in the future.

(a) Java Elements Day (b) Java Elements Week

Figure B.2: Web Client Java Elements visualizations.

50 Chapter B. Visualization of the Metrics in the Web Client

Work Items Via the work items day page (see Figure B.3(a)), the user has access to all the work
items, he worked on today. The number of open and resolved work items as well as the time he
worked on those work items is presented. The durations are further visualized in a pie chart. In
addition, a list contains all the work items the developer worked on. Selecting one of those work
items in the list opens a new page with further details. The week view (see Figure B.3(b)) presents
the same information for the last seven days.

(a) Work Items Day (b) Work Items Week

Figure B.3: Web Client Work Items visualizations.

51

Meetings The number of meetings, the duration a developer spent in planned meetings and the
details of all those meetings are presented in the meetings day page (see Figure B.4(a)). The week
view (see Figure B.4(b)) adds a bar chart to easily compare the time a developer spent in meetings
with the last seven days.

(a) Meetings Day (b) Meetings Week

Figure B.4: Web Client Meetings visualizations.

52 Chapter B. Visualization of the Metrics in the Web Client

Web Searches The total time the developer spent in the browser searching for information
and the number of code relevant and irrelevant web searches are presented in the web searches
day view in form of a list and a pie chart (see Figure B.5(a)). The week view presents the same
information for the last seven days and compares the total web searches and the code relevant
and irrelevant web searches in a line-bar chart (see Figure B.5(b)).

(a) Web Searches Day (b) Web Searches Week

Figure B.5: Web Client Web Searches visualizations.

53

Others There are a couple of other pages like the log-in page (see Figure B.6(a)) and a help
page (no screenshot). The about page (see Figure B.6(b)) contains details about the authors, the
frameworks used and information about the latest changes on the web client.

(a) Log-in page (b) About page

Figure B.6: Web Client excerpt of the log-in and the about page.

Appendix C

Usage Study: Results

56 Chapter C. Usage Study: Results
D
at
e

2
2
.0
9
.

2
3
.0
9
.

2
4
.0
9
.

2
5
.0
9
.

2
6
.0
9
.

2
7
.0
9
.

2
8
.0
9
.

2
9
.0
9
.

3
0
.0
9
.

0
1
.1
0
.

0
2
.1
0
.

0
3
.1
0
.

0
4
.1
0
.

0
5
.1
0
.

0
6
.1
0
.

SA
T

SU
N

M
O

N
TU

E
W

ED
TH

U
R

FR
I

SA
T

SU
N

M
O

N
TU

E
W

ED
TH

U
R

FR
I

SA
T

p
er

so
n

al
 r

at
in

g
[f

ee
lin

g]
6

6
2

7
4

5
0

6
8

4
8

6
5

8
7

n
u

m
b

er
 o

f
m

ee
ti

n
gs

 /
 le

ct
u

re
s

0
0

2
1

1
2

0
0

0
1

2
2

2
1

0

ti
m

e
w

o
rk

ed
 (

h
)

[s
u

m
]

6
1.

5
10

.3
10

.5
7

8.
2

0
1

2
11

.3
1

0
9.

3
14

.3
8

7.
95

ti
m

e
o

n
 P

C
 (

h
)

[e
st

im
at

ed
]

6
1.

5
6.

5
9

.5
7

5
0

0
2

10
.5

8
9.

3
1

4
8

5
.5

 t

im
e:

 P
LA

N
 [

es
ti

m
at

ed
]

4
0

4.
5

3
1

2.
6

0
0

1
0.

5
0

.6
2.

2
2

.5
0.

6
4

 t

im
e:

 C
O

D
E

[e
st

im
at

ed
]

0
0

1.
5

0
2.

5
0.

5
0

0
1

4
2

.5
1.

2
6

2.
5

0

 t

im
e:

 D
EB

U
G

 [
es

ti
m

at
ed

]
0

0
0.

4
0

0.
8

0
0

0
0

2
2

.8
1.

7
0

.5
0.

5
0

 t

im
e:

 R
ES

EA
R

C
H

 [
es

ti
m

at
ed

]
2

1.
5

3.
5

7
2.

7
4

0
1

0
4.

6
3

.8
2

2
.5

3
2

 t

im
e:

 O
TH

ER
 [

es
ti

m
at

ed
]

0
0

0
0

0
1

0
0

0
0.

1
0

.1
2

2
.5

1
1.

75

 t

im
e:

 N
A

V
 [

es
ti

m
at

ed
]

0
0

0.
4

0
.5

0
0.

1
0

0
0

0.
1

0
.2

0.
2

0
.3

0.
4

0
.2

ta
sk

s
so

lv
ed

 (
M

yl
yn

, O
n

eN
o

te
, O

u
tl

o
o

k)
16

8
17

1
2

6
20

0
0

2
8

2
1

0
1

2
15

19

n
u

m
b

er
 o

f
p

ro
je

ct
s/

to
p

ic
s

w
o

rk
ed

 o
n

3
1

2
2

2
1

0
0

1
2

1
2

3
3

6

n
u

m
b

er
 o

f
co

m
m

it
s

0
0

1
0

2
0

0
0

1
2

2
4

6
4

0

lin
es

 o
f

co
d

e
(c

o
m

m
it

te
d

)
0

0
12

0
0

10
0

0
0

0
80

20
0

1
0

15
0

30
0

20
0

0

D
at
e

0
7
.1
0
.

0
8
.1
0
.

0
9
.1
0
.

1
0
.1
0
.

