
  

 

Stefan Eilemann

Renato Pajarola

 

The Equalizer Parallel Rendering Framework

University of Zurich
Department of Informatics (IFI)
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland ifi

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

–
N

o.
IF

I-
20

07
.0

3

2007



  

 

  

 

  

 

Stefan Eilemann, Renato Pajarola
The Equalizer Parallel Rendering Framework
Technical Report No. IFI-2007.03
Visualization and Multimedia Lab
Department of Informatics (IFI)
University of Zurich
Binzmuehlestrasse 14, CH-8050 Zurich, Switzerland
http://vmml.ifi.uzh.ch/



The Equalizer Parallel Rendering Framework

Stefan Eilemann∗ Renato Pajarola†

Visualization and MultiMedia Lab
Department of Informatics

University of Zürich

Technical Report IFI-2007.06, Department of Informatics, Unviersity of Zürich

ABSTRACT

Continuing improvements in CPU and GPU performances as well
as increasing multi-core processor and cluster-based parallelism de-
mand for scalable parallel rendering solutions that can exploit mul-
tipipe hardware accelerated graphics. In fact, to achieve interactive
visualization, scalable rendering systems are essential to cope with
the rapid growth of data sets. However, parallel rendering solutions
are non-trivial to develop and often only application specific imple-
mentations have been proposed. The task of developing a scalable
parallel rendering framework is even more difficult if it should be
generic to support various types of data and visualization applica-
tions, and at the same time work efficiently on a cluster with dis-
tributed graphics cards.

In this paper we introduce Equalizer, a toolkit for scalable paral-
lel rendering based on OpenGL which provides an application pro-
gramming interface (API) to develop scalable graphics applications
for a wide range of systems ranging from large distributed visu-
alization clusters and multi-processor multipipe graphics systems
to single-processor single-pipe desktop machines. We describe the
architecture of Equalizer, discuss its advantadges over previous ap-
proaches, present example configurations and usage scenarios as
well as some scalability results.

Keywords: Scalable Rendering, Parallel Rendering, Immersive
Environments, Scalable Graphics Hardware.

1 INTRODUCTION

The continuing improvements in hardware integration lead to ever
faster CPUs and GPUs, as well as higher resolution sensor and
display devices. Moreover, increased hardware parallelism is ap-
plied in form of multi-core CPU workstations, massive parallel su-
per computers, or cluster systems. Hand in hand goes the rapid
growth in complexity of data sets from numerical simulations and
high-resolution 3D scanning systems, which causes interactive ex-
ploration and visualization of such large data sets to become a se-
rious challenge. It is thus crucial for a visualization solution to
take advantage of hardware accelerated scalable parallel render-
ing. While the framework presented in this paper works as well
in a shared-memory system, we focus more on cluster-parallel ren-
dering, because workstation graphics hardware is developing faster
than high-end (super-) computer graphics, thereby outperforming
such integrated solutions.

Previous parallel rendering approaches typically failed in one of
the following ways: a) provided only special domain solution, b) of-
fered transparent, but not scalable abstraction of the graphics layer,
or c) required replacing most of the existing code infrastructure (e.g.

∗e-mail:eilemann@gmail.com
†e-mail:pajarola@acm.org

such as proprietary scene graphs, molecular data structures, level-
of-detail and geometry databases). To date, generic and scalable
parallel rendering frameworks that can be adopted to a wide range
of scientific visualization domains are not yet readily available. Fur-
thermore, flexible and automatic configurability to arbitrary clus-
ter and display-wall configurations has also not been addressed in
the past, but is of immense practical importance to scientists using
high-performance interactive visualization as a scientific tool. In
this paper we presentEqualizer, which is a novel flexible frame-
work for parallel rendering that supports scalability, isminimally
invasivewith respect to adapting existing visualization applications,
and applies to virtually any scientific visualization application do-
main.

Equalizer is open source, available under the LGPL license from
[13], which allows it to be used both for open source and commer-
cial applications. It is very portable, and has been tested on Linux,
Microsoft Windows, and Mac OS X in 32 and 64 bit mode using
little endian and big endian processors.

2 RELATED WORK

The early fundamental concepts of parallel rendering have been laid
down in [38] and [12]. A number of domain specific parallel render-
ing algorithms and special-purpose hardware solutions have been
proposed in the past, however, only few generic parallel rendering
frameworks have been developed.

Domain specific solutions

Cluster-based parallel rendering has been commercialized for off-
line rendering (i.e. distributed ray-tracing) for computer gener-
ated animated movies or special effects, since the ray-tracing tech-
nique is inherently amenable to parallelization for off-line pro-
cessing. Other special-purpose solutions exist for parallel ren-
dering in specific application domains such as volume rendering
[34, 53, 23, 48, 19, 43] or geo-visualization [52, 2, 33, 29]. How-
ever, such specific solutions are typically not applicable as a generic
parallel rendering paradigm and do not translate to arbitrary scien-
tific visualization and distributed graphics problems.

Special-purpose architectures

Traditionally, high-performance real-time rendering systems have
relied on an integrated proprietary system architecture, such as the
SGI graphics super computers. These special-purpose solutions
have become a niche product as their graphics performance does
not keep up with off-the-shelf workstation graphics hardware and
scalability of clusters. However, cluster systems need more sophis-
ticated parallel graphics rendering libraries, such as the one pro-
posed in this paper.

Due to its conceptual simplicity, a number of special-purpose
image compositing hardware solutions for sort-last parallel render-
ing have been developed. The proposed hardware architectures in-
clude Sepia [37, 32], Sepia 2 [35, 36], Lightning 2 [49], Metabuffer
[8, 56], MPC Compositor [42] and PixelFlow [39, 18], of which
only a few have reached the commercial product stage (i.e. Sepia 2



Figure 1: Various Equalizer use cases.

and MPC Compositor). However, the inherent inflexibility and
setup overhead have limited their distribution and application sup-
port. Moreover, with the recent advances in the speed of CPU-GPU
interfaces, such as PCI Express and other modern interconnects,
combinations of software and GPU-based solutions offer more flex-
ibility at comparable performance.

