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Figure 1.

 

Snapshot of simulated stream-processing stages with (r.t.l.): points to be read from input stream (black points), in nearest neighborhood
evaluation (red points), during normal computation (yellow points), amid curvature estimation (shaded grey points) and fully processed and written to
output stream (shaded color-coded splats).

 

Abstract

 

With the gigantic sizes of captured 3D models, e.g. from high-res-
olution laser range scanning devices, it has become increasingly
important to provide basic and efficient processing methods for
large unorganized and raw surface-sample point data sets. In this
paper we introduce a novel 

 

stream-based

 

 (and out-of-core) point
processing framework. The proposed approach processes points
in an orderly sequential way by sorting them and sweeping along
a spatial dimension. The major advantages of this novel concept
are: (1) support of extensible and multiple concatenable local
operators called 

 

stream operators

 

, (2) low main-memory usage
and (3) applicability to process very large data sets out-of-core.

 

Keywords: 

 

point processing, sequential processing, normal esti-
mation, curvature estimation, fairing

 

1. Introduction

 

Points as rendering and modeling primitives have become a pow-
erful alternative to traditional polygonal object representation.
Note that point samples are the natural raw output data primitives
of the geometry capturing stage in most 3D object acquisition sys-
tems, e.g. laser range scanning of large objects [LPC

 

+

 

00]. In fact,
points or 3D coordinates are the fundamental geometry-defining
entities. Satisfying provably correct surface sampling criteria as
discussed in [Mee01], a set of points  in 3D space
fully defines the geometry as well as the topology of a surface
including boundaries, components and genus. Here we assume
that input point data sets reasonably sample the represented sur-
faces, i.e. satisfying the Nyquist sampling criteria.

With the dramatically increasing use and precision of 3D cap-
turing systems it is critical to support raw point cloud data in a
practical way. In particular, basic point processing operations
such as surface normal estimation or fairing must be supported.
Such operators can be computed efficiently if the unorganized
point data can be loaded into main memory and organized in
some spatial indexing data structure. However, this approach
while optimal up to some limit, is main-memory inefficient and

will dramatically decrease in performance when the models
exceed available physical main memory. In the case of significant
mismatch between model and physical main memory size it may
cause such 

 

in-core

 

 approaches nearly come to a halt due to mem-
ory trashing [Den70]. Moreover, combining multiple operations
cannot easily be addressed in an efficient way by merely linking
multiple operators.

In this paper we introduce and set the stage for a new

 

stream-processing

 

 concept, a novel approach for processing
points sequentially to improve memory access coherency and dra-
matically limit main memory cost. This sequential stream-pro-
cessing concept directly allows us to process extremely large
models 

 

out-of-core

 

 without the need to partition the models or
process them on very large server machines. In fact, our
stream-processing framework has such a low main memory usage
that physical main memory limitation is practically irrelevant and
extremely large models can be processed on very memory-limited
machines.

The operations that are supported in our stream-processing
concept are local operators 

 

Φ

 

(

 

p

 

), called 

 

stream operators

 

, that
perform a function on a point 

 

p

 

 using only its local neighborhood.
Many fundamental operations such as normal or curvature esti-
mation on raw point data sets follow this principle, requiring the
definition of a local neighborhood and then performing a compu-
tation of attributes based on this neighborhood. Also filter opera-
tions such as fairing are in this category and in general require a
local neighborhood to operate on. Indeed, surface parameter esti-
mation and filter operations are among the most important tasks
for processing raw points. Our 

 

stream-processing

 

 concept sup-
ports direct non-recursive local operators 

 

Φ

 

(

 

p

 

) that include any
nearby sample points within a well defined local neighborhood.

 

2. Related Work

 

Since point primitives have been discussed in [LW85] and
[GD98], many display techniques have been proposed such as
[RL00, PZvBG00, RPZ02, BWK02, KV03

 

, 

 

BK03, PSG04] (see
also surveys [SPL04, SP04]). In general these techniques address
higher-level point processing tasks such as multiresolution mod-
eling and rendering of points given normals and spatial extent.
More low-level processing techniques of point data are discussed
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in [PG01, PKKG03] and fairing in [LWZL02, JDZ04]. However,
these methods are aimed at processing moderate point set sizes in
main memory and assume that some basic processing such as an
initial normal estimation has been done beforehand. An interac-
tive point-processing system is presented in [WPK

 

+

 

04] which,
however, is strongly limited in the size of models it can handle as
it is designed based on a user feedback loop.

Estimation of vertex attributes such as normal orientation is a
common data processing task in polygonal surface reconstruction
methods [HDD

 

+

 

92, GKS00, MN03], as is fairing in surface mod-
eling [Tau95, DMSB99, CDR00, SK01, JDD03]. But note that
these approaches are not aimed at processing models consisting of
tens of millions of vertices and more. In particular, such in-core
algorithms do not scale to out-of-core sized point data sets.

An interesting approach to treat points in a sequential order
has been presented in [DVS03]. There, a point rendering method
has been proposed based on linearizing and sequentially travers-
ing a multiresolution hierarchy. However, the technique only pro-
vides display functionality and does not address any low-level
point (pre-)processing tasks.

Further related work can be found in processing triangle
meshes in a sequential order [IG03, ILGS03]. These techniques
grow triangle mesh regions sequentially in a fixed order that lim-
its main memory usage by only keeping a small fraction of the
mesh active in-core. These algorithms provide efficient compres-
sion [IG03], rendering and simplification [ILGS03] of very large
meshes. Again no low-level mesh operators are supported, and
more importantly, the techniques do not extend to raw point data
processing.

Stream-based data handling is naturally found in processing
audio and video data which in contrast to 3D geometry is inher-
ently sequentially organized (based on time). In the context of
geometry processing, however, sweep-line (and -plane) tech-
niques in computational geometry (see e.g. [dBvKOS97]) are
conceptually the most closely related algorithms. Our basic
stream-processing concept follows that idea of sweeping a plane
in 3D through the data space and considering the events when a
data element is passed by the sweep-plane as outlined in the fol-
lowing section.

 

3. Streaming Concept

 

The fundamental idea behind streaming is to process data sequen-
tially with only a limited buffer of active data at any time, resem-
bling a sliding window over the ordered data stream. This allows
processing huge data sets very efficiently due to coherent mem-
ory-access. Moreover, at any given time it only requires a small
fraction of the entire data set to reside in in-core main memory
while the remainder rests out-of-core.