1
1
.1
0
.

1
2
.1
0
.

1
3
.1
0
.

1
4
.1
0
.

1
5
.1
0
.

1
6
.1
0
.

1
7
.1
0
.

1
8
.1
0
.

1
9
.1
0
.

2
0
.1
0
.

2
1
.1
0
.

SU
N

M
O

N
TU

E
W

ED
TH

U
R

FR
I

SA
T

SU
N

M
O

N
TU

E
W

ED
TH

U
R

FR
I

SA
T

SU
N

p
er

so
n

al
 r

at
in

g
[f

ee
lin

g]
4

6
5

3
2

3
0

8
4

8
8

9
3

5
6

n
u

m
b

er
 o

f
m

ee
ti

n
gs

 /
 le

ct
u

re
s

0
2

0
2

2
3

0
1

4
3

1
1

2
0

1

ti
m

e
w

o
rk

ed
 (

h
)

[s
u

m
]

7.
2

10
.5

11
.2

5
1

1
1

1.
75

11
.7

5
0.

5
8

13
.2

5
11

.7
5

1
0

14
.5

7.
75

10
9.

05

ti
m

e
o

n
 P

C
 (

h
)

[e
st

im
at

ed
]

7.
2

10
11

10
.5

12
11

0.
5

8
12

.2
5

10
.7

5
1

0
1

4
4

.5
8.

5
9.

05

 t

im
e:

 P
LA

N
 [

es
ti

m
at

ed
]

1
2

2.
25

3
2.

75
2

0.
5

2
3

2
1

2
3.

25
2

1

 t

im
e:

 C
O

D
E

[e
st

im
at

ed
]

2
.2

5
4

5
3

.5
2

0.
75

0
2

5.
5

5.
5

4
.8

4
1

4
3

 t

im
e:

 D
EB

U
G

 [
es

ti
m

at
ed

]
0

.7
5

0.
5

1
0

0
0

0
0.

5
2

1
1

.5
1

0
0.

5
0

.5

 t

im
e:

 R
ES

EA
R

C
H

 [
es

ti
m

at
ed

]
2

2
2

4
5

2
0

1
2.

25
1.

75
2

2
3

2
2.

25

 t

im
e:

 O
TH

ER
 [

es
ti

m
at

ed
]

1
0.

5
0

0
.2

1
5

0
2

0
1

0
.2

5
0

1
2

 t

im
e:

 N
A

V
 [

es
ti

m
at

ed
]

0.
2

1.
5

1
0

.3
1

2
0

0.
5

0.
5

0.
5

0
.5

0.
5

0
.5

0.
5

0
.3

ta
sk

s
so

lv
ed

 (
M

yl
yn

, O
n

eN
o

te
, O

u
tl

o
o

k)
12

6
11

2
4

15
10

3
26

7
5

2
0

5
7

7
6

n
u

m
b

er
 o

f
p

ro
je

ct
s/

to
p

ic
s

w
o

rk
ed

 o
n

4
2

1
3

4
1

1
2

2
2

2
2

2
2

3

n
u

m
b

er
 o

f
co

m
m

it
s

1
1

1
1

0
0

0
0

5
3

4
4

0
2

5

lin
es

 o
f

co
d

e
(c

o
m

m
it

te
d

)
10

0
30

0
20

0
5

0
0

0
0

10
0

30
0

10
0

30
0

20
0

0
15

0
2

00

57

58 Chapter C. Usage Study: Results
p

er
so

n
al

 r
at

in
g

[f
ee

lin
g]

6
6

2
7

4
5

6
8

4
8

6
5

8
7

4
6

5
3

2
3

8
4

8
8

9
3

5
6

h
in

t
O

u
tl

ie
rs

 (
ex

tr
em

es
)

fr
o

m
 t

h
e

2
8.

09
 a

n
d

 t
h

e
1

3.
10

 w
er

e
n

o
t

in
cl

u
d

ed
 in

 t
h

e
ca

lc
u

la
ti

o
n

s
to

 p
re

ve
n

t
th

e
d

is
to

rt
io

n
 o

f
th

e
co

rr
el

at
io

n
s

an
d

 t
o

 g
et

 m
o

re
 a

cc
u

ra
te

 r
e

su
lt

s.

n
u

m
b

er
 o

f
m

ee
ti

n
gs

 /
 le

ct
u

re
s

0
0

2
1

1
2

0
0

1
2

2
2

1
0

0
2

0
2

2
3

1
4

3
1

1
2

0
1

C
o

rr
el

at
io

n
 M

ee
ti

n
gs

 <
->

 R
at

in
g

-0
.2

9
90

6
7.

68
1

94
E-

13

ti
m

e
w

o
rk

ed
 (

h
)

[s
u

m
]

6
1

.5
10

.3
10

.5
7

8
.2

1
2

11
.3

1
0

9.
3

1
4.

3
8

7.
95

7.
2

10
.5

11
.2

5
1

1
11

.7
5

11
.7

5
8

13
.2

5
11

.7
5

1
0

14
.5

7.
75

1
0

9.
05

ti
m

e
o

n
 P

C
 (

h
)

[e
st

im
at

ed
]

6
1

.5
6

.5
9.

5
7

5
0

2
10

.5
8

9.
3

14
8

5.
5

7.
2

10
11

10
.5

1
2

1
1

8
12

.2
5

10
.7

5
1

0
1

4
4.

5
8.

5
9.

