Department of Informatics, University of Ziirich

BSc Thesis

Simultaneous Execution of Single-
and Multi-Version Protocols with the
Oshiya Debugger and Analyzer

Luis Schiiller
Matrikelnummer: 10-734-085

Email: luis.schueller@uzh.ch

July 2, 2012

supervised by Prof. Dr. Michael H. Bohlen and Christian Tilgner

(L) University of
g/ Zurich

2

m

Department of Informatics L

Abstract

The Oshiya Debugger and Analyzer (ODA) is a tool for debugging, visualizing and comparing
concurrency control techniques. Prior to this work ODA was limited to execute one single-
version protocol concurrently. The goal of this thesis was to extend ODA, in order to support
multi-version protocols as well as simultaneous protocol execution. Simultaneous protocol ex-
ecution allows the user direct comparison of different protocols with regard to performance-
and correctness-criteria. ODA simulates the execution of protocols over user-provided work-
loads. Additional features for the workload are introduced, to model sophisticated client be-
havior.

Zusammenfassung

Der ’Oshiya Debugger and Analyzer’ (ODA) ist eine Applikation, die es erlaubt Datenbank-
Protokolle zu analysieren und zu debuggen. Urspriinglich erméglichte ODA Single-Versions
Protkolle einzeln auszufiihren. Ziel dieser Thesis war es Multiversions-Protokolle innerhalb
der Applikation zu unterstiitzen, sowie mehrere Protokolle gleichzeitig auszufiihren. Das si-
multane Ausfiithren mehere Protokolle ermdglicht dem Benutzer direkte Protokollvergleiche in
Hinsicht auf Performanz und Korrektheit. Ausserdem werden zusétzliche Features vorgestellt,
mit Hilfe derer realistisches Verhalten von Clients auf der Datenbank simuliert werden kann.

Contents

1 Introduction
1.1 Limitations Priortothis Work
1.2 Contributions e e e e,

2 Preliminaries
2.1 Oshiya SchedulingModel
2.2 Architecture of the Oshiya Demo Application
2.2.1 Workload Handler Functionalities
2.2.2 Executor Functionalities
2.3 Protocols e
2.3.1 Single-Version Protocols
2.3.2 Multi-Version Protocols

3 Enabling Multi-Version Protocols
3.1 Enhancements to the DataRelation
3.2 Enhancements to the Oshiya Scheduling Model
3.3 Different Functionalities of the Executor
34 Implementation e

4 Enabling Simultaneous Protocol Execution
4.1 Executing a Single Protocolin ODA
4.2 Concepts Enabling Multiple Protocol Execution
4.3 Implementation
43.1 GUIL o
432 Core Adaptions

5 Sophisticated Workload Functionalities

5.1 Concepts e e e e e
5.1.1 Delay Functionality
5.1.2 Conditional Write Expressions
5.1.3 Conditional Read Expressions/Jump Functionality

5.2 Implementation
5.2.1 General Implementation of Workload Handler
5.2.2 Implementation of the new Sophisticated Workload Functionalities

6 Conclusion and Future Work

11
11
12
12
14
15
15
15

16
16
17
17
20

22
22
23
25
25
26

28
28
28
29
30
30
30
33

36

List of Figures

2.1
22

3.1
32

4.1
4.2
4.3
4.4

5.1
5.2
5.3
54
5.5

Oshiya Scheduling Algorithm 11
ODA Application Architecture 13
Protocol Settings Form 21
Executorsin ODA 21
ODA Architecture for Single Protocol Execution 22
ODA Architecture for Multiple Protocol Execution 23
ODA-GUI Executing Multiple Protocols 26
Class Diagram of ODA Showing Relevant Classes for Synchronous Protocol

Execution e 27
Delays in Between Requests 29
Bob Ordering Articlez 29
Detailed View of Workload Handler Architecture 31
Alice and Bob Ordering two Different ArticlesEach 32
Alice First Browsing Through the Shop Then Buying Articlex 33

List of Tables

2.1

3.1
32
33
34

5.1
5.2

Articles Relation L Lo 14
Articles Relation Supporting Multi-Version Protocols 17
Relation £ Maintaining Requests Scheduled by a Multi-Version Protocol . . . 18
Single-Version Executor Functionalities 19
Multi-Version Executor Functionalities 20
Workload Relation Including a Pointer for Aliceand Bob 32
Workload Relation Including Delays and Conditional Writes and Reads . . . 34

1 Introduction

The Oshiya Debugger and Analyzer (ODA) is a tool for developing, visualizing and compar-
ing Oshiya scheduling protocol implementations. ODA simulates the execution of protocols
over user provided workloads, to give its users (database developers and researchers) insights
into behavior and characteristics of scheduling protocols. ODA uses a declarative scheduling
model, the so called Oshiya scheduling model (OSM), that performs scheduling iteratively in
so-called scheduling iterations, which will be further described in Section 2.1. Hereby ODA
facilitates the following key features:

Interactive Protocol Comparison ODA provides the possibility to execute multiple
protocols simultaneously over the same workload. This feature is used to compare protocols,
e.g., the strict Two-Phase Locking (SS2PL) and Snapshot Isolation (SI) protocols [TGB*11].
Interactive protocol comparison is the feature, the contributions of this thesis mainly focus on.

Navigational Debugging With navigational debugging ODA offers the user the feature
to debug through the scheduling process backward and forward. The application shows the
scheduling- and database state at each step [TGB*11].

Break and Analyze Queries ODA models breakpoints as break queries that are executed
after each scheduler iteration. Scheduling stops when a break query returns a non-empty re-
sult which may be occurred through a constraint violation affected by a scheduling protocol.
Analyze queries are used to identify matching tuples. The combination of break and ana-
lyze queries allows to easily detect and analyze errors in protocol executions and provides an
understanding of how a protocol behaves for a certain workload [TGB*11].

Statistical Protocol Analysis ODA provides statistics about protocol executions, and it
allows users to register new measures and customize how they are displayed, e.g., as a graph
or as tabular data. Custom measures are modeled as statistic queries that access the scheduling
state, database state, and results of break or analyze queries. ODA collects, aggregates, and
visualizes the results of these queries over time [TGB*11].

1.1 Limitations Prior to this Work

The following limitations of ODA existed prior to this work.

Limited to Single-version Protocols Prior to this work ODA was limited to the exe-
cution of single-version protocols, e.g., SS2PL, because of technical limitations of the OSM
within ODA and the data relation the OSM accesses on. The data relation did not allow to
hold multiple versions of an item, as well as the OSM that could not process requests access-
ing a certain version of an item. Providing the user a wider spectrum of concurrency control
techniques, e.g., multi-version protocols, enhances the application in regard to the main goal
of ODA, which is developing, visualizing and comparing different scheduling protocols.

ODA Only Executes One Protocol Concurrently ODA provided the possibility to ex-
ecute one protocol over a given workload concurrently. Thus, comparing scheduling protocols
in ODA, e.g., with respect to correctness- and performance criteria, could only be done suc-
cessively by executing multiple protocols and storing the produced data for a later comparison.
This is very inconvenient for the user and was improved throughout this work.

