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Abstract

To efficiently handle the continuously increasing raw
point data set sizes from high-resolution laser-range scan-
ning devices or baseline stereo and multi-view 3D object
reconstruction systems, powerful geometry processing solu-
tions are required. We present a flexible and run-time con-
figurable system for efficient out-of-core geometry process-
ing of point cloud data that significantly extends and greatly
improves the stream-based point processing framework in-
troduced in [27]. In this system paper we introduce an opti-
mized and run-time extensible implementation, a number of
algorithmic improvements as well as new stream-processing
operators. As a consequence of the novel and improved sys-
tem architecture, implementation and algorithms, a dra-
matically increased performance can be demonstrated as
shown in our experimental results.

1. Introduction

Points as rendering and modeling primitives have be-
come a powerful alternative to traditional polygonal object
representation [32, 11, 12]. Note that point samples are the
natural raw output data primitives of the geometry capturing
stage in most 3D object acquisition systems. In fact, points
or 3D coordinates are the fundamental geometry-defining
entities. Satisfying provably correct surface sampling crite-
ria as discussed in [24], a set of points in 3D space fully
defines the geometry as well as the topology of a surface
including boundaries, components and genus. Here we as-
sume that input point data sets reasonably sample the repre-
sented surfaces.

With the continually increasing density and extent of raw
point cloud data sets, effective algorithms and systems are
required to cope efficiently with the massive amounts of
point samples. Basic data and geometry processing oper-
ations must be supported such as noise removal, outlier de-
tection, normal estimation, or data decimation with many

more being conceivable. These operations can only be per-
formed efficiently on large data if memory trashing [7] is
avoided. Therefore, data must be paged efficiently into main
memory and processed coherently with respect to randomly
accessing memory locations.

In [27] the concept of stream-processing point data was
introduced which we will briefly review in Section3. The
basic idea was to sequentialize the unorganized raw input
point data and then feed the resulting point stream through
a pipeline of local stream operators. While the approach in
[27] is conceptually well designed and showed promising
results, it nevertheless is limited in a number of points. First
of all, the configuration of the pipeline (chain) of stream op-
erators had to be defined at compile-time, and in fact all se-
lectable operators had to be known and implemented as well
at this time. Furthermore, there was no concept of operator-
chain overarching data structure to maintain any global in-
formation about all points currently residing in main mem-
ory. Third, the previous implementation left some room for
performance improvements, e.g. pooling of dynamic mem-
ory resources. In this system paper we present an improved
stream-processing framework that addresses all these is-
sues, and eventually also introduces a number of new stream
operators. The main technical contributions are:

i) A novel flexible C++-classes framework that defines
run-time configurable geometry processing stream op-
erators.

ii) New concept of chain-operators overarching a chain of
individually configured stream operators.

iii) Improved implementation of neighborhood search op-
erator and dynamic memory handling.

2. Related Work

Points as 3D surface modeling and rendering primitives
have been introduced as early as in [21] and [13]. A num-
ber of efficient hardware supported rendering algorithms



such as [34, 33, 3, 2, 28] have been proposed and subse-
quently further improved. The fundamental theory and al-
gorithms for point-based modeling and rendering are de-
scribed in [12], and surveys on point-based rendering (PBR)
have been presented in [37, 36] and [20]. Apart from render-
ing which has been well studied and extended to out-of-core
[35, 10, 29] or transparent rendering [43], low-level geome-
try processing techniques for point data have been discussed
in [30, 23, 31, 18, 41]. However, these methods are aimed
at processing only moderately sized point sets that fit into
main memory.

Sequential organization of point data has been addressed
specifically for rendering and network transmission pur-
poses in [5, 29] and [35]. More general low-level geometric
operations are applied to a stream of points in [27], which
we will review in the following section.

Streaming has chiefly been used in processing digital au-
dio and video data which in contrast to 3D geometry is in-
herently sequentially organized, i.e. in time. The sweep-
line concept in geometry processing [6] is conceptually
closer than multimedia streaming, since our basic stream-
processing follows a similar idea of sweeping a plane over
the point cloud data. In the context of 3D geometry, stream-
ing has been introduced for simplification and compression
operations on polygonal meshes [16, 42, 17, 40], which
generally grow and process mesh regions sequentially in
an order that limits main memory usage. Specifically for
rendering, a streaming mesh layout has been proposed in
[15]. These streaming approaches on meshes, however, do
not support low-level geometry processing operations, and
more importantly, do not directly apply to raw point data
processing as mesh connectivity is required.