Generic approaches

A number of algorithms and systems for parallel rendering have
been developed in the past. On one hand, some general concepts ap-
plicable to cluster parallel rendering have been presented in [40, 41]
(sort-first architecture), [47, 46] (load balancing), [45] (data replica-
tion), or [10, 9] (scalability). On the other hand, specific algorithms
have been developed for cluster based rendering and compositing
such as [3], [11] and [54, 50]. However, these approaches do not
constitute APIs and libraries that can readily be integrated into ex-
isting visualization applications, although the issue of the design of
a parallel graphics interface has been addressed in [28]. Only few
generic APIs and (cluster-) parallel rendering systems exist which
include VR Juggler [7] (and its derivatives), Chromium [27] (an
evolution of [26, 24, 25]) and OpenGL Multipipe SDK [30, 5, 1].

VR Juggler [7, 31] is a graphics framework for virtual reality
applications which shields the application developer from the un-
derlying hardware architecture, devices and operating system. Its
main aim is to make virtual reality configurations easy to set up and
use without the need to know details about the devices and hard-
ware configuration, but not specifically to provide scalable parallel
rendering. Extensions of VR Juggler, such as for example Cluster-
Juggler [6] and NetJuggler [4], are typically based on the replication
of application and data on each cluster node and basically take care
of synchronization issues, but fail to provide a flexible and powerful
configuration mechanism that efficiently supports scalable render-
ing.

The main limitation of Chromium [27] for scalable rendering is
that it is focused on streaming OpenGL commands through a net-
work of nodes, often initiated from a single source. The problem
comes in that the OpenGL stream can be very large in size, not
only containing OpenGL calls but also all the rendered data such
as geometry and texture images. Furthermore, this stream of func-
tion calls and data must be packaged and broadcast in real-time
over the network to multiple nodes for each rendered frame. This
makes CPU performance and network bandwidth a major limiting
factor. But for high-performance visualization of large-scale data it
is immensely important to limit real-time data distribution over the
network.

OpenGL Multipipe SDK (MPK) [5] implements an effective par-
allel rendering API for a shared memory multi-CPU/GPU system.
It is similar to IRIS Performer [44] in that it handles multipipe ren-
dering by a lean abstraction layer via a conceptual callback mech-
anism, and that it runs different application tasks in parallel. How-
ever, MPK is not designed nor meant for rendering nodes sepa-
rated by a network. MPK focuses on providing a parallel rendering
framework for a single application, parts of which are run in par-
allel on multiple rendering channels, such as the culling, rendering
and final image compositing processes. Unlike Chromium, it is not

fully transparent but minimally invasive with respect to changes to
existing visualization applications. This concept enables scalable
high-performance rendering while at the same time protecting the
main customer investments into proprietary code infrastructure, and
this approach is also taken in Equalizer.

3 BASIC CONCEPTS

Besides the API, one of the major differences of Equalizer to
Chromium is that it generally distributes and runs the application
code in parallel. For example, one can setup a multi-screen display-
wall with Chromium, streaming the OpenGL calls to a number of
render nodes assigned to screen tiles of the display-wall, as illus-
trated in Figure 2(a). One instance of the application is running.
In contrast, Equalizer runs parts of the application in parallel on
multiple rendering channels as illustrated in Figure 2(b).

Equalizer takes care of distributed execution, synchronization
and final image compositing, while the application programmer
identifies and encapsulates critical parts of the application, such as
culling and rendering. This approach is considered to beminimally
invasivesince the existing rendering code can basically be retained.
The minimal change needed for Equalizer is that the application
rendering code uses the frustum parameters, viewport and stereo
buffer provided by Equalizer for rendering. The application should
implement efficient view frustum culling for performance, in partic-
ular for sort-first decompositions. For sort-last rendering, the appli-
cation should support rendering a subset of the application-specific
database, given by a one-dimensionalrange interval. Hence net-
work bandwidth is freed from unnecessary transmission of exces-
sive graphics commands and data since only the basic rendering
parameters are exchanged between nodes. Only for the unavoid-
able final image compositing step in scalable rendering Equalizer
exchanges framebuffer data between the nodes.

A major strength of Equalizer is its flexible and scalable config-
uration of the parallel rendering tasks, which takes the notion of a
compound tree introduced in MPK [5] to a distributed cluster en-
vironment as discussed in the following section. Hence different
parallel rendering task decomposition and image compositing con-
figurations can easily be specified, see also Figure 8. For example,
efficient sort-last image compositing has been demonstrated in [17].

The Equalizer framework does not impose any constraints on
how the application handles and accesses the data to be visualized.
As such, Equalizer does not provide a solution to the parallel data
access and distribution problem which has to be addressed by the
application itself, for example via mechanisms to limit data repli-
cation (e.g. [45]), or out-of-core access to large data sets and mul-
tiresolution representations (e.g. [11]). As demonstrated in [11],
out-of-core data structures are well suited to provide efficient paral-
lel access to the 3D data from all rendering nodes, and a wealth of
out-of-core approaches have been provided for volume, polygonal
or point data sets (e.g. [51], [22], [55], [21] or [20]). Equalizer does
not interfere with or inhibit any solution to this problem, as it is an
orthogonal issue.

Equalizer does address some fundamental problems to help ap-
plication developers to distribute their data effectively in the con-
text of parallel rendering. The Equalizer networking layer supports



pack

Application

render

tilesort

render

unpack

render

unpack

render

unpack

render

unpack

crfaker

network transport 
of OpenGL 

commands and 
data

intercept  
OpenGL 

commands OpenGL OpenGL

OpenGL OpenGL

Application OpenGL 
implementation

Chromium OpenGL 
Stream Processing Units

(a)

Application
renderrender

renderrender

high-level 
rendering 

commands and 
data (camera, ...)

OpenGL OpenGL

OpenGL OpenGL

(b)

Figure 2: (a) A typical Chromium setup, and (b) an Equalizer appli-
cation both driving a 2x2 display wall.

message passing and the creation of distributed objects. By sub-
classing a distributed object class, static and versioned objects can
be created. Objects are addressed on the cluster using a unique iden-
tifier, which allows the remote mapping of the object. Versioned
objects are typically used for frame-specific data, where a new ver-
sion for each new frame is created. This version information is
passed correctly by Equalizer to the application rendering code.
This mechanism allows simple distribution and multi-buffering of
data.

4 SYSTEM ARCHITECTURE

4.1 Interface

Equalizer is a parallel rendering framework using a similar under-
lying concept as OpenGL Multipipe SDK (MPK). In the following
we will focus on the architectural improvements of Equalizer com-
pared to MPK. The configuration interface to specify the hardware
setup and task decomposition, following the nomenclature of MPK
[5], is further described in Section 4.5.