Figure 2 illustrates our basic concept of 

 

stream-processing
points

 

. Given an ordered set of points  each point

 

p

 

i

 

 is read exactly once from the input-stream, kept in an active
working set 

 

A

 

 (a FIFO queue) for some time, and then written to
the output-stream. All processing is limited to points in the work-
ing set 

 

A

 

. As depicted in Figure 2 we conceptually move a

 

sweep-plane

 

 through space along the axis of spatial ordering,

 

1

 

and when a new point 

 

p

 

j

 

 is passed, denoting an event in classical
line-sweep algorithms [dBvKOS97], it is added to the working set

 

A

 

. See also Figure 1 for an illustration of this concept.
The active set  is continuously monitored

and local operators are applied to points in 

 

A

 

 as elaborated in the
following sections. Furthermore, as soon as the smallest element

 cannot possibly contribute anymore to an operation on

any subsequent point 

 

p

 

i

 

>

 

j

 

 it can safely be written to the output
stream (we will use 

 

small

 

 and 

 

large

 

 with respect to the sequential
index 

 

i

 

 of the ordered points 

 

p

 

i

 

). Note that all points 
(or ) which have not yet been read from the input stream,
or that have been written to the output stream can reside
out-of-core (e.g. in a virtual-memory mapped file). On the other
hand, points 

 

living 

 

in the working set 

 

A

 

 reside in main memory
and extra data is temporarily stored with them such as neighbor-
hood information and other attributes.

 

Figure 2.

 

Sweep-plane process overview: unprocessed points
are read sequentially from input stream, processed points are
written to output stream.

 

Since the active set 

 

A

 

 is orders-of-magnitude smaller then the
entire data set, , it can be maintained efficiently in
main-memory even for very large data sets. Moreover, because
input and output are streams of points this directly leads to an
out-of-core framework for stream-processing huge point set data.

In as much as raw point data sets rarely come with the neces-
sary structure of being sequentially ordered in space, they must be
ordered in a pre-process. This can efficiently be done for very
large data sets by external sort techniques [Knu98,Vit01], and in
practice the 

 

rsort

 

 [Lin96] implementation has been used for simi-
lar tasks.

 

4. Stream Operators

 

4.1 Definitions

 

The class of data processing functions supported by the proposed
stream-processing concept includes operations performing a com-
putation on a point (or set of points) which only require access to
a locally restricted set of neighbors. Or more formally:

 

Definition 4.1 

 

A 

 

local operator

 

 

 

Φ

 

(

 

p

 

i

 

) performs a function on a
point 

 

p

 

i

 

 that computes or updates a subset of attributes 

 

A

 

i

 

 associ-
ated with 

 

p

 

i

 

. As function parameters, 

 

Φ

 

(

 

p

 

i

 

) only accepts 

 

p

 

i

 

,

 

 A

 

i

 

 and
a set of points  within close spatial proximity to 

 

p

 

i

 

 (and all
their associated attributes 

 

A

 

j

 

).

The 

 

neighborhood

 

 set 

 

N

 

i

 

 of points close to 

 

p

 

i

 

 may be defined
for example as the 

 

k

 

-nearest neighbors, or all points 

 

p

 

j

 

 within a
given distance 

 

d

 

 of 

 

p

 

i

 

. The parameters 

 

k

 

 and 

 

d

 

 will generally be
specified by the user on an application level but could as well be
given individually for each point as suggested in [MN03,
AGPS04]. The modifiable attributes 

 

A

 

i

 

 can include a wide variety
of parameters such as normal orientation or splat size. The above
definition of a local operator 

 

Φ

 

(

 

p

 

i

 

) allows it to be applied to a
point  for which all elements of 

 

N

 

i

 

 are also part of the cur-
rent working set, . This formulation includes a wide range
of operators for surface parameter estimation and filtering which
are amongst the most important tasks in processing raw point
cloud data.

In our stream-processing framework, a series of local opera-
tors 

 

Φ

 

1

 

, …, 

 

Φ

 

p 

 

can be concatenated and applied in succession to a
stream of points as illustrated in Figure 3. In this context, each

 

1. Without restricting the generality of the stream-processing concept we 
assume ordering along the 

 

z

 

-axis throughout the paper.

p1 … pn, , R
3

∈
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operator Φk also acts as a sequential FIFO queue buffer Qk on the
point stream and satisfies the following:

Definition 4.2 A local operator Φk(pi) is streamable if it is com-
puted in one single invocation on pi and not called recursively on
any point . Additionally, the FIFO semantic of its queue
Qk behavior ensures no interference between consecutive opera-
tors Φk±1.

Figure 3. Conceptual stream-processing pipeline: A point pi
moves from right-to-left through the staged stream operators
Φ1…p.

The second part of Definition 4.2 deserves further explana-
tion, and is put in practical context in Section 5. It is clear from
the above definitions that a stream operator Φk(pi) postulates the
proper existence of the local neighborhood Ni and any required
attributes of Ai being part of the input data or computed by pre-
ceding stream operators Φl<k(pi) to work. Hence on an application
level the correct order of stream operators and the efficient man-
agement of attributes must be assured, which is outlined in
Section 5.1.

Moreover, each stream operator Φk must make sure that a
point pi is only passed on to the next operator Φk+1 if pi has fully
been processed and all affected attributes are updated by Φk. This
is facilitated and achieved by the FIFO queue semantic Qk of each
operator Φk. Note also that while  (the buffer of operator
Φk) it may be that its local neighbor points  belong to
buffers Qk±1 of pre- or succeeding operators Φk±1. This overlap of
local neighborhood sets Ni between consecutive stream operators
is indicated in our figures (e.g. in Figure 4) by shingling boxes
with cut-out lower-left and upper-right corners. Implementation
issues of this dependency between subsequent operators and real-
ization of correct buffer handling is discussed in Section 5.2.

4.2 Fundamental Stream Operators
As previously outlined, establishing the neighborhood Ni of
points pi entering the active set A from the input stream is of cen-
tral importance, as is the decision when the smallest point of A
can be written to the output stream. We will treat these constraints
in the fundamental I/O and neighborhood-setup operators of our
stream-processing framework. In between these bounding opera-
tors any regular local operators Φ as defined above can be applied
to the point stream as discussed in Section 4.3.

4.2.1 I/O Operators
The canonical first and last stream operators in any stream-pro-
cessing pipeline facilitate I/O from the input and to the output
streams. As depicted in Figure 4 the simple read operator ΦR(pj)
only needs to read and buffer the next new point pj entering the
active set A from the input stream. On demand it is passed to the
following stream operator and the next point is read from the
input stream.

As evident from the definitions of stream operators Φ(pi) that
operate on the neighborhood Ni, any stream-processing stage fol-
lowing Φ(pi) has to make sure that no elements of Ni are altered

until Φ(pi) has completed. In particular, a point pj-m scheduled to
leave the active set A must be processed carefully. Therefore, we
introduce the deferred-write operator ΦW (last in sequence of
stream operators). This operator, as illustrated in Figure 4, makes
sure that any point pj-m is only removed from A and written to the
output stream if not used by any prior stream operator. That is if

 for all pi in prior operator stages Φp-1 to Φ1. The
deferred-write operator is implemented by a simple FIFO queue
(see also Section 5.2.2). As soon as a point pj-m can be removed
from A, its attributes can be written to the output stream and its
main memory can be freed.

4.2.2 Neighborhood Operator
As per definition, any local operator Φ(pi) may require a local
neighborhood of points  surrounding pi. The
neighborhood Ni can either be defined by a maximal range or as a
number k of nearest neighbors. We will briefly outline the k-near-
est neighbors here but a fixed or flexible range can also be sup-
ported efficiently by varying k for each point (e.g. based on
[MN03, AGPS04]). We treat the computation of Ni in our
stream-processing framework as a special neighborhood operator
ΦX(pi) itself which will generally be the second stream operator
just after the read operator ΦR as in Figure 4. 