Finally, in graphics the concept of streaming images and
geometry data has been used in the context of remote ren-
dering where 3D data is to be displayed on a remote dis-
play (e.g. [8], [25] or [4]). Again, low-level data processing
is not the focus in these approaches but the network trans-
mission of data to a remote device.

3. Stream-Processing Framework

In this section we briefly review the basic concepts of
the stream-processing framework and operators introduced
in [27].

3.1. Sequential Processing

The basic idea behind stream-processing point data is to
order and process the data sequentially in such a way that:
(1) points can be read from an input-stream into main mem-
ory one at a time, (2) the so calledactive points in main
memory can efficiently be processed independently1 from

others given only some local spatial information, and (3)
points are written early to an output-stream as soon as they
and any dependent points have been processed. Figure 1 il-
lustrates this basic concept of a sliding-window over the set
of input pointsp1, . . . ,pn ∈ IR3. Since all data processing is
limited to the points in the active working setA , at any time
only a very limited fraction of data is kept in main memory,
which together with the sequential processing supports effi-
cient out-of-core operation on huge point data sets.

The setA is a FIFO queue keeping only themcurrently
active pointsA = p j−m, . . . ,pm in main memory which are
to be processed by a chain of local stream operators. As
soon asp j−m ∈ A has been processed and is not required
by an operation on any subsequent pointpi> j−m it can safely
be written to the output stream.

x

y

z

sweep-plane

input streamoutput stream active
set A

p1

pnpj-m
next point

pj

Figure 1. Window of an active set of points
sliding over the stream of input point data.

Since raw point data sets rarely come in a spatially or-
dered sequence, a pre-process is required to linearly order
them. Given an ordering measure along one direction in
space, such sorting can efficiently be achieved for very large
data sets by external sort techniques [19, 39], such as for ex-
ample thersort implementation [22]. A sorting based on the
direction of the longest axis of a data-aligned tight bound-
ing box can efficiently be achieved in two phases as follows.
In the first linear pass over the data pointsp1, . . . ,pn ∈ IR3,
the generic homogeneous covarianceM̂ = ∑n

i=1 p̂i · p̂T
i and

center of mass of the pointsc = 1
n ∑n

i=1pi are accumulated,
with p̂ denoting the homogeneous coordinate extension of
p. As shown in [26, 28] this allows us to express and post-
compute the actual covariance matrixM = 1

n ∑n
i=1(pi −c) ·

(pi − c)T elegantly and efficiently in homogeneous space
by M = 1

nT(−c) · M̂ ·TT(−c) with T(−c) being the trans-
lation matrix moving the center of massc to the origin. The
sorting axis is now given by the eigenvectorv correspond-

1 or more exactly the dependency is strictly limited to a well defined lo-
cal spatial neighborhood relation



ing to the largest eigenvalue ofM . In the second phase, the
points are transformed into the new coordinate system given
by the eigenvectors and then sorted based on their projec-
tion ontov.

3.2. Stream Operators

The operations supported in the above described stream-
processing framework are defined in [27] as local opera-
torsΦ(pi) that perform a computation on a pointpi and its
attributes only taking the pointpi itself and a limited set
of spatial neighborsp j into account. The neighborhoodNi

is typically defined as ak-nearest neighbor set or range of
points p j within a given radiusr. The attributesAi asso-
ciated with a pointpi can include a wide range of param-
eters such as color, normal orientation or curvature. From
this definition it is clear that a local operatorΦ(pi) can
be applied to any point ifpi itself as well as its neighbor-
hood pointsNi are part of the current active working set
A . This includes a large group of important geometry pro-
cessing operators ranging from surface parameter estima-
tion to filtering operations.