Limitations in the Simulation of Client Behavior In order to analyze protocols it is
fundamental to provide the user the possibility to simulate realistic scenarios for her database.
Client behavior simulation is a complex problem that is very specific according to the system
the user wants to simulate within ODA. The currently existing features are not sufficient for
many scenarios to model realistic behavior patterns. E.g., ODA provides the user the pos-
sibility to consign read values to a write request, so that the value written is influenced by
current state of the data relation. To model behavior, e.g., customers of a shopping system,
it is not satisfying to just process the workload linearly, but to give the user the possibility to
define special constraints that influence the workload at runtime. E.g., constraints defining a
minimum quantity for an order, otherwise the requests transacting the order will be skipped.

1.2 Contributions

The following work describes three major enhancements to the application, that were devel-
oped throughout this bachelor thesis. The task of the thesis was to enable the support of
multi-version protocols, and the simultaneous execution of multiple protocols in ODA. Paral-
lel to these enhancements new requirements for the workload rose, so additional features to
model a sophisticated client simulation were implemented.

Support of Multi-version Protocols ODA lets its potential users, e.g., database develop-
ers, investigate protocols with regard to correctness criteria, service-level agreements
and performance requirements. Supporting multi-version protocols within ODA opens
up a whole new spectrum of protocols to the user that are widespread in modern database
systems. This contribution allows the development of application-specific multi-version
protocols as a well as protocol comparisons that include multi-version protocols, as e.g.,

SS2PL and SI. In this work multi-version protocols are enabled through the following
three adaptations:

e Enhancing the OSM to process requests accessing a special version of an item

e Enhancing the data relation, the OSM accesses on, to hold multiple tuples of an
item

e Implementing a new Executor, the functional part of the application executing the
scheduled requests on the data relation, for multi-version protocols

Simultaneous Protocol Execution The simultaneous execution of multiple protocols was
not supported by ODA. Selecting multiple protocols, e.g., a multi- and single-version
protocol, as well as a predefined workload simulating a scenario, enables protocol com-
parison to the user in way that to the best of our knowledge does not exist yet [TGB™11].
ODA simultaneously executes these protocols on the workload and creates one sched-
ule per protocol. These schedules can be analyzed by the application, e.g., in respect of
correctness and performance. This allows direct comparison of schedules produced by
different protocols.

Sophisticated Workloads A workload is the set of requests that will be scheduled by the
protocols selected in ODA. It simulates the clients behavior on a database in terms of
incoming requests. The simulation of realistic scenarios is fundamental for ODA, since
it is the basis for all other functionalities, like the investigation of protocol behavior, or
statistical analysis of different protocols. The application was enlarged by applying the
following new features to a workload:

e Conditional write-requests: The value of write requests can change according to
a predefined constraint.

e Conditional read-requests: According to a constraint defined in a read request
several requests within a transaction can be skipped.

e Delay Functionality: Delays between request with a transaction can be molded
within the workload.

This thesis is structured as following: In Chapter 2 fundamentals concerning the OSM and
the application architecture of ODA will be explained to get an understanding of how ODA
processes scheduling. Moreover, a brief introduction in the properties of single-version and
multi-version protocols will be given. In Chapter 3 the concepts and implementation enabling
multi-version protocols in ODA will be discussed. Chapter 4 goes into detail about the chal-
lenges and implementation of executing multiple protocols in ODA simultaneously. Chapter 5
introduces the workload functionalities prior to this work, as well as new functionalities that
have been developed throughout this thesis.

10

2 Preliminaries

This chapter briefly describes the Oshiya scheduling model (OSM) that is used by ODA to
process scheduling in Section 2.1. In Section 2.2 a rough overview of the architecture of
ODA is given, since it will be needed in the ongoing paper. In Section 2.3 the differences of
single-version and multi-version protocols are outlined, to better understand the enabling of
multi-version protocols within the application explained in the next Chapter 3.

2.1 Oshiya Scheduling Model

The Oshiya declarative scheduling model (OSM) is a new approach to develop scheduling
protocols in a declarative manner. Requests are modeled as tuples in so-called scheduling
relations. The OSM maintains three of these scheduling relations, R, &, H. R (pending re-
quests) stores all the incoming requests waiting to be executed, £ (executable requests) the
scheduled requests to be executed, and H (relevant history) stores the scheduled requests as
a relevant history. The term ’relevant’ indicates that H does not store the whole history, but
only these requests that might be relevant for future scheduling. A seven-step algorithm as
shown in Fig 2.1 is iteratively processed in Oshiya indicated by the surrounding while-loop.
A protocol is specified through the implementation of so-called scheduling queries. These
scheduling queries are performed on the scheduling relations to forward the scheduling pro-
cess [TGBK11]. For better understanding the seven steps of the algorithm will be briefly
explained.

H=E=R=10

while true do begin
1 R=R-E&;
2 R=RUN;

b

R=R - QRevoked<H7 R) 5

4 8 = QSchedule(H7 R) 5
s FEzecute(€);

6 H=HUYE,;

7

H=H— errelevant(H> 5
end

Figure 2.1: Oshiya Scheduling Algorithm

11

e In step 1 all requests executed in the previous iteration of the scheduling algorithm
carried by £ will be removed from R, since they are not pending anymore, but have
been scheduled.

e Step 2 is an ingoing interface of the OSM where new requests are inserted. Relation A/
maintains new requests and is merged with R that holds pending requests.

o In step 3 Q) gevoreq> ONE Of the protocol specific scheduling queries, selects requests from
‘R that cannot be scheduled, e.g., because of a deadlock. Selected requests will be
removed from R. To perform this task properly, Q) grevoreq Needs additional information
from H storing the relevant history.

o In step 4 the second scheduling query @ scneaure 1S performed. It selects executable re-
quests from R that will be inserted into £. @ scheque also needs to access H to determine
the executable requests in R.

e Step S is the backend interface of the Oshiya scheduling model. All scheduled re-
quests maintained in £ are executed on the database, which is indicated by the function
Execute(€)

e In step 6 all executed request from &£ are added to the relevant request history .

o In step 7 the third protocol-specific scheduling query Q) 7,eicvant 1S €xecuted over H. It
selects all requests in 7 that are not further relevant for Qscnequie and Q revoreqd- These
requests will be removed from H to slim H down and thus make Q) reyoreqd aNd Q schedule
perform better.

2.2 Architecture of the Oshiya Demo Application

In this section the general architecture of ODA will be explained. ODA implements the OSM,
which was described in the previous section. The application maintains the three schedul-
ing relations R, &, H, and performs the algorithm of the OSM over these relations to pro-
cess scheduling. Hereby, a protocol is defined through the three scheduling queries Q) geyokeds
Qschedules A0d Q rrrerevant- A so-called workload file contains the set of requests to be sched-
uled, which are inserted into the OSM in step 2 by the so-called Workload Handler. The back-
end interface of OSM is the execution of the requests located in &, in step 5 of the scheduling
algorithm. The so-called Executor within ODA implements the indicated Ezecute(E) func-
tion. The functionalities of the Workload Handler as well as the Executor will be explained
more detailed in the following two subsections. Fig 2.2 gives an overview of the described
architecture of ODA. Notice that the arrows indicated the flow of requests.

