
Bachelor Thesis
January 20, 2013

Interactive
Exploration

A Touch-Based Visual Studio Extension for
Software Exploration

Christian Lüthold
of Frauenfeld, Switzerland (09-714-981)

supervised by
Prof. Dr. Thomas Fritz

software evolution & architecture lab

Bachelor Thesis

Interactive
Exploration

A Touch-Based Visual Studio Extension for
Software Exploration

Christian Lüthold

software evolution & architecture lab

Bachelor Thesis

Author: Christian Lüthold, christian.luethold@uzh.ch

Project period: 23.07.2012 - 23.01.2013

Software Evolution & Architecture Lab
Department of Informatics, University of Zurich

Acknowledgements

I would like to thank several people for supporting me during the time I wrote this thesis. First
and foremost, I thank Prof. Dr. Thomas Fritz for giving me the opportunity to realize this project
at the Software Evolution and Architecture Lab and for his support in every phase of my work. As
there exists a very spare amount of literature or documentation concerning the development of a
Visual Studio plug-in, I appreciate the nice touch of István Novák, who offered me the material
of his unpublished book about the fundamentals of Visual Studio Package development for free.
Furthermore, I would like to thank Štěpán Šindelář for his preliminary efforts in order to make the
Graphviz1 base functionalities available for WPF developers. In addition to that, I could benefit
from his fast and viable replies. Another acknowledgement goes out to David Shepherd, whose
professional opinion was of valuable use when implementation decisions were concerned. Last
but not least, I thank all those people over the world, who tried to help me out or giving me hints
in public developer communities and forums whenever possible.

1http://www.graphviz.org/

Abstract

With the paradigm shift from simple mouse and keyboard interactions to more intuitive and
natural input mechanisms, one software takes advantage of such novel Natural User Interfaces
after another as they allow new ways of how users can interact with digital content. Instead of
simple clicks and keystrokes, more advanced movements can be captured and interpreted. In case
multi-touch enabled screens are employed, a wide range of natural finger or hand gestures could
act as commands. Even though such touch screens are omnipresent in our daily environment, yet
little effort has been put in the research of their application in the area of software exploration.

We tackle this lack of corresponding exploration tools by the development of a Microsoft Visual
Studio extension, which will suit the purpose of a touch driven source code investigation. This
plug-in, named Interactive Exploration, provides the opportunity to use simple touch gestures in
order to analyse code elements and their dependencies. A well-structured graph serves as mental
model, allows the navigation along entity relations and supports the annotation of particular
elements.

The conducted evaluation revealed that our approach fulfils the necessary requirements in
order to be intuitive. The design of the user interface, as well as the supported gestures and the
layout of the so-called Exploration Graph, were highly appreciated by the evaluators.

Zusammenfassung

Durch den Paradigmenwechsel von simplen Maus- und Tastaturbefehlen zu intuitiveren und
natürlicheren Eingabemechanismen wechseln mehr und mehr Programme auf die Verwendung
solcher Natural User Interfaces, da diese den Benutzern neue Wege der Interaktion mit digitalem
Inhalt erlauben. Anstelle von simplen Klicks und Tastaturanschlägen treten fortgeschrittenere Be-
wegungen, welche mittels Sensoren aufgezeichnet und interpretiert werden. Bei der Verwendung
eines Multi-touch basierten Bildschirms können verschiedene natürliche Finger- oder Handbe-
wegungen als Eingabebefehle dienen. Obwohl solche Touchscreens in unserem Alltag praktisch
omnipräsent sind, wurden bisher wenige Nachforschungen angestellt, die den Einsatz solcher
Technologien im Bereich der Untersuchung von Software erforscht hätten.

Mit unserer Arbeit nehmen wir diesen Mangel an entsprechenden Werkzeugen in Angriff.
Durch die Entwicklung einer Microsoft Visual Studio Erweiterung stellen wir ein solches bewe-
gungsgesteuertes Analyseprogramm zur Verfügung. Dieses Plug-in mit dem Namen Interac-
tive Exploration bietet die Gelegenheit bestimmte Elemente des Quellcodes, sowie auch deren
Abhängigkeiten, mittels einfachen Gesten zu untersuchen. Ein sauber strukturierter Graph di-
ent dabei als mentales Modell und erlaubt die Navigation entlang solcher Entitätsbeziehungen.
Ausserdem unterstützt er die Annotation bestimmter Elemente.

Die nachfolgend durchgeführte Evaluation legte offen, dass unser Ansatz die nötigen An-
forderungen einer intuitiven Verwendung erfüllt. Sowohl das Design der Benutzeroberfläche, als
auch die unterstützten Gesten und das Layout des sogenannten Exploration Graph, wurde von den
Bewertern wertgeschätzt.

Contents

1 Introduction 1
1.1 Motivation . 1

1.1.1 Code Elements and Relations . 1
1.1.2 Natural User Interfaces . 1

1.2 Outline . 2

2 Related Work 3
2.1 Information Visualization Techniques . 3

2.1.1 Diagrams . 3
2.1.2 Dependency Graphs . 4

2.2 Source Code Exploration . 6
2.3 Source Code Navigation . 7
2.4 Multi-touch Collaboration . 8
2.5 Conclusion . 9

3 Problem Definition 11
3.1 Requirements . 11

3.1.1 Visualization Space . 11
3.1.2 Facility of Inspection . 11
3.1.3 Meaningful Graph-Layout . 12
3.1.4 Incremental Exploration . 12
3.1.5 Visual Orientation Cues . 12
3.1.6 Touch-based User Interaction . 13

3.2 Goal . 13

4 Approach 15
4.1 The Visual Studio Extension . 15

4.1.1 Features . 15
4.1.2 Limitations . 20
4.1.3 Architecture . 21

4.2 Challenges . 24
4.2.1 Prohibited Abstract Syntax Tree Access . 24
4.2.2 Call-Relation Readout . 26
4.2.3 Meaningful Graph Layout Algorithm . 27
4.2.4 Aid to Orientation . 29
4.2.5 Gesture Recognition . 29

4.3 External Technologies and Frameworks . 30

viii Contents

4.3.1 Graphviz and Dot . 30
4.3.2 Graphviz4Net . 30
4.3.3 Problems & Modifications . 31

5 Evaluation 33
5.1 Usability Study . 33

5.1.1 Methodology . 33
5.1.2 Heuristics and Findings . 34

5.2 Realisation . 37

6 Conclusions 39
6.1 Conclusions . 39
6.2 Summary of Contributions . 39
6.3 Future Research . 40

A PQLabs G3 Monitor 41

B The DOT Language 43

C Visual Appearance of the Prototype 45

D Used Tools and Frameworks 47

E Installation Manual 49

F Contents of the CD-ROM 51

Contents ix

List of Figures
2.1 Unstructured call graph visualization. 5
2.2 Two-phased navigation behaviour model. 7

4.1 The user interface of Interactive Exploration. 16
4.2 The solution’s hierarchical overview. 17
4.3 The Exploration Graph. 18
4.4 The navigation menu for callees. 19
4.5 The annotation control. 19
4.6 The history control. 20
4.7 The Visual Studio package architecture. 22
4.8 The MVVM architectural pattern. 23
4.10 The highlighting mechanism of the Exploration Graph. 29
4.9 The data model of the Interactive Exploration extension. 32

B.1 Simple example of a structured graph. 43

C.1 The prototype user interface. 45

List of Listings
4.1 Interactive Exploration makes use of the Visual Studio automation service called DTE

Object. 24
4.2 The ModelBuilder.cs class is responsible for the reflection-based creation of the model

by means of the DTE automation object. 25
4.3 The RelationFaker.cs is able to fake call-relations such that Interactive Exploration’s

features can be run and tested. 26
4.4 The ExplorationToolViewModel.cs manages the addition and deletion of method ele-

ments. Sub-graphs are managed by means of a dictionary. 28
B.1 The DOT language content describing the graph in Figure B.1 43
B.2 The DOT language content describing the corresponding output of dot.exe. 44

x Contents

Chapter 1

Introduction

1.1 Motivation
With this thesis we tackle the implementation of Interactive Exploration, a Microsoft Visual Studio
2010 extension, whose major task is to support developers in the process of source code explo-
ration. In order to assist, we focus on a tidy visual representation of the current workspace as well
as modern interaction mechanisms. Our essential motivations are forthwith presented.

1.1.1 Code Elements and Relations
The architecture of a software system is the fundamental organisation of code components and
their relationships. During the development phase, the code base of a software project changes
and expands in its quantity. This evolutionary process leads to a decay of the initial design, such
that the finished software might differ in its content. The recovery of architecture therefore is an
important reverse engineering activity in order to understand what design decisions were made
during the development phase. Many approaches and tools to leverage this recovery processes
exist already. Most of them are directly integrated into the respective development environment.
Although those numerous aids and assistants have been introduced and allow the users to drill
down and refine views from a high-level perspective of code elements, little emphasis is put on
the importance of the dependencies between them [LL07].

The enrichment of software engineering tools with the ability to show code component re-
lations, like call graphs, inheritance diagrams or the visualization of code-flow, might be of im-
portance and bear great potential for supporting the understanding of large evolving software
systems.

1.1.2 Natural User Interfaces
It is a very well known fact that the creation of software is a complex undertaking. The processes
of designing, developing and maintaining software systems become more difficult and require
suitable and supportive tools. Today, the majority of such tools forces their users to interact with
them by using mouse and keyboard input. Interestingly, the emerging field of so-called Natural
User Interfaces provides new ways of interactions with digital content. These new technologies
avail themselves of sophisticated sensors to acquire input data of any form and transform them
into commands. One of the most famous approaches is the multi-touch technology that nowadays
is a common way to operate with many mobile devices by means of habitual finger and hand

2 Chapter 1. Introduction

movements. Such Natural User Interfaces allow their users to interact in a more intuitive and — as
the name suggests — natural manner.

An obvious conclusion is to take advantage of such input mechanisms and try to improve
existing software engineering tools or to come up with totally new approaches. In combination
with adequate abstraction and meaningful representation of information, these new ways could
be particularly helpful.

1.2 Outline
Having presented our motivation for a novel implementation of a software exploration tool, we
continue in the following chapter with the listing and explanation of several approaches, whose
principles or features are related to our work. Chapter 3 then analyses weak points and com-
promises of some of those existing tools and proposes appendages of amelioration. Furthermore,
it contains a concrete definition of our main goals. The successive Chapter 4 is dedicated to en-
capsulate concrete details about the realization of our approach, namely the Interactive Exploration
extension. Among the features and limitations of our software, we also provide information about
the most difficult challenges and third-party tools that we employed in order to achieve our goals.
Chapter 5 reports our methodologies of evaluation. It contains a usability study, that was applied
to a prototype of the extension, and presents the corresponding results. Additionally, the final
version of the plug-in is checked for the compliance with our goals. Finally, we conclude our
thesis with Chapter 6, where we list our contributions and suggestions for possible future work.

Chapter 2

Related Work

This chapter provides an overview about several state-of-the-art approaches concerning informa-
tion visualization techniques, source code exploration and navigation in the context of software
engineering activities. Furthermore, some findings about the usage of Natural User Interfaces and
their benefits for collaborative work are presented. Sure, most of the approaches to be mentioned
deliver assistance in multiple of these categories, but we extract their core ideas and list them
accordingly. After the presentation of the related works, we finally conclude the most interesting
features and requirements.

2.1 Information Visualization Techniques

2.1.1 Diagrams
Quite some research has been accomplished concerning how and why developers use diagrams
in their daily work. Cherubini et al. [CVDK07] found that such informal notations are often used
to support face-to-face communication and they claim that current software engineering tools
are not capable of supporting this need, because they do not help developers to externalize their
mental models of the code. On account of their findings they demand spatial features from future
tools. They also state that conventional levels of abstraction should be introduced to show micro-
scopic details (i.e., mechanics of classes and methods) of the code on the one hand, but also the
macroscopic high-level structure (i.e., concepts such as modules and systems) on the other hand.

Lee et al. [LMFA08] have also been aware of the fact that current tools could be greatly im-
proved with a better support for diagrams. They not just investigated what kind of diagram-
matic tool support is desired, but also when certain content is useful. Furthermore they descried
what kind of information such diagrams should contain in any particular context. Developers
seemed to generally have many kinds of information they want to see in a diagramming tool.
The researches therefore categorized those diagram content requirements among their levels of
abstraction (i.e., package, class, method, etc.) and conclude that future tools either must be flexible
and adaptive enough or have to understand precisely when and where certain diagrams are utile.