Furthermore, the stream-processing framework is de-
signed to chain together a series of stream operators
Φ1, . . . ,Φp that are applied in succession to a stream
of points as illustrated in Figure 2. Each stream opera-
tor Φk itself acts as a FIFO queue, passing the stream of
points from one to the next operator. The so defined con-
cept then postulates that a stream operatorΦk(pi) can be
executed onpi as soon as no preceding operatorΦl<k mod-
ifies any neighbor pointsp j ∈ Ni anymore, or still depends
on pi for its completion. Moreover, each stream op-
erator Φk only passes a pointpi to the next operator
Φk+1 if the point and its attributes have fully been pro-
cessed. More details on these requirements are given in
[27].

output stream active set A input stream

p1 pj pn

pj-m

sweep-direction

y

z

x

Φp(p) Φ…(p) Φ2(p) Φ1(p)

Figure 2. Chain of streamable operators act-
ing on the points passing through the active
set.

The fundamental stream operators introduced in [27] in-
clude the basic I/O operators for reading (ΦR) and writing
(ΦW) points from and to the input and output streams re-
spectively, as well as a neighborhood operator (ΦX) that es-
tablishes the nearest neighborhood relationNi for any in-
coming pointpi . Additional regular geometry processing
operators that have previously been presented include sur-
face normal estimation (ΦN), curvature estimation (ΦC), el-
liptical point splat extent determination (ΦE) as well as fea-
ture preserving surface smoothing (ΦS).

4. System Architecture

In this section we discuss and address the limitations of
the initial implementation of the stream-processing frame-
work outlined in Section 3 as given in [27]. In particular, the
new implementation approach shows significant improve-
ment in flexibility and extensibility, and additionally results
in greatly increased performance which is experimentally
demonstrated in Section 7.

4.1. Run-time Configurability

In the original stream-processing approach [27], the op-
erator chain was set up at compile-time. A stream opera-
tor defined a set of per-point attribute parameters that it de-
pends on or modifies, some auxiliary data fields used while
executing the operator and some attributes that it adds per-
manently to a point element, which are included and writ-
ten to the output stream at the end of the stream operator
chain. An example of the conceptual compile-time configu-
ration of the attribute fields of stream operators is given in
Figure 3. Every stream operator defines a struct that con-
tains members variables for all required data. The auxiliary
temporary and final stream-point output structure can be
combined by simple multiple inheritance. While the main
advantage of this approach is its simplicity, it also lacks
in flexibility and consistency. Full flexibility can only be
achieved by generating a separate executable for all possi-
ble combinatorial configurations of the different stream op-
erators, which grows exponentially by 2p with the number
p of operators. For an increasing and extensible library of
stream operators this is clearly a limiting constraint. Fur-
thermore, there is no automatic mechanism to verify con-
sistency of the attribute fields, e.g. such as ensuring that an
attributexywhich operatorX depends on is provided by an-
other operatorY. A similar problem arises with the order
of operators: While including the normal attribute field in
OutputFields allows the inclusion of a curvature oper-
ator at compile time, it does not make sure that the normal
estimation operator is actually applied first in the chain of
stream operators.



struct Operator1Fields {
float covariance[4][4];

}
struct Operator2Fields {

float area;
}
struct Operator1OutputFields {

float direction[3];
}
struct Operator3OutputFields {

int counter;
float area;

}
struct AxiliaryFields : Operator1Fields,

Operator2Fields, Operator3Fields { };
struct OutputFields : Operator1OutputFields,

Operator3OutputFields { };
struct AllFields : OutputFields,

AxiliaryFields { };

Figure 3. Temporary main-memory and per-
sistent output fields structure of the original,
compile-time dependent stream-processing
application introduced in [27].

Therefore, the stream-processing framework was re-
designed to allow setting up an arbitrary operator chain
at run-time, by using either an external configuration file
or by specifying stream operators as command line argu-
ments. Also, while the attribute fields of different operators
are specified dynamically at run-time, a registration mech-
anism can verify that no required attributes are missing,
and that the operators are specified in a compatible or-
der.

In the new framework, dependencies between stream op-
erators are defined solely by dependencies on certain data
elements, and not the operators themselves. This has the ad-
vantage that every operator can be replaced as long as the re-
placement operator can generate the same output data fields.
Additionally, since there are no direct code-level depen-
dencies between operators, new operators can be integrated
by loading them as separate plugins or dynamic shared li-
braries at run-time.

4.1.1. Alternative Solutions One approach for defining
run-time-configurable objects and attribute fields is to use
a container, e.g. astd::vector¡¿, of boost::any* or simi-
lar ”any-type”-objects [14]. In that case, the data members
of a point p are indicated by an index into that vector of
boost::any elements, and the element is accessed by cast-
ing it to the correct type before use. Figure 4 demonstrates
the use of a vector ofboost::any types to define the at-
tributes of a pointp.

