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ABSTRACT
To complete a change task, software developers spend a sub-
stantial amount of time navigating code to understand the
relevant parts. During this investigation phase, they im-
plicitly build context models of the elements and relations
that are relevant to the task. Through an exploratory study
with twelve developers completing change tasks in three
open source systems, we identified important characteris-
tics of these context models and how they are created. Our
study uncovered that code context models are highly con-
nected and that developers start tasks using a combination
of search and navigation. Building upon our findings and
drawing from related studies, we developed an approach to
automate the generation of code context models that com-
bines the previously distinct phases of search and navigation.
We evaluated our approach, CoMoGen, against the study
data. CoMoGen performed significantly better than state-
of-the-art and state-of-the-practice approaches for locating
initial code elements necessary for generating code context
models. We believe this work represents a substantial step
towards providing automated code context models that will
reduce the time and effort needed for change tasks.

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Programming Environments;
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms
Human Factors

Keywords
Context models, search, navigation, change task, user study

1. INTRODUCTION
Software developers spend substantial time searching and

navigating through code to understand relevant parts of the
system for a particular change task [19, 40]. During this
process of understanding and then changing code, develop-
ers implicitly build code context models that consist of the
relevant code elements and the relations between these el-
ements, often more generally referred to as task context.
Since these models mainly stay implicit in developers’ heads
and are not persistent [22], developers have to continuously
spend a significant amount of their time creating context
models for newly assigned change tasks from scratch.

Researchers have suggested that more explicit context mod-
els for change tasks1 can be used to support developers in
their work [26]. To form these explicit context models, ex-
isting approaches have used different methods ranging from
the developer manually specifying the context (e.g., [35]) to
automatically inferring the context from a developer’s in-
teraction with a development environment (e.g., [13, 18]).
While these approaches have been shown to support devel-
opers with change tasks, little is understood about the actual
code context models that developers build and, in particu-
lar, which elements are relevant to developers. With a better
understanding of the characteristics of developers’ code con-
text models, we can help developers in the creation of these
models for change tasks, saving them time and effort.

To investigate the characteristics that code context mod-
els exhibit for different change tasks and different concepts
of relevance, we conducted an exploratory study with twelve
developers on three change tasks in three open source projects.
For each change task session, we collected three context
models: a developer model based on the developer’s def-
inition of relevance, a patch model representing the code
changes and their relations, and a code navigation model
inferred from transcribing all navigation steps of a devel-
oper. We found that developers’ context models are highly
connected, that the code navigation models can differ sub-
stantially for a task, and that developers start tasks using
a combination of search and navigation and then frequently
revisit code elements.

Based on our findings, we developed an approach that
combines search with structured navigation to support de-
velopers in the creation of code context models. While exist-
ing search approaches focus on identifying a list of possibly
relevant starting points [17, 23], our approach uses the search
results as seeds, expands these by exploring their structural
relations and automatically groups and ranks the resulting
structural graphs. By combining the search results with
structural navigation context and presenting them in dia-
grams, we may be able to get more relevant search results
and eliminate navigation steps and revisits developers would
otherwise perform.

To evaluate how well this approach can capture the con-
text navigation models of developers we performed an evalu-
ation, comparing our search and navigation approach against
state-of-the-art and the state-of-the-practice search techniques
for the three tasks from our exploratory study. The evalua-
tion shows that combining search and navigation to generate

1We use the term change task to refer to both modification
tasks and bugs.



initial context models for change tasks outperforms existing
techniques on both the class and method level. This sug-
gests that the grouping of results and the visualization of
code elements together with their call relations can support
developers in building their code context models, eliminate
navigation steps in the comprehension process of the code
and also reduce the frequently occurring revisits in devel-
oper’s navigation.

This paper makes the following research contributions:

● It identifies important observations on the character-
istics of code context models based on an exploratory
study with 12 developers on three open source projects.

● It introduces the first approach that combines search
with navigation to automatically generate code con-
text models.

● It provides an evaluation of the approach showing that
it is significantly more effective at generating the initial
context relevant for change tasks than both the state-
of-the-art and the state-of-the-practice.

This work represents a substantial step towards providing
automated code context models with the potential for real-
world impact on the development process, in particular on
reducing the time and effort required for change tasks.

2. EXPLORATORY STUDY
In the process of performing a change task, developers

build up code context models2—code elements and relation-
ships between these elements that are relevant to the change
task. In this study, we investigate these code context models
based on three specific concepts of relevance: (a) relevance
as perceived by the developer, (b) relevance as defined by
the actual code change and (c) relevance as defined by the
explicit navigation activity of the developer. Since our ulti-
mate goal is to support code context creation we also investi-
gated developers’ code navigation tendencies to understand
how code context models could be created. In particular,
we wanted to address the following questions:

(1) What are common characteristics that code context mod-
els exhibit?

(2) How do code context models vary based on different
definitions of relevance?

(3) How do developers’ code context models and navigation
behavior vary for different tasks?

(4) How do developers navigate code during change tasks?

To investigate these questions, we conducted an exploratory
study with a blocked subject-project study setup [10] with
twelve software developers. Each developer worked on one
of three different change tasks for open source projects.

2.1 Study Method
For this experiment we chose three open source systems

in Java that all have an open task repository, recent devel-
opment activity and a code base big enough to preclude a
systematic understanding of the entire system. Specifically,
we chose FreeMind [3], Java PasswordSafe (JPass) [4] and
Rachota [5]. For each system we chose one open change task
that two of the authors were able to perform in less than
one hour. Furthermore, we chose tasks for which the change

2Murphy et al. ([26]) introduce the broader term task context
that extends our notion to arbitrary artifacts.

could be observed and validated in the graphical user inter-
face. All three change tasks were reported as bugs, however,
the JPass and FreeMind tasks could have been categorized
as enhancement or modification task. Thus, we will mostly
refer to all three tasks with the more general term change
task.