Diagrams are widely used by software developers in order to deal with the demanding level
of complexity. Such diagrams, which reach from primitive sketches to high-quality posters, are
mostly used to understand an execution behaviour, to refactor code, to explain code to co-workers
or to design a user interface. DeLine et al. [DVR] at Microsoft Research remarked as well that IDEs
capable of tying source code and such diagrams, which serve as mental models, together, do not
yet exist. Furthermore they censure the outcomes of this lack of coupling, like the necessity of

4 Chapter 2. Related Work

switching media or the disorientation that origins from this tool-switching as well as the inability
to share diagrams and models with co-workers. In order to improve the support of visual code
diagrams in modern development environments, they launched a project to engineer and design
a Microsoft Visual Studio plug-in prototype. This plug-in, finally called Code Canvas1, should
carry out developers’ tasks from the tabs into an interactive map, which is coupled and synchro-
nised with its underlying source code, contains all of the required information needs and can even
be shared among team mates. The goal of Code Canvas is to replace the usage of multiple tabs,
which are acquired for each task, with one single map per task. Those maps can be managed and
filtered independently, such that instead of having a confusing amount of open tabs, only one
tab per task is used and all of a project’s documents (code files, icons, user interface designs) are
placed onto a code map. Another work by the same research team thus describes the analysis of
the diagramming behaviour of several developers to define the design of this map [CVD07]. The
final design was basically an architectural layer diagram sprinkled with types containing method
signatures. It additionally included features like representations of planned but not yet existing
code or colourized identifier fragments to aid visual searching. Because the content of many tasks
is mentionable large, monitor space could be overwhelmed by this amount of visualized infor-
mation. Code Canvas therefore uses a technique called Semantic Zoom to show different levels
of detail with distinct levels of zoom. An important lesson from this project was that developers
assign meaning to the spatial layout of the code and that they become familiar with the layout
because they often are working with it for a notable amount of time. This approach therefore
allows programmers to be better grounded in the code.

With Interactive Exploration we present another Visual Studio plug-in, whose main mission is
to deal with the visualization of the explored code. A well-structured single view of boxes and
arrows, each containing just a decent amount of relevant information, allows the externalization
of the code under discussion. Similar principles as with Code Canvas for navigation and zooming
are used in order to help the developers to stay oriented.

2.1.2 Dependency Graphs
The object-oriented programming paradigm introduces an implicit arrangement of source code
elements into various modules. At the same time, dependencies between them arise and fre-
quently gain much less attention than the modules which are known to represent the complex
functionality. Hence Bohnet and Döllner [BD06] combine static and dynamic analysis techniques
to extract the function call graphs of certain features. With the aid of this call graph, users are
able to explore and interpret their C/C++ source code in a different way than just by endless
document scrolling. The fundamental idea behind their work is to provide developers with a vi-
sual call graph representation and to assist them in localizing and understanding certain feature
implementations. This is an advantageous approach as it reduces the amount of code which has
to be inspected. A so-called Graph Exploration View provides various kinds of information on the
function currently under inspection. The neighbourhood of the method (i.e., callers and callees)
as well as the architectural context are made available.

The GEVOL system presented by Collberg et al. [CKN+03] also takes advantage of a graph
drawing technique for the visualization of large graphs, but additionally considers the evolution-
ary aspects of software. It aids in the discovery of the structure of legacy systems by visualizing
the changes the system has gone through. Precisely speaking, GEVOL extracts information about
some Java source code from a version control system and not only constructs call graphs, but
also inheritance and control-flow graphs. Furthermore, it displays the changes those graphs have

1http://research.microsoft.com/en-us/projects/codecanvas/

2.1 Information Visualization Techniques 5

gone through since the initial commit. By interpreting those colour-coded graphs, developers are
able to answer questions about why a program was structured the way it is.

Figure 2.1: A complex and unstructured call graph visualization. [YM97]

With large and complex systems come large and confusing graphs. Representing various code
elements and their relations on different abstraction layers in a depicted manner requires clever
graph layout algorithms or fade-out of information. Otherwise the interpretation of such un-
structured graphs, like the one in Figure 2.1, requires soon as much of a comprehension task as
it would without any graph at all. This is because those graphs differ by far from the structures
of the cognitive model created by the developers. Young and Munro [YM97] claim that a large
number of tools appear to have put little effort into layout and presentation and thus address
those challenges. Under their statement that layout matters, they demonstrate a new view of call
graphs that represent the necessary information in a readily understandable and intuitive man-
ner. Strictly speaking, they show the CallStax visualization technique which takes advantage of a
3D representation and shows function calls as stacks in a virtual environment. CallStax benefits
from it’s flexibility as the edges (i.e., the function calls) are perceived implicitly. Further space is
gained by dislocation of code information to other views or by representation of details, such as
metrics, by visual conventions and metaphors.

Hassan and Holt [HH03] complain about other shortcomings of dependency graphs, namely
the lack of annotation of dependencies. As they don’t want to miss the rationale (i.e., the rea-
son behind why a dependency was introduced or removed), the time of existence, the inter-
dependency-patterns nor who created a specific dependency, they propose the usage of so-called
Annotated Dependency Graphs (ADG). Edges show not only which entities are related but also con-
tain the listed information.

The Exploration Graph of our extension is a dependency graph as well, although it does not

6 Chapter 2. Related Work

represent control flows. Instead, statically read out call-relations and inheritance hierarchies are
visualized in the best possible tidy manner. Furthermore, annotation of graph nodes is supported,
however, we do not yet provide the possibility to assign meaning to the explicitly displayed
edges. Also, our plug-in is not able to deliver information about the evolutionary aspects of
the analysed software.

2.2 Source Code Exploration
Often the makers of software exploration tools structure the code of the analysed project into
modules which represent software element entities like packages, classes or methods. Software-
naut, a prototype for the exploration of large software systems and introduced by Lungu and
Lanza [LL06], follows this idea and allows the hierarchical top-down decomposition of such mod-
ules. By starting with a high-level view and continuously refining it with operations and filters,
relevant views of the architecture can be found. Additionally to an exploration perspective, which
shows the modules and their relationships in a graph-like representation, a detail perspective, of-
fering details about the selected entity, and a map perspective to preserve orientation within the
hierarchy are provided. The exploration view makes use of various visual metaphors in order
to encode information about the code. Edges are coloured among their relation types (i.e., invo-
cations and inheritances) and the entity-representing nodes are squares. The size of the area of
each square is proportional to the size of the incorporated module. But also the edges may have
different stroke broadnesses to indicate distinct cardinalities.

Many more software exploration tools use diverse views that are of valuable assistance. How-
ever, Favre [Fav01] describes that the generation of all those different kinds of software views is
not cost effective. This is due to an impressive amount of diverse types of entities, relationships,
software models and their representations. On top of that, multiple different perspectives (e.g.,
abstraction layers) could be of interest. Therefore, Favre introduces an object-oriented, dynamic
and easily adoptable framework to overcome this problem. GSEE (Generic Software Exploration
Environment) provides functionalities to specify and create new exploration tools very easily. It
does not depend on a particular kind of data or visualization and is hence easily customizable
such that views and graphical representations for any data sources can be configured.

Another interesting approach of how large and complex software systems can be explored
arose from the research of Bragdon et al. [BRZ+10]. They built a prototype IDE user interface,
called Code Bubbles, for the exploration of Java code. The strategy of this novel user interface
is to start with an empty canvas and add items as the user searches and browses the project.
The idea behind is to show multiple editable fragments simultaneously and to support high-level
interactions between working sets. This should reduce navigations and support developers to
perform complex code understanding tasks. Bubbles serve as metaphors for investigated code
fragments since they - in contrast to windows - have a minimal border decoration (i.e., scroll- and
tilebars) and because bubbles are light, they push each other away in case overlapping occurs.
Beside this repositioning of bubbles, support for automatic syntax-aware reflow and elision of
code is granted. This functionality serves as mechanism to maintain a justifiable level of abstrac-
tion. Bubbles can for example be created to enable the search for certain code snippets within the
project. Classes and methods that contain matching results will be presented in further bubbles
which then can be filtered to refine the results. As one navigates through the found relevant code,
new bubbles for each method that is inspected will be created. All those editable bubbles are
linked together to indicate the hierarchy of the project architecture.

2.3 Source Code Navigation 7

Interactive Exploration provides a hierarchical overview representing the different code levels.
Projects, types and methods are neatly nested in order to offer an overview of the context under
exploration. As with Code Bubbles, the initial workspace is empty and elements are continuously
added. It is not mandatory to start with a single entry, but rather a whole subset of entities can
serve as the origin of interaction. The whole plug-in takes advantage of colours, conventions and
metaphors as well since they significantly support the cognitive factor.

2.3 Source Code Navigation
Ko et al. [KMCA06] found that developers spend on average 35 percent of their time performing
navigation when they try to understand an unknown code base. The researchers observed that
developers typically searched first manually or with the aid of search tools for a relevant entry
point. Afterwards, they usually follow in- and outgoing dependencies of the located code.

Figure 2.2: The two-phased navigation behaviour model. Phase 1: searching an entry point. Phase 2:
navigation through the call graph. [KKD+11]

A similar two-phase model regarding the method call graph has been addressed by Krämer
et al. [KKKB12]. Concerning this model, shown in Figure 2.2, developers search for an anchor

8 Chapter 2. Related Work

point in phase one and then proceed with following different paths until they find the code frag-
ment they want to work with. To simplify the process of back-and-forth navigation (i.e., the sec-
ond phase), Karrer et al. [KKD+11] focused in an initial step on the development of Stacksplorer.
Stacksplorer is a plug-in for the XCode programming environment and visualizes the call graph
neighbourhood of a certain method and supports the navigation through it. At the same time,
it provides additional information scent, like names and classes, about those calling and called
methods. Furthermore, paths that have been traversed can be annotated and bookmarked for
later use. In order to support the first phase (i.e., the search for an entry point) as well, Krämer et
al. [KKKB12] introduced Blaze, yet another XCode plug-in, which works pretty much like Stack-
splorer. In contrast, the paths of the method, which the developer is focussing, are automatically
updated and important additional information is provided. When the entry method is found, it
can be locked and thus the anchor point is made explicit. With both tools the intention of the re-
searchers was to reduce the risk of introducing side-effects while maintaining software by making
available an easy to use navigation through callers. On the other side, stepping through called
methods should help developers to better find and understand the implementation details.

In order to improve how complex source code and its information spaces can be explored,
Storey et al. [SBM+02] developed SHriMP (Simple Hierarchical Multi-Perspective) which allows
the investigation of several different perspectives and abstraction levels. Although much effort
has been attached to how the informative data should be visualized, SHriMP merges different
sources of information to enhance the way how developers browse and explore. That is why it
makes use of animated panning and zooming motions and provides continuous orientation and
contextual cues to developers while they navigate through the different perspectives.

By means of a hierarchical overview and a method filter, a suitable or specific entry point
can be found with our Visual Studio extension too. The navigation along incoming or outgoing
dependencies is possible as well, however, the neighbourhood is not shown all the time and
visible only on command. Among these contextual cues, we also enable animated panning and
zooming in order to keep the user’s orientation. On the opposite, we did not realize different
abstraction levels.

2.4 Multi-touch Collaboration
Jetter et al. [JGR+12] demonstrate the high relevance of modern user interface evolution. Vari-
ous approaches, such as touch or motion tracking systems, do their contributions to more natural
user interfaces. They describe the movement from the traditional WIMP (Windows, Icons, Menus,
Pointers) paradigm, where a single user works with mouse and keyboard, to a new generation of
interactive spaces with Natural User Interfaces. For this reason, Jetter and his colleagues discuss
haptical and gestural interfaces like Microsoft’s Kinect2 gaming controller - which has found to
be not only of interest for gaming due to his sensory capabilities - that captures body movement,
gestures and voice as input or tangible user interfaces like the Microsoft PixelSense3 tabletop. They
state that such interface types can help not only to exploit our natural motor skills, but also could
support face-to-face collaboration and increased group awareness.

Similar statements have been made by Hilliges et al. [HTB+07], but they concentrate more on
the users and how they behave while working together with such novel technologies. In their
study they present a number of design goals for electronic systems to support so-called Collab-

2http://www.microsoft.com/en-us/kinectforwindows/
3http://www.microsoft.com/en-us/pixelsense/default.aspx

2.5 Conclusion 9

orative Creative Problem Solving, that is the exchange of knowledge, the coordination of different
skills, the interpretation of information and the creation of new ideas. Based on those guidelines,
they designed and implemented an interactive environment which runs on a large wall display.
In addition, Hilliges and colleagues argue that such collaboratively tangible surfaces not only of-
fer new possibilities for the design of systems that can exploit physical and social requirements
of traditional face-to-face meetings, but also benefit from the digital technology. Precisely, they
name the storage and reloading of data, the fast access of information and the ability to easily edit
and traverse data.

Another concrete approach, where a tangible user interface is used for a collaborative user
interaction, has been developed by Müller et al. [MWFG12]. In order to make code reviews more
desirable, they moved the process of reviewing from a lonesome workspace to a collaborative
environment, namely a multi-touch tabletop. Their tool, called SmellTagger, provides a graphical
guide that leads through the detection and investigation of so-called Code Smells which often indi-
cate architectural inconsistencies. Furthermore, problem-relevant code can be annotated (e.g., for
later refactoring) by means of audio notes. This approach also comes with various visualizations,
like graphs, diagrams and metaphors, and allows the definition of own gestures to interact with
the virtual environment. In addition to that, much effort has been spent on making the interaction
collaborative for all users around the touch interface. On these grounds, every single view can be
duplicated, rotated, resized and removed in order to guarantee the concurrent interaction.