The above mentioned solutions is quite simple, however,
has some important drawbacks. First, the type of thei-th
variable fieldp[i] is not defined in the header of the oper-
ator.boost::any instances are generic, and the type is de-
fined by its first assignment. This means that an external
specification for the type of each attribute field is required,
and cannot be determined by analyzing the code. Further-
more, in the case of trying to access an attribute field using
a wrong type, no compile-time error or warning will be pro-
vided, but a run-time error will be generated. In the context
of the stream processing application, each stream point at-
tribute field has a fixed type. Therefore, theboost::any ap-
proach would not be well suited to the problem domain,
in contrast to the dynamic structures approach that we de-
scribe in the following section, where attribute fields can be
declared in the stream operator header similar to a normal
C++ variable. Moreover,boost::any objects are not com-
patible with memory pooling. Only the any-class wrapper
object can be allocated beforehand, but not the actual data,
since it is generated on first assignment. Only then the ac-
tual type and with it the memory footprint is known and can
be allocated. Finally,boost::any usesrun-time type infor-
mation(RTTI) to determine the type on every access, which
can introduce an additional performance penalty.

typedef std::vector<boost::any*> pdata;
int normal index, nb index;

void opA::set normal(const vec3f &normal ) {
pdata &point = get current point();
vec3f &n = point[normal index]->as<vec3f>();
n = normal ;

}

float opB::compute dotProduct(int nb index) {
// get point indices:
pdata &point = get current point();
pdata &nb = get neighbor(nb index);

// get normal attributes:
vec3f &n = point[normal index]->as<vec3f>();
vec3f &nb n = nb[normal index]->as<vec3f>();

// this compiles, but it will generate
// an error at run-time.
char &nb nf = nb[normal index]->as<char>();

return n.dot(nb n);
}

Figure 4. Example of a possible vector-of-
any-type implementation using flexible point
attributes.



Another alternative would be to just usevoid* pointers,
custom allocated memory fields, type lookup tables, and
constant casting by the programmer. This system is easy
to implement, but hard to use and quite error prone in prac-
tice, as there is neither any kind of type safety, nor a re-
liable way to detect wrongly assigned types during either
compile- or run-time, except for trying to detect invalid out-
put data and/or possible crashes.

4.1.2. Run-time Structures In a dynamic run-time con-
figurable version of the stream-processing framework, the
size of the structure holding the attribute fields is unknown
at compile-time. Therefore, we designed a newrt structs
(for run-time structures) concept for the streaming three-
dimensional point data structure that efficiently enables the
use of type-safe and run-time configurable structures and
member variables. Figure 5 shows the class diagram of
the main classes which includert struct, rt struct user,
rt struct member, rt struct info, rt struct member info
andrt struct factory.

rt struct The rt struct data structure is defined as a class
with no attribute fields, but with template methods to ac-
cess the attribute field data as shown in Figure 6 as well as
private standard and copy-constructors. At run-time, each
rt struct is allocated enough memory to hold all member at-
tributes. Basically, it represents the storage of a point while
it is in main memory as part of the active set. The stan-
dard and copy-constructor are kept private to force the use
of rt struct factory for rt struct instantiation.

template<typename T>
inline T& rt struct::get

(const rt struct member<T> &member)
{

return reinterpret cast<T&>
(this[member.offset]);

}

Figure 6. Template function to access an
rt struct attribute member field.

rt struct memberinfo A member-info object contains meta
data about a single attribute field or data member of a run-
time struct, which includes its name, the size in bytes, and
a flag describing if this data is input data, and if it is tempo-
rary or if it should be written to the output data stream.

rt struct info The rt struct info class contains infor-
mation on all the dynamic attribute data fields in the
form of rt struct member info objects. It is used by
rt struct user-based classes to register and query the
set of member fields that are required for a certain pro-

cessing pipeline, and byrt struct factory to compute the
memory usage of the respectivert struct.

rt struct user rt struct user is provided as a base class
for classes that usert struct functionality. All stream
and chain operators inherit fromrt struct user. It pro-
vides the functionality to easily specify and reserve
attribute fields and collects dependencies on fields of pre-
vious operators. All member fields that originate from an
rt struct user-based class such as an operator are regis-
tered in thert struct info object. The operator also regis-
ters itself with thert struct factory during the setup pro-
cess. This allows automatically setting the offsets for all
rt struct members.