05

 t

im
e:

 P
LA

N
 [

es
ti

m
at

ed
]

4
0

4
.5

3
1

2
.6

0
1

0.
5

0
.6

2.
2

2.
5

0
.6

4
1

2
2.

25
3

2.
75

2
2

3
2

1
2

3.
25

2
1

 t

im
e:

 C
O

D
E

[e
st

im
at

ed
]

0
0

1
.5

0
2

.5
0

.5
0

1
4

2
.5

1.
2

6
2

.5
0

2
.2

5
4

5
3.

5
2

0.
75

2
5.

5
5.

5
4.

8
4

1
4

3

 t

im
e:

 D
EB

U
G

 [
es

ti
m

at
ed

]
0

0
0

.4
0

0
.8

0
0

0
2

2
.8

1.
7

0.
5

0
.5

0
0

.7
5

0.
5

1
0

0
0

0.
5

2
1

1.
5

1
0

0.
5

0.
5

 t

im
e:

 R
ES

EA
R

C
H

 [
es

ti
m

at
ed

]
2

1
.5

3
.5

7
2

.7
4

1
0

4.
6

3
.8

2
2.

5
3

2
2

2
2

4
5

2
1

2.
25

1.
75

2
2

3
2

2.
25

 t

im
e:

 O
TH

E
R

 [
es

ti
m

at
ed

]
0

0
0

0
0

1
0

0
0.

1
0

.1
2

2.
5

1
1.

75
1

0.
5

0
0.

2
1

5
2

0
1

0.
2

5
0

1
2

 t

im
e:

 N
A

V
 [

es
ti

m
at

ed
]

0
0

0
.4

0.
5

0
0

.1
0

0
0.

1
0

.2
0.

2
0.

3
0

.4
0.

2
0.

2
1.

5
1

0.
3

1
2

0.
5

0.
5

0.
5

0.
5

0.
5

0.
5

0.
5

0.
3

C
o

rr
el

at
io

n
 t

im
e

w
o

rk
ed

 <
->

 R
at

in
g

-0
.1

6
34

1
1.

15
5

21
E-

05

C
o

rr
el

at
io

n
 t

im
e

P
C

 <
->

 R
at

in
g

-0
.0

7
70

2
0

.0
00

5
03

90
8

C
o

rr
el

at
io

n
 t

im
e

p
la

n
 <

->
 R

at
in

g
-0

.3
4

88
9

1.
44

7
83

E-
10

C
o

rr
el

at
io

n
 t

im
e

co
d

e
<-

>
R

at
in

g
0.

04
27

9
1.

07
6

87
E-

07

C
o

rr
el

at
io

n
 t

im
e

d
e

b
u

g
<-

>
R

at
in

g
0.

21
03

1
2.

51
8

22
E-

14

C
o

rr
el

at
io

n
 t

im
e

re
se

ar
ch

 <
->

 R
at

in
g

-0
.3

31
9

2.
85

33
E-

08

C
o

rr
el

at
io

n
 t

im
e

o
th

er
 <

->
 R

at
in

g
0.

14
46

4
1.

37
6

83
E-

13

C
o

rr
el

at
io

n
 t

im
e

n
av

 <
->

 R
at

in
g

-0
.2

3
56

2
2.

77
9

04
E-

14

ta
sk

s
so

lv
ed

 (
M

yl
yn

, O
n

eN
o

te
, O

u
tl

o
o

k)
16

8
17

12
6

2
0

0
2

8
2

10
12

1
5

19
12

6
11

2
4

1
5

1
0

2
6

7
5

2
0

5
7

7
6

C
o

rr
el

at
io

n
 t

as
ks

 s
o

lv
ed

 <
->

 R
at

in
g

-0
.1

3
47

9
0

.0
00

1
31

83
5

n
u

m
b

er
 o

f
p

ro
je

ct
s/

to
p

ic
s

w
o

rk
ed

 o
n

3
1

2
2

2
1

0
1

2
1

2
3

3
6

4
2

1
3

4
1

2
2

2
2

2
2

2
3

C
o

rr
el

at
io

n
 d

if
fe

re
n

t
p

ro
je

ct
s

<-
>

R
at

in
g

-0
.1

0
64

7
5.

67
8

97
E-

10

n
u

m
b

er
 o

f
co

m
m

it
s

0
0

1
0

2
0

0
1

2
2

4
6

4
0

1
1

1
1

0
0

0
5

3
4

4
0

2
5

lin
es

 o
f

co
d

e
(c

o
m

m
it

te
d

)
0

0
12

0
0

1
00

0
0

80
20

0
1

0
15

0
3

00
20

0
0

1
00

3
00

2
00

5
0

0
0

1
0

0
3

00
1

00
30

0
20

0
0

1
5

0
2

00

C
o

rr
el

at
io

n
 c

o
m

m
it

s
<-

>
R

at
in

g
0.

24
55

2
5.

60
5

26
E-

10

C
o

rr
el

at
io

n
 lo

C
 <

->
 R

at
in

g
0.

14
66

4
7.