Each developer who signed up for the study was randomly
assigned to one of the three tasks. We then provided each
participant a document with instructions and access to a
virtual machine that was set up with an Eclipse IDE3 and
a workspace that contained the assigned task description
and project. We decided to set up a virtual machine for
each participant on the Amazon Elastic Compute Cloud4

to allow for remote and independent access using his own
computer setup and thus to affect the “normal” behavior as
little as possible. The participants were instructed to first
run the application and observe the current behavior to be
changed before looking at the code and trying to perform
the change. Furthermore, the instructions told the partici-
pants to answer a set of questions after either completing the
change task successfully or after 75 minutes to limit the to-
tal time required of a participant to 90 minutes—75 minutes
for the change task and 15 minutes for the questions.

In the questions, the participants were asked to sketch a
model of the source code elements, such as classes, methods
and fields, and the relationships they considered relevant
for understanding and making the change. For the sketch,
the participants were allowed to use pen and paper or their
favorite drawing tool and they were encouraged to use any
notation or form they wanted to. The rest of the questions
in the set addressed the experience of the participants.

To make sure that the tasks are solvable in the given time
and the questions are understandable by the participants, we
conducted pilot studies with three graduate students, each
performing one of the three tasks. The pilots confirmed our
assumption on the timing and we only slightly altered the
question on the model sketching part to explicitly state that
developers are allowed to use pen and paper for the sketch.

2.2 Subjects
For this study, we recruited subjects through email and

personal contact. To be eligible, subjects had to have experi-
ence with programming in Java. To solicit participation, we
invited more than 30 developers working in companies or at
a university and we ended up with 17. Out of these 17 sub-
jects we only had four who worked on the Rachota task. To
ensure an equal number of subjects per task, we randomly
chose four subjects for each of the other two tasks. We report
on the selected twelve subjects, four for the FreeMind task
(F1-F4), four for the Java PasswordSafe task (J1-J4) and
four for the Rachota task (R1-R4). Of these twelve develop-
ers, five worked in a company, four were graduate students
and three faculty members in Computer Science, all with a
background in software engineering. The subjects’ program-
ming experience ranged from 8 years to 16 years (average of
11.8 years) with between 0 to 12 years (average of 4.5 years)
of full-time/professional programming experience. For each
task we made sure to have at least two developers with pro-
fessional development experience and one graduate student
to report on. Two of the subjects were female, ten male.

3Eclipse IDE for Java Developers, version 3.7, eclipse.org.
4aws.amazon.com/ec2



On a five point Likert-scale with 1 representing strongly dis-
agree to 5 representing strongly agree, all subjects agreed or
strongly agreed that Java is one of their primary program-
ming languages (average of 4.75), and were predominantly
familiar with the Eclipse IDE (average of 4.17).

2.3 Projects and Change Tasks
We chose three active open source projects and one task

for each of these projects.

FreeMind. The FreeMind project (version 0.9.0 RC 15) is
an open source mind map editor consisting of 52.5k non-
commented lines of code (NCLOC), 439 top level classes,
and 45 packages. We selected a task for this project (ID
3420227, [7]) that was still open and observable. This change
task addressed FreeMind’s failure to save a map after an
encrypted node was added as well as the inadequate noti-
fication upon failure. We limited the scope of this poten-
tially large change by asking the subjects to add a reason-
able explanation to the “Save Failed” dialog. This change
required users to propagate exception information from the
save method of EncryptedMindMapNode to the user action
(actionPerformed in SaveAction) and finally to display the
improved message to the user. The call chain between ac-

tionPerformed and save is relatively long (11 method calls
in total) and can be challenging to follow. Fortunately, when
reproducing the failure, which we asked all subjects to do
before making the change, a stack trace was printed to the
console that contained the relevant call chain.

Java PasswordSafe. The Java PasswordSafe (JPass) project
(version 0.8 final) is an open source password management
system consisting of 13.5k NCLOC, 167 top level classes,
and 18 packages. We again selected a change task (ID
2933526, [8]) that was still open at the time and observable.
This task addressed the lost selection and undesired scrolling
that occurs when the application is unlocked after coming
out of the sleep state. For this change task, we expected sub-
jects to save the selection index in order to reselect and cen-
ter the appropriate item after the application was unlocked.
While classes UnlockDbAction, LockDbAction, and Pass-

wordSafeJFace were all relevant for this task, only one to
two methods in PasswordSafeJFace needed to be changed.
During this task, subjects familiar with the Standard Wid-
get Toolkit5 may have benefitted, although prior knowledge
was not necessary. This application also made extensive use
of console logging. Observant developers could use these log
messages as a starting point for searches.

Rachota. The Rachota project (version 2.4) is an open
source time tracking utility where users can track the time
spent on each task. It consists of 18k NCLOC, 53 top
level classes, and three packages. We selected a task (ID
2658881, [6]) that was open and observable. This task ad-
dressed the problem of newly created tasks failing to show in
the ‘History’ tab. For this task, we expected subjects to trig-
ger an update of the History tab’s underlying model upon
task creation. Three classes that are relevant to the task
are extremely large (HistoryView has 1800 NCLOC with
42 methods, MainWindow has 1125 NCLOC with 28 meth-
ods and DayView has 1807 NCLOC with 50 methods). These
large classes, along with the fact that the application offered
no logging or relevant stack trace made it more difficult for

5eclipse.org/swt

users to find a starting point in the code base.