rt struct memberA struct member object is used to ac-
cess an attribute field or member variable of a stream point
during the processing stage. It is a template object, with
the template parameter being the type of the variable that
rt struct member enables access to. It has to be initialized
with the byte offset of that attribute variable in the allocated
memory space thatrt struct occupies. This initialization is
done automatically during setup byrt struct factory. An
example of how to use anrt struct member object to ac-
cess an attribute data field is given in Figure 7. Note that the
compiler will issue a warning when automatic casting can-
not be done safely (e.g. assigning a signed to an unsigned
integer) or will report a compilation error when automatic
casting cannot be done (e.g. when trying to assign a refer-
ence of the wrong type). This behavior is consistent with
a programmers experience, and is the same as when using
normal variables.

// member declaration in header:
rt struct member<float> coeff;

// usage in source code implementation file:
void do something(rt struct* point)
{

// get the value of the index member
float &coeff = point->get( coeff);

// two possible ways to set a new value:
coeff = 2.354;
point->set( coeff, 2.354);

}

Figure 7. Usage example on how to access
dynamic member attribute fields.

rt struct factory The factory used in thert struct system is
a variant of a pooling factory object. It is related to the ab-
stract factory and factory method design patterns [9]. Differ-



operator=( const rt_struct_member< T >& orig );
rt_struct_member

T

void push_pull();
rt_struct* front();

rt_struct_member< vec3f > position
....

stream_operator

void _reserve( const rt_struct_member< T >& member, ...);
void _require( const rt_struct_member_base& member );

rt_struct_info& info
dependecies_list dependencies

rt_struct_user

void set_offset( int offset );

int offset
string name

rt_struct_member_base

...

string name
int size_in_bytes
data_type_id type
int io_flag

rt_struct_member_info

*1

*1

rt_struct* allocate();
void deallocate( rt_struct* );void 
compute_point_structure();
void set_offsets();

list< rt_struct_user* > users
rt_struct_info& info
pool_of_rt_structs pool

rt_struct_factory 1

1

template< typename T > T& get( rt_struct_member< T >& member );
template< typename T > T& get_ptr( rt_struct_member< T >& member );
template< typename T > void set( rt_struct_member< T >& member, T& value );

( no explicit data fields )
rt_struct

* 1

void add_member( member_info& info );
bool has_member( string name );

vector< member_info > members
rt_struct_info

1 *

*

1

1

1

1 *

Figure 5. Dynamic rt struct member elements class diagram.

ent stream-operator chain configurations dynamically de-
fine sets of data member variables used at run-time that rep-
resent a point and its attributes. Hence the different forms
of real-time structures are not subclasses of a common base
class representing the point data, but instead are simply
of type rt struct with dynamically allocated memory to
hold the specified data member fields. Thert struct factory
class provides the methods to allocate blocks of memory
for rt struct objects. For efficiency reasons, this is imple-
mented using memory pooling, see Section 4.2. The fac-
tory class uses thert struct info class to query the informa-
tion about the attribute variable members. It computes and
stores the offsets for each member variable, and sets them
in thert struct member instances during setup.

Setup StageTo initialize a stream-operator pipeline at run-
time, a setup stage is carried out to allocate, initialize and
configure the operators and to collect information on the re-
quired dynamic member fields.

In the first stage of the setup process, each stream oper-
ator reserves the member fields that originate in that oper-
ator by calling the reserve() function of rt struct user.
This will generate an appropriatert struct member info
object, which will be registered inrt struct info. Each oper-
ator also calls therequire() function for attribute fields on
which the operator depends on. This allows a basic depen-
dency checking of member fields, and therefore of the oper-
ator order. The stream processing application will exit with
an error message if the requirements of an operator can-
not be fulfilled. Additionally, some configuration settings
such as minimum number of neighbors can be negotiated
between operators; e.g. if a fairing operator is set to require
a minimum of 64 neighbors, this will override smaller val-
ues of other operators.

In the second stage, the factory computes the size of the
stream-point objects, and the offsets to all of its attribute

members. These are then stored in thert struct member
objects in the stream or chain operators.