12
64

E-
06

012345

0
2

4
6

8
1

0

of meetings

ra
ti

n
gs

05

1
0

1
5

2
0

0
2

4
6

8
1

0

time worked (h)

ra
ti

n
g

0

1
0

2
0

3
0

0
2

4
6

8
1

0

tasks solved

ra
ti

n
g

02468

0
2

4
6

8
1

0

different projects

ra
ti

n
g

02468

0
2

4
6

8
1

0

of commits

ra
ti

n
g

0

1
0

0

2
0

0

3
0

0

4
0

0

0
2

4
6

8
1

0

loC

ra
ti

n
g

05

1
0

1
5

0
2

4
6

8
1

0

time worked on PC

ra
ti

n
g

012345

0
2

4
6

8
1

0

time PLAN

ra
ti

n
g

02468

0
2

4
6

8
1

0

time CODE
ra

ti
n

g

0123

0
2

4
6

8
1

0

time DEBUG

ra
ti

n
g

02468

0
2

4
6

8
1

0

time RESEARCH

ra
ti

n
g

Appendix D

Productivity Study: Results

60 Chapter D. Productivity Study: Results

R
at

in
g

St
at

em
en

t

4 4
p

ro
gr

es
s,

 s
o

lv
e

d
 a

 t
as

k
 d

ep
en

d
s

o
n

 k
in

d
 o

f
ta

sk

4

It
 d

ep
en

d
s

o
n

 t
h

e
cu

rr
en

t
p

h
as

e
o

f
th

e
p

ro
je

ct
, n

ea
r

th
e

en
d

 it
's

 a
b

o
u

t
b

u
g

fi
xi

n
g

o
r

la
st

 m
in

u
te

 c
h

an
ge

s
th

e
cu

st
o

m
e

r
w

an
ts

,

n
ea

r
th

e
b

eg
in

n
in

g
it

s
ab

o
u

t
th

e
ra

m
p

 u
p

 o
f

th
e

p
ro

je
ct

 a
n

d
 e

n
su

ri
n

g
th

at
 t

h
e

te
am

 k
n

o
w

 t
h

e
p

la
n

 o
f

at
ta

ck
 a

n
d

 h
o

w
 t

h
is

 is
 b

ro
ke

n
 u

p
 in

to
 s

p
ri

n
ts

, e
tc

..

4
D

u
ri

n
g

m
y

cu
rr

en
t

p
ro

je
ct

 t
h

e
n

u
m

b
er

 o
f

b
u

gs
 f

o
u

n
d

 a
n

d
 d

o
cu

m
en

te
d

4
fi

n
is

h
ed

 t
as

ks
.

 m
o

re
 p

ro
d

u
ct

iv
e

--
>

co
d

in
g

 le
ss

 p
ro

d
u

ct
iv

e
--

>
co

m
m

u
n

ic
at

io
n

 &
 c

la
ri

fi
ca

ti
o

n
s

3
w

h
e

th
er

 I
fu

llf
ill

ed
 t

h
e

p
la

n
n

ed
 t

as
ks

 o
r

n
o

t

2 4
o

h
 m

y.
..

 m
ea

su
re

 if
 p

la
n

n
ed

 it
em

s
ar

e
re

so
lv

ed
 f

in
an

ci
al

 t
ar

ge
ts

 m
et

, .
..

 c
u

st
o

m
e

r
n

ee
d

s
m

et
, k

u
n

d
en

zu
fr

ie
d

en
h

ei
t

>
8/

10
 e

m
p

lo
ye

e
s

n
ee

d
s

m
et

, m
o

ti
va

ti
o

n
 >

8/
1

0
..

.
..

.

4
im

p
ro

ve
m

en
t

o
f

u
sa

b
ili

ty
 b

en
ef

it
 f

o
r

u
se

r
to

 u
se

 o
u

r
p

ro
d

u
ct

 (
ti

m
e

sa
vi

n
g,

 r
ed

u
ce

 c
o

m
p

le
xi

ty
)

2
b

y
ch

ec
ki

n
g

w
h

ic
h

 t
as

ks
 s

el
ec

te
d

 f
o

r
th

e
d

ay
 c

o
u

ld
 b

e
d

o
n

e
at

 t
h

e
en

d

2
le

ss
 m

ee
ti

n
gs

, l
es

s
d

is
cu

ss
io

n
s

ab
o

u
t

w
o

rt
h

le
ss

 t
o

p
ic

s

3
I d

o
 n

o
th

in
g.

3
N

u
m

b
er

 o
f

re
so

lv
ed

 b
u

gs

3 3
re

ac
h

ed
 w

h
at

 I
p

la
n

n
ed

 t
o

 d
o

3
P

ro
gr

es
s

in
 R

e
la

ti
o

n
 t

o
 p

la
n

n
in

g

4
p

er
so

n
al

 f
ee

lin
g

V
er

y
u

n
p

ro
d

u
ct

iv
e

0

U
n

p
ro

d
u

ct
iv

e
3

U
n

d
ec

id
e

d
6

P
ro

d
u

ct
iv

e
8

V
er

y
p

ro
d

u
ct

iv
e

0

M
in

2

M
ax

4

M
e

an
3.

29
41

M
e

d
ia

n
3

ST
D

V
0.

74
87

R
es

u
lt

s

Q
u

e
st

io
n

 1

D
o

 y
o

u
 t

h
in

k
th

at
 y

o
u

 h
av

e
b

ee
n

 p
ro

d
u

ct
iv

e
d

u
ri

n
g

yo
u

r
la

st
 w

o
rk

 d
ay

?

(V
er

y
u

n
p

ro
d

u
ct

iv
e,

 u
n

p
ro

d
u

ct
iv

e,
 u

n
d

ec
id

e
d

, p
ro

d
u

ct
iv

e,
 v

er
y

p
ro

d
u

ct
iv

e)

Q
u

e
st

io
n

 2

H
o

w
 d

o
 y

o
u

 a
ss

es
s

yo
u

r
p

ro
d

u
ct

iv
it

y
at

 t
h

e
en

d
 o

f
a

w
o

rk
 d

ay
?

e.
g.

 n
u

m
b

er
 o

f
ac

h
ie

ve
d

 t
as

ks
, e

tc
.