2.4 Data Collection and Analysis
We used a combination of qualitative and quantitative

methods motivated by the ones described by Seaman [36].
We used participant observation by recording each partic-
ipant’s screen and having access to their actual workspace
after the session, in addition to asking the participant to
answer a set of questions. From the participants’ sessions
we collected three types of data: patches for the successful
completion of the change task, videos capturing the devel-
opers’ screens during their work on the task and the arti-
facts that contained the answers to the questions, includ-
ing the sketched models. To record a developer’s screen,
we automatically started a screen recording application at
the beginning of a developer’s session. For the questions,
we asked developers to send us their answers by email af-
ter they finished. We transcribed and coded the patches,
the screen recordings and the collected answers. The tran-
scripts together with further artifacts collected in the study
are available at [2].

From the videos we determined the time that each partici-
pant took to complete a task. We chose the point at which a
participant validated the correctness of his change in the user
interface of the application as the finish time. Even though
the instructions stated that participants should move onto
the questions part after 75 minutes to limit the total amount
of effort spent, three participants chose to continue. Two of
these three participants, J4 and R4, did not succeed in per-
forming the appropriate change and at some point stopped
working on it. Both participants closed Eclipse at the end
which we used as the finish time. Table 2 presents the time
participants took to complete the task or until they stopped.

For investigating and comparing the three different code
context models, we determined the source code elements and
relations in these models from the data collected. For the
code context models based on the developer’s relevance def-
inition, which we refer to as developer models in the follow-
ing, we coded the models sketched by the developers. We
acknowledge that these sketches may not be a complete or
accurate representation of developers’ implicit context mod-
els, thus necessitating the use of complementary models, in
particular the code navigation model. We believe, however,
that these sketches encode important or prominent features
of these implicit models of which developers are conscious.
For each sketch, we determined the code elements that the
sketches explicitly referred to. Since all twelve models con-
tained references to classes but four did not contain any
methods and three did not contain any fields, we only ex-
amine the classes used in these models for a fair compari-
son in the following. For the code context models from the
actual patch, which we refer to as patch models in the fol-
lowing, we determined the classes and methods that were
changed as well as the types that were used and the meth-
ods that were called in the actual change. For the models
defined by the explicit navigation behavior of the developer,
which we refer to as code navigation models in the follow-
ing, we transcribed the screen recordings and coded the re-
sulting transcripts. Since we were interested in the naviga-
tion of a developer through the program code, in particular
the classes and methods, we transcribed the structured and
unstructured navigation steps that a developer took. We
considered a navigation structured if a developer explicitly



(a) F2’s Developer Model (b) J1’s Developer Model

Figure 1: Developer Models for FreeMind and JPass.

navigated from a code element A to a code element B along
a structural relation using some tool support in the IDE,
where code elements were defined as classes, methods or
fields and structural relations referred to call, implements
and usage relations. A table of all transcribed navigation
steps is presented in Table 1. For each step we recorded the
step, the target element and its type as well as, in case of a
structured step, the source element, its type and the relation
followed.

The navigation steps that we transcribed do not explic-
itly capture the code editing by a developer. However, since
we think it is reasonable to assume that a developer has an
understanding of the elements he uses or calls in his code
change, we added these elements to the code navigation
model if they were not yet in it, which was rarely the case.

For transcribing code navigation one has to determine
which code elements a developer is examining at any point in
time, which is challenging as described by [32]. While tran-
scribing the video, we used the mouse pointer as a clue and
examined the actual code base to determine which method
a developer was in, and we used the keyboard events for de-
termining some of the tool support a developer used. Obser-
vational studies are subject to observers’ biases which may
lead to omitting instances of the navigation or characteriz-
ing them incorrectly. To mitigate this risk, we had an ini-
tial phase in which three investigators transcribed one video
and cross-validated the results to make sure no major dif-
ferences occurred. After this initial phase, one investigator
transcribed all videos and random samples were picked for
cross-examination by the other two investigators revealing
no major differences.

2.5 Study Results
Based on the analysis of the qualitative and quantitative

data we gathered, we made several key observations with
respect to the four questions we set out to study. Given the
exploratory nature of our study, we will discuss these ob-
servations and their implications mainly alongside the pre-
sentation of descriptive statistics. In the presentation of the
observations we only included the successful subjects (ten of
the twelve subjects) since we did not have patches for the
unsuccessful subjects. A summary of the statistics gathered
is presented in Table 2.

6This was only used in the FreeMind task and opened up
the parent class.

Table 1: Developer Navigation Steps Transcribed
from the Screen-Captured Videos (several of these
refer to tool support provided in the Eclipse IDE).

Structured Navigation Steps

navigation aids call hierarchy, type hierarchy, find
references

debugger step into, step return, stacktrace
click

editor quick documentation, open declara-
tion, quick fix6

Unstructured Navigation Steps

package explorer expand item, open item

search Java, file, find in file, outline view

editor working set back, forward, open from editor tab

editor scan

Developer models are small, abstract, highly connected
and exhibit tree-like structures. Across all subjects and
tasks, developer models are consistently small with an av-
erage7 (M) of 4.6 class elements (standard deviation SD
of 0.8). Even though the size of patch models showed big
variances for different tasks (14.5 classes on average for Free-
Mind, 3.7 for JPass and 2.3 for Rachota) and the code nav-
igation models varied widely across all subjects on the class
level (overall SD = 8.5 with M = 17.4), the size of the devel-
oper models remained consistently small.