2.2.1 Workload Handler Functionalities

To simulate incoming requests the user predefines a workload stored in a workload file. Ac-
cording to the scheduling algorithm ODA schedules these requests by inserting them into the

12

H=E=R=0
while true do begin
1 R=R-E&;
Workload Workload -
oIl;ileoa — Handler > |2 R=RUN; |
3 R=R- QRevaked(’H7R) N

4 = QSchedule(Hy’R')
Is Ezecute(€); || —>| Executor
6 H=HUE,;
7 ,H = H - QIr'relevant (H)) i
end
—
3

Data Relation

~

Figure 2.2: ODA Application Architecture

OSM over relation /. The workload is a set of requests structured into transactions that are
owned by a client. Example 1 introduces a workload consisting of two clients, Alice and Bob,
that maintain one transaction each (¢, t2). Hereby r;(x) is a read request of transaction i on
an item x and w;(z) a corresponding write request. ¢; is the commit of transaction 7. This
notation will be used throughout this thesis.

The task of the Workload Handler within ODA is to manage the insertion of the requests de-
fined in the workload file. ODA maintains only one request per transaction within its schedul-
ing model at the same time. Whenever a request in R has been scheduled and moved to &,
e.g., m1(x), the next request within this transaction 7 (y) is inserted into R by the Workload
Handler.

Furthermore the Workload Handler has to cope with the following challenges:

Example 1 Consider a shop system maintaining a relation Articles as shown in Table 2.1. ID
is the primary key identifying the items (Articles) within the relation, whereas Qty is the num-
ber of available pieces of the specific item. There are two clients, Alice and Bob, accessing the
Articles relation within the shop system. Alice just browses through the shop without buying
anything, which is modeled as multiple read-requests on several items (x,y, z) within the arti-
cles relation. Bob initiates a buying process of article x, which is modeled as a read-requests
checking the actual available quantity of the item followed by a write-request decreasing the
quantity of the item by the number of ordered pieces.

Alice: t1 : ri(x) ri(y) r1(z) 1

Bob: ty 1 7ro(z) wo(x) o

13

Articles
ID

www'g
D>

x
Y
z

Table 2.1: Articles Relation

Navigational Backward Debugging ODA supports a navigational backward debugging
feature. Whenever a user navigates the scheduling algorithm backwards, the Workload Han-
dler removes all requests that have been inserted in the current scheduling iteration from R.
Taking Example 1 and a scheduling iteration i where 7 (y) was inserted into R. Whenever
the user backwards ¢, the Workload Handler needs to identify that r; (y) had been inserted in i
and remove it from R.

Additional Workload Functionalities Within ODA the user cannot only define a static
workload where values to be written by a write request are fixed, but also provides the func-
tionality to manipulate the value to be written according to previously read values on the data
relation. Consider that values written by a write request within ODA are always numeric val-
ues. This can be done by defining a variable marked by a ’$’ character within the value field
of a write request. Taking again Example 1 and Bob who wants to order one piece of article
x. Bob first reads the available quantity of x, ro(x) and then subtracts 1 from the available
quantity of x. This is modeled within the workload by the following notation:

$1—1 2.1)

$1 is a placeholder for the read value of the first request r5(x) of that transaction. The Work-
load Handler looks up the read value, inserts it into the placeholder, and solves the arithmetic
term to get the actual value to be written by that request. So assuming r(z) reads the value
3, wo(x) will write the value 2, since 3 — 1 = 2. Workload functionalities had been further
enlarged within this work, as explained in Chapter 5.

2.2.2 Executor Functionalities

The Executor is the functional part of the application that is connected to the backend interface
of the OSM. The scheduling algorithm shown in Fig 2.1 indicates the functionality of an
Executor by defining a function Execute(£). In the step 5 of the algorithm, the Executor
needs to handle the scheduled requests in £ and executes them on the data relation, e.g., the
introduced Articles relation. Request can be read, write, commit, or abort requests. Detailed
functionalities will be described in Chapter 3, which discusses the support of multi-version
protocols in ODA.

14

2.3 Protocols

One contribution of the thesis is the support of multi-version protocols within ODA. This
section briefly describes the differences between multi- and single-version protocols.

2.3.1 Single-Version Protocols

Single-version protocols maintain one tuple of every item z within a relation. Strict Two-
Phase-Locking (SS2PL), as an example single-version protocol, handles concurrent requests
on a tuple x within a relation using locks. Considering again Example 1, whenever Bob
initiates a write-request wq () he needs to hold a write-lock on x. Alice trying to access x by
a read-requests 1 (z) needs a read-lock on z. SS2PL ensures that whenever a transaction, in
this case ¢4, holds a write-lock on a tuple, no other locks on this tuple may be assigned to other
transactions. So concurrent reads and writes on the same item will be blocked [ENN10].

2.3.2 Multi-Version Protocols

Multi-version protocols hold multiple versions z; of an item x. Snapshot Isolation (SI) is an
example multi-version protocol that lets every write requests w;(x) create a new version x;
of item x that is only visible to other transactions after transaction j comitted (c;). A read
request 7;(x) on the same object accesses the latest version of x, written by a transaction that
committed before. Thus reads on an object x do not block writes on the same object and vice
versa [TGBK11]. So whenever Bob initiates a write request w;(x) on z, a new version x; will
be create within the Articles relation. Alice who wants to access x concurrently can access
the previous version ;.

15

3 Enabling Multi-Version Protocols

In this chapter the concepts and implementation of multi-version protocols within ODA will
be explained. Multi-version protocols maintain multiple versions x; of an item x. Each write
request w;(z) creates a new version of item z, that is visible to other transactions after c;.
To identify a version of an item x a tuple (T'A, Seq) is used, where T'A is the transaction
that created the version, and Seq the position of the request within the transaction, according
to [TGBK11]. (T'A,Seq) is a unique key for a version, since the transaction number 7'A is
unique within the OSM of ODA, and Seq covers the case that a transaction does more than one
write on an item. Enabling multi-version protocols within ODA requires three basic adaptions.
First, the primary key of the data relation needs to be enhanced by the named version attributes
(T A, Seq) to store multiple version of an item (Section 3.1). Second, the scheduling relations
of the OSM need to be enhanced by the version attributes in order to process requests accessing
a version x; of an item x (Section 3.2). Third, an Executor executing requests scheduled by
multi-version protocols needs to be implemented (Section 3.3).

3.1 Enhancements to the Data Relation

Considering the data relation Articles(ID,Qty) from Example 1. The underlining of 1D
indicates the primary key of the relation that uniquely identifies an item. To support multi-
version protocols the data relation needs to store multiple versions x; of an item x, so I.D as
primary key is no longer sufficient. As described above, the version identifier ¢ is a composi-
tion of the transaction number 7'A, and the position Seq of the write request that created that
version. The primary key /D is enlarged by the two attributes C'T'A, C'Seq, where *C’ stands
for ’create’, to make clear this is the transaction that created the version as shown in 3.1. Since
it might be also applicable to store the transaction that deleted an item, the data relation is also
extend by the attributes DT'A, DSeq, where D’ stands for "Delete’ [TGBK11].

Articles(ID,CTA,CSeq, DT A, DSeq, Qty) (3.1)

Example 2 Consider a relation Article maintained by a shop system supporting multi-version
protocols, as shown in Table 3.1. Bob initiates a write request wo(x) on item x, subtracting
one piece from the available quantity of x. Alice concurrently wants to access x through a
read request r3(x). wo(x) creates a new version of item x, whereas r3(x) accesses a prior
version of x, generated by a transaction t, that already committed.