Access StageAt run-time, the rt struct data can easily
be accessed usingrt struct member objects. Since each
rt struct member is templatized with the type of its vari-
able this allows type-safe access to the stored variable
at the cost of one (inlined) function call and areinter-
pret cast¡¿(). This works very efficiently and is addition-
ally beneficial to the programmer: The types of all attribute
fields are specified in the header of the respective stream-
operator definition. Hence trying to access a field by using
a wrong type is detected during compilation, and not only
during run-time as it would be the case with theboost::any
solution discussed in Section 4.1.1. Also,

Eachrt struct member object is templatized with the
variable type it represents, and the get-function ofrt struct
is templatized with thert struct member of the respective
type as seen in Figure 7. This allows type-safe access to the
data stored in thert struct object.

4.2. Memory Mangement

Pools of objects are used where possible to optimize per-
formance by preventing continuous construction and de-
struction of objects. Currently, memory pools are used for
rt struct objects, for thekd-tree nodes in thekd-heap-
neighbor operator and for all node types in the new chain
operator.

5. Operators

The basic semantic of stream operators has been retained
from [27] in the new proposed system architecture. In ad-
dition to the standard read and deferred-write I/O and the
various geometry operators, we have implemented one new



// member declaration in header:
rt struct member<double> radius;

// usage in source code implementation file:
void do something(rt struct* point)
{

// works, since radius is of the same type
// that radius is templatized with.
double &radius = point->get( radius);

// compiler will issue a warning
// because of the potentially unsafe
// implicit cast of the value.
float radius = point->get( radius);

// compiler will exit with an error
// because of the initialization of the
// reference with an incorrect type.
int &radius = point->get( radius);

}

Figure 8. Valid and invalid access to member
variables.

local stream operatorΦO(pi) for outlier detection and re-
moval.

Moreover, the new stream-processing system has an ad-
ditional novel chain-operator typeΨ which in its scope
overarches the entire chain of individual local stream oper-
atorsΦ. A stream operatorΦk(pi) is defined in [27] as a lo-
cal operation on the geometry of pointpi and is but one ele-
ment in a chain of stream operatorsΦ1, . . . ,Φp not knowing
about the other selected operators. Furthermore, a stream
operator only has direct access to the points within its own
FIFO queue of points, which is only a subset of all points
in the active setA . On the other hand, the chain-operator
Ψ(A ) in its scope spans the entire set of active pointsA
and has knowledge of all elements in the chain of stream
operatorsΦ1, . . . ,Φp as illustrated in Figure 9.

5.1. I/O Operators

The read operatorΦR acts on the input stream of point
data. During the setup phase, it reads and parses the data
header and maps the point data input file to the input stream.
Typically, this is done via memory mapping of the input file
and sequential traversal through the input data. During the
point processing phase,ΦR reads the input point data and
(optionally) converts it to the proper format. By definition,
the read operatorΦR must be the first in a chain of opera-
tors. It uses a pool ofrt struct point objects as mentioned
in Section 4.2 to efficiently create the new objects.

output stream active set A input stream

p1 pj pn

pj-m

ΦW(p) Φ…(p) ΦX(p) ΦR(p)

Ψ(A)
spatial data structure, statistics, …

Figure 9. Conceptual diagram of the chain
operator Ψ overarching a chain of individual
stream operators Φk.

In the setup phase, the write operatorΦW creates and
memory maps the output file. During processing, the write
operator uses the deferred writing strategy described in [27]
to write points out to disk and remove them from main
memory as soon as this can be done safely.ΦW shares a
pool of rt struct point objects with the read operator, as in-
dicated above, to avoid unnecessary memory allocation and
deallocation overhead.

5.2. Neighborhood Operator

In the novel stream-processing framework we introduce
a new neighborhood operatorΦX that takes advantage of
the spatial data structure provided by the new chain oper-
ator ΨX, see also below. Upon insertion of a new pointp j

into the active-setA , it will also be inserted into a spatial
data structure maintained byΨX. Moreover, the stream op-
eratorΦX(p j) then queriesΨX(A ) immediately for an ini-
tial left-sidednearest neighbors setN j which at that point
contains the closest pointspi with index i < j in the input
stream. At the same time, the new pointp j is tested with
existing neighborhood setsNi and included if appropriate
to continuously complete their missingright-sidedclosest
neighbors.