Interactive Exploration is another multi-touch driven software exploration tool where the inter-
action is intended to take place on a large wall screen. Of course, mouse and keyboard can be
used as well, however, taking advantage of a touch enabled interface allows multiple developers
to simultaneously interact with the content. Rather than visualizing different kinds of diagrams
or code metrics, a single dependency graph is the matter of examination.

2.5 Conclusion
The analysis of developers’ diagramming behaviours has shown that visualization techniques
should not only contain information about code elements and support the building of mental
models, but also allow programmers to reflect about code and to discuss it with co-workers. They
should be helpful in processes like understanding, refactoring, designing or explaining source
code. Additionally, such tools must provide mechanisms to support developers in finding those
information fragments they need. Metaphors or colour-coded informations could help visual
searching, whereas animations, such as panning and zooming, could help users to stay oriented.
Information scents, like the neighbourhood of a certain data type, are often used to assist the
developer while navigating through the code base. In order to allow fast access to the code for ac-
complishing comparative tasks, the graphical representation and the underlying code are mostly
tightly coupled. As developers seem to have many information needs, exploration tools, which
provide different kinds of context-based information and even on various levels of abstraction,
would be of great use. Graph-like representations are frequently considered to show the inter-
actions of diverse information or code element types and their dependencies. Some approaches
even take evolutionary aspects into account and hook them into the graphs as well. However,
great attention has to be paid when visualizing large graphs as the layout might quickly become
confusing. The possibility of interacting with tools by means of tangible Natural User Interfaces
does not only allow developers to use habitual and common gestures, but also aids in collocated
team work. Since multiple user inputs can be handled at the same time, team collaboration is
boosted and group awareness is increased.

Chapter 3

Problem Definition

In this chapter we present the targets tackled by our thesis. First, we show where we found
appendages of improvement and why it is relevant to come up with yet another software explo-
ration approach. Hence, we list some requirements our tool has to fulfil and also highlight and
discuss the differences to other currently existing tools. Secondly, we concretely formulate the
goal of this thesis.

3.1 Requirements
We discuss some aspects of widely spread techniques of existing software exploration tools and
argue that some parts require further attempts to be observed. We also note some requirements
we want to lay the focus on in our work, even though they have been examined in detail.

3.1.1 Visualization Space
Most work is still done using source code editors despite the fact that these textual representations
cannot easily convey many dependencies and relations of code elements. Many tools accommo-
date these shortcomings with visual graphs which show all necessary interactions. However, a
common issue that quickly arises, is the lack of space for such huge constructs. Even modules
that are assumed to be little often contain an immense number of hidden relations. The problem
becomes obvious if one catches a glimpse at graphs created by tools like GEVOL [CKN+03] or
Softwarenaut [LL07].

Thus, our approach is intended to be of most valuable use when large screens are employed.
We will design for such dimensions right from the start like Hilliges et al. [HTB+07] did with their
interactive brainstorming system. A further advantage that arises from focussing to bigger visu-
alization spaces is the additional room which possibly will allow more users to gain information
from the same screen or to simultaneously interact with it.

3.1.2 Facility of Inspection
On the one hand, current tools, such as CallStax [YM97], try to help developers staying oriented
by providing facile interpretable graphical representations or metaphors. On the other hand, they
make available many informations that have been acquired by smart algorithms (e.g., the Graph
Exploration View presented in [BD06]) while totally plastering the user interface at the same time.

The difficulty is to find the right middle course in order to help the developers and not to
confuse them even more. The findings of Lee et al. [LMFA08] could thus be of interest as they

12 Chapter 3. Problem Definition

already found which information is relevant on which level of abstraction and also when it is
important to show it based on the context.

3.1.3 Meaningful Graph-Layout
Apart from having enough space to visually present huge graphs and filtering the information
overflow to relevant parts, the layout process of that graph should contribute to make the repre-
sentation as meaningful as possible. Young and Munro [YM97] offered a solution with CallStax
to overcome crossing edges by totally hiding them and making the perception of dependencies
implicit. The investigation of diagramming conventions conducted by Cherubini et al. [CVDK07]
have shown that developers often use boxes and arrows in an informal manner to represent enti-
ties and relationships. Furthermore, they often observed visual arrangements where the relation-
ships had a dominant flow, such as left-to-right or top-down.

Our mission is to look for an advantageous layout of a 2D graph rather than making use of
a novel 3D approach. We further want to provide possibilities to automatically layout the graph
in several different manners in order to support the spatial orientation along dependencies (e.g.,
left-to-right navigation from calling to called methods). On top of that, entities should be grouped
into some higher-order structures as this helps to understand the architectural context.

3.1.4 Incremental Exploration
The search of relevant code inspection entry points is equally important as the subsequent navi-
gation along incoming and outgoing dependencies. Stacksplorer [KKD+11] and Blaze [KKKB12]
both provide mechanisms to support developers in applying these phases where methods are
concerned. However, they do not allow users to navigate among multiple paths concurrently.
The multi-view visualization proposed by Bohnet and Döllner [BD06] also provides techniques
to search and navigate the code base, but contrarily shows all existing paths of a module and thus
does not provide ways to incrementally explore and build up only specific dependency paths.

A combination of both approaches might be worth a test, where the two-phased exploration
model as well as the simultaneous constitution of particular dependency graphs are supported.
Furthermore, giving early notice of possible outgoing travel directions of an entity would serve
as information scent and therefore assist the routing towards parts of interest.

3.1.5 Visual Orientation Cues
The minds behind SHriMP [SBM+02] showed that the animation of visualizations can aid the de-
velopers to stay continuously oriented within the graphical concept of the underlying code. The
same principle is used by tools like Code Canvas [DR10] or Code Bubbles [BRZ+10] where the vi-
sual content can easily be investigated by zooming in and out and by panning the view such that
content of interest is centred. Additionally, a view presenting the affiliation in the explored hier-
archy of the visible modules should offer a sense of context and orientation. The Map Perspective
of Softwarenaut [LL06] demonstrates such an approach.

We do not only want to provide visual information about where a module resides within
the hierarchy tree, but also which modules are currently under exploration. On account of this,
developers will be able to keep track of the architectural nesting and the selected subsets simulta-
neously. The tool should also provide capabilities to zoom out to yield a better insight about the
overall structure.

3.2 Goal 13

3.1.6 Touch-based User Interaction
Several efforts have already been made in order to move the user interaction paradigm from only
keyboard and mouse input to more natural input methods. Those modern input mechanisms
promise to be more intuitive as habitual hand and finger movements can be used to interact
with the tools. SmellTagger, introduced by Müller et al. [MWFG12], demonstrates one approach
where a multi-touch display serves as input interface. Their research results have shown that the
exploration of source code can be executed using touch input only.

With our tool, we will also support a touch-based interaction in addition to the traditional
input methods. However, action triggering gestures have to be simple in order to facilitate the
paradigm shift to more sophisticated user interfaces. Catching a glimpse at some of the latest mo-
bile devices, such as smartphones or portable tablet computers, bares that many manufacturers
use the same facile touch gestures to interact with the displayed content. Because of this observa-
tion, we want to take advantage of those well-known gestures for the interaction and navigation
of our tool too. Apart from switching the kind of interaction, multi-touch tables or wall displays
also open new ways for developers to operate collaboratively. This is not only due to the bigger
screen size, but also to the fact that multiple users are able to draw their gestures on the surface
in order to interact with the tool concurrently.

3.2 Goal
The goal of this thesis is to develop a new software exploration tool, which deals with the visual-
ization of code elements and the relations between them, while all aforementioned requirements
should be respected. Concretely, the two-phased exploration model (see Figure 2.2), namely the
search and concrete selection of one or multiple specific code elements, as well as the subsequent
navigation along dependencies, has to be supported. The representation of those code elements
and their dependencies should be visualized by means of a dynamic graph to allow the consec-
utive attachment of more and more nodes and edges. Furthermore, the finished tool has to be
able to cope with the emergence of increasing constructs. This visual code navigation approach
should assist developers in reviewing, analysing and annotating existing code by making avail-
able a well structured visualization to support their individual mental models of the selected
code fragments. A moderate employment of the available space used for the presentation of in-
formation is prescribed. In addition, this software should enable developers to use multi-touch
interactions in order to operate with it. Simple, intuitive and natural gestures to manipulate and
navigate through the visualized content should be provided. In particular, program elements and
their relationships should become incrementally explorable by means of simple touch gestures.

The user interface has to be structured for the primarily use of a huge wall display, namely the
PQLabs G3 Monitor, which serves as touch interface. More details about this screen can be gleaned
in Appendix A.

The finished version of our approach should finally run as a Microsoft Visual Studio 2010 ex-
tension and make available its features to .NET C# developers. The plug-in should come with its
own views that directly integrate with the rest of the programming environment.

Chapter 4

Approach

In this chapter we provide information about the concrete realisation of the Visual Studio exten-
sion called Interactive Exploration. Among features and their implementation details we present
also the major challenges we had to address. We thus cover some workarounds that were in-
troduced to lessen their impact. In addition to that, we further demonstrate and discuss the
underlying graph calculation engine.

4.1 The Visual Studio Extension
This section is intended to deliver an overview about the extension we developed. We hence list
the implemented features and show how they are intended to be applied. Also part of this section
are limitations that were made to our software, as well as statements to reason their absence.
Further topics then discuss more concrete aspects of our work, such as the basic architecture of
the plug-in and some implementation details.

4.1.1 Features
The Interactive Exploration tool comes with a bunch of features which will be introduced one after
another in the following part. The listing is done in such a manner that the features are discussed
in a logical order which would make sense to a new user, since it demonstrates a possible inter-
action workflow.

Extension Tool Window

The Interactive Exploration plug-in basically consists of a single view which can easily be embed-
ded between other arbitrary tool windows of Visual Studio. The user is allowed to dock the ex-
tension’s frame wherever he wants since the graphical user interface dynamically adapts its size
and allows for a user-specific layout of the personal workspace. However, in case one likes to take
advantage of a huge display, the recommended way is to represent the extension’s tool window
in full screen mode. The composition of the whole user interface is pictured in Figure 4.1. Like
any other integrated development tool, our extension received an entry in Visual Studio’s tool
menu. The interactive plug-in content can be opened as soon as a solution is loaded within the
IDE. The compendium of Interactive Exploration’s single graphical representation consists of three
parts, whose meanings will all be discussed in detail later on. The intention here is to provide one
main part, that contains the explorable content through which can be navigated. The other two
parts provide additional views, that encapsulate information about the analysed context, but are

16 Chapter 4. Approach

not meant to be of importance all the time. For this reason, those two panels can easily be hidden
whenever they are not necessary for the current task at hand. This allows the main exploration
view to consume more space and to layout its focused elements in a broader range.

Figure 4.1: The whole user interface of the Interactive Exploration extension. All parts are discussed in this
chapter.

Hierarchical Overview

The first of the two aforementioned additional parts is reserved for an overall hierarchical overview
about the underlying and analysed solution. All elements of the current workspace are aggre-
gated and displayed in a meaningful manner as can be seen in Figure 4.2. This means that all
projects the solution consists of are alphabetically listed, as well as every type which is defined
within one of them. If a type element represents a class, all its specified methods are itemized in
the hierarchy as well. Having an optionally visible view, dedicated to the entire code element hi-
erarchy, makes sense to the user as he or she most likely wants to gain an overview of the context.
This is also based on the fact that Visual Studio 2010 does not itself provide an inbuilt represen-
tation of the workspace in such a manner. The very well-known Solution Explorer indeed makes
available a similar hierarchy, but it only lists the solution’s content in a file based manner, that also
shows the projects and the code files associated with them. Such an approach does not guarantee
that every defined type is represented as most programming languages allow the definition of
multiple types in a single file. Furthermore, the Solution Explorer does not contain any informa-
tion about methods at all. In order to explore the solution’s code elements, the user either may
have a specific entry point or want to search for an interesting one. The hierarchical overview in
addition is intended to serve this reason. A developer interested in a specific method can make
use of the provided search box which is able to filter the hierarchy among a key word. This al-

4.1 The Visual Studio Extension 17

lows for a more precise and quicker discovery of a starting point. Any element can be selected or
unselected, no matter whether a whole project wants to be inspected or only a specific method of
a certain class type. A little coloured square beneath every selectable item indicates information
about the current selection status of the element such that the chosen parts of the solution can
easily be distinguished from the rest. Once a code element is selected, it gets inserted into the
Exploration Graph, which brings us to the next feature.

Figure 4.2: A hierarchical overview of the solution’s content.