Developers generally used abstraction in their models. In-
stead of using concrete class names developers would record
the concepts or functionality they were interested in, e.g.,
subject F2 used “some action class for save, location of error
message” to denote the class ControllerAdaptor (see Fig-
ure 1(a)) and J2 stated“Main View”and put the actual class
name in brackets close by. However, the level of abstraction
used in the models varied by subject and task. For instance,
all four subjects assigned to the FreeMind task used a very
high level of abstraction, whereas subjects on the JPass task
included more detail in their models. An example to illus-
trate this difference is shown in Figure 1; Figure 1(a) shows
F2’s developer model for the FreeMind task which is highly
conceptual and abstracts from direct call relations to transi-
tive call chains and Figure 1(b) shows the model of developer

7We use the mean as the average.



Table 2: This table presents a summary of the descriptive statistics collected on the developer’s background
and from the exploratory study (pro = professional, grad = graduatestudent, fac = faculty, ✓ = success, ∎ = failure,
Cl = classes, Me =methods, Deb = debugging).

Project ID Job
Years Time & Dev. Model Patch Model Code Nav. Model Navigation Steps

Pr.Exp. Success Cl Cl Me Cl Me All Structured Revisits Deb

Freemind F1 pro 10 39.7min ✓ 4 16 25 37 42 116 101 47 26
F2 pro 11 22.0min ✓ 4 15 23 16 25 106 57 40 54
F3 grad 8 59.7min ✓ 5 11 18 19 36 341 229 250 219
F4 grad 9 70.9min ✓ 4 16 23 22 38 177 41 112 11

JPass J1 pro 12 8.6min ✓ 4 2 2 6 12 67 46 30 33
J2 pro 12 64.5min ✓ 4 6 11 19 28 408 279 305 250
J3 pro 11 62.0min ✓ 5 3 7 12 27 140 64 88 17
J4 fac 12 101.1min ∎ 4 - - 19 32 570 459 453 441

Rachota R1 fac 15 53.8min ✓ 6 5 10 20 31 349 101 248 78
R2 grad 11 100.6min ✓ 4 1 2 13 78 553 42 396 39
R3 pro 15 36.6min ✓ 6 1 2 10 22 326 130 241 160
R4 fac 16 114.4min ∎ 9 - - 16 35 282 76 155 6

J1 on the JPass task which resembles a class diagram with
significant details about the code.

All developer models were also highly connected. In fact,
all developer models were fully connected at the class-level
excluding one class element in subject F2’s otherwise con-
nected model. On average, there were 5.3 relations in a
developer model (SD = 2.1) and these relations mainly re-
ferred to method calls, but also to contains and inheritance
relations.

Finally, even though developers had the freedom to draw
arbitrary graphs and the nodes were highly connected, they
drew mental models that had tree-like structures with mainly
directed edges and without cycles in the model. For the
models from the ten successful subjects, three depicted a
simple path, four a tree and another three depicted poly
trees.

Patch model size has little influence on the size of
code navigation models. For the three tasks we investi-
gated, the average number of methods in the patch model
had almost no influence on the number of methods in the
code navigation model. The patch models for the FreeMind
task were the largest and the most scattered, containing
an average of 22.2 methods (SD = 3.0) over 14.5 classes.
The patch models for the JPass task and the Rachota task
were both much smaller (M = 6.7, SD = 4.5 and M = 4.7,
SD = 4.6 respectively) as well as less scattered (3.7 and 2.3
classes). In spite of the bigger patch models, the code nav-
igation models for FreeMind were smaller than the ones for
Rachota, with an average of 35.2 methods (SD = 7.3) in
the FreeMind models and 43.7 (SD = 30.1) for Rachota. A
similar lack of correlation is seen when, in spite of patch
models of roughly equal size, JPass’s code navigation mod-
els were on average a lot smaller (M = 22.3, SD = 8.8) than
Rachota’s. This can also be seen in the Pearson correlation
coefficient between the patch and the code navigation model
size being close to zero overall with r = 0.006. This obser-
vation implies that a bigger and more scattered change does
not result in a developer navigating through more method el-
ements to make the change.

Even for concise and successful changes, code naviga-
tion models can differ substantially on class as well
as method level. Code navigation models can vary sub-
stantially across developers, even for tasks that require only
small changes. For instance, while there was some agree-

ment on four core classes for the JPass task, i.e., all four
classes were in all navigation models and three of these four
were in all developer models, there was wide variance outside
of these four classes. The three subjects included between
6 and 19 classes in their navigation models with an average
overlap of elements with at least one other subject’s model
of only 52.6%. On a method level, the variance was larger as
models ranged from 12 to 28 elements with only 3 methods
that all three subjects had in common. In class Password-

SafeJFace, one of the core classes for this change task, the
three subjects inspected 21 different methods but only one
method of these 21 was inspected by all three subjects.

Code Navigation Models are highly connected. Upon
inspecting all code navigation models for all successful com-
pleted change tasks we found that, on average, 73% of the
class elements in a code navigation model are connected
with at least one other class. Six of the ten code naviga-
tion models centered around one large connected group of
classes and zero or more additional classes with no connec-
tions. By cross referencing these unconnected classes with
the transcripts we observed that the unconnected elements
were often visited towards the beginning of the task using
unstructured navigation steps, prior to developers finding a
point of reference to start a deeper, more structured investi-
gation. For example, for the code navigation models of the
three subjects on the JPass task, there are nine classes that
are not connected to more than one other class and seven
of these nine were navigated to within the first few steps.
Figure 2 illustrates an example of a code navigation model
for JPass, including a numbering to show the order in which
elements were navigated to. In this example, most elements
are connected except for some elements that the developer
navigated to in the beginning and two elements from seem-
ingly random selections later on (30 and 31).