In the context of stream-processing, we must determine the
k-nearest neighbor set Nj of a new point pj passed by the
sweep-plane in the neighborhood processing stage just after inser-
tion into the active point set A. To compute all k-nearest neigh-
bors efficiently, or any neighborhood set for that matter, it is
essential to maintain a spatial index structure over the relevant
point set for fast spatial (range-) queries. However, since we are
processing a stream of points and want the index to hold as few
points as possible, we must remove (the smallest) elements from
this index at the earliest possible time. Hence the index must as
well incorporate a priority-queue in the sequential ordering of
points. Furthermore, despite frequent insertions and deletions this
spatial data structure must be reasonably balanced for good effi-
ciency. The major challenges are to determine efficient indexing
and query algorithms that guarantee a correct (or close approxi-
mate) k-nearest neighbor solution.

Our streaming (approximate) k-nearest neighbor approach is
summarized by the following process: With respect to Figure 4, at
insertion of pj into A a left-sided k-nearest neighbor set Nj is ini-
tialized. However, during this insertion of pj into the spatial index
S we also mutually update the k-nearest neighbor sets Ni of points
pi<j already in S with respect to the new point pj. Thus at insertion
a left-sided k-nearest neighbor set Nj is computed for pj which is
continuously updated to include the right-sided nearest neighbors
from subsequent insertions of points pi>j.

As spatial index S we use a kD-heap that combines a
dynamic, quasi balanced kD-tree with a priority heap. A kD-tree
was chosen due to its efficient incremental insertion and removal
operations, and the ability to influence its structural balance
dynamically. In fact, since points are streamed in one dimension it
makes sense to have a two-dimensional kD-tree partitioning the
sweep-plane. That is because the streaming dimension of set A
has an extremely small extent compared to the other two dimen-
sions. Furthermore, a priority-queue over the stream indices i of
points  is integrated with the kD-tree as a heap that paral-
lels the kD-tree binary tree structure.

Two basic operations that are supported are: incremental
insertion of a new element into the kD-tree, and removal of an
arbitrary element while satisfying the kD-tree structure
[dBvKOS97]. Both operations are followed by a bottom-up
update of the embedded priority-heap relation.

pj Ni∈

x

y

z sweep-direction

active set A input streamoutput stream

pj-m

pj
p1 pn

Φp(p) Φ…(p) Φ2(p) Φ1(p)

pi Qk∈
pj Ni∈

pj m– Nii∪∉

Ni pi1
… pik

, ,{ }=

pi S∈
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Figure 4. Simple stream-processing pipeline with fundamental stream operators for reading ΦR(p), writing ΦW(p) and establishing all k-nearest
neighbor sets by ΦX(p) enclosing a regular stream operator Φ(pi). 

A more complex operation is the k-nearest neighbor update
which is solved in two phases. In the first phase, just before the
new element pj from the input stream is inserted, a query on S
finds the left-sided k-nearest neighbors Nj which have all smaller
indices – since at that time S only contains prior points in the
sequential ordering. The element pj is then inserted into S with its
current left-biased neighborhood Nj. This starts the second k-near-
est neighbor search phase where for any point pi in the kD-heap
its Ni is continually updated for the right-sided k-nearest neigh-
bors as follows: During the left-sided query for a new element pj,
when pi is tested to be included in Nj (i < j), simultaneously pj is
tested to update Ni on the right side of pi (j > i).

The last major operation on the kD-heap index S is the
removal of processed elements. As it is imperative to keep the
size of S as small as possible for fast k-nearest neighbor updates,
we remove elements whose k-nearest neighborhood is completed
as early as possible. Therefore, our kD-heap supports a query to
find the list L of elements pi in S for which the current
sweep-plane has moved beyond the farthest kth-nearest neighbor
in Ni. The elements of this list L can then be removed from S.
However, note that L is not completely sorted with respect to the
sequential stream ordering of points. Hence its elements cannot
immediately be passed to the next operator stage. Therefore, the
elements  are passed to a sorting buffer B as depicted in
Figure 4, which re-establishes the global stream ordering. The
smallest element pi of B has regained its correct global stream
ordering as soon as its index i is smaller than the smallest index in
S, and then it can be passed to the next stream operator.

In summary, the outlined neighborhood operator ΦX(pi)
incorporates a kD-tree/priority-queue data structure for fast all
k-nearest neighbors estimation and a sorting buffer to
stream-order the processed points. Its FIFO queue semantic is fur-
ther explained in Section 5.2.2. The advantages of this solution
include:
• the spatial index exhibits a strong k-nearest neighbor

query selectivity,
• the kD-tree allows dynamic insertions of new points

while preserving a quasi-balanced search structure,
• the embedded priority-heap structure supports fast and

early removal of processed elements, and
• the heap and sorting buffer preserve the globally sorted

stream-index property dynamically.

4.3 Regular Stream Operators
Given the local neighborhood Ni of points pi in the active set A,
many stream operators Φ(pi) are conceivable based on our defini-
tions in Section 4.1, and we outline a small set of meaningful
operators that we implemented in our stream-processing points
framework. These range from simple normal and curvature esti-
mation, to anisotropic smoothing, and for each we discuss its

dependencies and constraints in the stream-processing frame-
work. This extensible list of important operators shows the power
and applicability of the proposed stream-processing concept.

4.3.1 Normal Estimation
As prototypical local operator we first introduce the normal esti-
mation ΦN(pi) which is an essential part of processing raw points.
Variations of plane fitting have been used in most approaches to
estimate the local normal orientation ni of a point pi in point cloud
data [ABCO+01, PGK02, MN03, PKKG03] and is a standard in
surface reconstruction techniques (e.g. as in [HDD+92]).

A local least squares (LLS) fit of a plane to a point pi and its
k-nearest neighbors  is defined by the eigen-
value analysis and eigenvector decomposition of the covariance
matrix Mi over pi and Ni. Similar to [ABCO+01], we express a
moving least squares (MLS) representation of the covariance as
weighted sum:

. (1)

The weight function θ(r) is a smooth, radially symmetric,
monotone decreasing Gaussian function , with
variance σ2 adaptively defined as the local point density estimate

 as suggested in [MN03]. Thus
the normal ni of a point pi is computed as eigenvector of the MLS
covariance Mi over Ni corresponding to the smallest eigenvalue of
Mi. Potentially it is numerically more robust to define the normal
as the normalized vector product of the two eigenvectors corre-
sponding to the two largest eigenvalues of Mi.

A LLS or MLS based normal estimation stream operator
ΦN(pi), together with the read, neighborhood and deferred-write
fundamental operators, constitutes one of the most basic
stream-processing pipeline configurations as illustrated in
Figure 4 that performs a meaningful operation on a point set.