Exploration Graph

As we have already mentioned, the main part of the extension’s view consists of the navigable
part, whose duty is to take care of the so-called Exploration Graph. This graph, pictured in Fig-
ure 4.3, contains all selected code elements and shows their relations. Concretely speaking, every
selected method is added as a node. Those nodes consist of the method’s signature (i.e., name
and parameter list) and optionally its return type. Besides, a little icon is displayed, which pro-
vides compressed information about the method, such as its level of accessibility or whether it is
static or virtual. In the event of adding multiple methods that are all defined by the same type,
the respective nodes are aggregated and drawn nearby each other in a common sub-graph. Sub-
graphs thus represent types and encapsulate all type-related information that arise during the
exploratory process. It contains the type’s name, which optionally can consist of the full .NET
namespace description, and again, an icon takes over the compression of further information.
Among methods and types, the graph includes two species of code element relations which are
added as different kinds of edges. A directed edge between two nodes represents a call-relation
between the two connected methods. If, on the other hand, two sub-graphs are linked, a type
inheritance relation is represented.

The default layout direction of the graph is left-to-right in order to simplify the interpretation
of the visualized call-relations. However, this layout can easily be changed to top-to-bottom for
example, such that type inheritances are more intuitively arranged. Of course it is possible to

18 Chapter 4. Approach

remove any code element from within the graph in order not to be dependent of the probably
hidden hierarchy view every time. This functionality is accessible through a simple little context
menu which is available for every method or type in the graph. The successive feature explains
how the Exploration Graph can be navigated.

Figure 4.3: The Exploration Graph contains all selected code elements and shows the dependencies be-
tween them.

Multi-touch Navigation

We announced to support not only the first step of the two-phased navigation behaviour model
(see Figure 2.2), but also the subsequent walk through the call relations. For this reason, several
navigation options have been added to the graph’s nodes. Every displayed method element is
able to open a menu, containing a list of all called methods, to it’s right side of the node (see
Figure 4.4), or another menu to the left, providing information about every calling method re-
spectively. Those listings should help the user to analyse the direct neighbourhood of a method.
Among the enlisted names of calling or called methods, also their particular selection states are
indicated, which allows to gain a quick survey about whether they are already represented by the
graph or not. By means of selection or unselection of such an enlisted item, the relative method
element is added or removed from the graph. In addition, two buttons per navigation menu ac-
company the list. The first one allows all itemized methods to be added at once, the second button
removes them respectively. The graphical user interface of the Exploration Graph is touch-enabled,
meaning that a user can interact with it by using simple touch gestures. To open the navigation
menu to head for a method’s callees, a simple swipe gesture to the right on top of the method node
is sufficient. The same applies for a left swipe, where a navigation menu with callers pops up. A
single tap on a node in the graph either closes open navigation menus or toggles the visibility of
the already mentioned context menu.

Depending on the user’s needs, quite a bunch of nodes and edges may arise while increasing
the size of the graph. Assuming a scenario, where the graph is large enough to not fit the bound-
aries of the view any more, the exploration view provides a zoom control (depicted in Figure ??),
which allows the graph to be zoomed out or in, such that its whole extent is visible without any
border overflows. This functionality is controllable using touch gestures as well. In order to move

4.1 The Visual Studio Extension 19

Figure 4.4: By means of a swipe gesture to the right, the navigation menu for called methods can be opened.

the current viewport around, one finger can be used to pan the graph. The zoom factor can easily
be changed by means of two fingers. Pinching the distance of the two fingers initiates the view
to zoom out, whereas spreading the distance zooms in. This interaction approach is very well
known as Pinch-to-Zoom and is almost always used when content displayed by a touch screen has
to be resized.

Code Element Annotation

The second part of the extension’s user interface that optionally can be retracted consists of three
tabs. One tab is reserved for a control area which deals only with the annotation of the various
code elements (see Figure 4.5). Any type or method can be assigned with different kinds of anno-
tation. In order to focus any sub-graph or node, it is enough to touch it and make it automatically
matter to the annotation control. The simplest way of annotation is to write an element-specific
note and attach it to the particular element. The control provides a text box where comments,
critics or questions can be written, edited and read. Once such a memo has been composed, an
icon is added to the representative in the graph so as to give hints where comments are deposited
(see Figure 4.1). Another possible way of annotation is to first define a topic due to which the
source code is explored. The annotation tab allows to specify three such topics at the same time
and adds an identifiable colour to it. As the Exploration Graph is investigated and code elements
are found to be relevant to the topic, they can be made members of it by simply adding a tag to the
elements. This tagging just adds a little circle of the topic’s colour to the sub-graphs or nodes. This
procedure allows for example to create and be aware of travelled paths or to just make groups of
elements which are relevant to certain inquisitions.

Figure 4.5: The annotation control allows to add elements to a certain annotation path or to compose a
specific note.

20 Chapter 4. Approach

Exploration History

As a user interacts with the Exploration Graph, selects and removes methods or types and follows
call-relations, he probably wants to browse his navigation history at some point. To support
this, a further feature has been added to the extension, namely a history which contains all those
steps. Hence, another tab, shown in Figure 4.6, is provided by the extension’s interface, containing
this information and listing an item for every interaction step. All entries possess a detailed
description of what exactly happened to the graph as well as a separate button. This specific
button is dedicated to permit the user to reverse any interaction in the history. In case a method
has been unintentionally selected, the button can be considered to undo this step. This not only
allows to correct any possible missteps, but rather gives the opportunity to turn back the clock at
a later moment of the exploratory process. Once a change in the graph has been made undone,
the discussed button alters its functionality. Concretely speaking, clicking this button again would
result in the representative change to be redone. The whole behaviour is similar to the well-known
undo- and redo-buttons that are provided by a variety of editor tools or web page browsers.
However, the history control of Interactive Exploration admits the user to intervene in any point of
time and not only in a stacked manner.

Figure 4.6: The history control allows to undo and redo certain modifications that were made to the Explo-
ration Graph.

4.1.2 Limitations
Although our Visual Studio plug-in has some useful abilities, it does not yet provide all of the
most important features for software exploration. We will briefly discuss some lacking function-
alities which are exposed to future work (see Section 6.3).

Dynamic Runtime Behaviour

Interactive Exploration is only intended to support software investigation of Visual Studio projects
that are developed with the C# programming language. Since C# operates under the rules of
the object-oriented programming paradigm, the real runtime behaviour cannot be precisely pre-
dicted by just statically analysing the source code. This issue can especially be proven when call-
relations are considered. The object-oriented approach allows function calls to be dynamically
bound at runtime. It is not possible to deal with this polymorphic behaviour in advance as the
Common Language Runtime decides, based on the running code’s context, which inheritance layer
should receive the call. Another but similar problem is that of dynamic callback mechanisms and
delegates, where again the runtime correctly assigns the responsibilities.

The current implementation of our extension’s code element and relation assembling algo-
rithm does its work just in a static manner. In case of polymorphism or callbacks, we are not able
to explore those possible dependencies using the Exploration Graph.

4.1 The Visual Studio Extension 21

Direct Source Code Access

It is beyond dispute that a good software exploration tool should provide access to the source
code of the currently inspected code elements. Catching a quick glimpse of the implementation
details is essential for the developer in order to decide, whether a certain type or method is rel-
evant for the exploration or not. The code contains valuable information about the algorithms
and architecture. During the navigation process, it is important to have the possibility to compare
the bodies of two methods, especially if they are call-related, such that the software’s logic can be
interpreted and analysed. The user should be given a chance to rapidly decide, whether he un-
derstands and accepts the code, or thinks that rather a notice or comment in form of an annotation
is appropriate.

Unfortunately, Interactive Exploration does not yet support this very inspection method. This is
due to the fact that the Visual Studio 2010 SDK did not provide an apparent or documented way to
access any code element of the solution and therefore we used a workaround to get the solution’s
content at all. This issue will be explained in more detail in Section 4.2.

Levels of Abstraction

Right from the start, we wanted to give the user the ability to have a look at the Exploration Graph
from different perspectives. With the introduction of abstraction layers, more or less information
in the graph should be shown in order to deal with the visual complexity of a possible huge
construct. We therefore added a further graph to our extension, which represented just types and
their inheritance relations, while methods and call-relations were totally hidden. Unfortunately,
the graph layout calculation unity was unable to cope with the simultaneous computation of
multiple graphs. This resulted in incomplete graphs with broken edges and empty sub-graphs
in every second case. We will present the underlying mechanisms and their limitations in more
depth in Section 4.3. Due to this fact, we were forced to removed this problematic type graph and
leave the implementation of well-oiled levels of abstraction to future investigations.

Save, Export and Share

Although the plug-in works correctly and encapsulates some neat features to build up an ex-
tensive graph, there is no saving mechanism that would allow the storage of the assembled
workspace yet. Such a functionality would be of good use to the user as the current state of
work could be interrupted and readopted at a later date. However, at the moment, our extension
does only allow to explore a Visual Studio solution for a single session.

A further feature we discussed during the requirements analysis, was to integrate an option to
export the current workspace. As soon as such a feature would be available, graphs could easily
be shared among co-workers. There indeed exist other software exploration tools that enable
their users to share content in order to support better collaboration and team work. However,
this feature got a very low priority and was, like the ability to save everything, not part of the
final release due to given limitations of such a thesis.

4.1.3 Architecture
This chapter is dedicated to give a concrete insight into the architecture of the Interactive Explo-
ration plug-in. First, we explain how Visual Studio can be extended and what mechanisms were
used in order to host our software. We then talk about its architectural pattern and cursorily dive
into the data model that forms the basis of the whole implementation.

22 Chapter 4. Approach

Extension Point

The architects of the Microsoft Visual Studio programming environment made their software ex-
tendible in many forms. Anyhow, the right choice between those different and unequal pow-
erful extension methods has to be made in order not to lose access to certain functionalities.
Among macros, add-ins, text-editor specific plug-ins (i.e., using the Managed Extensibility Frame-
work1 (MEF)) and packages, we decided to go for the most powerful of all extension mechanisms,
namely the Visual Studio Packages. The majority of all functionalities of the IDE, including pro-
gramming languages, editors, the debugger and the project system, are implemented by means
of such packages. From a developer point of view, adding a new package to Visual Studio is just
like appending core functionality to the environment as if it were developed by Microsoft. Con-
sequently, Visual Studio is not a monolith application, but rather a set of so-called Dynamically
Linked Libraries (DLL). The core functionality, called the Shell, hosts independent packages as soon
as they are needed. This composition is depicted in Figure 4.7. Furthermore, they are able to com-
municate and co-operate with each other through services and automation objects. The power
of any package comes from its ability to use the core services of the IDE. Furthermore, they can
provide own windows and views which can be directly integrated and placed between other tool
windows of the environment.

Figure 4.7: The package architecture of the Visual Studio IDE. A plug-in is, like all other core functionalities,
a Visual Studio Package and hosted by the Shell.

MVVM Pattern

As the main design concept of our software we applied the Model View ViewModel (MVVM) archi-
tectural pattern which is largely based on the well-known Model View Controller (MVC) pattern.
The principles of MVVM originate from Microsoft and are often considered by developers when
Windows Presentation Foundation (WPF) applications are built. This pattern allows to decouple
the implementation of the logic and the user interface. While we described the layout of the ex-
tension’s graphical user interface with the Extensible Application Markup Language (XAML), we
implemented the underlying data model with C#. The connection between the view and the

1http://msdn.microsoft.com/en-us/library/dd460648.aspx

4.1 The Visual Studio Extension 23

model is done by means of the View Model which serves as a controller. This means it is partly
responsible for the view’s logic and therefore manages and exposes the model data objects. The
view communicates with its view model through so-called Data Bindings that allow a powerful
and stable synchronisation between the two.

Figure 4.8: The MVVM architectural pattern. View and view model are synchronized by means of data
binding.

Every piece of Interactive Exploration’s user interface is separated and specified in a proper user
control which consists of a layout defining mark-up file and a tightly coupled code file, as it is
depicted in Figure 4.8. This so-called Code-Behind File includes some model unrelated view logic,
like animations or other calculations. Furthermore, a single view model was defined in order to
synchronize all those user controls that define the different aspects of the plug-in. This means, it
makes the data objects of the underlying model available and ensures a concurrent update to all
views via data binding. In the event of user interaction, this middle layer is again informed and
executes the corresponding logic which may also include the modification of particular model
data.

Data Model

Since the fundamental idea of the extension is to explore code elements of the underlying devel-
opment project as well as their relations, we decided to constitute our own model which should
accurately represent the solution under inspection. This model should allow us to manipulate
and modify its content among our needs. Going for such a flexible model has proven to be es-
sential for our research, as it allowed an easy adoption in case changes had to be made or new
requirements came up.