Equalizer provides a framework to facilitate the development of
distributed and non-distributed parallel rendering applications. The
programming interface is based on a set of C++ classes, modeled
closely to the hierarchical resource description used by the server.
The application subclasses these objects and overrides C++ task

methods, similar to C callbacks. These task methods will be called
in parallel by the framework, depending on the current configura-
tion. A wrapper interface could be written to provide C bindings.

In contrast to MPK, an Equalizer application does not select the
rendering configuration itself; it is configured by a system-wide
configuration server. The application is written against a client li-
brary, which communicates with the server. The configuration is
choosen by the server based on guidelines from the application or
user. The server also launches and controls the rendering clients
provided by the application.

While on a higher level Equalizer uses a client-server approach,
it is built on a peer-to-peer network layer. This network layer
provides a message-based communication interface, as needed be-
tween any two nodes in the cluster, e.g., to transmit image data for
result recomposition during scalable rendering. Currently Equal-
izer provides an implementation for TCP/IP sockets and Infini-
Band. The usage of MPI as a low-level communication library was
not feasible in the context of Equalizer. Dynamic process man-
agement is only available in MPI 2, which still is not wide-spread
enough. Furthermore, the communication patterns for which MPI
was designed are significantly different from Equalizer’s use case.
However, this does not prohibit coupling MPI-based programs with
Equalizer.

4.2 Application

The application in Equalizer solely drives the rendering, that is, it
carries out the main rendering loop only, but does not actually ex-
ecute any rendering. Although depending on the configuration, the
application process may also host one or more render client threads,
as described below. When a configuration has no additional nodes
besides the application node, all application code is executed in the
same process, and no network data distribution has to be imple-
mented. In this special case, an Equalizer application is very similar
to a MPK application.

During initialization of the server, the application provides a ren-
dering client. The rendering client is often, especially for simple
applications, the same executable as the application. However, the
rendering client may be a thin renderer which only contains the
application-specific rendering code. The server deploys this render-
ing client on all nodes specified in the configuration. The main ren-
dering loop is quite simple: The application requests a new frame
to be rendered, synchronizes on the completion of a frame and pro-
cesses events received from the render clients. Figure 3 shows a
simplified execution model of an Equalizer application.

4.3 Rendering Client

Each Equalizer application provides a rendering client, which can
be the same executable as the application itself. In contrast to the
application, the rendering client does not need a main loop and is
completely controlled by the Equalizer framework. Some config-
urations use the application process as a node, in which case the
rendering happens in a different thread within the application pro-
cess. A render client consists of the following threads: The node
main thread, one network receive thread, and one pipe thread for
each pipe to execute rendering tasks.

The client library implements the main loop, which receives net-
work events and processes them. Most importantly, the network
data contains the rendering task parameters computed by the server.
Based on this data, the client library sets up the rendering context
and calls the application-provided task methods. Setting up the ren-
dering context consists of using the correct rendering thread, mak-
ing the drawable and context current, as well as providing the task
methods with the 2D viewport, frustum, view matrix and the data-
range for sort-last rendering. The task methods clear the frame
buffer as necessary, execute the OpenGL rendering commands as
well as readback, and assemble partial frame results for scalable



exit?
no

no yes

begin frame execute:

clear
draw

assemble
readback

swapbarrier
swap

end frame

exit ?

update 
database

exit config

exit

stop

start

initialize

choose 
config

initialize

exit?

start

stop

no

Application Render Clients

Equalizer Server

Application

open

initialize 
config

start

compute 
and transmit 
render tasks

synchronize 
frame end

exit

close

receive and 
dispatch 

tasks

pipe 
threads

stop

Figure 3: Simplified execution flow of an Equalizer application, omit-
ting event handling and application-node rendering threads.

rendering. All tasks have default implementations so that only the
application specific methods have to be implemented, which in-
cludes at least theChannel::drawmethod. For example, the default
callbacks for frame recomposition during scalable rendering imple-
ment tile-based assembly for sort-first and stereo decompositions,
andz-buffer compositing for sort-last rendering of polygonal data.
A detailed description of all methods can be found in [16].

Event handling is implemented by listening asynchronously for
events from all windows. Events are transformed from window-
system specific events into generic window events, and dispatched
to the correct window. The window either processes the event lo-
cally, or converts it into a config event to be send to the application
node. The application node processes the config events as part of
its main rendering loop. A detailed description of event handling
can be found in [15].

In addition to executing the application code in the right context,
the client library implements image compression and transmission,
network swap barrier support and distributed object support.

4.4 Equalizer Server

The Equalizer server receives requests from all applications on the
visualization system. It serves these requests using the application’s
specific configuration, launching rendering clients on the nodes, de-
termining the rendering tasks for a frame, and synchronizing the
completion of frames.

The server maintains the configurations for different applica-
tions. Maintaining the configuration on the server facilitates an
extension to cross-application load balancing, resource reservation
and further system-wide resource management. Each configura-
tion, similarly to a MPK configuration, consists of two parts. The
first part is a hierarchical resource description derived from the
physical and logical environment of the application. The second

part consists of the compound tree, which declares how the re-
sources are used for rendering. The compounds are the heart of
the scalable rendering engine, and are described in detail below.

At the top of the hierarchicy arenodes, which represent a pro-
cess, typically on a single computer of a cluster. A node haspipes,
which are a representation of the graphic cards in a machine. All
tasks for a pipe and its children are executed in a separate thread.
A pipe haswindows, which represent an OpenGL on-screen or off-
screen drawable. By default, all windows of a pipe share display
lists and other OpenGL objects. A window haschannels, which
embody an OpenGL viewport in a window.

Figure 4 shows a two-node, three-pipe, three-window, four-
channel configuration driving a four-sided CAVETM . The channels
declared in the resource section are used by the compounds for ren-
dering. The leaf compounds, which execute the rendering, use a
swap barrierto synchronize their output. The root compound spec-
ifies that the left and right eye are used for stereo rendering.

Resource UsageConfigResources

compound
eye [ LEFT RIGHT ]

channel "left"
wall { ... }
swapbarrier{}

channel "front"
wall { ... }
swapbarrier{}

channel "floor"
wall { ... }
swapbarrier{}

channel "right"
wall { ... }
swapbarrier{}Channel

name "left"
viewport {...}

Window
viewport {...}

Pipe

Node Node

Window
viewport {...}

Pipe

Channel
name "floor"

Window
viewport {...}

Pipe

Channel
name "front"

Channel
name "right"
viewport {...}

Figure 4: An example Equalizer configuration with the associated
real-world counterparts.