Developers start with a combination of search and
structural navigation. In a study on a small project with
500 lines of code, Ko et al. [19] found that developers first
search for information, then engage with the information to
decide whether it is worth continuing to comprehend it by
navigating the relationships between information, before fi-
nally editing the code. Similarly, Silito et al. [39] identified
that developers exhibit a behavior of ‘finding initial focus
points’ and then ‘building on those points’ in terms of navi-
gation and exploration. Our exploratory study on the three



Figure 2: Code Navigation Model for Subject J2.

projects corroborates these initial findings. Of the twelve
subjects, nine performed an explicit search within the first
8 steps, and the other three found an initial starting point
in the code by scanning the package structure rather than
explicitly searching. Seven of the nine subjects that per-
formed searches found starting points from the search. In
these cases, within the next 10 steps they spent an aver-
age of 4.1 steps following call and execution relations from
one of the search results and an average of 4.3 steps scan-
ning one of the search results. More qualitatively, from the
code navigation models generated, one can see that devel-
opers explored call, declaration and execution relationships
a couple of steps out from search results, often revisiting
the results and the intermediate elements once determining
the relevancy of the element. This suggests that develop-
ers start their tasks with a combination of a global search
for information and then navigate the structural relations,
in particular call relations, to comprehend more about the
context of the elements.

Developers frequently revisit code and take less time
if their navigation is more structured. In their naviga-
tion, developers revisit elements more often than they navi-
gate to new code elements. Over all subjects and tasks and
including debugging steps, 68% of all navigation steps were
revisits, with a mean revisit rate of 61.4% (SD = 14.7%) per
subject. Not surprisingly, the more revisit steps a developer
performed in his navigation, the more time he spent on the
whole change task (Pearson’s r = 0.72). Furthermore, the
higher the ratio of structured versus unstructured naviga-
tion was, the less time a developer spend on the change task
(Pearson’s r = −0.49). This result supports the observation
that Robillard et al. [32] made on successful developers per-
forming more structurally guided searches than unsuccessful
ones, only that we look at the time of completing a change
task rather than success.

3. GENERATING CODE CONTEXT
MODELS

To support developers in their search and navigation for
change tasks, we were interested in developing and evaluat-
ing an approach that generates initial code context models.
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Figure 3: CoMoGen Output at Different Stages of
the Search and Navigation Process (green methods
are seeds, blue methods with dashed edges are non-
seeds).

3.1 Approach
As observed in our exploratory study and supported by

other research studies [19, 39, 43], developers tend to per-
form global text searches to locate a starting point and then
navigate structural relations from the starting point for com-
prehension. If developers focused on structural relations,
they tended to spend less time for completing a change task.
Also, generally all developer models, whether sketched or in-
ferred from developer’s navigation, were highly connected.

Inspired by these observations, we developed an approach
that combines the search and navigation and focuses on gen-
erating structurally connected code context models. Our ap-
proach, which we call CoMoGen, takes as input a user query
and outputs a ranked list of connected call trees that can be
visualized as sequence diagrams. The approach is composed
of three phases: search, navigation, and visualization.

Search Phase. The search is split into three steps, the
expansion, the execution of the search and the synthesis
of the search results. The expansion step takes an initial
query and creates a set of queries that contains all possi-
ble subsets of terms from the original query, transforming
“play next” into the set {“play”, “next”, “play next”}. This
idea is based on the observation by Ko et al. [19] that a lot
of user searches fail to return anything of interest and ap-
proximates the backoff algorithm—a systematic removal of
words from the initial query—that users employed during
our exploratory study.

The next step takes the created queries and executes them
using code search technology [38], outputing lists of relevant
methods. A query for “play next” locates methods such as
FIFO.playNext. This technique is used because researchers



have observed that relevant code will often contain identi-
fiers that hint at its purpose [23] and that users will leverage
these information scents to guide their search [29]. Code
search extracts these identifiers from each method, creating
information retrieval documents. These documents are later
compared against a query and the most similar methods are
returned. While our query expansion and result synthesis
are novel contributions, search execution is simply an invo-
cation of a state-of-the-art code search technique.

The final step in the search phase collects all search result
lists, one for each query, and combines them together into
a single ranked list. The “play next” result list may con-
tain FIFO.playNext while the“next” result list may begin
with FIFO.next but also contain FIFO.playNext. To fairly
combine these possibly overlapping result lists we use Team-
Draft Interleaving [31]. This approach operates as a draft,
choosing the highest remaining item from each result list
during each round, resulting in a list similar to Figure 3(a).

Navigation Phase. The navigation phase is split into three
steps, the navigation outwards from seeds to discover new
relevant methods, the grouping of all found methods into
call trees, and the ranking of these call trees. The navi-
gation step takes search results as seeds and adds methods
that are found via navigation. For instance, in our sim-
ple example, starting at the seed FIFO.playNext, shown
as a green node in Figure 3(c), CoMoGen explores struc-
turally related elements and finds that the blue non-seeds
FIFO.launch and FIFO.finished build a path to another
seed Player.play, thus discovering that launch and fin-

ished are relevant. The navigate step explores at most five
call edges outwards from seeds and, if it discovers a path
from one seed to another seed, it adds all methods along
that path to the final result.