According to Visual Studio’s nested entity pattern, we defined own model types and interfaces
as depicted in Figure 4.9. We defined a SolutionModel.cs class which serves as the main model type
and takes care of all the solution’s projects. Furthermore, an overall abstract base class, called Hi-
erarchyMember.cs, has been defined which contains basic information about an element such as its

24 Chapter 4. Approach

name or selection status. In addition, we equip every element with a unique GUID in order to
be able to distinguish them. As a representative for any assembly of the solution, such as class
libraries or executables, we introduced an inheriting Project.cs class. It is obvious that the mission
of this entity is to encapsulate all types that are declared by the underlying solution’s project. Of
course, also the types have been given their respective counterpart in the data model. Among
several informations about type-specific attributes, the most important job of this Type.cs class
is to take care of any declared method within the type’s body. We originally added equivalent
classes in order to represent fields and properties, however, they are not used yet for the plug-
ins functionality, but rather serve the completion of the derived model. On the opposite, a very
central class was defined in order to incorporate methods. The Method.cs class takes care of its
calling and called neighbours, as well as of its parameters and return type. Method input param-
eters obtained an own class called Parameter.cs. The characteristics of types, methods, fields and
properties have in common that they are part of an assembly and each have got a parent (e.g., a
method’s parent is a type). We therefore declared another intermediary abstract ProjectMember.cs
class which inherits from HierarchyMember.cs, but additionally manages the parent object. The fo-
cused representatives of the solution’s code elements, namely projects, types and methods, each
contain an essential property called ReflectionInfo. This object contains a bunch of information
about the particular entity and is used as source of extraction. We will discuss this topic later on
and in more detail (see Section 4.2.1).

We modularized the whole implementation of our data model, which consists of the men-
tioned data types and other less important model items, and declared an accordant InteractiveEx-
ploration.Model.dll class library. This approach of an independent namespace allowed us in a later
point in time not to make use of this model types only in our own plug-in project, but also in fur-
ther important third-party projects, such as the Graphviz4Net application which will be discussed
in section 4.3.2. The definition of an appropriate model namespace therefore avoids forbidden
cross-references as soon as those data types are used in plug-in external content.

4.2 Challenges
During the development phase of the Interactive Exploration extension we encountered several
obstacles that prevented us from meeting all our initial demands. In the following, we discuss
our major drawbacks and how we dealt with them.

4.2.1 Prohibited Abstract Syntax Tree Access
In order to empower the Interactive Exploration extension to search for entry points and navigate
through element dependencies, the underlying model has to be created first. We initially tried
to make use of a possible official API provided by Microsoft, however, we encountered a rough
disappointment as there seems to be no such comfortable interface to access the source code’s syn-
tax tree. Instead, we had to go for a more roundabout way. It’s an established approach among
Visual Studio Add-In and Macro developers to take advantage of the so-called DTE Object which
represents the Visual Studio .NET IDE and is the top-most object in the automation model hierar-
chy. The package class creates a single instance of this service as can be seen in Listing 4.1. This
application object encapsulates information about the currently loaded solution and its projects.

public static DTE2 AutomationObject

{

get

{

4.2 Challenges 25

return _automationObject ?? (_automationObject = GetGlobalService(typeof(

DTE)) as DTE2);

}

}

Listing 4.1: Interactive Exploration makes use of the Visual Studio automation service called DTE Object.

Our workaround makes use of this services as it first figures out the assembly paths of every
open project on the computer’s hard disk. Of course this procedure has a weak point since those
files actually have to exist, what is not the case before the projects are compiled. This means that a
project cannot be explored in case it contains a compiler error and therefore this particular assem-
bly is not able to be built. Furthermore, the loader always expects the assemblies not to be signed
and to reside in the default debug folder. As soon as the file paths are valid, the corresponding
assemblies are loaded by means of reflection and the SolutionModel type (see Section 4.1.3) can
be created by passing a list of the projects’ reflection information to its constructor. The static
ModelBuilder.cs class takes care of this setup process.

private static SolutionModel BuildModelReflectionBased(DTE2 applicationObject)

{

if (applicationObject == null)

return null;

// load the assembly for each project

var projectAssemblies = new List<Assembly>();

foreach (EnvDTE.Project project in applicationObject.Solution.Projects)

{

if (project.FullName.Equals(String.Empty))

continue;

// create file path of the project

var path = project.FullName.Substring(0, project.FullName.LastIndexOf(@"

\\", StringComparison.Ordinal))

+ "\\bin\\Debug" + project.FullName.Substring(project.FullName.

LastIndexOf(@"\\", StringComparison.Ordinal));

// check all assembly types (i.e., .dll and .exe)

foreach (var assemblyType in AssemblyTypes)

{

var assemblyPath = path;

assemblyPath = assemblyPath.Replace("csproj", assemblyType);

// get the assembly, if file exists

var fileInfo = new FileInfo(assemblyPath);

if (fileInfo.Exists)

{

var assembly = Assembly.LoadFile(assemblyPath);

projectAssemblies.Add(assembly);

Outputs.Add(String.Format("’{0}’ assembly loaded.", assemblyPath));

break;

}

26 Chapter 4. Approach

Outputs.Add(String.Format("’{0}’ assembly not exists.\nMaybe it has to

be built first.", assemblyPath));

}

}

return new SolutionModel(projectAssemblies);

}

Listing 4.2: The ModelBuilder.cs class is responsible for the reflection-based creation of the model by means
of the DTE automation object.

The SolutionModel’s constructor reads out all the project’s members in a gradual manner while
constantly considering the services of the respective reflection objects. For each project, its de-
clared types are readout and immediately injected in our hierarchy model. It is a simple task to
finally extract every method from all type-representing reflection objects.

4.2.2 Call-Relation Readout
The aforementioned absence of an official API for the access of source code elements prevented
us also from gaining information about existing method call-relations in an easy way. An inten-
sive enquiry laid open that most Visual Studio package developers started to implement their
own C# parsers in order to figure out the existences of those calls. A prominent example of this
is JetBrains’ ReSharper2 plug-in which supports .NET programmers with a bunch of very useful
developer tools. They started an own implementation of the codes abstract syntax tree, called
Program Structure Interface3 (PSI), whose main responsibility is the lexing and parsing of the code.
Another package is the Sando4 code search engine developed by a voluntary community around
David Shepherd. The team was not able to make use of an official API too and hence the under-
lying services of this search dedicated plug-in are responsible for parsing, splitting and indexing
code fragments.

As the implementation of an own parser would have blasted our time frame, we decided to
implement a simple service which is able to fake method calls, such that we at least could test
our plug-in. Unfortunately, this means that Interactive Exploration is not able to read out real call-
relations of the solution’s context at the moment. However, after all this limitation affects only
call-relations. When type inheritance relations are concerned, we can derive those by means of
the information provided by the type-representing reflection objects and a simple algorithm. The
static RelationBuilder.cs class, whose main task is to establish relations of any kind, was extended
by a functionality that randomly generates call-relations between methods of a project. This does
not include assembly comprehensive calls, anyhow, it is enough to test and warrant the function-
alities of our extension. The corresponding implementation details can be seen in Listing 4.3.

public static void GenerateFakesForProject(Project project, int

percentOfRelationChance)

{

if (project == null)

return;

// aggregate all methods of a project

var projectMethods = new List<Method>();

2http://www.jetbrains.com/resharper/
3http://confluence.jetbrains.net/display/ReSharper/2.1+Architectural+Overview
4http://sando.codeplex.com/

4.2 Challenges 27

foreach (var typeContainer in project.Types)

{

projectMethods.AddRange(typeContainer.Methods);

}

// foreach method create a relation with a certain chance

foreach (var possibleCaller in projectMethods)

{

foreach (var possibleCallee in projectMethods.Where(possibleCallee =>

Random.Next(101) % (100/percentOfRelationChance) == 0))

{

Method.CreateCallRelation(possibleCaller, possibleCallee);

}

}

}

Listing 4.3: The RelationFaker.cs is able to fake call-relations such that Interactive Exploration’s features
can be run and tested.

4.2.3 Meaningful Graph Layout Algorithm
Another major challenge was to find a suitable way to guarantee a well-structured layout of the
Exploration Graph (see Section 4.1.1). Therefore, we looked for a possible existing framework able
to deal with the layout calculation. Such a tool should be capable of drawing given nodes and
edges in a handsome manner and furthermore should be totally free of charge. Concretely speak-
ing, crossing edges should be avoided as far as possible and nodes should be distributed wisely
and without overlaps. Unfortunately, the Windows Presentation Foundation (WPF) does not in-
nately offer such a functionality and we figured out that the .NET developer community is in-
deed in desperate need of such a framework. Of course, several third-party libraries are available,
but always come with expensive license costs. Nevertheless, we found a promising open source
project called Graph#5 which provides some graph layout algorithms and controls for WPF. It
furthermore allows visualized vertices to be dragged by means of user input. Regrettably, this
framework was not initially intended to run in the context of a Visual Studio extension and all
efforts to port this framework’s code failed, although we received support of Graph#’s author.
Anyhow, this turned out to be a minor backlash since we also wanted our layout algorithm to be
able to manage sub-graphs and edges that have been established between any graph elements.
We were aware of the open source graph visualization tool called Graphviz and it’s abilities to do
exactly what we wanted. But again, no corresponding support for WPF was given. Further cum-
bersome searches luckily lead us to the Graphviz4Net6 project which allowed us to build a graph
according to our imagination. We will introduce this framework and how it lays out a graph’s
elements in more detail in Section 4.3.2.

In order to build up the Exploration Graph, we introduced an algorithm to take care about the
management of its elements. The update of any change in the graph should take part in the lowest
adaptation layer, namely the level where method representing vertices are managed. Thus, we
implemented a function for appending a method to the graph (see Listing 4.4) and another for
the deletion respectively. Those implementations are responsible for the correct actualization of
method element vertices, their type sub-graph assignments and the production of any relation
edges. Those two procedures are used in all possible scenarios. In case the user wants to add

5http://graphsharp.codeplex.com/
6http://graphviz4net.codeplex.com/

28 Chapter 4. Approach

a whole project or type at once, all contained methods are consumed by those functions in a
sequential manner. The view model (see Section 4.1.3) holds a central dictionary to ensure a
quick and safe management of the visualized type sub-graphs.

private void AddMethodToGraph(Method method)

{

if (InteractiveExplorationPackage.SettingsViewModel.IsDeclaredOnly && !

method.IsDeclared)

return;

// check if method is already in graph

if (GraphContainsMember(method))

return;

method.SelectionMode = HierarchyDefinitions.SelectionMode.Selected;

// check whether subgraph already exists

var type = method.Parent;

if (_typeSubDic.ContainsKey(type.Id))

_typeSubDic[type.Id].AddVertex(method);

// else create new type subgraph

else

{

var typeSubgraph = new SubGraph<Method> { Label = type.Name };

_relationGraph.AddSubGraph(typeSubgraph);

_typeSubDic.Add(type.Id, typeSubgraph);

// add new selected method

typeSubgraph.AddVertex(method);

// add existing siblings as well (move from graph to subgraph)

foreach (var sibling in TypeTopLevelMethods(type.Id).ToList())

{

_relationGraph.RemoveVertex(sibling);

typeSubgraph.AddVertex(sibling);

}

// update the inheritance relations between types

UpdateInheritanceRelations(type as Type, typeSubgraph);

}

// update the call relations between drawn methods

UpdateCallRelations(method);

}

Listing 4.4: The ExplorationToolViewModel.cs manages the addition and deletion of method elements. Sub-
graphs are managed by means of a dictionary.

From Listing 4.4 can be derived that the updated graph is investigated for any possibly new

4.2 Challenges 29

introduced call-relations that should be visualized. An equivalent method takes care of inheri-
tance relations in case a new sub-graph was added to the graph.

4.2.4 Aid to Orientation
Since the structuring of the graph is evaluated in an external tool, whose functionalities we will
reveal in Section 4.3.1, we don’t have any influence of how this very algorithm will lay out the ele-
ments. The disadvantage here is that, in case nodes or sub-graphs are added, we cannot guarantee
for no element that it will be redrawn at the same position. Unfortunately, this queer behaviour
does not help the user to stay oriented in the graph.

Figure 4.10: The highlighting mechanism of the Exploration Graph. Depicted are newly added outgoing
calls of the Start() method.

Instead of leaving the user to his own resources, we defined a couple of highlight mechanisms
which should serve a faster localization of the elements under focus. After a modification was
made to the graph, it is thus not necessary to laboriously search for the vertices of interest, but
rather they are dyed with a flashy colour. As pictured in Figure 4.10, newly added code hierarchy
members obtain a orange background, whereas the source of interaction (e.g., the method that
ordered all callees to be shown) receives a dark yellow.

4.2.5 Gesture Recognition
We wanted to support both mouse and touch interaction on the Exploration Graph at the same time.
However, this turned out to be more complicated than originally assumed. The main reason for
this is the stacking of independent user interface elements that should not interfere with each
other as input is received and interpreted. This concerns the graph control, its underlying zoom
panel as well as navigation and context menus of the vertices. Since WPF interprets untreated
touch input automatically as mouse events, we were not able to support both interaction mech-
anisms simultaneously on every single control. Fortunately, we could partly put some things
right by making use of the Surface 2.0 SDK7, which provides a couple of default controls that
deal with this tricky input event handling. Anyway, we were forced to leave the decision to the
user, whether he wants to make use of mouse or touch interactions and provided a corresponding
settings option.

Since WPF already provides a bunch of handy information about any touch interactions on
the screen, it was no big deal to interpret gestures, such as panning or pinching, and couple them
with the respective commands. On the other side, this does not hold for the capture of mouse

7http://www.microsoft.com/en-us/download/details.aspx?id=26716

30 Chapter 4. Approach

movements. Here, we developed an own gesture tracker which that attention to the cursor and
interprets gestures where needed.