16

Articles

ID | CTA | CSeq | DTA | DSeq | Qty
T 1 1 3
T 2 1 2

Table 3.1: Articles Relation Supporting Multi-Version Protocols

3.2 Enhancements to the Oshiya Scheduling Model

As described in Section 2.1 the OSM models requests as tuples in the so-called scheduling re-
lations R, £, H. R (pending requests) stores all the incoming requests waiting to be executed,
£ (executable requests) the scheduled requests to be executed, and H (relevant history) stores
the scheduled requests as a relevant history. The schema of these relations processing single-
version protocols is shown in 3.2. Notice that additional attributes that are not necessary for
the actual scheduling process (e.g. V al the value to be written for write requests) are omitted
for simplicity reasons.

R(TA, Seq,Op,0ID) E(TA, Seq, Op,OID) H(T A, Seq, Op, OID) (3.2)

A request within these relations is uniquely identified by its transaction number 7'A and its
position within that transaction Seq. Op indicates the type of the request, which can be a read,
write, commit or abort. OI D stores the item within the data relation the request accesses on.

To support multi-version protocols the schema of the scheduling relations needs to be adapted
as following. A multi-version protocol enhances a pending read request () by the version
of © when being scheduled, so being moved from R to £. Thus, £ only contains read requests
of the form r(x;), why it is enlarged by a version identifier OT' A, OSeq that corresponds to
the version attributes C'T'A, C'Seq in the data relation. Moreover, relation 7 is also enlarged
by OT A, OSeq, since it stores the relevant history, so requests from £. According to that,
relations £ and H of the OSM need to be adapted when processing multi-version protocols as
shown in 3.3.

E(TA, Seq,Op,OID,0TA,0Seq) H(TA, Seq, Op, OID,0T A, OSeq) (3.3)

Example 3 Table 3.2 shows relation £ after requests r3(x) and wo(x), introduced in Exam-
ple 2 have been scheduled and thus, inserted into £. As we can see the OT A and OSeq are
set to (1,1), indicating the version to be read by r3(x) corresponding to relation Articles in
Table 3.1.

3.3 Different Functionalities of the Executor

As described in Section 2.2 executable requests (reads, writes, commits, aborts) in relation
& are executed on the data relation .S through the Executor in step 5 of the scheduling algo-
rithm of the OSM (Fig 2.1). Since ODA also provides backward debugging of protocols, the

17

Seq | Op | OID | OTA | OSeq
1 \W% X
r X 1 1

e

Table 3.2: Relation £ Maintaining Requests Scheduled by a Multi-Version Protocol

Executor also needs to revert the execution of requests besides the 'normal’ forward execu-
tion. Executing requests scheduled by multi-version is different from executing single-version
requests. The functionalities of both types of Executors will be described in this section.

Single-Version Executor A single-version Executor handles possible read, write, com-
mit or abort requests as following:

Reads: A read-requests 7(z) is executed as a lookup of an item z located in S. The read
item will be stored by the Executor in a relation ReadValueMap (RVM) that stores all read
values read by read requests. This needs to be done, since the read values might be further
used by the workload as we will see in Chapter 5, where sophisticated workload functionali-
ties will be described. In the case of reverting a request 7 () this stored item z in the RVM is
removed again.

Writes: Handling write-requests in single-version protocols, the following two cases must
be considered. If the item, the request accesses on, already exists within .S, x needs to be
updated by the value given in the request. Unlike when the item the request accesses on does
not exist within S. In this case the Executor needs to create a new item x in .S with the given
value of the write request. Undoing a write request w(x) the Executor restores the item x to
the state before the execution of w(x) respectively removes the item z if it was newly created
by that request.

Commits: Commits do not have to be handled by the Executor since ODA shirks the concur-
rency control of the database system maintaining the data relation by auto-committing every
single request.

Aborts: Since the Executor of ODA auto-commits every single request on the data relation
of a transaction ¢, an abort a; needs to be handled within the Executor by undoing all changes
effected by 7 on items x...y. Moreover all read values of ¢ in the RVM are removed. Undoing
an abort a; is the most challenging task the Executor has to face. All undone changes affected
by ¢ on z...y need to be restored.

The described functionalities are summarized in the following Table 3.3.

18

Request Forward Backward
read Insert z into RVM Remove x from RVM
write | Update x in S / Insert x into S' | Restore x in S / Remove z in S
commit - -
abort Undo changes of ¢ in S Restore undone changes of 7 in .S

Table 3.3: Single-Version Executor Functionalities

Multi-Version Executor Executors executing scheduled requests of multi-version proto-
cols are facing different functional requirements compared to single-version Executors. Thus,
a new Executor is introduced handling requests (read, write, commit, abort) scheduled by
multi-version protocols as following:

Read: A read-request r(z;) is executed as a lookup of the version of an item z; located in
the data relation S. Parallel to single-version protocols the read item will be stored by the Ex-
ecutor in the RVM, since it might be further used by the workload for sophisticated workload
functionalities. In the case of reverting a read-request r(x;) this stored item x; in the RVM is
removed again.

Write: A write-request w;(z) scheduled by a multi-version protocol is handled differently
from the ones scheduled by single-version protocols. ;7 uniquely identifies the transaction and
the position within that transaction. w;(z) creates a new version z; of an item x in S, whether
a version of z already existed in S or not. Reverting w,(x) the created version z; is removed
from S again, so there does not have to be made any restoring of an overwritten value as in
single-version Executors.

Commit: Parallel to single-version Executors, commits do not have to be handled in the
multi-version Executor either, since both auto-commit every single request on .S.

Abort: Handling an abort a;, all effected changes on S by transaction j need to be undone.
This is done by removing all versions of items x;...y; created by j in S. Besides that, all stored
values of items z;...y; read by j are removed from the RVM. Accordingly undoing an abort
a;, through the backward debugging feature, all removed versions of items x;...y; are restored
as well as the stored values of items z;...y; in the RVM.

The described functionalities are summarized in Table 3.4. The comparison of Table 3.3
and 3.4 clearly outlines the different requirements of a single- and multi-version Executor.

19

Request Forward Backward

read Insert z; into RVM Remove x; from RVM
write Insert x; into S Remove z; from S
commit - -

abort | Remove z;...y; from S | Restore z;...y; in S

Table 3.4: Multi-Version Executor Functionalities

3.4 Implementation

As described in the previous Sections 3.1-3.3 multi- and single-version protocols have differ-
ent requirements on the OSM, the data relation, as well as on the Executor. Implementing
the support of multi-version protocols in ODA is done by a clear distinction between these
two types of protocols. Fig 3.1 shows the "Protocol Settings’ form of ODA, where protocols
are developed and edited. Mark (1) shows a combo-box ’Protocols’ where saved protocols
are selected. The current selected protocol is *SI’, a multi-version protocol, indicated by the
checkbox "M VCC-Protocol” below. When developing a protocol the user clearly has to state,
if the protocol is a multi-version protocol or not. According to that ODA automatically ad-
justs the the scheduling relations and data relation of the protocol by adding version attributes
(OTA,OSeq) to relation £ and H mark (3), as well as (CTA,CSeq, DT A, DSeq) to the
data relation, in this case named ’Article’ mark (4). The greying-out of some of the attributes
in mark (3) and mark (4) indicates that these are system attributes that cannot be edited by
the user, since they are compulsory for the scheduling process. In the section ’Scheduling
Queries’ mark (2) the protocol specific scheduling queries Q) gevokeds & schedute ANA Q 1rrelevant
are implemented.