The grouping step takes the expanded list of methods
and groups them into connected call trees. The previously
unconnected search results in Figure 3(a) plus the meth-
ods discovered through navigation are transformed into Fig-
ure 3(b). Based on our observation that developers’ mod-
els are highly connected and often tree-like the results are
grouped into connected trees that now contain seeds along
with structurally related methods. To group results into
call trees, CoMoGen chooses the first method from the re-
sult list, creates a new tree and inserts it, and then adds
related methods to this tree until no more methods can be
added, repeating this process until all methods in the result
list are grouped.

The ranking step transforms the set of groups into a ranked
list. In Figure 3(b) the group starting with FIFO.playNext

is ranked highest because the sum of its methods’ relevance
scores is highest. This ranking scheme favors highly con-
nected groups, which again reflects the high connectivity of
developers’ context models. Note that the relevance score
for a given method is its relevance with respect to its respec-
tive query from the search step.

Visualization Phase. The visualization phase uses ranked
call trees as input and presents them as sequence diagrams
by traversing the tree and creating a lifeline for each new
class and a message for each method call. We chose sequence
diagrams as an initial visualization of the ranked call trees
based on our observations of developers using tree-like struc-
tures with a large number of directed call relations and on
Dzidek et al’s study showing developers being more effective

when given access to UML diagrams [15]. For our example,
the two trees in Figure 3(b) would be visualized as sequence
diagrams.

3.2 Evaluation
In this section, we present an evaluation of CoMoGen’s ef-

fectiveness in generating initial code context models. Specif-
ically, we focused the evaluation on:

RQ: How well does CoMoGen locate initial context—
in terms of code elements—relevant for perform-
ing change tasks compared to the state-of-the-art
and the state-of-the-practice?

Note that we explicitly did not choose to perform a user
study for two reasons. First, user studies should almost al-
ways be proceeded with a thorough experimental analysis, as
there is little value in executing a user study on an approach
that cannot perform well in a controlled environment. Sec-
ond, usability issues of beta quality software tools confound
evaluations, and so we expect a beta quality tool to be hard-
ened for at least a year before a realistic user study is valid
(e.g., Mylyn’s user study [18]). Nonetheless, we recognize
the value that user studies will add in terms of confirming
the benefits of this approach on change tasks, and therefore
plan to conduct them as a next step.

3.2.1 Experimental Design
Variables and Measures. The independent variable in our
study is the approach used to execute a developer’s search
and generate a set of program elements—the initial context.
We chose Sando [1, 38] to represent the state-of-the-art and
Visual Studio’s built-in regular expression search to repre-
sent the state-of-the-practice.

When choosing a state-of-the-art tool to compare against
we surveyed feature location tools that also leverage static
information. Unfortunately, the few existing approaches
were either not available, which is a well-known problem
when evaluating against feature location tools [14], not search-
based [16], or not effective without further refinement [37]
(as also discussed in Shepherd et al. [38]). In our effort
to compare against the most effective available solution we
chose Sando, which implements a vector space model ap-
proach that performs as well as other leading IR approaches
[27] and employs most known incremental improvements
such as favoring certain types of identifiers and using stop-
words to filter indexed text.

Since we are interested in how well an approach can locate
code elements that are relevant to a change task, we choose
the F-measure as the dependent variable. The F-measure is
the harmonic mean of precision and recall. Precision rep-
resents the fraction of relevant elements that are found by
an approach divided by the total number of elements found.
Recall represents the fraction of relevant elements found di-
vided by all possible relevant elements. The F-measure bal-
ances the competing needs of precision and recall, ensuring
that the best possible combination of precision and recall
achieves the highest score. Furthermore, F-measure is one of
the most used measures for feature location and code search
evaluations [14, 17, 25] and facilitates cross-study compar-
isons.

Subjects. To evaluate the techniques for a set of change
tasks, we need to know which code elements are relevant to
perform each change task. For this, we leverage the data



collected in our exploratory study. Note that this data is
ideal for evaluating the techniques as it stems from realis-
tic tasks on open source projects and contains the actual
elements that a developer navigated to complete a change
task, information on which elements developers deem rele-
vant and the actual code changes. Since we are interested in
supporting developers in their search and navigation, we pri-
marily focus our evaluation on the code navigation models
of developers, i.e., the elements a developer navigated to in
order to perform the change task. The developer models are
only developers’ abstraction of what is relevant and they are
neither complete nor consistent across developers. The sub-
stantial variation among the developer models makes them
problematic to evaluate in a uniform fashion. Finally, the
patch models only capture the changed code rather than the
elements that a developer needs to understand and navigate
to perform the change.

We chose to evaluate the results generated by the tech-
niques against each developer’s code navigation model to
investigate whether we can provide relevant initial context
to each developer. We did not evaluate the results against
a golden set of elements determined by a set of experts as
studies have shown that even experts have low agreement
(about 34%) when tagging a golden set for a task [33]. The
developer models from our study show a very similar low
agreement rate per task with an average of 36.2% overlap
on the class level. Finally, we did not pick a “best” code
navigation model, since we made sure that all of our par-
ticipants have sufficient programming experience and our
results show that different developers solve tasks differently
even if they perform equally well.

Additionally, the data collected in our exploratory study
contains the actual search strings that developers used when
completing their tasks. Since not every subject performed
a global search, we chose the most prevalent search string
from each task, specifically “Saving failed” from the Free-
mind task (used by all four subjects) and “Trying to unlock”
from the JPassword task (used by two subjects that per-
formed a global search). For the Rachota task there was no
agreement across study participants who performed a global
search, so we chose the string “history tab” which appeared
in one user’s query, in the original bug report, and was se-
lected as the best search string by our pilot study subjects.