4.3 External Technologies and Frameworks
The Interactive Exploration plug-in makes use of some third-party open source libraries and frame-
works which will be presented in the following. In order to reconcile the external functionality
with our proper code, several likewise illustrated issues had to be dealt with.

4.3.1 Graphviz and Dot
As we mentioned before, the layout of our well-structured Exploration Graph is calculated by an ex-
ternal tool. We assigned this task to Graphviz8, an open source and platform independent software
package originally developed by AT&T and the Bell-Labs. Its core functionalities are the compu-
tation of node positions, such that the overall graph is laid out in a clear manner. This includes
the bending of edges, the minimization of connection lengths and the avoidance of crossing lines.
The required information about the graph elements’ dimensions are stored in a text file which is
then consumed by Graphviz in order to optimize the layout.

Graphviz supports some different input text formats to support various kinds of layout al-
gorithms. Anyhow, we made use of the so-called DOT format whose main capability is to offer
support for hierarchical graph structures. It optionally lays out all edges in either a horizontal
or vertical manner. The mentioned input text file is composed with the DOT Language which is
basically a powerful syntax to describe graph requirements. It provides plenty of keywords and
attributes in order to describe the graph as precise as possible.

The Interactive Exploration extension makes use of the dot.exe command line tool which is able
to generate and process this format. Anyhow, it is inevitable to have an entity between the
Graphviz command line tool and WPF, which finally creates and renders the plug-ins user in-
terface. That is why we took advantage of the forthwith discussed Graphviz4Net approach.

4.3.2 Graphviz4Net
The Graphviz4Net project is an open source solution, originally developed by Štěpán Šindelář and
further adopted by CodePlex community members. It provides a couple of .NET APIs for the
generation of dot inputs and is also able to consume Graphviz’ output. Furthermore, it brings
a graph layout user control that can easily be integrated by WPF applications. By contrast with
other tools, it allows also the definition of sub-graphs and diverse kinds of links. In addition, it
permits to style every single part of the graph. We hence could design the appearance of nodes,
edges and sub-graphs according to our imagination.

In order to have textual input for the external command line tool, the whole graph has to be
defined by means of C# data structures. Once this is done, Graphviz4Net generates the corre-
sponding DOT syntax. The encoder asks WPF to measure the dimensions of the styled elements’
visual representatives, such that a precise arrangement can be calculated. The output text file,
returned by dot.exe, contains the computed positions of nodes and sub-graphs. Besides, it con-
tains coordinates for the edges such that WPF can render the curved lines through those points.
A concrete example of how the syntax looks like is demonstrated in Appendix B.

8http://www.graphviz.org/

4.3 External Technologies and Frameworks 31

4.3.3 Problems & Modifications
Although we were glad to make use of the Graphviz4Net project, it did not serve all our needs
right from the start. Several modifications were simple, such as the adaptation and customization
to our model or the definition of own view models. On the other side, we encountered other
difficulties that were not as easy to deal with.

Execution Locking Mechanism

The interface between our graph modification algorithms and the coupled events of Graphviz4Net
did not play well in the beginning. The nature of the Exploration Graph allows the user to insert or
delete multiple elements at the same time. Stupidly, for every single change that was made to the
graph by our management algorithms, an immediate execution of the externalized layout calcula-
tion followed. That is why the dot.exe tool was not able to perform all its obligations in reasonable
time at all and led the whole framework to drift in an unstable state. Instead of a well-organized
graph description, an error was returned.

For this reason, we established a locking mechanism which prevents the Graphviz4Net frame-
work from handling every single update. Our graph management algorithms enable this lock as
soon as modifications are announced. Once, the graph’s data structure is successfully adjusted,
the lock is released and the layout computation is finally forced to execute all changes at the same
time.

Scalability

Although we could find a workaround for the aforementioned issue, this did not prevent the
Graphviz4Net project to throw further random exceptions, complaining about invalid DOT out-
put or missing key values, from time to time. Even though we tried to figure out what is wrong
with its code, we did not yet discover the source of the problem. At least, such exceptions are
rare and we therefore assume that it highly depends on the amount of modifications made to the
graph in a single step. Anyhow, Graphviz4Net turned out to not be well scalable and thus suffers
from internal errors, whose occurrences are due to a bad support for larger graphs.

32 Chapter 4. Approach

Figure 4.9: The data model of the Interactive Exploration extension. The abstract class HierarchyMem-
ber.cs serves as overall base class. SolutionModel.cs represents the analysed solution and encapsulates its
projects.

Chapter 5

Evaluation

The first phase of our implementation process included the development of the basic functionali-
ties of the extension. The result was an almost fully featured prototype (see Appendix C). How-
ever, we did not spend much effort with the visual representation. Since our Interactive Exploration
plug-in should meet the preliminary stated promises and design decisions, we conducted a us-
ability study in order to gain advice from several Visual Studio developers. According to their
feedback, we focused specifically on the criticized points which requested further improvement
of several parts of the user interface. Based on this, we finally defined a whole new look. Hence,
the objective of our evaluation is twofold. Contiguous to the illustration of the mentioned study,
we check whether we achieved our own goals.

5.1 Usability Study
In order to evaluate the usability of our prototype plug-in, we checked several aspects of the
user interface. For this purpose, we analysed all of the ten Usability Heuristics of Jakob Nielsen
[NM90] that can be used to explain a very large proportion of the problems one observes in user
interface designs. They are not specific guidelines but rather rough rules of thumb and therefore
allow to have only a small set of evaluators to examine and judge the interface. Generally, every
examiner finds a different set of usability problems and more experienced designers tend to find
even more issues. Therefore, it is possible to improve the effectiveness of this method significantly
by involving multiple evaluators.

This section shows how we conducted the evaluation and what we found. Besides explaining
briefly what the investigated heuristics’ principles are targeted on, we illustrate how good our
prototype performed when they were applied. We finally conclude our findings and show which
parts of the user interface were accordingly adapted shortly after.

5.1.1 Methodology
In order to study our tool, we employed a 65 inch wall screen (see Appendix A) as touch interface
and run the application on it. We considered the opinion of four developers as Nielsen suggests
three to five evaluators. One usually does not find much additional issues when asking more
participants [NM90]. The evaluators went through the interface two times. The first time was
meant to gain a basic idea of what views exist and how they interact with each other. A general
understanding and an insight how everything fits together was obtained by this step. In the
second pass, they had to focus on specific interface elements in order to compare them to the ten
heuristics. An evaluation form, containing the principles, was used to keep track of the findings.

34 Chapter 5. Evaluation

The evaluators were not allowed to just say that they did not like a certain feature or design.
A concrete critique with reference to one of the heuristics had to be stated in order to be valid.
Additionally, we allowed the testers to bring up further principles that came to mind, even if they
found no representative heuristics. We also declared that positive feedback would be appreciated
and could of course be mentioned. We provided no special assistance or introduction about how
the tool should be used since the evaluators were all domain experts, meaning that they had
fundamental practical experience with Visual Studio. We assured that in case the evaluators had
questions, we would assist with accurate explanations. However, we did not foreclose questions
such that we could first observe how they interacted with the content.

5.1.2 Heuristics and Findings
This section presents the ten heuristics and provides the according results from our user study.
Also mentioned are concrete modifications we made due to specific criticism or lack of intuitive
design.

Visibility of System Status

This principle suggests that the system should provide timely and accurate feedback about it’s
status such that users are always kept informed about what is going on.

The evaluators agreed about the needlessness of a particular progress bar for the hierarchy
overview since the underlying model was always built up very quickly such that the solution’s
hierarchy tree could be immediately shown. In dependence of how many of the entities were se-
lected to be shown in the graph and the graph’s current dimension, the algorithm calculating the
new layout not always performed equally fast. Therefore a text replaces the graph in calculation
and indicates the running computations. This feature was appreciated by the users. However,
the resulting layout of nodes and edges often introduced a new placement for this entities and
lead to confusion as they suddenly vanished from the evaluators focuses. Consequently, those
repositioned nodes had to be tediously located before the exploration process could be contin-
ued. We therefore introduced the in Section 4.2.4 demonstrated concept that highlights the most
recently added elements in order to better distinguish them from the rest and to give the user a
prompt feedback. The toggle buttons residing in the tool bars, which provide different options of
what informations should be visible, were denounced to not clearly represent whether they are
checked or not. The testers always first clicked those buttons in order to investigate their current
status. We solved this issue by means of a more intuitive control.

Match Between System and the Real World

Another proposition for better comprehensibility of the interface design is to use terms and con-
cepts that are familiar to the user. The system should, rather than speaking with system-oriented
terms, follow real-world conventions and metaphors in order to display information in a natural
and logical manner.

Representing the Exploration Graph in a left-to-right manner has proved to be a good way to
emphasize the flow of method calls. This mainly left-right navigation was said to be supportive in
the assembly of a personal mental model. Furthermore, one evaluator complimented the option
to change this main flow direction, although he saw no need for the bottom-up and right-left
options. Almost all evaluators had difficulty to interpret the little coloured square to the left
of each hierarchy tree element and it required some time for them to notice that they actually

5.1 Usability Study 35

represent the respective current selection states. An issue associated to this was the fact, that the
navigation menus of methods within the graph made use of different symbols in order to denote
the corresponding entities’ current selection states which indicated whether they were shown by
the graph or not. In those menus, a cross icon was shown to notify the user that an interaction
would result in the removal of that method, whereas the absence of that cross would have caused
the opposite. The solution of this was to use the squares in all kinds of menus and to provide a
legend for the meanings of each colour.

User Control and Freedom

While working with tools, users often unintentionally navigate to a wrong state although they ac-
tually wanted to do something else. Therefore, it is a good idea to provide functionality to return
to previous states. In general, users should always perceive control about what happens as they
interact with the tool.

Once the principles of how entities can be selected and shown in the graph were understood
by the testers, they found it easy to insert and remove items. Also the functionality, to do so
directly from within the graph by means of the provided navigation menus, was highly appreci-
ated. However, they consistently missed an overall history of actions they have performed so far
and an associated functionality that would allow to undo certain actions (e.g., hiding unintention-
ally added callees of a method). For this reason, we implemented the in Section 4.1.1 presented
history.

Consistency and Standards

Wherever possible, all user interfaces should be consistent such that users do not have to deal
with multiple graphical representations or actions that actually mean the same thing. This con-
cerns icons, user controls and terminologies. Sometimes it is appropriate to use a certain industry
or platform convention to which the audience is used to.

The assignment of an element-specific colour to both the hierarchy tree items and the graph
nodes convinced the evaluators. The usage of popular icons, which are used by Visual Studio’s
IntelliSense (i.e., Microsoft’s auto-completion implementation) and several third-party extensions,
that are consistently used throughout all views and menus, lead to the same result. Furthermore,
the styling of toggle and refresh buttons had always the same appearance. As the users were
acquainted with the UML modelling standard, they instantly recognized the accordingly styled
edges and directly assigned the correct meaning to them. On the opposite, they again criticized
the inconsistency of the representation of an elements selection state that differed in the hierarchy
and the navigation menus of the graph. A major critic was that the zoom functionality did not
work well with the pinch gesture, although it was intended to work. An evaluator advised that
nowadays pretty much every multi-touch based user interface allows their users to zoom with
this very well-known pinch gesture. On account of this we replaced the prototype’s zoom control
with a totally new one. The reimplementation of this functionality finally led to the zoom based
features stated in Section 4.1.1.

Error Prevention

The best method to prevent users from committing errors is to carefully design the user interface
in such a manner that it clearly communicates the consequences of a possible interaction. This

36 Chapter 5. Evaluation

stops the occurrence of problems to the greatest possible extend.

A hint, which was worth to be respected, showed that the ability to open the hierarchy and
the exploration control independently from each other is nonsense since they are tightly coupled
and pretty much useless without each other. Based on this feedback, we joint and nested the
different views of our plug-in in such a way, that some views can easily be hidden when not
needed any more (see Section 4.1.1). Concerning the tool bars, we received the suggestion to
ask the developers, in case they clicked any refresh buttons, whether they really want to proceed
rather than directly initializing all computations. One evaluator recommended not to give the
ability to show and search just for methods that are defined within their embracing types, but
rather to completely remove this feature as it only led to confusion. We followed his suggestion.
Again, the lack of an overall history was mentioned. The testers all missed a button with which
they could go back and undo the least recent action in order they encountered an error.

Recognition Rather Than Recall

Users should be provided with familiar icons, actions and options in order not to force them to
recall interaction possibilities from another view and to reduce their memory load. Instructions
for functionalities should be easily and early retrievable (e.g., with the aid of tool tips).

With respect to this principle, we received good feedback for the general layout of the interface
elements since we arranged them in the same manner as original Visual Studio tool windows are
laid out. Once more the consequent usage of same colours, styles and icons - except those in
the graph node’s navigation menus - for the same types of information was praised as it helped
the evaluators to interpret the content. However, assuming the user has absolutely no idea what
the extension is good for, it seemed he would have forced to try just randomly any buttons or
gestures in order to discover functionality and features. This was due to the fact that absolutely no
guideline has been given. We therefore introduced a tooltip for every single view of the extension
such that the most important guidelines can easily be accessed. Another statement indicated
that a possible user might quickly loose the orientation within the graph’s constructs right after
a rather big modification was applied. The consequent recommendation was to provide visual
information about where modifications were made to the graph. We implemented this very idea
which resulted the highlighting mechanisms.