As the normal operator ΦN(pi) does not modify any neighbor-
hood information but merely computes a new attribute, the nor-
mal ni of a point pi, its FIFO semantic as introduced in
Section 4.1 is very simple: After processing a new point pi, it is
directly released to the subsequent stream operator ΦN+1(pi) and
pi is only buffered if not consumed immediately by ΦN+1. While a
buffer is implemented as discussed in Section 5.2.1, it will gener-
ally not buffer any additional points as indicated in Figure 5.

4.3.2 Curvature Estimation
Another elementary operator is the estimation of curvature and its
principal directions. Our curvature operator ΦC(pi) implements a
curvature estimation based on the covariance of normals nj of
nearest points . Similar to the normal estimation above we
define a MLS representation of the normal covariance as:

. (2)

x

y

z
sweep-plane
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sorting
FIFO queue

input streamoutput stream

pj-m
pj

p1
pn

operatordeferred-write

buffer
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pj-l
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readoperator

ΦW(p) ΦR(p)ΦX(p)

pi L∈

Ni pi1
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, ,{ }=

Mi Ni
1–

pj pi–( ) pj pi–( )
T

θ pj pi–( )⋅ ⋅
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pj Ni∈∑⋅=
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Figure 5. Stages of a complex stream-processing pipeline for fairing, including a smoothing operator ΦS(p) enclosed by normal and splat size
operators ΦN(p) and ΦE(p).

The singular value decomposition of the covariance of nor-
mals of Equation 2 gives us an estimate of the curvatures and its
principal directions. Figure 1 illustrates the principal curvatures
(root mean square curvature (RMS), mean or absolute curvature)
on the David point data.

As the curvature operator ΦC(pi) depends on the normals nj of
all k-nearest points , and hence may follow a normal oper-
ator ΦN, its FIFO semantic is as follows: New points pulled from
the prior stream operator ΦC-1 are buffered until the entire neigh-
borhood Ni has been processed by ΦC-1 before ΦC(pi) is applied.
This pre-buffering constraint is further described in Section 5.2.2.

4.3.3 Splat Size Estimation
High-quality point-based rendering (PRB) techniques display a
surface from points by rendering and blending overlapping (ellip-
tical) disks (see also overview [SPL04, SP04]). The elliptical
extent of a point pi can be derived from locally computed Voronoi
cells as in [DGH01, DH02], however, given the local neighbor-
hood Ni, a covariance analysis [PGK02, Paj03, PSG04] is more
suitable for implementation as an elliptical splat-estimation
stream operator ΦE(pi) in our stream processing framework.

We can determine the ellipse parameters such as major and
minor axis directions, major axis length and aspect ratio for a
point pi efficiently from the eigenvalue and eigenvector decompo-
sition of the (MLS weighted) covariance matrix Mi given in
Equation 1. The eigenvectors, of the covariance Mi projected into
the tangent plane given by the normal ni, define the ellipse axis
while the eigenvalues determine the aspect ratio. The so defined
elliptical disk has then to be scaled to fit the neighbor set Ni. The
beauty of the approach in [Paj03, PSG04] can largely be pre-
served in this context.

Alternatively, if we have a curvature operator ΦC preceding
the splat estimation ΦE(pi) then the ellipse axis directions and
their aspect ratio can be inferred from the principal curvatures
derived from Equation 2. In that case only an elliptical disk scal-
ing has to be performed to fit the neighbor set Ni.

A normal estimation stream operator ΦN(pi) combined with a
splat-estimation stream operator ΦE(pi) compute the essential
per-vertex attributes necessary for efficient high-quality PBR
algorithms as surveyed in [SPL04, SP04].

Similar to the normal operator, ΦE(pi) computes new point
attributes and its FIFO semantic resembles the one of the normal
operator described in the previous Section 4.3.1.

4.3.4 Fairing
To demonstrate the power of the proposed stream-processing
framework we introduce a smoothing filter operation ΦS. Point
cloud data from high-resolution 3D scanners or imaging devices
tend to have a non-negligible amount of noise. To filter noise arti-
facts many smoothing algorithms have been proposed for meshes

such as [Tau95], [DMSB99], [CDR00] or [SK01] just to mention
a few of the major approaches. In general these techniques require
a manifold mesh representation and are based on iterative numer-
ical methods. In [PG01], fairing of points has been proposed
which, however, requires a regular (re-) sampling pattern. For an
efficient stream operator based smoothing, specific assumptions
on the sampling pattern, iteration or recursion have to be avoided.

Therefore, we adopt the non-iterative feature preserving fair-
ing operator presented in [JDD03], as also proposed in [JDZ04].
Its applicability to triangle soups makes it suitable for adaptation
to unorganized point sets, and it conforms to the basic steam oper-
ator constraints outlined in Section 4.1. Fairing of points pi along
[JDD03] requires tangent plane normal estimates ni which we
already addressed in Section 4.3.1. Furthermore, it also requires
accessing spatial neighbors around pi which is provided by the
k-nearest neighborhood Ni outlined in Section 4.2.2.

Given a point pi and its neighbors Ni, we directly extend the
smoothing operation of [JDD03] to points as follows

, (3)

with summation over all points . The operator
 denotes the projection of pi onto the tangent plane of point

pj and the value aj corresponds to an area weight (i.e. the elliptical
splat disk size). The normalization term wi is the sum of weights

. The Gaussian weight function
f(r) adjusts the influence of a point based on spatial distance and
favors nearby points for smoothing, while g(r) tends to preserve
sharp features by giving less weight to points with different nor-
mal orientations [JDD03].

Note, however, that the fairing operator ΦS(pi) must fit into a
properly configured stream-processing pipeline as illustrated in
Figure 5. In particular, applying the fairing operator ΦS(pi) calls
for recomputation of new normals ni, as well as (elliptical)
bounding disk parameters. Hence we apply normal and splat size
estimation ΦN and ΦE not only before, but also again after the
fairing operator ΦS as shown in Figure 5.

Moreover, since the fairing operator ΦS(pi) changes the coor-
dinates of a point pi it must strictly be avoided that any pre- or
succeeding stream operators ΦS±1(pj) act on a mix of pre- and
post-faired points . This constraint must correctly be satis-
fied by the FIFO queue semantic of ΦS as described in
Section 5.2.2. Hence ΦS in general buffers a limited set of points
as indicated in Figure 5.

5. Implementation
A major challenge in the context of stream-processing points as
outlined in Section 4 is the systematic definition and development
of stream operators. In particular, this includes:
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1. defining a common implementation framework and inter-
face such that local stream operators Φk(pi) can be concate-
nated and plugged into a stream-processing system like
modules, and

2. concealing the dependencies between consecutively applied
local stream operators Φ1, …, Φp effectively within the
stream-operator abstract data types.

In this section we address the above challenges by describing
the implementation of our stream-processing points framework
based on the definition of a stream-operator abstract data type.

5.1 Attribute Handling
As mentioned in Section 4, different stream operators Φk(pi) add
or modify different subsets of attributes  of points pi.
These may be additional to the ones provided initially in the input
point stream. Moreover, some attributes may only be needed tem-
porarily and need not be written to the output point stream at all.
Therefore, we define the stream-point data type as an extensible
set of attribute-field structures as outlined below and exemplified
in Figure 6.