A
n

sw
er

s

Appendix E

Metrics and Productivity Study:
Questionnaire

62 Chapter E. Metrics and Productivity Study: Questionnaire

HAPPY CODER | BACHELOR THESIS

Seite 1 von 2
RETREAT EXPRESS STUDY | HAPPY CODER – BACHELOR THESIS | 30.10.2012 | André Meyer

EXPRESS STUDY

WHICH METRICS ARE IMPORTANT TO YOU?
In your opinion, how important is each of the metrics in the following table to be measured and visualized on the Happy Coder

multi-platform website? – Please rate it from 1 (not important) to 5 (very important). If you want, you can also add some

metrics and there is also space for comments in the end of the second page. Thank you!

Description 1 2 3 4 5

Activities

How much time did the developer spend in which program?
(Categorization: Code, Debug, Plan, Research, Navigate, Other)

Other:

Work Items

Number of work items a developer worked on

How long a developer was working on a certain work item

Number of work items a developer solved/edited/created/deleted

Other:

Java Elements

Time a developer spent on which project

Time a developer spent on which package (java)

Time a developer spent on which class

Time a developer spent on which method

Number of commands a developer executed
(copy, paste, save, open, close, step-into (debugging), etc.)

Other:

63

HAPPY CODER | BACHELOR THESIS

Seite 2 von 2
RETREAT EXPRESS STUDY | HAPPY CODER – BACHELOR THESIS | 30.10.2012 | André Meyer

Change sets

Number of commits a developer made

Lines of Code (loC) a developer submitted

Lines of Code (loC) a developer added/removed (Code Churn)

Number of classes/methods/variables a developer added/removed/edited

Number of code elements a developer looked at (selects/edits)

Other:

Web searches

Number of web searches a developer made

Number of code related / code unrelated web searches a developer made

Other:

Meetings

Number of meetings a developer had

Duration and topic of each of these meetings

Other:

How do you assess your productivity at the end of a work day?

Comments, Suggestions, etc.

Thank you!

Appendix F

Metrics and Productivity Study:
Results

66 Chapter F. Metrics and Productivity Study: Results
A

ct
iv

it
ie

s

H
o

w
 m

u
ch

ti
m

e
d

id
 t

h
e

d
ev

el
o

p
er

sp
en

d
 in

w
h

ic
h

p
ro

gr
am

?

(C
at

eg
o

ri
za

ti
o

n
: C

o
d

e,

D
eb

u
g,

 P
la

n
,

R
es

ea
rc

h
,

N
av

ig
at

e,

O
th

er
)

N
u

m
b

er
 o

f

w
o

rk
 it

em
s

a

d
ev

el
o

p
er

w
o

rk
ed

 o
n

H
o

w
 lo

n
g

a

d
ev

el
o

p
er

 w
as

w
o

rk
in

g
o

n
 a

ce
rt

ai
n

 w
o

rk

it
em

N
u

m
b

er
 o

f

w
o

rk
 it

em
s

a

d
ev

el
o

p
er

so
lv

ed
/e

d
it

ed
/

cr
ea

te
d

/d
el

et
e

d

Ti
m

e
a

d
ev

el
o

p
er

sp
en

t
o

n

w
h

ic
h

 p
ro

je
ct

ti
m

e
a

d
ev

el
o

p
er

sp
en

t
o

n

w
h

ic
h

 p
ac

ka
ge

(j
av

a)

ti
m

e
a

d
ev

el
o

p
er

sp
en

t
o

n

w
h

ic
h

 c
la

ss

ti
m

e
a

d
ev

el
o

p
er

sp
en

t
o

n

w
h

ic
h

 m
et

h
o

d

n
u

m
b

er
 o

f

co
m

m
an

d
s

a

d
ev

el
o

p
er

ex
ec

u
te

d

(c
o

p
y,

 p
as

te
,

sa
ve

, o
p

en
,

cl
o

se
, s

te
p

-

in
to

(d
eb

u
gg

in
g)

,

et
c.

)

N
u

m
b

er
 o

f

co
m

m
it

s
a

d
ev

el
o

p
er

m
ad

e

Li
n

es
 o

f
C

o
d

e

(l
o

C
)

a

d
ev

el
o

p
er

su
b

m
it

te
d

Li
n

es
 o

f
C

o
d

e

(l
o

C
)

a

d
ev

el
o

p
er

ad
d

ed
/r

em
o

ve

d
 (

C
o

d
e

C
h

u
rn

)

N
u

m
b

er
 o

f

cl
as

se
s/

m
et

h
o

d
s/

va
ri

ab
le

s
a

d
ev

el
o

p
er

ad
d

ed
/r

em
o

ve

d
/e

d
it

ed

N
u

m
b

er
 o

f

co
d

e
el

em
en

ts

a
d

ev
el

o
p

er

lo
o

ke
d

 a
t

(s
el

ec
ts

/e
d

it
s)