4.5 Compound Trees
To configure rendering nodes and pipes for parallel rendering,
Equalizer uses acompound treestructure similar to MPK [5]. How-
ever, the compound definition is different in a few key points to
provide a more flexible and powerful configuration

First, it does not rely on a hard-coded mode which determines
the task decomposition and image compositing stages. Instead, it
describes the rendering and compositing tasks via the compound
tree’s structure.

Second, the rendering is asynchronous, and not frame-
synchronized as in MPK, where all rendering threads are synchro-
nized at the end of each frame, creating idle times for rendering
threads which finish early. Equalizer removes this global synchro-
nization point and introduces a config latencylconfig, which defines
how many frames the slowest rendering thread is allowed to fall be-
hind. Hence at the end of framei, the completion of framei− lconfig
will be synchronized. Note that settinglconfig = 0 creates a frame-
synchronicity as in MPK. Other synchronization points in Equalizer
only include the completion of image transfers for compositing, and
optionalswapbarriersexplicitly defined in the compound tree.



Compoundsare a data structure for describing rendering tasks
and form a tree. Each compound hastasks(clear, draw, assemble,
readback), achannelwhich executes the tasks in the given order,
and additional attributes. Note that a non-leaf compound traverses
its children first before performing its own default tasks assemble
and readback, while a leaf compound executes all tasks by default.
A compound may provideoutput framesfrom the readback task to
others, and requestinput framesfrom others for its assemble task,
and output frames are linked to input frames by name. The readback
or assemble tasks are only active if output or input frames have been
specified, respectively. Otherwise the rendered image frame is left
in-place on the current channel for further processing in a parent
compound on that same channel.

All attributes and the channel are inherited from the parent com-
pound. Theviewport, data rangeand eyeattributes are used to
describe the decomposition of the parent’s 2D viewport, database
range and eye pass, respectively.Swap barrierscan be used to syn-
chronize the buffer swap on a group of channels, typically used for
multi-screen setups such as CAVEs or display walls.

A simple sort-first compound configuration is shown in Figures 5
and 8(a). The root compound defines the viewport size of the chan-
nel and the frustum from the wall description. While the first child
compound inherits the channel, the other compounds are executed
on different channels. However, each defines a partial viewport,
affecting its local view frustum. All leaf nodes execute the basic
clear and draw tasks, and except for the first child have to readback
the result into the specified output frames. The root compound ex-
ecutes the assemble task (sort-first tiled image compositing) once
the output frames are available.

Note that the mapping to physical resources, the first part of
the configuration (see also Figure 4), is omitted. Instead of using
multiple pipes of an actual rendering cluster, all channels could be
mapped to a single pipe, thus allowing testing complex configura-
tions on single-pipe PC.

channel "dest"
wall { ... }
inputframe "tile.b1"
inputframe "tile.b2"
inputframe "tile.b3"

channel "buffer1"
viewport [ lower-left ]
outputframe "tile.b1"

channel "buffer2"
viewport [ lower-right ]
outputframe "tile.b2"

channel "buffer3"
viewport [ upper-left ]
outputframe "tile.b3"

channel "dest"
viewport [ upper-right ]

Figure 5: Compound tree for a four-to-one sort-first decomposition.

Figures 6 and 8(b) show a sort-last configuration with parallel
image compositing. The leaf nodes execute the rendering, and read-
back of two tiles each to bez-composited by the other channels. The
intermediate (green) compounds execute thez-compositing using
framebuffer data from the other channels via the indicated output-
input frame mapping. Once a channel has completed this assem-
ble task (sort-lastz-buffer image compositing) on its tile, the color
framebuffer content is handed over to the root compound which
puts together the tiles to form the final image. Note that a com-
pound does not need to readback a tile which is processed in a par-
ent node on the same channel since it is already in place (e.g. the
compounds executed on the ”dest” channel in Figure 6). The yel-
low arrows illustrate the data flow for the tile beingz-composited
by the channel named ”buffer1”, according to a direct-send sort-last
image compositing [17].

Figures 7 and 8(c) show a mixture of decomposition algorithms
in a multilevel compound tree. Stereo rendering is mixed with sort-
first decomposition. The first level is a stereo decomposition for
the left and right eye, which is in turn parallelized for each eye on
two channels using a sort-first decomposition. The channels used
for composition are also used for rendering, which again allows

channel "dest"
wall { ... }

inputframe { name "tile2" }
inputframe { name "tile3" }

channel "dest"
data range [ first tier ]
outputframe "tile2.dest", viewport [ tile2 ]
outputframe "tile3.dest", viewport [ tile3 ]

channel "buffer1"
data range [ second tier ]
outputframe "tile1.b1", viewport [ tile1 ]
outputframe "tile3.b1", viewport [ tile3 ]

channel "buffer2"
data range [ third tier ]
outputframe "tile1.b2", viewport [ tile1 ]
outputframe "tile2.b2", viewport [ tile2 ]

channel "buffer2"
inputframe "tile3.dest"
inputframe "tile3.b1"
outputframe "tile3", viewport [ tile3 ]

channel "buffer1"
inputframe "tile2.dest"
inputframe "tile2.b2"
outputframe "tile2", viewport [ tile2 ]

channel "dest"
inputframe { name "tile1.b1" }
inputframe { name "tile1.b2" }

Figure 6: Compound tree for a three-to-one direct-send sort-last con-
figuration.

some image transfer optimizations. The screenshot uses anaglyphic
stereo for better readability.

channel "dest"
wall { ... }
inputframe "right"

channel "buffer2"
eye [ RIGHT ]
inputframe "left.b1"
outputframe "right"

channel "buffer1"
viewport [ left-half ]
outputframe "left.b1"

channel "dest"
eye [ LEFT ]
inputframe "left.b3"

channel "buffer2"
viewport [ right-half ]

channel "buffer3"
viewport [ left-half ]
outputframe "left.b3"

channel "dest"
viewport [ right-half ]

Figure 7: Compound tree for a four-to-one stereo/sort-first configura-
tion.

Equalizer’s compound description is much more flexible and
powerful compared to the format used in MPK, and can be used
to define parallel compositing algorithms, such as direct-send or
binary-swap, as well as multilevel decompositions using different
decomposition modes to balance the bottlenecks of the individual
algorithms. A detailed specification can be found in [14]. Numer-
ous example configurations are included with the Equalizer distri-
bution.