According to whether the selected protocol is a single- or a multi-version protocol, the corre-
sponding Executor is chosen by ODA. Both Executors implement the interface /Executor as
shown in Fig 3.2. The Execute(£) function executes all requests in £, whenever the schedul-
ing algorithm of the OSM is in step 5. The undo() function is called, whenever the user
reverts step 5 of the algorithm. Using the interface /Executor additional Executors can be
implemented in ODA within future work, for protocols that are not supported so far.

20

Protocols:

Protocol Settings

[Delete Protocol } [Duplicate]

Protocol Name:

™ MvCC-Protocol

-Scheduling Queries

| [New Protocel }

Schedulinglteration %

2

'WITH BOT AS (

FROM H
IGROUP BY TA),

ISELECT TA, min(ID} AS ID

rScheduling Relations

—
E] Tables:

Column Name | Type

| Primary Key | NOT NULL | auto_increment | Default Value | Iteration Increment | CType |
D integer true true true false Userlnput
TA integer false true false false Userlnput
Seq integer false rue false false Userlnput
Op varcharl false true false false Userlnput
Ob integer false false false false Userlnput
val integer false false false false Userlnput
OTA integer false false false false Userlnput
0Seq integer false false false false Userlnput
Column Name: ‘ | [Add Column J
|—Dz|tz| Relations
Tables: [Amicle 3] [Delete Table | Table Name: | | [Add Table |
Column Name | Type | Primary Key | NOT NULL | auto_increment | Default Value | Iteration Increment | CType |
CcTA integer true false false false Userlnput
CSeq integer true false false false Userlnput
DTA integer false false false false Userlnput
Dseq integer false false false false Userlnput
Num integer true false false false Userinput
Qty integer false false false false Userinput 4

Delete Column

Column Name: ‘

| [Add Column]

[Create Tables]

[Save and Select Protocol]

Figure 3.1: Protocol Settings Form

IExecutor

execute()
undo()

SVExecutor

MVExecutor

Figure 3.2: Executors in ODA

21

4

4 Enabling Simultaneous Protocol
Execution

In this section the concepts and implementation supporting simultaneous execution of multiple
protocols will be explained. First a quick overview of ODA executing a single protocol will
be given. Afterwards the concepts and challenges behind the execution of multiple protocols
will be introduced, as well as the implementation in ODA.

4.1 Executing a Single Protocol in ODA

Fig 4.1 shows the architecture of ODA running a single protocol as described in section 3.2.
ODA implements the OSM, consisting of the scheduling relations R, &, H, and the seven-
step scheduling algorithm that iteratively performs the protocol specific scheduling queries
Qschedules QRevokeds aNd Q rrrerevant 0N the scheduling relations. A predefined workload file
contains the set of requests to be scheduled by the OSM. The Executor executes the requests
on the data relation S. The insertion of the requests defined in the workload file into relation
‘R is done by the Workload Handler. Whenever the user starts the scheduling process, ODA
iteratively runs through the seven-step scheduling algorithm. In every iteration (step 2) the
Workload Handler checks, if the previous requests had been scheduled and respectively inserts
new requests into relation R. The Executor implements the Execute(E) function in step 5 of
the algorithm and executes scheduled requests on the data relation as described in the previous
Chapter 3.

H=E=R=0
while true do begin
1 R=R-E:
Workload Workload — 7.
e | Handler |~ |[2_R=RUN;]

R=R- QReuoked(’H7R) 5

4 & =Qscheduie(M,R);
|5 Ezecute(£); || [Executor
6 H=HUE;
7 H=H- QI’V‘TelE’UG/VLt(H)) l
end _—
v
Data Relation

~ N

Figure 4.1: ODA Architecture for Single Protocol Execution

22

4.2 Concepts Enabling Multiple Protocol Execution

Enabling simultaneous protocol execution within ODA the following concepts are central:
First, ODA provides the possibility to let multiple protocols run parallel and independently.
Thus, each protocol needs its own OSM consisting of the three scheduling relations R, £, H,
the scheduling algorithm, and data relation S. Secondly, all previous functionalities are main-
tained within this extension, meaning the debugging mode, statistics etc. Third, to ensure
comparability, the parallel running protocols schedule the same workload, which can become
problematic since the workload cannot be standardized for all protocols, such as class based
protocols that need an additional class attribute. An example class based protocol (Class Based
2PL) will be briefly explained in paragraph ’Running same Workload’. Executing multiple
protocols independently, simultaneous but on the same workload results in the enhance-
ment of the program architecture as shown in Fig 4.2. The application also allows to run only
one protocol as prior to the enhancement, as a well as multiple protocols. This is done by
generalizing the protocol specific application parts and multiply them by the number of con-
current selected protocols. These protocol specific application parts are the Workload Handler,
inserting new requests from the workload file into the scheduling model, the OSM, consisting
of the seven-step algorithm and the scheduling relations R, £, H, as well as the Executor, ex-
ecuting scheduled requests from the OSM on the data relation. The following paragraphs go
more into detail concerning the challenges running the same workload for multiple protocols,
as well as the synchronization and independency of multiple protocol execution.

H=E=R=0

while true do begin
R=R-E&;
R=RUN; |
R =R — Qrevoked(H, R);

\
1

1

:

1

. 1
1

- 1
~ 1
4 & =Qscheaute(M,R); :
e H=HUZ; i
; 1
1

1

1

1

1

1

1

1

1

H

=
I3
8 S
az
28
T a

M =H - Qrrretevant(M) ; i

'
'
'
'
'
'
'
'
' end
'
'
'
'
'
'
'
'

Workload

File _I_) __

while true do begin
R=R-E;

R=RUN;

1
2
3 el) 3
4 & =Qscheaute(H,R);
6 H=HUCE;
7 H=H—Qrrretevant(H); ¢

end
S
Data Relation

Figure 4.2: ODA Architecture for Multiple Protocol Execution

23

Running same Workload The workload is the set of requests to be scheduled by a pro-
tocol implemented in the OSM. In the OSM requests are modeled as tuples in the scheduling
relations. In step 2 of the scheduling algorithm the Workload Handler inserts requests from
the Workload File into relation R, so the defined requests in the Workload File need to have
the same schema than relation R. Using the same Workload File for multiple protocols this
can become problematic. It is conceivable that not all protocols have the same schema for in-
coming requests, respectively relation R. E.g., Class-Based Two Phase-Locking (Class Based
2PL), where an additional class-attribute in incoming requests indicates the priority of a re-
quest, as Example 4 illustrates. Within this work, the first approach to simultaneously execute
multiple protocols in ODA, the assumption was made that all simultaneously executed pro-
tocols need to have the same schema for incoming requests. So, e.g., Class Based 2PL and
SS2PL cannot be run simultaneously, since they do not have the same schema for incoming
requests.

Example 4 Consider Alice and Bob both initiating a write request w,(x) resp. wa(x) concur-
rently to order an article x within the articles relation. Alice is a premium customer whereas
Bob is a normal customer. The shop system uses a Class Based 2PL to process scheduling
and to model the different customer types. Alice’s request is of higher relevance since she is a
premium customer (class 1), indicated by a class attribute within her incoming request wl(x).
Bob however is a normal customer, so within his incoming request wi(x), the class attribute
is set to 2 to indicate that his request is of lower relevance.