The spatial data structure in the chain operatorΨX also
allows for within-range neighborhood queries. As soon as
the next new pointp j is farther away from an active point
pi ∈ A than the query ranger along the streaming dimen-
sion, a range query forpi can be invoked onA to find all
neighbors within distancer.

While the new nearest neighbor operator is now the de-
fault to establish closest points neighborhoods, the oldkd-
heap approximatek-nearest-neighbor operator used in the
original stream processing application [27] is still available,
but is deprecated for performance reasons. See experimen-
tal results in Section 7.



5.3. Geometry Operators

The normal estimationΦN, curvature estimationΦC, el-
liptical point splat-extent estimationΦE and smoothingΦS

operators have been ported to the new dynamic rtstruct
member attributes architecture described in Section 4, but
are otherwise identical in functionality to the description
given in [27].

A new local outlier detection stream operatorΦO(pi) has
been added which quantifies the likeliness of any nearest
neighborp j ∈ Ni to be an outlier. The outlier quantifier is
defined as

Oi(p j) = hi(|pi −p j |) · |p j −Πi(p j)|, (1)

with hi(x) being a smooth weighting function, e.g. a Gaus-
sian, andΠi(p j) the projection ofp j onto the plane with
normal ni through pointpi . The outlier operatorΦO(pi)
compares the valuesOi(p j) for all p j ∈ Ni to a threshold
valueε and if greater discardsp j as a nearest neighbor of
pi .

Therefore, the outlier operatorΦO(pi) measures the off-
set ofp j from the tangent plane atpi and quantifies a degree
of co-planarity. However, it penalizes pointsp j farther away
from pi less, so they are allowed to deviate more from the
tangent plane. Hence with the support radius of the weight-
ing functionhi(x) being adjusted relative to an estimated lo-
cal curvature at pointpi , the outlier detection can be made
adaptive to the local surface feature size.

5.4. Chain Operators

The first new chain operatorΨX(A ) sorts all the points
in the active setA into a spatial tree structure. By default, a
bucketed PR KD-Tree [38] is used, but the operator can be
templatized with other tree structures. Any regular stream
operator can interact with this tree operator by providing a
visitor object [9]. Currently, the tree operator is used by the
neighborhood operatorΦX for efficient k-nearest-neighbor
searching or range queries. Additionally, the smoothing op-
eratorΦS uses the new chain operatorΨX to update the spa-
tial data structure for the modified point locations.

The statistics operatorΨS(A ) collects data about cur-
rent and maximum data size, extent and memory usage of
the active set. Having all statistical functionality in an oper-
ator makes data collection optional, and statistics can easily
be disabled for performance reasons. This also allows the
implementation of different operators to customize statis-
tics collection (complete debug and optimization statistics
vs. minimal release-mode statistics).

6. Implementation

Setup To demonstrate the run-time procedure of the
stream-processing application, a very simple process-

ing job will be shown in detail. A raw point data set should
be processed to compute the normal of each point. The re-
sulting pipeline consists of the following stream opera-
tors: read, neighborhood, normal and write. The input data
set contains only the point positions.

During the setup phase, the read operator will be ini-
tialized first, reads and parses the input point header and
registers a dynamic member field called position in the
rt struct info object. Next, the neighboorhood operator is
initialized. This operator requires the chain tree operator
and so requests the system to instantiate the that chain op-
erator. Then, it will reserve the neighbor-list and neighbor-
count dynamic member fields inrt struct info, and adds the
position to the input-requirements list in thert struct user
base-class. Additionally, it will check for a user-specified
neighborhood-size option, and set the default if none was
given. Next the normal operator is initialized, reserves the
normal vector dynamic member field and adds position,
neighbor-list and neighbor-count to the input-dependency-
list. Finally, the write operator is instantiated. Optionally,
a statistics chain operator might be set up if specified by
the user. After all the operators are set up, the system will
run a dependency check that makes sure all the input re-
quirements for each operator are met. The pipeline speci-
fied above is valid and therefore passes that check.

The factory now computes the size of thert struct used
in this pipeline, sets the offsets to the dynamic members in
all rt struct member objects of each stream operator and
allocates an initial pool of memory for points, that is for the
rt struct objects. The read operator memory-maps the input
data file, and the write operator creates and memory-maps a
file large enough to contain the final point data, including all
the newly created member fields that were marked as persis-
tent output data fields. This phase concludes the setup stage
and stream processing can now begin.