Method. Given a task and the identified search string, we
first executed a search using each of the three approaches.
We then compared the results against each code naviga-
tion model that we collected from the successful developers
for the given task. For each approach a different number
of results was returned. To fairly compare the results we
bounded the number of results we considered for each ap-
proach, as is typically done during search evaluations [17].
If necessary, we decided to only consider the top 10 re-
sults from Sando and the top 5 sequence diagrams from
CoMoGen. Since the state-of-the-practice tool returns un-
ranked results we had to consider all results. Note that this
detail had no practical impact on our evaluation (as no re-
sult list was ever shortened), but is noted for reproducability
and further experimentation.

3.2.2 Results
We calculated the F-measures for the approaches under

study and present them in Figure 4. The top two plots rep-
resent the summaries across tasks, at the class and method
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Figure 4: F-Measures of CoMoGen vs State-of-the-
Art and State-of-the-Practice Tools on Class and
Method (Meth) Level.

level.
We compared the results for CoMoGen with the state-

of-the-practice using the Wilcoxon signed-rank test, a non-
parametric paired samples test. At the class-level, CoMoGen
is statistically significantly better than the state-of-the-practice
with respect to the F-measures (two-tailed p = 0.007, mean
F-measure for CoMoGen of FCMG = 35.3 and a mean FSOP =

16.3 for the state-of-the-practice). At the method-level, Co-
MoGen also performed better with statistical significance
(two-tailed p = 0.014, mean FCMG = 25.1 and mean FSOP =

8.7). Thus, at both the class and the method-level CoMoGen
outperformed the state-of-the-practice tool.

We also compared the results for CoMoGen with the state-
of-the-art. At the class-level, CoMoGen is statistically sig-
nificantly better than the state-of-the-art with respect to
the F-measures (two-tailed = 0.03, mean FCMG = 35.3 and
mean FSOA = 20.7 for the state-of-the-art). At the method-
level, CoMoGen also performed better with statistical sig-
nificance (two-tailed p = 0.005, mean FCMG = 25.1 and mean
FSOA = 11.1). Thus, at both the class and the method-level
CoMoGen outperformed the state-of-the-art tool.

Developer and Patch Models. As previously mentioned, we
primarily calculate F-measures for the code navigation mod-
els due to the limitations of the other two models. How-
ever, for completeness we also present F-measures for the
developer and patch models here. Due to the varying lev-
els of abstraction in developer models, we focus on the class
level. The average F-measure on the class level is higher
for CoMoGen than both the SOP and the SOA approaches
(FCMG = 60.2, FSOP = 38.8, FSOA = 55.0), however, there



is no statistical significance. This lack of significance might
also stem from the small size of developer models (mean of
4.6 elements). With respect to the patch models, CoMoGen
is statistically significantly higher on the class level than
SOP (two-tailed p = 0.014, FCMG = 44.6, FSOP = 17.5) and
on average higher than SOA (FSOA = 25.1), but this dif-
ference is not statistically significant (two-tailed p = 0.078).
On the method level, CoMoGen is statistically significantly
higher than both the SOP (two-tailed p = 0.03, FCMG = 28.0,
FSOP = 13.9) and the SOA (two-tailed p = 0.03, FSOA =

12.7) tools.

4. DISCUSSION
By applying a blocked subject-project study setup with

developers from various backgrounds and three different change
tasks of three active open source systems we tried to limit
the threats to the external validity of our exploratory study
and the approach evaluation. To study change tasks that are
representative of realistic situations, we used change tasks
from active open source systems with a size big enough to
preclude systematic understanding of the entire code base.
A limitation of our study is that all of these tasks were com-
pletable in less than two hours and thus might not represent
the broad range of tasks that exist. We tried to mitigate this
risk by choosing the change tasks as randomly as possible
(see Section 2).

Another threat is the limited size of our subject sample
which limits our study’s generalizability. We tried to mit-
igate this risk by cross-sectioning full-time developers and
researchers from different companies and universities with
multiple years of programming experience. Since our first
study was exploratory, we do not claim that the results are
generalizable to a broader population. Further studies are
needed to investigate generalizability of our observations.

In our exploratory study we focused on Eclipse and Java
since they are amongst the most commonly used IDEs and
programming languages. Navigation might differ depending
on the tools provided in the environment and the structures
in the language.

By screen capturing the participants we could only tell
which elements they selected, but not which ones they looked
at. This process misses elements and relations that were not
explicitly followed through navigation steps, but our focus
was on an obvious set of elements rather than an approxi-
mation of everything developers might have looked at.

During the experiment we calculated F-Measures using
developers’ navigation models as an approximation for a
“gold set” rather than having experts choose a gold set.
Studies have found that even with experts there is a high
disagreement on what constitutes a gold set [33]. By using
actual developer navigations, we might include some noise,
however, we consider this a good and realistic standard for
evaluation.

An open question is whether an automatically generated
model affords the same robust understanding as a model
generated by a developer. Much like studying a city map
versus walking around in the city, the actual navigation
through the code and even the revisitations might partially
be needed for a better understanding. We plan to investigate
this question as well as the extent to which this approach
can save time and effort in a future user study.

5. RELATED WORK
Related work can be categorized into four areas: empiri-

cal studies on software developers performing change tasks,
approaches for explicit task context, approaches for search
and visualization, and program navigation.