Independency To ensure that multiple protocols do not interfere with each other, each
protocols needs its own OSM, data relation, Workload Handler and Executor. This conse-
quently means that each protocol needs independent scheduling relations R, £, H, where the
scheduling algorithm performs on, as well as an independent data relation, where the sched-
uled requests are executed on. As described in Section 2.2 the OSM within ODA only main-
tains one request per transaction at the same time, so whenever a request had been scheduled,
the next request within this transaction is inserted into the OSM. The scheduling of requests
is protocol specific, so the insertion of requests into the OSM is also protocol specific. Thus,
every protocol needs an independent Workload Handler that inserts requests from the Work-
load File into the OSM. Since every protocol maintains its own data relation, the execution of
requests also needs to be done per protocol, so each protocol maintains its own Executor.

Synchronization During the scheduling process when the application runs iteratively
through the seven-step scheduling algorithm, each step is performed parallel on all selected
protocols. In other words ODA makes the scheduling algorithms wait for each other. Syn-
chronization is fundamental, since it ensures the navigational debugging feature for multiple
protocols, as well as stepwise protocol comparison.

24

4.3 Implementation

In this section the implementation of the pre-described concepts executing multiple protocols
within ODA will be explained. First in 4.3.1 the GUI of ODA executing multiple protocols
will be described, afterwards in 4.3.2 we will go into details on the adaptions of the core logic
of the application.

4.3.1 GUI

For multiple protocol execution a new GUI concept was implemented. A strict distinction
between protocol-specific and general controls and views needed to be done. Fig 4.3 shows
the main frame of ODA running two protocols, SI and 2PL, currently paused in the second
scheduling iteration in step 6.

General Controls The controls in mark (1) are the so-called navigational controls, where
the user can play and pause the scheduling process of all selected protocols, as well as debug
forward and backwards and reset the scheduling process. The labels below the navigational
controls indicate the current scheduling iteration and step. The red rectangle in mark (2)
frames the currently executed step in the scheduling algorithm of the OSM. In the ’Settings’
item within the menu-bar the user sets the database, on which ODA performs the scheduling.
The *Workload’ item lets the user import, generate, or save a workload file for execution. All
these controls are general controls, meaning not protocol specific.

Protocol Panel The protocol panel in mark (3) was introduced to hold all protocol specific
controls and views. It can be added generically to the main frame and consists of the following
tabs. *Schedule’ shows the resulting schedule of the scheduling process so far, in this case after
step 6 in iteration 2. Notice that the schedule is not shown in a total order, as ordinary known,
but in a simplified manner. Requests executed in the same scheduling iteration are displayed
as concurrently executed.

Furthermore the number of clients and transactions of the selected workload is shown, as well
as the number of aborts and commits that resulted from the scheduling process so far. The
’Sched Relations’ tab shows the state of the three scheduling relations R, £, H of the OSM
for the specific protocol. This tab is especially useful for the user to see which requests are
selected by the scheduling queries Q) scheduies @ Revoked> ANd Q 1rreievant. The tab *Data Relation’
shows the state of the data relation at each step of the scheduling process. The ’Statistics’
tab shows the statistical analysis of a protocol, which can be individually configured by the
user. The "Progressbar’ tab only exists for one protocol. It shows the amount of processed
transactions in proportion to all transactions defined in the workload, for all selected protocols.

25

000
File Settings Workload Statistics Queries Scenario

R=R-=E: 1 - - - . -
R=RUN: - . - - ~
R= R QuevorralH.R): 2 P
6‘_ rnud-‘a-(?t.‘k) : .
= Qrrrerevant O Qo vonggd §omio
Scheduling Iteration: 2 Algorithm Step: 6 O

SO Sched Relations | Data Relation | Statistics | Break and Analyze | Query Browser | Log | Prog 3

Iteration | client 1 | client 2 |
1 ri(1) r2(2)
2 wil(l)

S 01N Sched Relations | Data Relation | Statistics | Break and Analyze | Query B | Log}

Iteration | client 1 | client 2 |
i ri(1) r2(2)
2 wl(1) r2(1)

L p

Figure 4.3: ODA-GUI Executing Multiple Protocols

4.3.2 Core Adaptions

This subsection explains adaptions to the core logic of the application that had to be made in
order to enable simultaneous protocol execution.

Following the pre-described concept, shown in Fig 4.2, the protocol specific program logic
parts consisting of the Workload Handler, the OSM, and the Executor are multiplied by
the number of protocols selected. Moreover every protocol needs an autonomous database
schema, where its scheduling relations R, £, H and data relation is located on. Fig 4.4 shows
an class diagram of the relevant part in ODA implementing synchronous protocol execution.
The Oshiya Controller is the main controller that launches the application. The Oshiya Con-
troller maintains a thread Algo, performing the seven-step algorithm of the OSM. The func-
tions within Algo correspond to the navigational controls mark (1) in Fig 4.3. The class Basis
Functions implements the seven step algorithm of the OSM, within the function forward-
Step(int:step). Since ODA also provides the feature of backward debugging Basis Functions
also needs to implement the undoing of the seven-step scheduling algorithm, which is imple-
mented in function backwardStep(int:step). Each selected protocol maintains its own OSM,
so the application holds an instance of Basis Functions for each selected protocol, indicated
by the **’ cardinality within the class diagram. Moreover, each instance of Basis Functions

26

[Oshiya Controller |
[TaunchApplication() |

;
Algo

run()

pause()
stepForward()
stepBackward()
iterationForward()
iterationBackward()

*

Workload Handler Basis Functions |IExecutor
insertNextOperation() |1 |forwardStep(int:step) 1 | execute()
undolnsertion() backwardStep(int:step) undo()

Figure 4.4: Class Diagram of ODA Showing Relevant Classes for Synchronous Protocol
Execution

maintains an instance of the Workload Handler, as well as the Executor.

Whenever Basis Functions executes step 2 of the scheduling algorithm it asks for new re-
quests calling the function insertNextOperation() on the Workload Handler, corresponding to
the application architecture in Fig 4.2. In the case of undoing step 2 through the backward
debugging feature the method undolnsertion() is called. It removes the previously inserted
requests from the OSM, respectively relation k.

The Executor is either an instance of a multi-version Executor or a single-version Executor,
as shown in Fig 3.2, corresponding to whether Basis Functions implements the OSM of a
single- or multi-version protocol. Function execute() is called in every step 5 of the schedul-
ing algorithm and executes the scheduled requests in £ on the data relation. Whenever a user
backwards step 5 of the scheduling algorithm the function undo() of the Executor is called to
undo the executed requests. The detailed functionalities of the two types of Executors as well
as the functions execute() and undo() are described in Section 3.3.

27

5 Sophisticated Workload
Functionalities

The simulation of realistic scenarios is fundamental for ODA, since it is the basis for all other
functionalities like the investigation of protocol behavior or the statistical analysis of different
protocols. A workload is the set of requests to be scheduled by the selected protocols. Thus,
it defines the scenario, for which the user wants to simulate the behavior of different protocol
implementations. The goal of this contribution is to provide the user functionalities to model
realistic workloads that did not exists prior to this work. For instance, a workload of cus-
tomers accessing a shopping system. The customer browses through the shop, reads several
articles, and finally makes some orders. Hereby, the browsing through the shop is modeled by
read requests on an relation Articles within the shops database, whereas the buying process is
modeled as write request on relation Articles, subtracting the ordered pieces from the avail-
able quantity of the article. Section 5.1 explains the concepts of the following new workload
features, whereas Section 5.2 describes the implementation.