5 RESULTS

We conducted our experiments on a five node rendering cluster
with the following characteristics: dual 2.2GHz AMD Opteron
CPUs, 4GB of RAM, Geforce 7800 GTX PCIe graphics and a high-
resolution 2560× 1600 pixel LCD panel per node; 1GB network
and switch. For most tests we used a destination channel with a
resolution of 1280×800, since this is a more typical window size
for scalable parallel rendering. Pixel read, write and network trans-
mission performances are given in Table 1 below.

GL Format, Type read write transmit
BGRA, UNSIGNEDBYTE 5.2ms 4.1ms 42.05ms
DEPTH COMPONENT, FLOAT 5.8ms 37ms 36.41ms

Table 1: Pixel transfer timings for a full-size 1280×800window.

Our prototype test application renders polygonal data, organized
spatially in an octree for efficient view frustum culling and sort-
last range selection. The data is rendered using display lists, and
each vertex consist of 24 bytes (position+normal). We use a fixed
camera path of 100 frames to obtain the average frames per second
as the result. The model used was the Thai Statue consisting of
10M polygons from the Stanford 3D Scanning Repository.

Due to the limitations of the scope of this paper, our experimental
results provide the fundamental evidence of the flexibility and scal-
ability potential of Equalizer, but do not cover an extensive range of



(a) (b) (c)

Figure 8: (a) Sort-first tiled screen, for display walls or CAVETMsetups – compound tree Figure 5. (b) Sort-last scalable rendering – compound
tree Figure 6. (c) Stereo separation and sort-first decomposition – compound tree Figure 7 .

data sets, compound configurations or cluster sizes. This will have
to be done in a dedicated performance study.

5.1 Decomposition Modes
The power of Equalizer lies in its flexibility to configure differ-
ent scalable task decomposition and image compositing strategies
efficiently using the compound tree structure. Various exemplary
use cases have already been shown demonstrating the power of the
compounds structure in Section 4.5, including tiled screen render-
ing (e.g. for display walls or CAVEs), partitioned rendering of the
geometry database (mostly for scalability) or an eye-separated sort-
first parallelized stereo rendering. Figure 9 demonstrates another
complex setup where multiple nodes are used to drive two side-
by-side projectors of a small wall display. Rendering is executed
sort-last by 7 nodes whilez-compositing is performed by 3 nodes
each for the two projectors. Hence the 7 draw channels each output
6 tiles to bez-composited.

The quintessential benefit of Equalizer’s process model and com-
pound tree structure lies in an easy-to-configure and very scalable
parallel rendering system. Therefore, we provide a brief experi-
mental analysis of Equalizer’s scalability that should demonstrate
the potential of the system, while a more extensive study is beyond
the scope of this paper. Equalizer sort-last image compositing scal-
ability results can also be found in [17].

In the first benchmarks, we measured the performance of dif-
ferent task decomposition modes. In Figure 10(a) we usen-to-one
sort-first and sort-last decompositions. The sort-first compounds
use a trivial tile assembly on the destination channel, while the sort-
last compounds use direct-send compositing. For sort-first parallel
rendering, the speedup heavily depends on the decomposition of
the view frustum, and hence the tiling of the window. For this study
the data set is roughly placed in the middle of the screen such that
a simple tiling results in a fair load distribution. The graph 2D
in Figure 10(a) shows a nice close-to linear speedup for sort-first
rendering, and as expected the overhead from clipped primitives
is not dominating at small numbers of tiles. Equalizer also shows
excellent scalability with respect to sort-last rendering, graph DB
in Figure 10(a). Image compositing overhead is not manifested at
this level of parallelism, partly also due to the efficient direct-send
compositing algorithm (see also [17]).

The second set of benchmarks in Figure 10(b) uses different ap-
proaches to scale the performance during stereo rendering. The
first graph 2D-stereo uses a sort-first decomposition where each leaf
node renders two eye passes, which are assembled on the destina-
tion channel in the parent node into the correct stereo buffers. The
second graph EYE-2D does first a stereo decomposition, separating
into left and right eye rendering tasks, and then a sort-first decom-

position into screen tiles. The graphs in Figure 10(b) show a good
linear speedup, but also indicate that the more complicated stereo
image assembly and compositing incurs a small overhead factor.

1.0

2.3

3.6

4.9

6.2

7.5

1 2 3 nodes 5

2D
DB
linear

Decomposition Modes

FPS

(a)

0.5

1.0

1.5

2.0

2.5

3.0

1 2 nodes 4

2D stereo
EYE(-2D) compound
linear

Stereo Rendering

FPS

(b)

Figure 10: (a) Sort-first and sort-last many-to-one rendering perfor-
mance, and (b) different stereo rendering decompositions.

5.2 Latency and Viewport Size
In these benchmarks we measure the influence of the viewport size
and latency on the performance. All test were conducted using a
sort-last direct-send configuration with all five nodes. Figure 11(a)
varies the config latencylconfig from 0 to 6. One can observe
that increasing the latency from a strict frame synchronization with
lconfig = 0 immediately increases the performance by about 15%.
This is achieved through reduced synchronization bottlenecks as
rendering channels can overlap their draw tasks between frames.
We also notice, as expected, that further increasing the latency does
not further improve rendering performance, due to other synchro-
nization constraints such as image transfers. We can conclude that
a small latency of only one or two frames is sufficient to avoid most
drawbacks of a strictly frame synchronized parallel rendering exe-
cution.

In Figure 11(a) experiments with different viewport sizes for the
destination window are shown, and hence the amount of transferred
andz-composited pixel data varies accordingly. The graph exhibits
the expected asymptotic behaviour towards the constant time com-
position cost of direct send, as analyzed in [17], regardless of the
viewport size. Since the composition cost is directly dependent on
the viewport size, the performance approaches, and is limited by
the constant time compositing as soon as the draw cost is reduced
sufficiently by parallel load distribution. This the normal expected
behavior. However, we would like to point our here that the flexible
compound structure allows for complex combinations of parallel
rendering and parallel compositing where the number of contribut-
ing channels can vary and thus allows for optimized resource usage.