Empirical Studies. Researchers have extensively observed
and studied the program investigation behavior of software
developers during maintenance tasks. Ko et al. [19] con-
ducted an exploratory study to determine patterns of navi-
gation. They report on 10 developers working on simplistic
tasks in a very small system, where they found patterns
such as developers starting with a search and then navi-
gating to related elements. Robillard et al. [32] conducted
an exploratory study to look at the differences in the pro-
gram investigation behavior of successful and unsuccessful
developers. From observing five developers performing a
maintenance task on a reasonably-sized system, they found
that successful developers reinvestigate methods less fre-
quently and mostly performed structurally guided searches.
LaToza et al. [21] observed 13 developers working on two
tasks on a bigger system, to study how experience affects
the program comprehension. They found that experienced
developers visit less methods, thus wasting less time on un-
derstanding irrelevant methods. While our results support
some of the observations made in the earlier studies, we did
not want to study differences, but focus on the actual con-
text models that developers built implicitly for a variety of
different tasks and systems.

Other studies have observed developers to investigate the
process and characteristics of program comprehension. Mayr-
hauser and Vans [42] used protocol analysis to explore the
program comprehension of professional developers working
on industrial maintenance tasks. Based on the results of
their study, they formulated an integrated model, combin-
ing top-down and bottom-up strategies, to describe the cog-
nitive processes of program comprehension. Corritore and
Wiedenbeck [12] looked at the differences of the mental rep-
resentation of expert procedural and object-oriented pro-
grammers carrying out maintenance tasks on very small sys-
tems. Their results show that expert programmers build a
mixed mental representation of a program that includes de-
tailed program knowledge as well as domain-based knowl-
edge. Piorkowski et al. [29] build upon the theory of in-
formation foraging, exploring how developers use informa-
tion scent emitted from cues to guide program exploration,
and especially study how quickly developers’ goals evolve.
None of these approaches directly investigate the code con-
text models that developers built during comprehension.

Explicit Task Context. During maintenance tasks devel-
opers often work with a set of several files–a task context—
which can become difficult to keep track of. An early tool,
Concern Graphs, supported developers in recording task
context in the form of concern graphs, but required the
developer to manually identify and add the relevant ele-
ments [35]. A very recent approach, Code Bubbles, alters
the usual IDE editor interface so that each code element a
developer navigates to for a task is represented by its own
bubble and relations that a developer followed between these
bubbles are made explicit [11]. This way, the context for
a task is automatically created when stepping through or
editing code. Mylyn, a task-focused UI approach, differs to
these approaches in that it automatically creates an explicit



task context from a user’s interaction with the development
environment [18]. Similarly, DeLine et al. proposed to use
a user’s interaction history for a task to recommend where
to navigate next in the code [13]. All of these approaches
specialize in saving task context for elements after they have
been discovered. We investigate the creation of task context
to speed the initial discovery phase.

Search, Visualization, and Feature Location. There
is a variety of software search tools, also known as textual
feature location tools [14] such as Google Eclipse Search[30],
SNIAFL [44], Sourcerer [9], that can provide a good starting
point for a developer’s navigation. In an exploratory study,
Starke et al. have shown that general search tools provide
too many results, many of them irrelevant [41]. They sug-
gest that more contextual information would be valuable to
help developers judge the relevance of the results. Portfolio,
a search approach presented by McMillan et al. [24] already
provided some very basic call graph visualization along with
the result list. Participants in their study mentioned that
they liked more context for the result visualization. While
CoMoGen can be used for searches as well, the focus of our
research is to explicitly understand the code context models
that developers built for change tasks and use these insights
in our approach to support developers in generating context
models for the task, not just with understanding search re-
sults.

Code Navigation. As programmers navigate outwards from
starting points they often utilize navigation tools. Researchers
have extended navigation tools to recommend relevant next
steps. Robillard et. al [34] uses program structure topol-
ogy, Piorkowski et al. [29] combines several factors includ-
ing structure and lexical information, as does Hill et al. [16],
and Parnin et al. [28] even leverages recency information.
These approaches only recommend a single step outwards,
and thus would need to be adapted for use during our nav-
igation phase. Nonetheless, we plan to investigate some
of these alternative navigation techniques in future work.
Reacher by LaToza et al. [20] supports developers in explor-
ing control flow graphs. While not the primary focus of this
work, Reacher allows developers to filter call graph chains
via string queries. CoMoGen not only uses search strings to
filter navigation, but also uses control flow information to
rank search results and provide more context for the search
results.

6. CONCLUSION
Software developers currently spend much of their time

on change tasks, partially due to the large cost of creating a
code context model for each new task assigned to them. In
this paper, we have introduced an approach that can auto-
matically generate code context models starting from a user
query. The generated context models are a combination of
code elements on the class and method level that are struc-
turally connected via call relations. These context models
are motivated by the observations we made in an exploratory
study in which twelve developers completed three different
change tasks on open source systems. Through an eval-
uation of our approach, we found that our combination of
search and navigation is significantly more effective than the
current state-of-the-practice and state-of-the-art approaches
for locating initial code elements needed in the generation
of context models.

This work opens up new research opportunities in several
ways. In this paper we have chosen to focus on the con-
cept of combining search with navigation for the purposes
of generating code context models. While we believe this is a
substantial step, there is also additional room for improve-
ment through innovation and research on the search and
navigation algorithms themselves. Additionally, the idea of
combining search with navigation has not only the potential
for identifying context when starting a change task but also
for supporting developers throughout a developer’s work.
For instance, future research could investigate the genera-
tion of relevant navigation context for any code search to
support developers in their understanding, or could provide
better rankings of search results by examining the overlap
between a developer’s navigation history and the navigation
context of search results.
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