InputFields  Defines the initial point attributes  given for each
point pi in the input stream.

<name>OpFields  Specifies the temporary attributes  com-
puted by stream operator Φk(pi) for points pi in the active set A
but not written to the output stream.

<name>OpOutFields  Lists the added attributes  computed
by stream operator Φk(pi) for each point pi which are passed
along with the point pi to the output stream.

AuxiliaryFields  Consists of all auxiliary attributes
 computed and required by any stream operator

Φk(pi) while a point pi is in the active set A and processed by
operators Φ1, …, Φp.

OutputFields  Includes all attributes  of a
point pi that have to be written to the output stream.

AllFields  Covers all attributes  that are
ever referenced by any stream operator while processing point pi.

This design of extensible per-point attribute fields supports
the flexibility that a stream-processing framework with varying
configurations of stream operators requires. On an applica-
tion-level, the definition of these attribute fields has to be
matched with the configuration of the stream-processing pipeline.
For example, the splat ellipse estimation operator ΦE(pi) bases its
computation on the existence of a normal ni which requires a pre-
cursory normal operator ΦN and the proper inclusion of its
attributes  and .

An example point-attribute configuration is given in Figure 6
for a normal computation, elliptical splat estimation and fairing
pipeline consisting of: stream reading ΦR, neighborhood genera-
tion ΦX, normal computation ΦN, splat size estimation ΦE, fairing
ΦS and deferred stream writing ΦW operators. The right configu-
ration and order of operators is depicted in Figure 5. As part of
the auxiliary fields , the reader ΦR assigns an index i to each
point pi in the order it is read from the input stream. The k-nearest
neighbor operator ΦX(pi) computes all auxiliary fields with
respect to a point pi’s neighborhood information Ni. In particular,
this also includes the min and max referenced indices j of its
nearby points  which’s use is further detailed in the fol-
lowing sections. The normal operator ΦN(pi) computes the nor-
mal attribute ni which is part of the output , based on
covariance information which is stored as part of . The ellip-
tical splat estimator ΦE is also based on normal and covariance

information and outputs ellipse major axis, its length and aspect
ratio as part of . For its calculation, the fairing operator
ΦS(pi) adds temporary attributes to  consisting of a copy of
the original point position and an area weight.

struct InputFields {
  Vector3f v; // position
  Color3u c; // color
};

struct ReadOpFields {
  int index; // element’s index i in input stream
};

struct NeighborOpFields {
  int cnt;                 // number of neighbors
  AllFields* list[MAX_K];  // pointers to neighbors
  float dist[MAX_K];       // distances to neighbors
  int min_index; // smallest referenced index
  int max_index; // largest referenced index
};

struct NormalOpFields {
  Matrix4d covar; // covariance information
};

struct NormalOpOutFields {
  Vector3f n; // normal
};

struct SplatOpOutFields {
  Vector3f axis; // major ellipse semiaxis orientation
  float length; // major ellipse semiaxis length
  float ratio; // semiaxis aspect ratio
};

struct FairOpFields {
  Vector3f position; // copy of original position
  float area; // splat area weight
};

struct AuxiliaryFields : ReadOpFields,
NeighborOpFields, NormalOpFields,
FairOpFields {};

struct OutputFields : InputFields,
NormalOpOutFields, SplatOpOutFields {};

struct AllFields : AuxiliaryFields,
OutputFields {};

Figure 6. Attribute-field structures of stream-points for a normal
computation, elliptical splat estimation and fairing
stream-processing pipeline as illustrated in Figure 5.

5.2 Stream Operator Classes
As introduced in Section 4.1, each stream operator Φk behaves
like a buffer Qk on the stream of points. After being released from
the previous operator Φk-1 – respectively its buffer Qk-1 – a point
pi enters the next queue Qk. When all necessary neighborhood
conditions are met, operator Φk(pi) is performed. The conditions
when a point  can be processed by Φk(pi) and when it is
released to the subsequent operator Φk+1 and its queue Qk+1,
depend on the class of the stream operator Φk as outlined below.

The semantic of the buffer Qk of a stream operator Φk is
equivalent to a FIFO queue, and the operators’ interface is given
in Figure 7 which includes the traditional front() and pop_front()
methods. However, instead of using a standard push_back() inter-
face we defined the exchange of points between subsequent oper-
ators as a pull-push mechanism, see also Section 5.3. For this
purpose, each operator Φk keeps a reference to the previous oper-
ator Φk-1 in the stream-processing pipeline. The semantics and
implementations of these queue operations are further discussed
next. Additional stream-operator functionality includes queries on
the smallest element – index i of a queued point  – on
which operator Φk has not yet actually been computed; and the
smallest referenced neighbor – index j of a  – of any
unprocessed points pi in Qk.
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class StreamOperator {
public:
  StreamOperator();
  virtual ~StreamOperator();

  virtual void pull_push();
  virtual AllFields* front();
  virtual void pop_front();

  virtual int smallest_element();
  virtual int smallest_reference();

protected:
  StreamOperator *prev;
};

Figure 7. Abstract common interface definition of the virtual
stream operator base-class.

5.2.1 Through-buffer Operators
All simple stream operators Φk(pi) that given a set of attributes

 compute additional new attributes  for a point pi with-
out affecting any nearest neighbor data in Ni are called
through-buffer operators. This arises from the fact that as soon as
a point pi is released from a prior operator Φk-1 it can be pro-
cessed by Φk and immediately released to Φk+1. The pull_push()
outline for simple through-buffer stream operators is given in
Figure 8. Note that this simple stream operator class implements a
FIFO queue to buffer points pi after being processed by Φk. How-
ever, in practice this buffer will generally be empty as the subse-
quent operator Φk+1 consumes the released points immediately.

class ThroughBuffer : public StreamOperator {
public:
  virtual void pull_push();
  virtual AllFields* front();
  virtual void pop_front();

  virtual int smallest_element();
  virtual int smallest_reference();

protected:
  deque<AllFields*> FIFO;
};

void ThroughBuffer::pull_push() {
  AllFields *tmp;
  
  // pull elements from previous stream operator
  while (tmp = prev->front()) {
    prev->pop_front();

    // perform stream operator function
    applyOperator(tmp);
    FIFO.push_back(tmp);
  }
}

Figure 8. Class definition and pull-push method of a
through-buffer type stream operator.

The standard FIFO queue front() and pop_front() methods are
straightforward implementations for a through-buffer stream
operator Φk as shown in Figure 9. Basically the FIFO buffer of
processed points pi is queried and if not empty the points are
released in order (to the calling operator Φk+1). Since a
through-buffer operator Φk does not queue any unprocessed
points pi both index-reference queries are passed to any prior
stream operator Φk-1 in the stream processing pipeline.

Normal computation as well as elliptical splat-estimation
stream operators described in Sections 4.3.1 and 4.3.3 belong to
this through-buffer stream operator category. The read operator
(Section 4.2.1) is an even simpler through-buffer implementation
as it reads and buffers one point at a time from the input stream.