channel "B1"
data range [ fifth 1/7 ]
outputframe "F1.B1", viewport [ tileA1 ]
outputframe "F2.B1", viewport [ tileA2 ]
outputframe "F3.B1", viewport [ tileA3 ]

outputframe "F4.B1", viewport [ tileB1 ]
outputframe "F5.B1", viewport [ tileB2 ]
outputframe "F6.B1", viewport [ tileB3 ]

channel "B2"
data range [ sixth 1/7 ]
outputframe "F1.B2", viewport [ tileA1 ]
outputframe "F2.B2", viewport [ tileA2 ]
outputframe "F3.B2", viewport [ tileA3 ]

outputframe "F4.B2", viewport [ tileB1 ]
outputframe "F5.B2", viewport [ tileB2 ]
outputframe "F6.B2", viewport [ tileB3 ]

channel "A4"
data range [ fourth 1/7 ]
outputframe "F1.A4", viewport [ tileA1 ]
outputframe "F2.A4", viewport [ tileA2 ]
outputframe "F3.A4", viewport [ tileA3 ]

outputframe "F4.A4", viewport [ tileB1 ]
outputframe "F5.A4", viewport [ tileB2 ]
outputframe "F6.A4", viewport [ tileB3 ]

channel "A1"
data range [ first 1/7 ]
outputframe "F1.A1", viewport [ tileA1 ]
outputframe "F2.A1", viewport [ tileA2 ]
outputframe "F3.A1", viewport [ tileA3 ]

outputframe "F4.A1", viewport [ tileB1 ]
outputframe "F5.A1", viewport [ tileB2 ]
outputframe "F6.A1", viewport [ tileB3 ]

channel "A2"
data range [ second 1/7 ]
outputframe "F1.A2", viewport [ tileA1 ]
outputframe "F2.A2", viewport [ tileA2 ]
outputframe "F3.A2", viewport [ tileA3 ]

outputframe "F4.A2", viewport [ tileB1 ]
outputframe "F5.A2", viewport [ tileB2 ]
outputframe "F6.A2", viewport [ tileB3 ]

channel "A3"
data range [ third 1/7 ]
outputframe "F1.A3", viewport [ tileA1 ]
outputframe "F2.A3", viewport [ tileA2 ]
outputframe "F3.A3", viewport [ tileA3 ]

outputframe "F4.A3", viewport [ tileB1 ]
outputframe "F5.A3", viewport [ tileB2 ]
outputframe "F6.A3", viewport [ tileB3 ]

channel "B3"
data range [ seventh 1/7 ]
outputframe "F1.B3", viewport [ tileA1 ]
outputframe "F2.B3", viewport [ tileA2 ]
outputframe "F3.B3", viewport [ tileA3 ]

outputframe "F4.B3", viewport [ tileB1 ]
outputframe "F5.B3", viewport [ tileB2 ]
outputframe "F6.B3", viewport [ tileB3 ]

channel "A3"
inputframe { name "F3.A1" }
inputframe { name "F3.A2" }
inputframe { name "F3.A3" }
inputframe { name "F3.A4" }
inputframe { name "F3.B1" }
inputframe { name "F3.B2" }
inputframe { name "F3.B3" }
outputframe "tileA3", viewport [ tileA3 ]

channel "A2"
inputframe { name "F2.A1" }
inputframe { name "F2.A2" }
inputframe { name "F2.A3" }
inputframe { name "F2.A4" }
inputframe { name "F2.B1" }
inputframe { name "F2.B2" }
inputframe { name "F2.B3" }
outputframe "tileA2", viewport [ tileA2 ]

channel "A1"
inputframe { name "F1.A1" }
inputframe { name "F1.A2" }
inputframe { name "F1.A3" }
inputframe { name "F1.A4" }
inputframe { name "F1.B1" }
inputframe { name "F1.B2" }
inputframe { name "F1.B3" }
outputframe "tileA1", viewport [ tileA1 ]

channel "B3"
inputframe { name "F6.A1" }
inputframe { name "F6.A2" }
inputframe { name "F6.A3" }
inputframe { name "F6.A4" }
inputframe { name "F6.B1" }
inputframe { name "F6.B2" }
inputframe { name "F6.B3" }
outputframe "tileB3", viewport [ tileB3 ]

channel "B1"
inputframe { name "F4.A1" }
inputframe { name "F4.A2" }
inputframe { name "F4.A3" }
inputframe { name "F4.A4" }
inputframe { name "F4.B1" }
inputframe { name "F4.B2" }
inputframe { name "F4.B3" }
outputframe "tileB1", viewport [ tileB1 ]

channel "Left Projector"
task ASSEMBLE
inputframe { name "tileA1" }
inputframe { name "tileA2" }
inputframe { name "tileA3" }
swapbarrier{}

channel "Right Projector"
task ASSEMBLE
inputframe { name "tileB1" }
inputframe { name "tileB2" }
inputframe { name "tileB3" }
swapbarrier{}

channel "B2"
inputframe { name "F5.A1" }
inputframe { name "F5.A2" }
inputframe { name "F5.A3" }
inputframe { name "F5.A4" }
inputframe { name "F5.B1" }
inputframe { name "F5.B2" }
inputframe { name "F5.B3" }
outputframe "tileB2", viewport [ tileB2 ]

wall { ... }

Figure 9: Two-projector wall driven by 7 sort-last rendering nodes, where z-compositing is done on 3 nodes for each projector.

6.0

6.3

6.6

6.9

7.2

7.5

0 1 2 3 4 latency 6

DB

Latency

FPS

(a)

1.0

3.5

6.0

8.5

11.0

1 2 3 nodes 5

640x400
1280x800
2560x1600

FPS

Viewport Size

(b)

Figure 11: Influence of the (a) latency and (b) viewport size on the
performance.

6 DISCUSSION AND CONCLUSION

In this paper we presented a state-of-the art parallel rendering
framework, which has been written to be minimally invasive in or-
der to facilitate the porting and development of real-world visual-
ization applications. Equalizer has been designed to be as generic as
possible to support development of parallel rendering applications
for different data types.

Parallel rendering of transparent data is currently supported by
sort-first configurations. For sort-last rendering of transparent sur-
faces or volume data, back-to-front spatial data partitioning would
have to be implemented, as well as anα-compositing compound.
Scalable sort-first rendering depends on a balanced distribution of
the rendering cost across the different screen tiles. To achieve this,
dynamic tile decomposition must be supported as well as some ba-
sic rendering cost heuristics for effective load balancing. The above
extensions pose interesting but also tractable challenges and are
lined up for integration into Equalizer.