n
u

m
b

er
 o

f

w
eb

 s
ea

rc
h

es

a
d

ev
el

o
p

er

m
ad

e

n
u

m
b

er
 o

f

co
d

e
re

la
te

d
 /

co
d

e

u
n

re
la

te
d

 w
eb

se
ar

ch
es

 a

d
ev

el
o

p
er

m
ad

e

n
u

m
b

er
 o

f

m
ee

ti
n

gs
 a

d
ev

el
o

p
er

 h
ad

d
u

ra
ti

o
n

 a
n

d

to
p

ic
 o

f
ea

ch

o
f

th
es

e

m
ee

ti
n

gs

n
o

t
im

p
o

rt
an

t
1

0
1

0
1

2
1

2
3

1
1

1
0

0
2

1
0

2

n
o

t
ve

ry
 im

p
o

rt
an

t
2

1
2

2
4

3
2

3
4

5
4

3
5

2
2

2
2

1

u
n

d
ec

id
ed

1
3

3
3

4
4

3
2

1
2

1
2

1
5

2
1

3
3

im
p

o
rt

an
t

4
4

3
4

0
1

3
2

2
1

3
4

4
3

3
5

2
1

ve
ry

 im
p

o
rt

an
t

2
2

1
1

1
0

1
1

0
1

1
0

0
0

1
1

3
3

M
in

1
2

1
2

1
1

1
1

1
1

1
1

2
2

1
1

2
1

M
ax

5
5

5
5

5
4

5
5

4
5

5
4

4
4

5
5

5
5

M
ea

n
3

.4
3

.7
3

.1
3

.4
2

.6
2

.4
3

.1
2

.7
2

.2
2

.6
2

.9
2

.9
2

.9
3

.1
2

.9
3

.3
3

.6
3

.2

M
ed

ia
n

4
4

3
3

.5
2

.5
2

.5
3

2
.5

2
2

2
.5

3
2

.5
3

3
4

3
.5

3

ST
D

V
1

.2
8

0
.9

1
.1

4
0

.9
2

1
.0

2
0

.9
2

1
.1

4
1

.2
7

1
.0

1
1

.1
4

1
.2

2
1

.0
1

0
.9

4
0

.7
1

.3
1

.8
8

1
.1

1
1

.4
7

D
o

cu
m

en
ta

ti
o

n
, T

es
ti

n
g

C
o

d
e/

d
eb

u
g/

a

n
al

yz
e

(w
eb

et
c)

Ti
m

e
sp

en
t

in

ch
at

 (
Sk

yp
e)

M
ee

ti
n

gs

n
u

m
b

er
 o

f
su

p
p

o
rt

 r
eq

u
es

ts

h
e

h
ad

 t
o

 h
an

d
le

n
o

t
p

er
 d

ay
, b

u
t

p
er

 m
o

n
th

M
et

ri
cs

R
es

u
lt

s

C
o

m
m

en
ts

W
o

rk
 It

em
s

D
if

fi
cu

lt
y

o
f

a
w

o
rk

 it
em

W
o

rk
 it

em
s

vs
. e

st
im

at
es

Ja
va

 E
le

m
en

ts
C

h
an

ge
 S

et
s

w
h

at
 t

yp
es

 o
f

el
em

en
ts

 (
h

e
w

o
rk

ed
 m

o
re

 o
n

 p
u

b
lic

/i
n

te
rn

al
/p

ri
va

te

el
em

en
ts

)?
 -

 J
u

st
 t

o
 k

n
o

w
 h

o
w

 it
 in

fl
u

en
ce

s
th

e
re

st
 o

f
th

e
p

ro
je

ct

n
u

m
b

er
 o

f
d

eb
u

gg
in

g
se

ss
io

n
s

n
u

m
b

er
 o

f
fi

le
s

to
u

ch
ed

lo
C

/M
 in

 c
h

an
ge

d
/a

d
d

ed
 e

le
m

en
ts

o
n

ly
 in

 r
el

at
io

n
 t

o
 o

th
er

 m
et

ri
cs

co
d

e
co

m
p

le
xi

ty
 o

f
ch

u
rn

ed
 c

o
d

e

W
eb

 S
ea

rc
h

es

h
o

w
 m

u
ch

 t
im

e
yo

u
 s

p
en

t

re
ad

in
g

d
o

cu
m

en
ta

ti
o

n
 o

n
 t

h
e

w
h

at
 t

yp
es

 o
f

w
eb

 s
ea

rc
h

es

(a
b

o
u

t
co

d
e,

 a
b

o
u

t

d
o

cu
m

en
ta

ti
o

n
?)

w
h

at
 w

as
 h

e
fo

cu
si

n
g

o
n

67

P
ro

d
u

ct
iv

it
y

m
y

p
ro

d
u

ct
iv

it
y

=
 s

o
lv

e
d

 is
su

es
/w

o
rk

 it
e

m
s/

ta
sk

s
+

 e
ff

o
rt

 s
p

en
t

o
n

 c
la

ss
es

 &
 b

u
gs

 -
 "

d
is

tr
ac

ti
o

n
s"

 b
y

w
eb

 &
 c

h
at

"w
o

rk
 u

n
it

es
"

co
m

p
le

te
d

 (
as

 p
la

n
n

ed
 in

 t
h

e
m

o
rn

in
g)

ta
rg

et
s

m
et

 f
o

r
te

ac
h

in
g

n
u

m
b

er
 o

f
fe

at
u

re
s

im
p

le
m

en
te

d
 (

in
 r

el
at

io
n

 t
o

 e
st

im
at

ed
 e

ff
o

rt
)

n
u

m
b

er
 o

f
b

u
gs

 f
ix

e
d

 (
in

 r
el

at
io

n
 t

o
 e

st
im

at
ed

 e
ff

o
rt

)