5.2.2 Pre- and Post-buffer Operators
More complex are the FIFO queue implementations for stream
operators Φk(pi) that either affect the use of  in processing
other nearest-neighbor related points pj by Φk±1(pj), or that mod-
ify the neighbor data Ni of the current point pi. We observe that:

AllFields* ThroughBuffer::front() {
  AllFields *tmp = NULL;

  if (!FIFO.empty())
    tmp = FIFO.front();
  return tmp;
}

void ThroughBuffer::pop_front() {
  if (!FIFO.empty())
    FIFO.pop_front();
}

int ThroughBuffer::smallest_element() {
  if (prev)
    return prev->smallest_element();
  else
    return INT_MAX;
}

int ThroughBuffer::smallest_reference() {
  if (prev)
    return prev->smallest_reference();
  else
    return INT_MAX;
}

Figure 9. FIFO queue access and index-reference methods for
through-buffer type stream operators.

class PrePostBuffer : public StreamOperator {
public:
  virtual void pull_push();
  virtual AllFields* front();
  virtual void pop_front();

  virtual int smallest_element();
  virtual int smallest_reference();

private:
  deque<AllFields*> FIFO1;
  deque<AllFields*> FIFO2;
  HeapOfPairs HEAP;
};

void PrePostBuffer::pull_push() {
  AllFields *tmp;

  // pull elements from previous stream operator
  while (tmp = prev->front()) {
    prev->pop_front();

    // update heap that maintains smallest referenced index
    HEAP.push(tmp->min_ref_index, tmp);

    // defer processing points
    FIFO1.push_back(tmp);
  }
  
  // check queue of deferred points
  while (!FIFO1.empty()) {
    tmp = FIFO1.front();
    
    // only update elements fully processed by prior operator
    if (tmp->max_ref_index < prev->smallest_element() &&
        tmp->index < prev->smallest_reference()) {
      FIFO1.pop_front();
      
      // perform stream operator function
      applyOperator(tmp);
      
      // transfer to post-buffer
      FIFO2.push_back(tmp);
    } else
      break;
  }
}

Figure 10. Outline of class definition and pull-push method of a
pre- and post-buffer type stream operator.

1. First, such operators must defer processing a point pi until
all its neighbors  have been processed by the previ-
ous operator Φk-1.

2. Second,  itself must not be accessed by any operator
Φk-1(pj). Finally, point pi is only released to the subsequent
stream operator Φk+1 when it is safe to do so.

Figure 10 demonstrates the underlying pull-push algorithm
for stream operators Φk(pi) that must pre- as well as post-buffer
the processed points pi. Two queues are now necessary to imple-
ment the stream operator’s buffer Qk, one for buffering points pi
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before and one after applying Φk. The pull_push() method first
gets all points pi released from the preceding operator Φk-1 and
queues them up in FIFO1. Note that at this point the smallest ref-
erenced indices j of points  for all  are maintained
in a HEAP structure which stores the index j along with the point
pi it is referenced from. Next, the queue FIFO1 is checked for
available points pi that can now safely be processed by Φk and
queued up in FIFO2. This requires testing for smallest unproc-
essed and smallest referenced indices in the previous operators
Φk-1 as pointed out above.

In Figure 11, the FIFO queue front() and pop_front() methods
of a pre- and post-buffer stream operator Φk are given. In this
context, the next available point via pop_front() must come from
the FIFO2, the post-buffer, as only this queue keeps the points
already processed by Φk. In addition, the top-most element pi of
FIFO2 is only released by operator Φk if it no more references
any point  which is still in the pre-buffer FIFO1 of Φk!
This satisfies the constraints that when pi is released to the next
operator Φk+1(pi), Φk+1 will not operate on a neighborhood Ni of
pi consisting of mixed points pj – with respect to being processed
or not by the operator Φk.

Additionally, the pop procedure has the task of updating the
HEAP of smallest indices referenced by any point  after
releasing a point pi to the next operator. This is simply done by
removing all elements at the top of HEAP which are no longer
members of Qk.

Finally, we define the smallest and smallest-referenced index
functions at the bottom of Figure 11. The smallest index i of an
unreleased point  of stream operator Φk is given either by
the smallest element of queues FIFO2 or FIFO1, or passed along
to the preceding stream operator Φk-1 in the stream processing
pipeline. The smallest referenced index j of points  for all

 is explicitly maintained in the above introduced HEAP
data structure, and the query takes this HEAP of operator Φk as
well as the prior operator Φk-1 into account.

AllFields* PrePostBuffer::front() {
  AllFields *tmp = NULL;

  if (!FIFO2.empty() && (FIFO1.empty() || 
         FIFO2.front()->max_ref_index < FIFO1.front()->index))
    tmp = FIFO2.top();
  return tmp;
}

void PrePostBuffer::pop_front() {
  if (!FIFO2.empty()) {
    // remove unused references from HEAP
    while (!HEAP.empty() && HEAP.top().second->index
           < FIFO2.front()->index)
      HEAP.pop();
    FIFO2.pop_front();
  }
}

int PrePostBuffer::smallest_element() {
  if (!FIFO2.empty())
    return FIFO2.front()->index;
  else if (!FIFO1.empty())
    return FIFO1.front()->index;
  else
    return prev->smallest_element();
}

int PrePostBuffer::smallest_reference() {
  int index = prev->:smallest_reference();

  if (!HEAP.empty())
    index = MIN(HEAP.top().first, index);
  return index;
}

Figure 11. Outline of FIFO queue access and index-reference
methods for pre- and post-buffer type stream operators.

The k-nearest neighbors operation and the fairing function
described in Sections 4.2.2 and 4.3.4 are pre- and post-buffer
stream operators as characterized in this section. The k-nearest

neighbors stream operator ΦX, however, exhibits a few notable
differences. First, the queue FIFO1 is replaced by a kD-heap
structure as explained in Section 4.2.2 and in the first while loop
of the pull_push() method in Figure 10 this kD-heap is queried
and updated for the points pulled from the preceding read opera-
tor. Second, the FIFO2 queue is replaced by a sorting buffer, and
the second while loop in the pull_push() method is substituted
with a query process to remove elements with completed k-near-
est neighbor sets from the kD-heap and queuing them in the sort-
ing buffer. As the combination of the kD-heap and sorting buffer
fully implement the FIFO semantic QX of the k-nearest neighbor
operator ΦX, the queue access and smallest index-reference meth-
ods manifest only slight deviations from the basic methods given
in Figure 11 and are thus not further explained here.

The curvature operator ΦC(pi) described in Section 4.3.2 is a
simplified pre- and post-buffer stream operator in that it only
exhibits a pre-buffer constraint to make sure that any point

 has been released from the prior stream operator Φk-1.

5.3 Stream-Processing Pipeline
Setting up a stream-processing point pipeline is now very simple
given the stream-operator framework outlined in the previous sec-
tions. Some minimal user-involvement is required to select a
proper sequence of stream operators and to make sure the
attribute fields discussed in Section 5.1 match the selected opera-
tors.