The current Equalizer implementation covers basic scalable ren-
dering functionality. We plan to extend this functionality to include
also time-multiplex (DPlex) support, sophisticated automatic load-
balancing for sort-first and sort-last task decompositions, as well
as an API to compress and mask the channels’ screen-frames for
optimized image transport. Aside from the core parallel rendering
API, we plan to improve the resource management capabilities of
the server by enabling it to handle multiple applications, resource
reservation and cross-application loadbalancing. Furthermore, the
creation of a transparent OpenGL layer with Equalizer as the back-
end will allow running existing applications alongside with parallel
applications. Eventually we will integrate remote visualization ca-
pabilities, for example by supporting the VNC protocol.

ACKNOWLEDGEMENTS

We would like to thank and acknowledge the Stanford 3D Scanning
Repository and Cyberware Inc. for providing the 3D geometric test
data sets.

REFERENCES

[1] OpenGL Multipipe SDK.
[2] G. Agranov and C. Gotsman. Algorithms for rendering realistic ter-

rain image sequences and their parallel implementation.The Visual
Computer, 11(9):455–464, 1995.

[3] J. Ahrens and J. Painter. Efficient sort-last rendering using
compression-based image compositing. InProceedings Eurograph-
ics Workshop on Parallel Graphics and Visualization, 1998.

[4] J. Allard, V. Gouranton, L. Lecointre, E. Melin, and B. Raffin. Netjug-
gler: Running VR Juggler with multiple displays on a commodity
component cluster. InProceeding IEEE Virtual Reality, pages 275–
276, 2002.

[5] P. Bhaniramka, P. C. D. Robert, and S. Eilemann. OpenGL Multipipe
SDK: A toolkit for scalable parallel rendering. InProceedings IEEE
Visualization, pages 119–126, 2005.

[6] A. Bierbaum and C. Cruz-Neira. ClusterJuggler: A modular archi-
tecture for immersive clustering. InProceedings Workshop on Com-
modity Clusters for Virtual Reality, IEEE Virtual Reality Conference,
2003.

[7] A. Bierbaum, C. Just, P. Hartling, K. Meinert, A. Baker, and C. Cruz-
Neira. VR Juggler: A virtual platform for virtual reality application
development. InProceedings of IEEE Virtual Reality, pages 89–96,
2001.

[8] W. Blanke, C. Bajaj, D.Fussel, and X. Zhang. The metabuffer: A scal-
able multi-resolution 3-d graphics system using commodity rendering
engines. Technical Report TR2000-16, University of Texas at Austin,
2000.

[9] X. Cavin and C. Mion. Pipelined sort-last rendering: Scalability, per-
formance and beyond. InProceedings Eurographics Symposium on
Parallel Graphics and Visualization, 2006.

[10] X. Cavin, C. Mion, and A. Filbois. COTS cluster-based sort-last ren-
dering: Performance evaluation and pipelined implementation. In
Proceedings IEEE Visualization, pages 111–118. Computer Society
Press, 2005.

[11] W. T. Correa, J. T. Klosowski, and C. T. Silva. Out-of-core sort-first
parallel rendering for cluster-based tiled displays. InProceedings Eu-
rographics Workshop on Parallel Graphics and Visualization, pages
89–96, 2002.

[12] T. W. Crockett. An introduction to parallel rendering.Parallel Com-
puting, 23:819–843, 1997.

[13] S. Eilemann. Equalizer. http://www.equalizergraphics.com/, 2006.
[14] S. Eilemann. Equalizer compound specification.

http://www.equalizergraphics.com/documents/design/com-
pounds.html, 2006.



[15] S. Eilemann. Equalizer event handling specification.
http://www.equalizergraphics.com/documents/design/eventHand-
ling.html, 2006.

[16] S. Eilemann. Equalizer task methods specification.
http://www.equalizergraphics.com/documents/design/task-
Methods.html, 2006.

[17] S. Eilemann and R. Pajarola. Direct send compositing for parallel sort-
last rendering. InProceedings Eurographics Symposium on Parallel
Graphics and Visualization, 2007.

[18] J. Eyles, S. Molnar, J. Poulton, T. Greer, A. Lastra, N. England, and
L. Westover. PixelFlow: The realization. InProceedings of the
ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics Hard-
ware, pages 57–68, 1997.

[19] A. Garcia and H.-W. Shen. An interleaved parallel volume renderer
with PC-clusters. InProceedings Eurographics Workshop on Parallel
Graphics and Visualization, pages 51–60, 2002.

[20] E. Gobbetti and F. Marton. Layered point clouds: A simple and ef-
ficient multiresolution structure for distributing and rendering gigan-
tic point-sampled models.Computers & Graphics, 28(1):815–826,
February 2004.

[21] M. Guthe, P. Borodin,̈A. Balazs, and R. Klein. Real-time appearance
preserving out-of-core rendering with shadows. InProceedings Euro-
graphics Workshop on Rendering Techniques, pages 69–80, 2004.

[22] S. Guthe, M. Wand, J. Gonser, and W. Strasser. Interactive rendering
of large volume data sets. InProceedings IEEE Visualization, pages
53–60. Computer Society Press, 2002.

[23] J. Huang, N. Shareef, R. Crawfis, P. Sadayappan, and K. Mueller. A
parallel splatting algorithm with occlusion culling. InProceedings Eu-
rographics Workshop on Parallel Graphics and Visualization, 2000.

[24] G. Humphreys, I. Buck, M. Eldridge, and P. Hanrahan. Distributed
rendering for scalable displays.IEEE Supercomputing, October 2000.

[25] G. Humphreys, M. Eldridge, I. Buck, G. Stoll, M. Everett, and P. Han-
rahan. WireGL: A scalable graphics system for clusters. InProceed-
ings ACM SIGGRAPH, pages 129–140. ACM Press, 2001.

[26] G. Humphreys and P. Hanrahan. A distributed graphics system for
large tiled displays.IEEE Visualization 1999, pages 215–224, October
1999.

[27] G. Humphreys, M. Houston, R. Ng, R. Frank, S. Ahern, P. D. Kirch-
ner, and J. T. Klosowski. Chromium: A stream-processing framework
for interactive rendering on clusters.ACM Transactions on Graphics,
21(3):693–702, 2002.

[28] H. Igehy, G. Stoll, and P. Hanrahan. The design of a parallel graphics
interface.Proceedings of SIGGRAPH 98, pages 141–150, July 1998.

[29] A. Johnson, J. Leigh, P. Morin, and P. Van Keken. GeoWall:
Stereoscopic visualization for geoscience research and education.
IEEE Computer Graphics and Applications, 26(6):10–14, November-
December 2006.