n
u

m
b

er
 o

f
im

p
le

m
en

te
d

 w
o

rk
 it

e
m

s
+

 a
 lo

t
o

f
so

ft
-f

ac
to

rs
if
 I
 r

e
a
c
h
e
d
 m

y
 d

a
y
-g

o
a
ls

.
A

n
d
 I
'm

 s
u
p
e
r

h
a
p
p
y

if
 I
 w

a
s
 a

b
le

 t
o
 d

o
 e

v
e
n
 m

o
re

if
 y

o
u
 f

e
e
l
yo

u
 a

c
c
o
m

p
lis

h
e
d
 s

o
m

e
th

in
g
 -

 t
h
e
n
 i
t
w

a
s
 a

 g
o
o
d
 d

a
y

n
u

m
b

er
 o

f
im

p
le

m
en

te
d

 f
ea

tu
re

s
if
 I
 k

n
o
w

 t
h
a
t
I
h
a
v
e
 a

c
h
ie

v
e
d
 s

o
m

e
th

in
g
 i
m

p
o
rt

a
n
t.

d
o
e
s
n
't

m
a
tt
e
r

if
 i
t
is

 t
h
e
 t
a
rg

e
t
I
a
im

e
d
 f

o
r

a
t
th

e
 b

e
g
in

n
in

g
 o

f
th

e
 d

a
y.

th
e

am
o

u
n

t
o

f
ta

sk
s

I c
o

m
p

le
te

. B
y

ta
sk

s
I m

ea
n

 is
su

e/
fe

at
u

re
 r

eq
u

es
t

o
f

an
 is

su
e

tr
ac

ke
r,

 o
r

ta
sk

s
se

t
b

y
m

ys
el

f
if
 I
 m

a
d
e
 p

ro
g
re

s
s
 o

n
 m

y
 t
a
s
k
s
 t
h
a
t
I
w

ro
te

 d
o
w

n
 f

o
r

th
e
 d

a
y

if
 I
 h

a
d
 p

ro
d
u
c
ti
v
e
 m

e
e
ti
n
g
s
 (

in
 c

a
s
e
 t
h
e
re

 w
e
re

 l
o
ts

 o
f

m
e
e
ti
n
g
s
 a

n
d
 l
it
tl
e
 t
im

e
 t
o
 w

o
rk

)

u
s
u
a
lly

 I
 h

a
v
e
 a

 p
la

n
 o

f
w

h
a
t
p
ro

b
le

m
s
 t
o
 s

o
lv

e
 d

u
ri
n
g
 a

 d
a
y
/w

e
e
k
.

I
n
o
rm

a
lly

 m
e
a
s
u
re

 t
h
e
 n

u
m

b
e
r

o
f

p
ro

b
le

m
s
 s

o
lv

e
d
 a

n
d
 n

u
m

b
e
r

o
f

m
o
re

 p
ro

b
le

m
s
 f

o
u
n
d

Fe
ed

b
ac

k

m
o

st
 o

f
th

es
e

 m
ea

su
re

m
en

ts
 s

ee
m

 t
o

 b
e

q
u

an
ti

ta
ti

ve
. W

h
at

 a
b

o
u

t
q

u
al

it
at

iv
e

 m
ea

su
re

m
en

ts
?

u
se

 c
o

d
e

q
u

al
it

y
to

 a
ss

e
ss

 p
ro

d
u

ct
iv

it
y

Appendix G

Contents of the CD-ROM

• Zusfsg.txt
German version of the abstract of this thesis..

• Abstract.txt
English version of the abstract of this thesis

• Bachelorarbeit.pdf
Copy of this thesis.

• DeveloperMonitoring.zip
Eclipse projects and Javadoc files containing the source code of the plug-in described in this
thesis. Moreover, the necessary plug-ins and an installation guide.

• Server.zip
PHP files containing the source code of the server part described in this thesis.

• WebClient.zip
PHP, HTML, CSS and JavaScript files containing the source code of the web-client (multi-
platform website) described in this thesis.

Bibliography

[AL03] Donald Anselmo and Henry Ledgard. Measuring productivity in the software indus-
try. Commun. ACM, 46(11):121–125, November 2003.

[Car06] David N. Card. The Challenge of Productivity Measurements. In Pacific Northwest
Software Quality Conference, 2006.

[CMT+08] Sunny Consolvo, David W. McDonald, Tammy Toscos, Mike Y. Chen, Jon Froehlich,
Beverly Harrison, Predrag Klasnja, Anthony LaMarca, Louis LeGrand, Ryan Libby,
Ian Smith, and James A. Landay. Activity sensing in the wild: a field trial of ubifit
garden. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
CHI ’08, pages 1797–1806, New York, NY, USA, 2008. ACM.

[Dun88] Anne S. Duncan. Software development productivity tools and metrics. In Software
Engineering, 1988., Proceedings of the 10th International Conference on, pages 41–48, April
1988.

[FM12] Thomas Fritz and Gail C. Murphy. Get Steppin’! What Motivates the Use of Activity
Sensors? Submitted to CHI’13, 2012.

[HSB+08] Tracy Hall, Helen Sharp, Sarah Beecham, Nathan Baddoo, and Hugh Robinson. What
Do We Know about Developer Motivation? Software, IEEE, 25(4):92–94, 2008.

[HWY09] Tu Honglei, Sun Wei, and Zhang Yanan. The Research on Software Metrics and Soft-
ware Complexity Metrics. In Computer Science-Technology and Applications, 2009. IFC-
STA ’09. International Forum on, volume 1, pages 131–136, 2009.