Figure 12 demonstrates the elegant application of our
stream-processing framework to process a stream of raw points.
In this example a pipeline corresponding to Figure 5 is set up with
point attributes as shown in Figure 6. The input and ouput
point-streams can be memory-mapped file arrays of InputFields
and OutputFields types. The setup tasks include opening the I/O
point-streams and initializing the sequence of stream operators.
The main processing stage then merely consists of two very sim-
ple nested loops: The outer loop over all points consecutively read
from the input stream. The inner loop iterating through the
sequence of stream operators and invoking their pull-push meth-
ods to process and pass points from one to the next stream opera-
tor, with the last one writing the points to the output stream.

InputFields *pfile = NULL;  // inpout point stream file
OutputFields *sfile = NULL; // output point stream file
int npoints; // number of input points

int main(int argc, char **argv)
{
  int i, nops = 0;
  StreamOperator *operators[8];
  
  // open input and output point-stream files
  // e.g. as memory mapped file arrays pfile and sfile
  
  // initialize stream-operator pipeline
  operators[nops++] = new ReadOperator(pfile, nv);
  operators[nops] = new KNearestOperator();
  operators[nops++]->set_prev(operators[nops-1]);
  operators[nops] = new NormalOperator();
  operators[nops++]->set_prev(operators[nops-1]);
  operators[nops] = new SplatOperator();
  operators[nops++]->set_prev(operators[nops-1]);
  operators[nops] = new FairOperator();
  operators[nops++]->set_prev(operators[nops-1]);
  operators[nops] = new NormalOperator();
  operators[nops++]->set_prev(operators[nops-1]);
  operators[nops] = new SplatOperator();
  operators[nops++]->set_prev(operators[nops-1]);
  operators[nops] = new WriteOperator(sfile, nv);
  operators[nops++]->set_prev(operators[nops-1]);
  
  // main loops for processing stream of points
  while (operators[0]->position() < npoints)

for (i = 0; i < nops; i++)
  ops[i]->pull_push();

}

Figure 12. Outline of main point stream-processing routine for a
normal computation, elliptical splat estimation and fairing
stream-processing pipeline as illustrated in Figure 5.
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6. Analysis
In terms of memory requirements we note that the most critical
part to process a large set of points by local operators is a data
structure that provides efficient access to all points  and
their nearest neighbors. In general, a balanced hierarchical spatial
indexing structure requires O(n) space and allows processing all
points and k-nearest neighbors in O(k·n log n) time. While this is
theoretically optimal it may nevertheless not be the fastest in
practice and consume too much main memory for very large n.

Our stream-processing framework exhibits the extremely
important property that only a small number of m<<n points are
active at any moment in time. The active set A = 
consists of points not fully processed for which a new point pi on
the sweep plane may be necessary to complete all operator tasks.
Thus in main memory only the m active points must be main-
tained and organized in an indexing data structure. Hence the
expected main memory usage is only in the order of O(m), as only
a sliding window of m elements is continuously maintained in the
active set A. Moreover, as the processing performance is mainly
determined by the determination of all k-nearest neighbors, the
expected running time is only O(k·n log m). This corresponds to a
significantly reduced cost for the stream-processing approach.

As reported in the experimental results section below, the
computation of all k-nearest neighbors is dominating the overall
workload. Therefore, the end-performance will strongly depend
on the parameter k (proportionally) and the number s<m (loga-
rithmically) of points in the kD-heap of the nearest neighbor
stream operator ΦX.

7. Experimental Results
All point processing experiments were performed on a 1.8GHz
PowerMac G5. Timing was performed using the Unix clock()
function to measure individual functions within the code, and the
/usr/bin/time Unix command line tool was used to measure the
real-world clock time elapsed between invocation and termination
of the executable. Hence the total timings even include any time a
process spent waiting for events such as completion of I/O opera-
tions (and not only the consumed CPU cycles).

7.1 Preprocessing
Pre-process results for ordering some large point data sets are
given in Table 1. All data sets are ordered for streaming simply
along the dimension of largest extent. Besides the St. Matthew
data set, which was converted from a binary QSplat model
[RL00], all models were converted from a plain ASCII PLY trian-
gle mesh format. Any information besides the raw point coordi-
nates and color was omitted in that process.

Generally the ordering and streaming of points is imple-
mented using memory mapped arrays. After reading the raw point
data from the input mesh, or QSplat file into a file-memory
mapped point array, our current implementation of the sorting
pre-process uses a quicksort algorithm to sequentially order the
points along a given dimension. As shown in Table 1, quicksort
on a memory mapped array performs quite well as it accesses the
data in a coherent linear way – doing log(n) passes.

Improved pre-process sorting can be achieved by more
sophisticated out-of-core techniques [Knu98,Vit01] such as the
rsort [Lin96] tool that has been used in similar situations, how-
ever, this is not the main focus here.

7.2 Stream Processing
7.2.1 Overview
In our different experiments we have tested various stream pro-
cessing pipelines consisting of stream operators discussed in
Section 4. The three different stream-processing pipelines and
their sequence of applied stream operators are:

• Normal: ΦR (read), ΦX (k-nearest neighbors, k=8), ΦN
(normal estimation) and ΦW (deferred-write). 

• Curvature: ΦR, ΦX (k=8), ΦN, ΦC (curvature), ΦE (ellipti-
cal splat estimation) and ΦW.

• Fairing: ΦR, ΦX (k=64…384), ΦN, ΦE, ΦS (smoothing),
ΦN, ΦE and ΦW.
In Table 2 we give an overview of the time required to pro-

cess large models with the Normal and Curvature stream-process-
ing pipelines, as well as the per-point lifespan time that indicates
for how long on average a point remained in the active set A
while being processed by the different stream operator stages.
The table also includes the size of the generated output point
streams (see also input point stream file sizes in Table 1).

7.2.2 Streaming Working Set
As outlined in Sections 3 and 4, a major goal of the proposed
stream-processing framework is to drastically reduce the number
of points actively referenced at any time to perform a series of
local operators on a point set. This limited working set (i.e.
main-memory usage) and the coherent streaming access of points
allows effective processing as demonstrated in our experiments.

The graphs in Figure 13 show the sizes of the FIFO buffers
corresponding to the different stream operators that together
define the Curvature pipeline working set A of active points at
any time during stream-processing. Note that the read, normal-
and splat-estimation (operator) buffers are omitted as they only
keep one point at a time (see also Section 5.2.1). As demonstrated
impressively by these charts, the stream-operator buffers hardly
ever maintain 0.5% of the large point sets in the active set A (i.e.
in main memory). In fact, for the largest St. Matthew model the
buffers rarely even reach a size of 2/1000 (or 0.2%) of the overall
model size.