[30] K. Jones, C. Danzer, J. Byrnes, K. Jacobson, P. Bouchaud, D. Cour-
voisier, S. Eilemann, and P. Robert. SGIR©OpenGL MultipipeTMSDK
User’s Guide. Technical Report 007-4239-004, Silicon Graphics,
2004.

[31] C. Just, A. Bierbaum, A. Baker, and C. Cruz-Neira. VR Juggler: A
framework for virtual reality development. InProceedings Immersive
Projection Technology Workshop, 1998.

[32] P. G. Lever. SEPIA – applicability to MVC. White paper Manchester
Visualization Centre (MVC), University of Manchester, 2004.

[33] P. P. Li, W. H. Duquette, and D. W. Curkendall. RIVA: A versatile
parallel rendering system for interactive scientific visualization.IEEE
Transactions on Visualization and Computer Graphics, 2(3):186–201,
1996.

[34] P. P. Li, S. Whitman, R. Mendoza, and J. Tsiao. ParVox: A parallel
splatting volume rendering system for distributed visualization. In
Proceedings IEEE Parallel Rendering Symposium, pages 7–14, 1997.

[35] S. Lombeyda, L. Moll, M. Shand, D. Breen, and A. Heirich. Scalable
interactive volume rendering using off-the-shelf components. Techni-
cal Report CACR-2001-189, California Institute of Technology, 2001.

[36] S. Lombeyda, L. Moll, M. Shand, D. Breen, and A. Heirich. Scalable
interactive volume rendering using off-the-shelf components. InPro-
ceedings IEEE Symposium on Parallel and Large Data Visualization
and Graphics, pages 115–121, 2001.

[37] L. Moll, A. Heirich, and M. Shand. Sepia: scalable 3D composit-
ing using PCI pamette. InProceedings IEEE Symposium on Field-
Programmable Custom Computing Machines, pages 146–155, 1999.

[38] S. Molnar, M. Cox, D. Ellsworth, and H. Fuchs. A sorting classifica-
tion of parallel rendering.IEEE Computer Graphics and Applications,
14(4):23–32, 1994.

[39] S. Molnar, J. Eyles, and J. Poulton. PixelFlow: High-speed rendering
using image composition. InProceedings ACM SIGGRAPH, pages
231–240, 1992.

[40] C. Mueller. The sort-frst rendering architecture for high-performance
graphics. InProceedings Symposium on Interactive 3D Graphics,
pages 75–84. ACM SIGGRAPH, 1995.

[41] C. Mueller. Hierarchical graphics databases in sort-first. InProceed-
ings IEEE Symposium on Parallel Rendering, pages 49–. Computer
Society Press, 1997.

[42] S. Muraki, M. Ogata, K.-L. Ma, K. Koshizuka, K. Kajihara, X. Liu,
Y. Nagano, and K. Shimokawa. Next-generation visual supercom-
puting using PC clusters with volume graphics hardware devices. In
Proceedings ACM/IEEE Conference on Supercomputing, pages 51–
51, 2001.

[43] W. Nie, J. Sun, J. Jin, X. Li, J. Yang, and J. Zhang. A dynamic parallel
volume rendering computation mode based on cluster. InProceedings
Computational Science and its Applications, volume 3482 ofLecture
Notes in Computer Science, pages 416–425, 2005.

[44] J. Rohlf and J. Helman. IRIS Performer: A high performance mul-
tiprocessing toolkit for real-time 3D graphics. InProceedings ACM
SIGGRAPH, pages 381–394. ACM Press, 1994.

[45] R. Samanta, T. Funkhouser, and K. Li. Parallel rendering with K-way
replication. InProceedings IEEE Symposium on Parallel and Large-
Data Visualization and Graphics. Computer Society Press, 2001.

[46] R. Samanta, T. Funkhouser, K. Li, and J. P. Singh. Hybrid sort-first
and sort-last parallel rendering with a cluster of PCs. InProceedings
Eurographics Workshop on Graphics Hardware, pages 97–108, 2000.

[47] R. Samanta, J. Zheng, T. Funkhouser, K. Li, and J. P. Singh. Load
balancing for multi-projector rendering systems. InProceedings Eu-
rographics Workshop on Graphics Hardware, pages 107–116, 1999.

[48] J. P. Schulze and U. Lang. The parallelization of the perspective
shear-warp volume rendering algorithm. InProceedings Eurograph-
ics Workshop on Parallel Graphics and Visualization, pages 61–70,
2002.

[49] G. Stoll, M. Eldridge, D. Patterson, A. Webb, S. Berman, R. Levy,
C. Caywood, M. Taveira, S. Hunt, and P. Hanrahan. Lightning-2: A
high-performance display subsystem for PC clusters. InProceedings
ACM SIGGRAPH, pages 141–148, 2001.

[50] A. Stompel, K.-L. Ma, E. B. Lum, J. Ahrens, and J. Patchett. SLIC:
Scheduled linear image compositing for parallel volume rendering. In
Proceedings IEEE Symposium on Parallel and Large-Data Visualiza-
tion and Graphics, pages 33–40, 2003.

[51] X. Tong, W. Wang, W. Tsang, and Z. Tang. Efficiently rendering large
volume data using texture mapping hardware. InEUROGRAPHICS -
IEEE TCVG Symposium on Visualization, 1999.

[52] G. Vezina and P. K. Robertson. Terrain perspectives on a massively
parallel SIMD computer. InProceedings Computer Graphics Inter-
national (CGI), pages 163–188, 1991.

[53] C. M. Wittenbrink. Survey of parallel volume rendering algorithms.
In Proceedings Parallel and Distributed Processing Techniques and
Applications, pages 1329–1336, 1998.

[54] D.-L. Yang, J.-C. Yu, and Y.-C. Chung. Efficient compositing methods
for the sort-last-sparse parallel volume rendering system on distributed
memory multicomputers.Journal of Supercomputing, 18(2):201–22–,
February 2001.

[55] S.-E. Yoon, B. Salomon, R. Gayle, and D. Manocha. Quick-VDR:
Out-of-core view-dependent rendering of gigantic models.IEEE
Transactions on Visualization and Computer Graphics, 11(4):369–
382, July-August 2005.

[56] X. Zhang, C. Bajaj, and W. Blanke. Scalable isosurface visualization
of massive datasets on COTS clusters. InProceedings IEEE Sympo-
sium on Parallel and Large Data Visualization and Graphics, pages
51–58, 2001.