Flexibility and Efficiency of Use

This principle recommends to give expert users so-called accelerators in order to speed up the
interaction. With this, at least the most frequent tasks should become easy and efficient. Less
experienced users however should not have to care about those fast access options and should be
able to use the tool the normal way without any difficulty.

Having the ability to directly resize the graph according to the actual dimensions of the view or
to zoom to its original size was highly appreciated and said to be very useful. On the opposite, the
employment of the slider control causing the view to scale accordingly was cumbersome. Based
on this, we replaced the slider control with a more precise and touch friendly one. Furthermore,
more sorting options for all kinds of lists throughout the interface were wished. The navigation
menus which allow a preview of calling or called methods should for example be sortable alpha-
betically, among their access level or position of declaration. Unfortunately, we were not able to
come up with such filters by the time. Anyhow, the most missed feature was the absence of an
option to directly access the underlying source code as this would help the general understanding

5.2 Realisation 37

and importance of a certain element. Concerning this lack of functionality, we already made an
accordant statement in Section 4.1.2.

Aesthetic and Minimalist Design

This heuristics argues for a minimalistic design of the user interface since irrelevant or uncom-
monly needed information just wastes space and competes with the relevant or interesting part
of the visualization. Concerning the aesthetic aspect of the visual layout, contrast, repetition as
well as the alignment and proximity of graphical elements should be chosen with caution.

The toggle buttons in the tool bars showed to come up to their intended functionality, namely
leaving the decision, whether namespaces of classes or return types of methods should be visible,
to the user. The intention to compress information about the code elements’ attributes into a
single icon promised to be successive as well. It has been stated that the growing dimensions of
the graph could become problematic when orientation aspects are concerned. The majority of the
testers therefore suggested to introduce some few levels of abstraction where information could
be further packed on higher layers. This should allow to regain clarity, however we were not able
to come up with an acceptable solution so far (see Section 4.1.2).

Help Users Recognize, Diagnose and Recover from Errors

In case errors are occurring, those should not be displayed as cryptic system codes, but should
rather indicate the underlying problem in plain language. Furthermore, the user experience can
be greatly improved with the delivery of constructive suggestions about how the encountered
error could be recovered.

Our plug-in was not supportive at all with respect to error recovery. Although information
about the occurrence of a possible error has always been given in a separate channel of Visual
Studio’s output window, hints about how to recover from that error were rarely provided. How-
ever, we moved this channel from the official output to a corresponding plug-in intern view and
added more accurate messages. In addition, the existence of an overall interaction history now at
least allows the user to reconstruct the path of failure.

Help and Documentation

Even though the best way would be to create such an intuitive user interface that no help is re-
quired at all, there always might be cases where it is essential to access further information about
the usability. For this reason, a comprehensible documentation and user support should be easy
to find.

A lively discussion, about whether a help should be integrated or not, took part between
the evaluators and resulted in the general accommodation that our plug-in does not necessarily
need a separate help documentation. In fact, the usage of the aforementioned tooltips which are
directly integrated in the corresponding view serve as local guideline right away.

5.2 Realisation
By dint of this section, we dissect our plug-in in order to clarify whether we met our own expec-
tations, requirements and goals that were declared in Section 3.2.

38 Chapter 5. Evaluation

The main downsides of our finalized extension are the inability to catch the underlying code
elements by means of an official API. Instead, a cumbersome workaround (i.e., reflection) is used
to get the workspace context, as explained in Section 4.2.1. It is also a pity that call-relations
cannot be identified at all, as reasoned in Section 4.2.2, although the plug-in should serve as
supportive dependency navigator. However, in order to test the requirements of our software,
we took advantage of a mockup project and faked some method calls, such that the extension’s
functionality could be proven.

Even though we had to deal with those hindering issues, we successfully respected and imple-
mented our requirements. Our exploration tool runs as a single-windowed Visual Studio plug-in
and promises to make use of all available screen space. Temporarily dispensable parts of the user
interface can easily be hidden and recovered as soon as they are needed. In the event of using a
rather large touch screen, like the PQLabs G3 Monitor discussed in Appendix A, even multiple de-
velopers are able to review and examine code elements and dependencies concurrently. While the
display is multi-touch enabled and the tracking of diverse exploration paths is supported, we do
not yet recommend a simultaneous user interaction, since the graph’s limitations would hamper
this experience, and instead suggest to have a single operator taking care of the navigation.

Furthermore, no complicated interaction chains have to be followed in order to get informa-
tion about a specific code fragment. All worth knowing facts about an element are directly visible.
Besides information, like protection level or other element-specific attributes, that is summarized
by a little icon, each vertex contains further icons in case it is annotated. The tool is able to answer
questions about call or type hierarchies, references or the place of declaration.

Due to the layout calculation algorithms provided by Graphviz, the Exploration Graph always
profits from the best possible structure. Even sub-graphing and clustering of method nodes are
supported, such that the requirement of a higher-order structure is maintained. A user is able to
switch the current layout direction in order to modify the graph in such a manner that it allows a
better understanding of the represented connections.

Interactive Exploration allows a developer to search for a suitable starting point by providing a
hierarchical overview of the workspace at hand. In case a specific anchor point is already known,
it can easily be accessed by means of the provided search box. The graph supports all basic nav-
igation operations as far as methods are concerned. The nodes’ navigation menus provide early
information about existing paths and allow the concurrent composition of multiple exploration
paths. However, travelling along type-representing sub-graphs is not yet supported and at the
mercy of future work.

We provide several different ways to change the zoom level in order to gain a better overview
or to focus on just specific parts of the interconnected elements. Any modification to the zoom
factor is fairly animated, such that the chance to get disoriented is reduced to a minimum. By
means of panning, the current viewport can easily be repositioned in order to follow dependen-
cies or to relocate the focus. A good understanding of the overall solution’s structure is supported
by the hierarchy view and the respective graph representation which groups methods of the same
type. The colours of the selection states allow code fragments under inspection to be clearly dis-
tinguishable from unselected ones.

In order to interact with the plug-in, both mouse and touch input is, even though not at the
same time, supported. Although primarily designed for touch-based commands, the user inter-
face optionally understands congruent mouse movements. As with established touch interfaces,
Interactive Exploration is aware of single or double tapping, swiping or pinching and spreading
gestures. A disadvantage of gesture driven interaction is the tedious entering of text in the
method filter or the annotation tab. After all, the Windows integrated screen keyboard could
be considered.

Chapter 6

Conclusions

6.1 Conclusions
With this thesis we successfully implemented a Microsoft Visual Studio 2010 extension which en-
capsulates a bunch of features that allow C# developers to explore the current solution’s code
base. In the centre of attention is the visualization of code elements and their relations, whose
existences can only be perceived by an implied manner in case prevalent editors are concerned.
Both, the search or definition of an appropriate element set, that should serve as the exploration’s
entry point, as well as the subsequent navigation along dependencies, are supported by Interac-
tive Exploration. Another benefit is the employment of a touch enabled Natural User Interface that
allows users to command the plug-in by application of habitual, well-known finger and hand
movements.

The accomplishment of our evaluation revealed that the requirements and goals we had re-
garding to the development of a novel software exploration tool could largely be satisfied. The
user interface, the interaction mechanisms and the navigation cycle have shown to be facile and
intuitive. However, our software lacks in the configuration of call-relations that are contained in
the analysed context. This, as well as the unsupported fast source code access, is due to the un-
fortunate absence of suitable APIs, whose provision we assumed to be guaranteed by an official
authority.

6.2 Summary of Contributions
The sheer fact that virtually no extension for Visual Studio 2010 assisting the visualization of code
fragments or dependencies exists, makes our software inimitable. Although the IDE has some
integrated diagramming capabilities, they do not provide the navigation along relations or the
ability to leave an annotation, but rather serve the purpose of documentation. Apart from the
mentioned multi-touch supported interaction, we mainly separated our tool from similar imple-
mentations on other platforms by allowance of frequently occurrent weak points or handicaps.
Our approach is able to deal with an ever-growing graph by means of optimal assignment of
screen space and suitable options to relocate the viewport. This is intended to assist in collabo-
rative exploration scenarios, where multiple developers discuss, review or annotate the analysed
source code. We adhered to display just a decent number of the most necessary information in
order to keep the view clear. A major difference of our approach is the well-structured and mean-
ingful arrangement of graph elements. We ensure the layout to generate additional value since
always the best possible structure is calculated in order to facilitate interpretations.

40 Chapter 6. Conclusions

6.3 Future Research
Although we afford a versatile extension, our work opens the door for several further possible
researches and implementations. This section is dedicated to a listing of our personal suggestions,
where future effort could be applied.

The most important thing to realize would be an authentic setup of the model. A possible
approach is to implement both a source code parser and an indexer in order to keep track of a
program’s entities. Possibly, this could already be achieved by making advantage of the open
source code of the Sando1 search engine extension. This would, in addition, allow to provide
access to the entity-related code statements.

In order to deal with the lack of call-relations, yet another third-party tool could be employed.
We are aware of SrcML.NET2, which is a C# framework for the analysis of source code. It is the
.NET counterpart of srcML3, whose main functionality is to combine code and abstract syntax
tree information by means of an XML document providing, among other things, full access at the
structural and syntactical levels.

Providing various levels of abstraction is essential for the exploration of large and complex
software projects. This is another issue that could not be dealt with so far because of the prob-
lematic calculation of multiple graph layouts (see Section 4.1.2 for more information). Either the
computation can be parallelised or a new approach should be found.

Making the Exporation Graph’s visual representation more dynamic and reactive to interaction
input would further increase the user experience. However, this is of less importance. We already
identified and marked possible entry points in the Graphviz4Net source code in order to add the
ability to drag or resize vertices.

Future additions of new types of entities or relations with only a few source code changes
is possible as well, since Graphviz4Net allows programmers to define new kinds of vertices or
edges in a relatively homely way. Therewith, further dependencies could be introduced, once the
underlying model is given.

Another major upgrade to our plug-in would be the addition of evolutional information about
the code under inspection. A possible way to achieve such a target, is the tapping of an attached
version controlling system, such as the Team Foundation Server4.

1http://sando.codeplex.com/
2https://github.com/vinayaugustine/SrcML.NET
3http://www.sdml.info/projects/srcml/
4http://www.microsoft.com/visualstudio/eng/products/visual-studio-team-foundation-server-2012

Appendix A

PQLabs G3 Monitor

The Interactive Exploration Visual Studio extension is intended to be used together with large wall
displays, such that advantage of the additional space can be taken. For this reason, we employed
the PQLabs G3 Monitor, whose multi-touch overlay is a plug- and play solution for both program-
mers and consumers. This interactive wall can be brought to service by simply connecting the
reactive overlay’s USB 2.0 cable with a computer of choice. Touch gestures are recognized by
the screen and forwarded to the PQLabs MultiTouch Platform and Screen Driver, which has to be
installed on the running machine. A VGA interface serves the transmission of the image. Some
further specifications1 are hereby listed:

• Size: 65”

• Resolution: Full HD (1920 x 1080)

• Touch Points: Up to 32 points simultaneously

• Touch Technology: PQLabs LED Cell Imaging

• Touch Method: Finger, stylus or gloved hand

• Accuracy: ± 1.5mm

• Response Time: 7 - 12ms

• Interface: USB 2.0 (full speed), HID compliant, plug-and-play compatible

• OS: Windows, Mac OS X

1http://mymultitouch.de/

Appendix B

The DOT Language

We want to briefly demonstrate, how the DOT language works exactly. For this reason, we show
input and output files of Graphviz’ dot.exe command line tool. The following shows how the
structure of the graph depicted in Figure B.1 is processed. To calculate the positions of those sub-
graphs, nodes and their directed edges, the input shown in Listing B.1 has to be passed to the
command line tool. The corresponding output is presented in Listing B.2. This information is
subsequently passed to the WPF rendering engine, which is now able to lay out the graph in a
meaningful manner.