Lucy exhibits some strong growth of the active working set A
up to 2% during the first few 100K points at a very early stage.
However, it then dramatically drops to only manage on average
much less than 20K points dynamically during the remainder of
the stream-processing. Peaks in the active working set A are due
to peculiar data distributions in the point streams.

p1 … pn, ,

pi 1– … pi m–, ,

Model #Points Mesh
File Size

Point Stream
File Size

Preprocess
reading sorting

St. Matthew 102,965,801 N/A 1,571MB 35s 93s
David 1mm 28,168,109 2,288MB 430MB 125s 22s
Lucy 14,022,961 1,085MB 214MB 52s 11s
David 2mm 4,129,534 327MB 63MB 19s 3.4s
David head 2,000,646 165MB 30MB 12s 1.5s
Dragon 435,545 32MB 6.7MB 1.6s 0.3s
Female 302,948 24MB 4.6MB 1.8s 0.2s
Balljoint 137,062 11MB 2MB 0.9s 0.1s

Table 1. Input test model and output point stream sizes. 
Preprocess timing includes converting and sorting point data.

Model Pipeline Point Stream
Output Size

Timing
Process

h:mm:ss
Lifespan

sec.

St. Matthew
Normal 3,142MB 5:02:25 7.56s

Curvature 6,284MB 7:51:14 13.0s

David 1mm
Normal 859MB 2:33:56 23.62s

Curvature 1,719MB 2:52:45 29.27s

Lucy
Normal 428MB 26:32 4.78s

Curvature 856MB 33:25 6.17s

David 2mm
Normal 126MB 6:02 0.62s

Curvature 252MB 7:50 1.36s

David head
Normal 61MB 2:53 0.66s

Curvature 122MB 3:43 1.45s

Table 2. Overall timing results of stream-processing points, and 
average lifespans of points in active set A.
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Figure 13. Streaming total active working set and buffer sizes of
corresponding stream operators plotted against the progress
through the input point stream. (y-axis indicates size only up to 1%
or 2% of the entire data set)

7.2.3 Main Memory In-Dependence
To back our claim of effective stream-processing of very large
point sets we carried out two sets of experiments with the Curva-
ture stream-operator pipeline: (1) Having the test machine config-
ured with 256MB, and (2) with 2GB of main memory. In (1), the
Lucy, David 1mm and St. Matthew (output) data sets significantly
exceeded the available physical memory, but in (2) only St. Mat-
thew did.

As strongly supported by the chart in Figure 14, the experi-
ments reveal that our stream-processing framework is virtually
independent of the available main memory size (as long as it can

hold the very limited active working set A). The size of
main-memory is essentially irrelevant and has no effect on the
overall point processing cost, because all the expensive computa-
tional work is limited to the small set of points in the active work-
ing set A which can easily be kept in main memory for huge data
sets. Therefore, our stream-processing framework can handle
exceedingly large data sets from out-of-core which is equally
nicely demonstrated by our experiments.

Moreover, as the streaming concept only relies on an ordered
sequential access, the input and output streams can also be much
larger than 32-bit virtual address space as demonstrated for the St.
Matthew model (e.g. see its Curvature output size in Table 2).

Figure 14. Dependency, or rather in-dependency, of available
main memory on total stream-processing cost for various models.

7.2.4 Performance
While the current implementation is not specifically optimized for
performance, the experiments show that the major processing cost
is the determination of all k-nearest neighbors as shown in
Figure 15 for the Curvature stream-processing pipeline. The extra
large k-nearest search cost for the David 1mm model stems from
the fact that for this model the stream operator ΦX buffers notice-
ably more elements during the first 6M stream-processed points
(see corresponding chart in Figure 13).

As mentioned in Section 6, the average size m of the k-nearest
neighbor buffer is the most important performance factor as it
contributes to an expected n · O(k log m) k-nearest neighbor
search cost factor for a point stream of size n. The other operators
only add constant cost factors as they operate on the fixed k-near-
est neighbors. Furthermore, the I/O overhead to read/write the
point streams from/to disk does not comprise a major bottleneck
of the stream-processing framework and hence the concept is well
suited for processing very large data sets (see also Section 7.2.3).

Figure 15. Percentage of time costs of the different
stream-operator processing stages.

7.3 Versatility
To demonstrate the practical application of our stream-processing
points framework we performed normal, splat-ellipse and curva-
ture estimation, with results shown in Figure 16. The normal and
splat estimation operators generate accurate point attributes that
can be exploited in high-quality point-based rendering systems.
Additionally, the curvature operator provides a robust estimate of
the main curvature directions and their qualitative strengths which
may be used as the basis for more complex operations such as
feature extraction or surface segmentation.
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Figure 16. Results of applying normal computation and splat
estimation; and curvature stream operators to raw point cloud data
sets. The left column shows the high-quality normal estimation and
on the right the qualitative (RMS) curvature strength is color coded.

To further demonstrate the versatility of our modular
stream-operator framework we also performed some experiments
with the proposed fairing operator described in Section 4.3.4. For
this purpose we introduced random normal-distributed noise in
the magnitude of 0.05% of the bounding-box diagonal to the
David head model in Figure 17, and used the noisy Lion model in
Figure 18. In both cases we set the variance of the Gaussian
weight functions f(r) and g(r) in Equation 3 to 0.5% of the bound-
ing-box diagonal. As demonstrated the results manifest excellent
feature-preserving smoothing effects, and substantiate the flexi-
bility of our stream-processing points approach to accommodate a
wide range and complexity of different local operators.

Figure 17. Original smooth surface (top); random noise of 0.05%
of diagonal length added to each coordinate (middle); and
smoothened model using our stream-process fairing operator
(bottom).

Figure 18. Original noisy input model (top); and smoothened
model using our stream-process fairing operator (bottom).

8. Discussions
We have presented a novel point processing framework based on
a linear streaming of points, a sweep-plane algorithm for k-near-
est neighborhood determination and the definition of concatena-
ble local stream operators. To our knowledge this is the first
method that can apply local operators such as normal estimation
and fairing without a data structure holding the entire data set in
in-core or virtual memory, and that is applicable to arbitrary large
data sets out-of-core with only limited main memory usage. It is
also the only approach processing points as streams and that is
extensible in a modular way to apply multiple concatenated local
operators consecutively on the point set.

Several performance details are not optimized in the current
framework. Among the possible improvements is a much more
aggressive balancing strategy to keep the k-nearest neighbor
query cost low. Further work includes the development of a spe-
cialized sweep-plane spatial search structure for this purpose.

The k-nearest neighborhood sweep-plane algorithm described
in Section 4.2.2 can under certain circumstances generate an
approximate k-nearest neighbor set instead of the exact solution.
However, in practice we observed no difference to the exact solu-
tion with several test models. Moreover, a good approximate
k-nearest neighbor set may be sufficient for most local operators.
Additionally, the framework can easily be modified to compute a
fixed-range d neighborhood with variable k for each point, and
then an exact distance-d k-nearest neighbor set can be computed.

The major limitations include that extreme spatial outliers of
disjoint point clusters with less than k elements may cause the
active working set to grow unproportionally. Also significant
manipulation of point coordinates in stream operators (i.e. beyond
local smoothing) may cause the established stream-order and
k-nearest neighbor sets to become intolerably incorrect. These
problems may be addressed by new sort-update and k-near-
est-update stream operators that are inserted after such coordi-
nate-manipulating operations.

Furthermore, future work will include the development of a
wide variety of basic and also more complex point stream opera-
tors such as segmentation, simplification or compression.
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