[Jon94] Capers Jones. Software metrics: good, bad and missing. Computer, 27(9):98–100, 1994.

[KHB06] Iftikhar Ahmed Khan, Rob M. Hierons, and Willem-Paul Brinkman. Programmer’s
mood and their performance. In Proceedings of the 13th Eurpoean conference on Cognitive
ergonomics: trust and control in complex socio-technical systems, ECCE ’06, pages 123–124,
New York, NY, USA, 2006. ACM.

[Lam84] Geoffrey N. Lambert. A Comparative Study of System Response Time on Program
Developer Productivity. IBM Systems Journal, 23(1):36–43, 1984.

[LML+06] James Lin, Lena Mamykina, Silvia Lindtner, Gregory Delajoux, and Henry Strub.
Fish’n’Steps: Encouraging Physical Activity with an Interactive Computer Game. In
Paul Dourish and Adrian Friday, editors, UbiComp 2006: Ubiquitous Computing, vol-
ume 4206 of Lecture Notes in Computer Science, chapter 16, pages 261–278. Springer
Berlin / Heidelberg, Berlin, Heidelberg, 2006.

72 BIBLIOGRAPHY

[LXC12] Dapeng Liu, Shaochun Xu, and Zengdi Cui. Programmer’s Performance with the
Keystroke as an Indicator: A Further Study. In Computer and Information Science (ICIS),
2012 IEEE/ACIS 11th International Conference on, pages 577–583, 2012.

[MER00] Christopher J. Morris, David S. Ebert, and Penny Rheingans. An experimental anal-
ysis of the effectiveness of features in chernoff faces. In 28th AIPR Workshop: 3D Vi-
sualization for Data Exploration and Decision Making, Proceedings of SPIE, pages 12–17,
2000.

[PSHH04] Allen Parrish, Randy Smith, David Hale, and Joanne Hale. A Field Study of Developer
Pairs: Productivity Impacts and Implications. IEEE Softw., 21(5):76–79, September
2004.

[Sim12] The Mail Online. D’oh! Divers find buried fish in the seabed that looks just like
Homer Simpson. http://www.dailymail.co.uk/news/article-2120550/
Homer-Simpson-Stargazer-fish-buried-seabed-divers-Lembeh-Strait.
html, image accessed in December 2012.

[SMJ12] Nicholas Sawadsky, Gail C. Murphy, and Rahul Jiresal. Reverb: Recommending
Code-related Web Pages. to appear in ICSE’13, 2012.

[SSP10] Rien Sach, Helen Sharp, and Marian Petre. Continued involvement in software de-
velopment: motivational factors. In Proceedings of the 2010 ACM-IEEE International
Symposium on Empirical Software Engineering and Measurement, ESEM ’10, pages 44:1–
44:4, New York, NY, USA, 2010. ACM.

[SSP11] Rien Sach, Helen Sharp, and Marian Petre. Software Engineers’ Perceptions of Factors
in Motivation: The Work, People, Obstacles. In Empirical Software Engineering and
Measurement (ESEM), 2011 International Symposium on, pages 368–371, 2011.

[TFAG06] Tammy Toscos, Anne Faber, Shunying An, and Mona P. Gandhi. Chick clique: per-
suasive technology to motivate teenage girls to exercise. In CHI ’06: CHI ’06 extended
abstracts on Human factors in computing systems, pages 1873–1878, New York, NY, USA,
2006. ACM.

[Whi97] Ken Whitaker. Motivating and keeping software developers. Computer, 30(1):126–128,
January 1997.

[Wol12] Gary Wolf. The Data-Driven Life. http://www.nytimes.com/2010/05/02/
magazine/02self-measurement-t.html, accessed in October 2012.

http://www.dailymail.co.uk/news/article-2120550/Homer-Simpson-Stargazer-fish-buried-seabed-divers-Lembeh-Strait.html
http://www.dailymail.co.uk/news/article-2120550/Homer-Simpson-Stargazer-fish-buried-seabed-divers-Lembeh-Strait.html
http://www.dailymail.co.uk/news/article-2120550/Homer-Simpson-Stargazer-fish-buried-seabed-divers-Lembeh-Strait.html
http://www.nytimes.com/2010/05/02/magazine/02self-measurement-t.html
http://www.nytimes.com/2010/05/02/magazine/02self-measurement-t.html

	Introduction
	Related Work
	Activity Sensing
	Developer Motivation
	Developer Productivity

	Retrospective Developer Analysis
	Tracked Developer Metrics
	Measuring Activities
	Measuring work with Java Elements
	Measuring work with Work Items
	Measuring Meetings
	Measuring Web Searches
	Measuring Change Sets

	Visualization of the Metrics
	Future Metrics

	Prototype
	Architecture Overview
	Developer Monitoring
	Activities Tracker
	Java Elements Tracker
	Work Items Tracker
	Meetings Tracker
	Web Searches Tracker
	Change Sets Tracker

	Server
	Database
	Data Upload Service
	Data Web Service

	Web Client

	Usage Study
	Results
	Limitations and Conclusions

	Metrics and Productivity Studies
	Productivity Study
	Results
	Limitations and Conclusions

	Metrics and Productivity Study
	Results
	Limitations and Conclusions

	Discussion
	Discussion
	Future Work

	Conclusions
	Tools and Environments
	Visualization of the Metrics in the Web Client
	Usage Study: Results
	Productivity Study: Results
	Metrics and Productivity Study: Questionnaire
	Metrics and Productivity Study: Results
	Contents of the CD-ROM