ProcessingThe read operator starts reading the point po-
sition from the input data file into factory-allocated new
rt struct objects. The points are inserted into all chain op-
erators, including the tree operator containing a spatial data
structure. The neighborhood operator then gets the points
and will perform ak-nearest neighbor query by sending a
visitor object to the tree operator’s data structure. See Sec-
tion 5.2 for how thek-nearest neighbor search is performed.
The normal operator then receives the point from the output
buffer of the previous operator and computes an estimated
normal based on the points neighbors. Finally, the deferred
write operator buffers the processed point until it is not ref-
erenced anymore from any of the previous stream operators.
Finally, the point-data is written to the output stream and the
rt struct object is returned to the factory. This process con-
tinues until all the input points have been processed.



Notes The new stream processing system depends on two
libraries: boost [1] and some vector-matrix geometry func-
tions. The memory pooling and program options libraries
from boost are used. The stream processing system runs on
most UNIX-based operating systems including Mac OS X,
GNU/Linux and FreeBSD. It has been organized into a dy-
namic library. This allows access to the functionality not
only by using the included command line tool, but also
allows any application to link against it, e.g. to provide
a graphical user interface. Additionally, a php-based web
framework has been developed that provides access to the
stream processor from a web browser, and supports http or
bittorrent uploads and downloads of source and target data
files. Figure 10 demonstrates how this interface looks like.

Figure 10. Web interface to the stream-
processing framework.

7. Results

All experimental results reported here were achieved
on a PowerMac Pro with dual Intel Xeon 2.6GHz proces-
sors. The currently single-threaded implementation is ex-
ecuted on a single CPU core. The models that have been
tested include: David head (2,000,646 points), David 2mm
(4,129,534 points), David 1mm (28,168,109 points) and
Lucy (14,022,961 points).

In Figure 11 we compare the performance of the new
stream-processing system architecture to the original ap-
proach introduced in [27]. As we can see, the new architec-
ture is not only much more flexible with its run-time con-
figurability of the stream-operator chain, but it is also sig-
nificantly more efficient for large point cloud data sets. In
particular, the larger the nearest neighborhood set is defined
the larger is the performance improvement over the previ-
ous approach.

Significant contributions to the performance improve-
ments come not only from the optimized implementation
and memory pooling, but also from the new neighborhood

stream operator. As Figure 12 shows, the relative time used
by the neighborhood operator has decreased, in particular
for the largest David 1mm model.
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Figure 12. Times spent in the different stream
processing operators relative to the overall
processing time, in comparison to [27].

Applying a chain of operators consisting of read (ΦR),
nearest-neighbor search (ΦX), normal estimation (ΦN), cur-
vature estimation (ΦC), splat-extent estimation (ΦE) and
deferred-write (ΦW) the out-of-core effectiveness of the
stream-processing system has remained equivalent to [27].
As shown in Figure 13, the core goal of dramatically re-
ducing the number of data elements actively maintained in
main memory has well been achieved, as rarely ever more
than 1% of data is kept active in main memory.
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Figure 11. Execution times of a stream-operator chain using 8-, and 64-nearest neighbors.

8. Conclusion

In this paper we have presented a novel stream process-
ing architecture, extending and implementing the concep-
tual framework introduced in [27] more efficiently. The new
architecture allows for efficient and flexible run-time con-
figurability of geometry processing operators that can be ap-
plied to an ordered stream of point cloud data. This novel
definition and implementation of local stream-processing
operators allows operators to be dynamically defined and
configured at run-time, and not statically at compile-time as
previously required. Through our novel stream-operator im-
plementation, the main stream-processing application pro-
gram can be compiled without specification of which geo-
metric operators and in what order they will eventually be
applied to the point data. In fact, at run-time, the available
local geometry processing operators can dynamically be se-
lected and configured on-demand. Moreover, the stream-
processing application can automatically check for consis-
tency of the selected chain of stream operators.

Additionally, in the context of stream-processing points
by passing them from one geometry processing operator
to the next in a chain of multiple successive stream oper-
ators, we have introduced the new concept of a chain opera-
tor which acts as a global operator overarching the chain of
individual stream operators.

Finally, the new system architecture has also shown sig-
nificant performance improvements.
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