Figure B.1: A simple example graph, whose structure was computed by dot.exe.

digraph g {

graph [rankdir="LR" ,compound="true"];

subgraph cluster0 {

graph [label="Class1"];

1 [width="2.98611111111111" ,height="0.416666666666667" ,shape="rect" ,

fixedsize="true"];

2 [width="1.93055555555556" ,height="0.416666666666667" ,shape="rect" ,

fixedsize="true"];

};

subgraph cluster3 {

graph [label="Class2"];

4 [width="3.84722222222222" ,height="0.416666666666667" ,shape="rect" ,

44 Chapter B. The DOT Language

fixedsize="true"];

5 [width="1.33333333333333" ,height="0.416666666666667" ,shape="rect" ,

fixedsize="true"];

};

5 -> 4 [label="calls" ,comment="6"];

5 -> 1 [label="calls" ,comment="7"];

2 -> 1 [label="calls" ,comment="8"];

5 -> 2 [label="calls" ,comment="9"];

2 -> 2 [label="calls" ,comment="10"];

}

Listing B.1: The DOT language content describing the graph in Figure B.1

digraph g {

graph [rankdir=LR, compound=true];

node [label="\N"];

graph [bb="0,0,746,238.2"];

subgraph cluster0 {

graph [label=Class1,

bb="235,48.201,738,150.2"];

1 [width="2.9861", height="0.41667", shape=rect, fixedsize=true, pos="

622,72.201"];

2 [width="1.9306", height="0.41667", shape=rect, fixedsize=true, pos="

313,71.201"];

2 -> 1 [label=calls, comment=8, pos="e,514.41,71.854 382.51,71.424

418.35,71.541 463.21,71.687 504.32,71.821", lp="483,79.701"];

2 -> 2 [label=calls, comment=10, pos="e,342.88,86.476 283.12,86.476

276.48,95.607 286.44,104.2 313,104.2 328.77,104.2 338.69,101.17

342.76,96.799", lp="313,111.7"];

}

subgraph cluster3 {

graph [label=Class2,

bb="8,158.2,460,230.2"];

4 [width="3.8472", height="0.41667", shape=rect, fixedsize=true, pos="

313,184.2"];

5 [width="1.3333", height="0.41667", shape=rect, fixedsize=true, pos="

64,181.2"];

5 -> 4 [label=calls, comment=6, pos="e,174.29,182.53 112.04,181.77

127.4,181.96 145.37,182.18 164.12,182.4", lp="143,189.7"];

}

5 -> 1 [label=calls, comment=7, pos="e,586.14,57.173 70.535,166.14

83.153,134.35 117.41,60.919 174,32.201 307.67,-35.631 492.87,21.078

576.67,53.451", lp="313,39.701"];

5 -> 2 [label=calls, comment=9, pos="e,278.19,86.26 98.826,166.14

143.05,146.44 220.54,111.93 268.92,90.387", lp="143,159.7"];

}

Listing B.2: The DOT language content describing the corresponding output of dot.exe.

Appendix C

Visual Appearance of the
Prototype

This appendix provides an insight to the main visual differences of the prototype version of Inter-
active Exploration (Figure C.1) and the final release, as presented in Chapter 4 (see Figure 4.1).

Figure C.1: The user interface of the plug-in’s prototype.

The hierarchical overview and the exploration area each made use of a particular tool window.
Besides, the extension initially received a separate channel in the IDE’s output view. However, the
different windows were joined in the final version and a history control, as well as an annotation
panel, were added. Furthermore, the whole zoom control and several interaction options were
changed in order to provide a better user experience. More detailed modifications are listed in
Section 5.1.2.

Appendix D

Used Tools and Frameworks

• Microsoft Visual Studio 2010 Ultimate - http://www.microsoft.com/visualstudio/
Microsoft’s multi-language development environment. Used in this thesis for developing,
debugging and testing the software. In addition, the Experimental Hive instance of this envi-
ronment was used to run and test the Interactive Exploration plug-in.

• Microsoft Expression Blend 4 - http://www.microsoft.com/expression
Microsoft’s user interface tool for creating graphical interfaces for web and desktop appli-
cations. Used for the front-end design of the XAML-based Windows Presentation Foundation
plug-in interface.

• Visual Studio 2010 SDK
This SDK provides tools and templates for building Visual Studio extensions. Used in order
to build tool windows and to create menu commands.

• Microsoft Surface 2.0 SDK
Microsoft’s Surface development kit for improved support for Windows touch-enabled de-
vices. The developed extension makes use of several provided controls in order to make
them reactive to both mouse and touch input.

• Graphviz 2.28.0 - http://www.graphviz.org/
An open source graph visualization software. Provides several main graph layout algo-
rithms. Used in this thesis to calculate the structure and layout of graphs and sub-graphs.

• PQLabs MultiTouch Platform and Screen Driver - http://www.pqlabs.com
PQLab’s driver for Windows to handle multi-touch input. Used in this thesis for the cap-
turing of multi-touch gestures on the PQ Labs G3 Monitor.

• C# 4.0
Modern, multi-paradigm, general-purpose and object-oriented programming language. Used
for the implementation of the Visual Studio plug-in.

• Windows Presentation Foundation (WPF)
Graphical subsystem for rendering Windows-based user interfaces. Uses the XAML lan-
guage to define and link various user interface components. Used in this thesis to describe
the graphical representations of the extension’s views.

• TeXstudio 2.5.1 - http://texstudio.sourceforge.net/
An open source integrated environment for Windows for the creation of LaTeX documents.
Used for the composition of this thesis document.

48 Chapter D. Used Tools and Frameworks

• Paint.NET - http://www.getpaint.net/
An open source image and photo editing software for Windows. Used for the generation
and manipulation of icons and images used by the plug-in and the thesis.

Appendix E

Installation Manual

Installation by means of the Microsoft Visual Studio Extension Installer:

• In order to launch the setup, the InteractiveExploration.msi file has to be launched. This file
resides in the source code folder that is provided with the CD-ROM under the following
path: Source Code/InteractiveExploration/InteractiveExploration/bin/Debug.

• Install Graphviz 2.28.0 by means of the provided executable (graphviz-2.28.0.msi) in the in-
staller folder. This installs the dot.exe command line tool required by the extension. In case
Graphviz cannot be installed to the default destination, make sure to modify the path to
dot.exe in the plug-in settings.

• Install the PQLabs MultiTouch Platform and Screen Driver, which is also available from the in-
staller folder (PQLabsMultiTouchWinDriver.exe). This driver is required in order to recognize
multi-touch gestures on the PQLabs G3 Monitor.

Installation from source code:

• Open the Visual Studio 2010 solution residing in the provided source code folder of the
CD-ROM (Source Code/InteractiveExploration/InteractiveExploration.sln).

• Build the solution. This creates the corresponding DLL files in the debug folder of the project
(Source Code/InteractiveExploration/InteractiveExploration/bin/Debug).

• Copy the following files from the debug folder to Visual Studio’s Private Assembly Folder
(C:/Program Files (x86)/Microsoft Visual Studio 10.0/Common7/IDE/PrivateAssemblies) such that
they are available at runtime:

Antlr3.Runtime.dll
Graphviz4Net.dll
Graphviz4Net.WPF.dll
InteractiveExploration.dll
InteractiveExploration.Helper.dll
InteractiveExploration.Model.dll
ZoomAndPan.dll

• In case those DLLs should be debugged, copy the corresponding PDB files from the debug
folder to the private assembly folder as well.

• Install Graphviz 2.28.0 and the PQLabs MultiTouch Platform and Screen Driver as instructed in
the installation guideline above.

Appendix F

Contents of the CD-ROM

The following files are stored on the enclosed CD-ROM:

• Zusfsg.txt
The German version of this thesis’ abstract.

• Abstract.txt
The English version of this thesis’ abstract.

• Bachelorarbeit.pdf
A copy of this thesis.

• SourceCode.rar
The source code of the software described in this thesis.

• Installer.rar
The executables needed in order to install the software described in this thesis.

52 Chapter F. Contents of the CD-ROM

Bibliography

[BD06] Johannes Bohnet and Jürgen Döllner. Visual exploration of function call graphs for
feature location in complex software systems. In Proceedings of the 2006 ACM sympo-
sium on Software visualization, SoftVis ’06, pages 95–104, New York, NY, USA, 2006.
ACM.

[BRZ+10] Andrew Bragdon, Steven P. Reiss, Robert Zeleznik, Suman Karumuri, William Che-
ung, Joshua Kaplan, Christopher Coleman, Ferdi Adeputra, and Joseph J. LaViola, Jr.
Code bubbles: rethinking the user interface paradigm of integrated development en-
vironments. In Proceedings of the 32nd ACM/IEEE International Conference on Software
Engineering - Volume 1, ICSE ’10, pages 455–464, New York, NY, USA, 2010. ACM.

[CKN+03] Christian Collberg, Stephen Kobourov, Jasvir Nagra, Jacob Pitts, and Kevin Wampler.
A system for graph-based visualization of the evolution of software. In Proceedings of
the 2003 ACM symposium on Software visualization, SoftVis ’03, pages 77–ff, New York,
NY, USA, 2003. ACM.

[CVD07] Mauro Cherubini, Gina Venolia, and Rob DeLine. Building an ecologically valid,
large-scale diagram to help developers stay oriented in their code. In Proceedings of
the IEEE Symposium on Visual Languages and Human-Centric Computing, VLHCC ’07,
pages 157–162, Washington, DC, USA, 2007. IEEE Computer Society.

[CVDK07] Mauro Cherubini, Gina Venolia, Rob DeLine, and Andrew J. Ko. Let’s go to the
whiteboard: how and why software developers use drawings. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, CHI ’07, pages 557–566,
New York, NY, USA, 2007. ACM.

[DR10] Robert DeLine and Kael Rowan. Code canvas: zooming towards better development
environments. In Proceedings of the 32nd ACM/IEEE International Conference on Software
Engineering - Volume 2, ICSE ’10, pages 207–210, New York, NY, USA, 2010. ACM.

[DVR] Robert DeLine, Gina Venolia, and Kael Rowan. Software development with code
maps. Queue, 8:10:10–10:18.

[Fav01] J.-M. Favre. Gsee: a generic software exploration environment. In Program Compre-
hension, 2001. IWPC 2001. Proceedings. 9th International Workshop on, pages 233 –244,
2001.

[HH03] Ahmed E. Hassan and Richard C. Holt. Adg: Annotated dependency graphs for
software understanding, 2003.

54 BIBLIOGRAPHY

[HTB+07] Otmar Hilliges, Lucia Terrenghi, Sebastian Boring, David Kim, Hendrik Richter, and
Andreas Butz. Designing for collaborative creative problem solving. In Proceedings
of the 6th ACM SIGCHI conference on Creativity & cognition, C&C ’07, pages 137–146,
New York, NY, USA, 2007. ACM.

[JGR+12] Hans-Christian Jetter, Florian Geyer, Harald Reiterer, Raimund Dachselt, Gerhard
Fischer, Rainer Groh, Michael Haller, and Thomas Herrmann. Designing collabora-
tive interactive spaces. In Proceedings of the International Working Conference on Ad-
vanced Visual Interfaces, AVI ’12, pages 818–820, New York, NY, USA, 2012. ACM.

[KKD+11] Thorsten Karrer, Jan-Peter Krämer, Jonathan Diehl, Björn Hartmann, and Jan
Borchers. Stacksplorer: call graph navigation helps increasing code maintenance ef-
ficiency. In Proceedings of the 24th annual ACM symposium on User interface software and
technology, UIST ’11, pages 217–224, New York, NY, USA, 2011. ACM.

[KKKB12] Jan-Peter Krämer, Joachim Kurz, Thorsten Karrer, and Jan Borchers. Blaze: support-
ing two-phased call graph navigation in source code. In CHI ’12 Extended Abstracts
on Human Factors in Computing Systems, CHI EA ’12, pages 2195–2200, New York, NY,
USA, 2012. ACM.

[KMCA06] A.J. Ko, B.A. Myers, M.J. Coblenz, and H.H. Aung. An exploratory study of how de-
velopers seek, relate, and collect relevant information during software maintenance
tasks. Software Engineering, IEEE Transactions on, 32(12):971 –987, dec. 2006.

[LL06] M. Lungu and M. Lanza. Softwarenaut: exploring hierarchical system decomposi-
tions. In Software Maintenance and Reengineering, 2006. CSMR 2006. Proceedings of the
10th European Conference on, pages 2 pp. –354, march 2006.

[LL07] Mircea Lungu and Michele Lanza. Exploring inter-module relationships in evolving
software systems. In Software Maintenance and Reengineering, 2007. CSMR ’07. 11th
European Conference on, pages 91 –102, march 2007.

[LMFA08] Seonah Lee, G.C. Murphy, T. Fritz, and M. Allen. How can diagramming tools help
support programming activities? In Visual Languages and Human-Centric Computing,
2008. VL/HCC 2008. IEEE Symposium on, pages 246 –249, sept. 2008.

[MWFG12] S. Muller, M. Wursch, T. Fritz, and H.C. Gall. An approach for collaborative code
reviews using multi-touch technology. In Cooperative and Human Aspects of Software
Engineering (CHASE), 2012 5th International Workshop on, pages 93 –99, june 2012.

[NM90] Jakob Nielsen and Rolf Molich. Heuristic evaluation of user interfaces. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’90, pages 249–
256, New York, NY, USA, 1990. ACM.

[SBM+02] Margaret-Anne Storey, Casey Best, Jeff Michaud, Derek Rayside, Marin Litoiu, and
Mark Musen. Shrimp views: an interactive environment for information visualiza-
tion and navigation. In CHI ’02 Extended Abstracts on Human Factors in Computing
Systems, CHI EA ’02, pages 520–521, New York, NY, USA, 2002. ACM.

[YM97] Peter Young and Malcolm Munro. A new view of call graphs for visualising code
structures, 1997.