To realistically model the browsing through the shop, delays between the read request are
inserted to model the time a customer watches an article until accessing another one, re-
spectively decides to order it. The delay functionality within workloads will be described
in Section 5.1.1. Considering a customer, who wants to order a certain amount x of an article.
Whenever the available quantity of that article is smaller than x, the user at least wants to
order all remaining pieces. This is modeled using conditional write statements, which will be
introduced in Section 5.1.2. Whenever the available amount of an article is 0, the ordering of
an article is skipped, this is modeled using conditional read request, which can also be called
jump constraints, explained in Section 5.1.3.

5.1 Concepts
5.1.1 Delay Functionality

The OSM only maintains one request per client as explained in Section 2.2. Whenever the
previous request of a client has been scheduled by the OSM, the Workload Handler jumps
further to the next request defined in the workload and inserts it into relation /R. To model
delays between requests so called delay requests are introduced within the workload. Delay
requests are pseudo-requests, that are not inserted into the OSM. Whenever the next request
the Workload Handler wants to insert is a delay request, it does not insert it, but waits for the
next iteration to jump to next request within the workload. Thus, the insertion of the next 'real’
request is delayed by one iteration.

28

ODA does not only provide the possibility to model one delay request between two ’‘real’
requests, but also multiple. Thus, it is also possible to model a delay for multiple scheduling
iterations. This approach of enabling delays in between requests has the advantage that the
original functionality of the Workload Handler inserting requests does not have to be modified,
but only the handling of the newly introduced delay requests has to be implemented.

Example 5 Considering Alice browsing through a web shop, modeled as multiple read re-
quest on a relation Articles. We model the time Alice watches an article until clicking further
to the next article by adding delays in between the read requests as shown in Fig 5.1.

Alice : r(x) dri(y) ddri(z)ddd ¢

Figure 5.1: Delays in Between Requests

5.1.2 Conditional Write Expressions

The idea of conditional write statements is to define a condition that manipulates the value
to be written by write request. Prior to this work, there was the possibility to manipulate the
value to be written according to a previously read value, as described in Section 2.2, using a
placeholder within the value field of a write request. For instance the following expression
models such a placeholder:

$1—1 3.1

$1 is a placeholder for the read value of the first request within that transaction ¢. The
Workload Handler looks up the value read by transaction ¢, inserts it into the placeholder and
solves the arithmetic term to get the actual value to be written by that request. This concept
was enlarged to enable conditions within write requests introducing the following syntax:

[Condition], [Then], [Else] (5.2)

Example 6 Bob wants to order three pieces of an article x. In the case that less than three
pieces are available he at least wants to order all available pieces. So he defines a maximum
order quantity and not a fix quantity. This can be modeled using Expression 5.2 within the
write request w(x) of his order. The whole transaction of his order is shown in Fig 5.2.

Bob : ri(x) wi(x) ¢
Figure 5.2: Bob Ordering Article x

For instance *$1 > 3, $1 — 3, 0’ models a conditional write request according to Example 6.
The expression is separated into three parts by comma characters. The first part *$1 > 3’ is

29

the condition, the second part *$1 — 3’ the value to be written if the condition is true, and the
third part *0’ the value to be written if the condition is false. The values to be written can be
arithmetic terms referencing prior read values or fix values. So in this case, whenever the read
value $1 of the first request r;x within that transaction 1 is bigger than 3, the write request
subtracts 3 from the value of z, else it writes the value 0.

5.1.3 Conditional Read Expressions/Jump Functionality

The idea behind conditional read requests is to provide the user a syntax, that allows jumps
within the workload, according to a defined condition. The syntax of conditional read requests
is shown in Expression 5.3, whereas the condition always refers to the value read by the
request.

[Condition|, [T hen| (5.3)

Example 7 Bob wants to order one piece of an article x. In the case that the available
quantity of x is smaller than 1, in other terms x is sold out, the write request updating the
quantity of x should be skipped. This can be modeled by using Expression 5.3 within the read
request. Considering Bob’s transaction shown in Fig 5.2, whenever 1 (x) reads a value less
than 1 the next request inserted by the Workload Handler will not be w, (x) but c;.

"< 1,2’ is an example read constraint for Example 7. The expression is structured into
two parts separated by a comma character. The first part < 1’ defines the condition whereas
the second part ’2’ indicates the jump size that will be applied by the Workload Handler,
whenever the condition is true. So in this case when the value read by r;(x) is smaller than
1 the Workload Handler will not jump one request further, so to wy (x) in the next scheduling
iteration, but will skip the next request and jump two requests further, so to ¢;.

5.2 Implementation

This section describes the implementation of the named sophisticated workload functionali-
ties. First, the general implementation of the Workload Handler is explained. Afterwards the
implementation of the described functionalities is explained.

5.2.1 General Implementation of Workload Handler

Fig 5.3 shows a more detailed view of the application architecture of ODA focusing on the
Workload Handler. The bold arrows within the figure indicate the flow of requests, whereas the
dotted arrows indicate the data flow. The Workload Handler maintains two relations Workload
and ReadValueMap that have been omitted before for simplicity reasons. The following two
paragraphs explain the functionality and purpose of these relations.

30

H=E=R=0
while true do begin
1 R=R-¢&;

Workload 5 Workload o — -
File Handler [2 R=RUN; |

3 R=R- QRevoked(Hy R))
H ______ . 4 E=Qschedute(H,R);
S [Ezecute(€); | Executor

Read Value 6 H=HUE,;
Workload
7 H=H- QITTele'uant(H) ; e e m— -

0 end |
' . —
|

Data Relation

~

Figure 5.3: Detailed View of Workload Handler Architecture

Workload Relation The Workload Handler maintains a relation Workload. Whenever a
protocol and a workload file has been selected by the user, the requests defined in the workload
file are inserted as tuples into relation Workload. Holding the predefined requests as tuples in a
relation is advantageous, since they will be also inserted into the OSM as tuples. The schema
of relation Workload differs depending on the protocol selected, since protocols can have a
different schemas for incoming requests as explained in Section 4.2. Expression 5.4 shows the
minimal schema of relation Workload that is used, e.g., by SS2PL and SI.

Workload(CID,TA, Seq, Op, Ob, Val) (5.4)

Requests within the relation Workload are uniquely identified by an unique id of the client
(C'ID), the transaction number (7T'A) that is unique within the client id, and the position of
the request within that transaction (Seq). Attribute Op identifies the operation of the request,
which can be aread, write, or commit. ODA does not support aborts within a workload. Aborts
can only be generated by the scheduler, i.e. the OSM. Attribute Ob identifies the object within
the data relation the request accesses. This attribute is only set for read and write request, since
commits do not access an object within the data relation. The V' al field carries the value to be
written by a write request, this can be a fix value, e.g. 0, as well as an arithmetic expression
as shown in Expression 5.1. The relation Workload maintaining the workload introduced in
Example 8 is shown in Table 5.1. Notice that Alice’s client id (C'I D) is 1 whereas Bob’s client
id (CID) is 2 and item = is identified as object 1 and y as object 2.

Example 8 Consider Alice and Bob both ordering one piece of an article x and y within one
transaction each. The requests on a data relation that stores article items is shown in Fig. 5.4.
First, a read request checks the available quantity of x, then a write request subtracts 1 of the
available quantity of the article, and finally the transaction commits. In a second request the
same is done for the second article y.

31

Alice = r(x) wi(z) ¢1 mo(y) waly) co
Bob : ri(x) wyi(z) ¢1 mo(y) wa(y) co

Figure 5.4: Alice and Bob Ordering two Different Articles Each

Workload
CID [TA | Seq | Op | Ob | Val
Patice — 1 1 1 r 1
1 1 2 A 1 | $1-1
1 1 3 c
1 2 1 r 2
1 2 2 A 2 | $-1
1 2 3 c
Pgy, — 2 1 1 r
2 1 2 A $1-1
2 1 3 c
2 2 1 r 2
2 2 2 A 2 | $-1
2 2 3 c

Table 5.1: Workload Relation Including a Pointer for Alice and Bob

The Workload Handler maintains a pointer for each client (P4 and Pp,) pointing on
the request that is currently processed in the OSM. In Table 5.1 the pointer of Alice and Bob
are both pointing on the first request within the first transaction (). Thus, request () of
Alice and Bob are currently processed in the OSM.

For every iteration ¢ of the scheduling algorithm, the Workload Handler checks in step 2 if the
current request of a client has been scheduled, i.e. moved into relation &£, in iteration ¢ — 1. If
so, the Workload Handler moves the pointer of that client further to the next request within
the workload relation and inserts it into relation R.

Corresponding to the forward moving of the pointers, the Workload Handler moves the
pointers backward in the case the user makes use of the backward debugging feature and
reverts step 2 of a scheduling iteration.

According to the schema of relation Workload shown in expression 5.4 the schema of
relation ‘R is the following:
R(TA, Seq, Op, Ob, Val) (5.5)

Notice that requests in relation R are uniquely identified by the transaction number 7'A
and position of the request within that transaction Seq, whereas 1A, Seq is not unique within
relation Workload. When inserting request of a transaction from relation Workload into R, the
Workload Handler needs to assign a new unique transaction number for the requests within
that transaction before inserting them into R.

32

Read Value Map Relation ReadV alueM ap is accessed by the Workload Handler and the
Executor. It stores all values read by read requests. It has the following schema, whereas
T A, Seq uniquely identifies the request and V al stores the read value:

ReadV alueMap(T'A, Seq, Val) (5.6)

Whenever a read requests is executed on the data relation, the Executor inserts the read value
into the ReadValueMap as mentioned in Section 2.2. Relation ReadValueMap is used for the
arithmetic expressions that can be defined within the value of a write request. Consider Alice’s
first transaction in Example 8 7 (z) w;(z) ¢; and the corresponding tuples in the workload
relation in Table 5.1 marked with a **’. An arithmetic expression *$1 — 1’ is set as value for
the write request wy(z). The placeholder $1 references the value read by the previous read
request 71 (x). Whenever the Workload Handler inserts w; (=) into the OSM, it has to solve the
arithmetic expression before. It looks up the value read by 7 (z) in relation ReadValueMap,
inserts the value into the placeholder $1, and solves term to get the actual value to be written
by w; (z). Considering r () read the value 5, 5 is inserted for the placeholder $1 and the term
5 — 1 is solved by the Workload Handler. So the value written by w, (z) is 4.

5.2.2 Implementation of the new Sophisticated Workload
Functionalities

This subsection describes the implementation of the previous explained sophisticated work-
load functionalities in Section 5.1. Example 9 visualizes the utilization of these functionalities,
which are the delay functionality, as well as conditional read and write expressions.

Example 9 Consider Alice browsing through a web shop and finally deciding for an item x
to buy. This is modeled in two transactions shown in Fig 5.5. The first transaction t,, the
browsing through the shop, are read requests accessing multiple articles (x, vy, z) on relation
Articles. To model the time Alice watches an article until clicking further to the next article,
delays are inserted between the read requests. The second transaction t, models the buying
process of article x. ro(x) is a conditional read request, that let’s ODA jump directly to c,,
in the case the available quantity of x is smaller than 1. wy(x) is a conditional write request.
Alice wants to order three pieces of x, whenever the available quantity of x is smaller than 3,
she at least wants to order all remaining pieces. Table 5.2 shows this workload as tuples in
relation Workload. Notice that x is identified as object 1, y as object 2 and 7 as object 3.

ty:r(x)dr(y)ddri(z)dddc

to i ro(x) wa(x) e

Figure 5.5: Alice First Browsing Through the Shop Then Buying Article x

33

Workload

CID [TA | Seq | Op | Ob Val
Prlice — 1 1 1 r 1

1 1 2 d

1 1 3 r 2

1 1 4 d

1 1 5 d

1 1 6 r 3

1 1 7 d

1 1 8 d

1 1 9 d

1 1 10 | ¢

1 1 1 r 1 <1,2

1 1 2 w 1 | $1>3,$1-3,0

1 1 3 c

Table 5.2: Workload Relation Including Delays and Conditional Writes and Reads

Implementation of Delay Functionality As described in Section 5.1.1 ODA models
delays as ’pseudo requests’ in between 'real requests’. Delay requests can be defined in the
workload file, and thus are inserted into the workload relation. Table 5.2 shows the workload
relation maintaining the workload of Example 9. The workload is processed request by request
moving the pointer (P4;;..) further as explained in the previous section. Whenever the pointer
points on a delay, no request will be inserted into the OSM.

Pointers pointing on a ’real’ request (read, write, commit) are only forwarded, whenever the
request has been scheduled. Pointers pointing on a delay are forwarded in every scheduling
iteration. So r1(y) is delayed one scheduling iteration, r;(z) two scheduling iterations, and ¢;
three scheduling iterations.

Implementation of Conditional Write Expressions Enabling conditional write ex-
pressions within in ODA is an enlargement of the existing placeholder functionality using
relation ReadValueMap. The previously read values are inserted into the placeholders. The
Workload Handler checks if the condition is true and replaces the conditional expression by
the right value to be written by the write request, according to whether the condition has been
true or not.

Considering Alice ordering three pieces of an article x as introduced in Example 9. In the case
that there are less than three pieces available, she at least wants to order the remaining pieces.
This is modeled using a conditional write expression *$1 > 3,$1 — 3,0’ inserted into the V al
field of the write request wo(z) within the workload relation. Assuming the value read by
r1(x) was 4, the Workload Handler inserts 4 into the placeholders $1 and checks the condition
4 > 3. In this case the condition is true, so the whole conditional expression will be replaced
by the value defined for the condition being true 4 — 3 = 1. So the value written by w; (z) is
1.

34

Implementation of Conditional Read Expressions/Jump Functionality When-
ever a conditional read request has been executed in scheduling iteration 7, the Workload
Handler checks in scheduling iteration ¢ + 1, if the defined condition is true applying the value
read by that request. According to the correctness of the conditional expression the pointer
within the workload relation is moved. Conditions within read requests are defined in the V al
field of the workload relation. This is the simplest approach, since the attribute V' al has not
been used for read request before anyway.

Taking Example 9, where Alice wants to order three pieces of an article x. In the case that
the available quantity of x is smaller than 1, in other terms X is sold out, the write request
wy(z) updating the quantity of x should be skipped. This is modeled using the conditional
read expression *< 1,2’ inserted into the V' al field of the read request 75 (z). Assuming ro(x)
has been executed in scheduling iteration ¢ and read an available quantity of 0 for article z,
wy(x) is skipped. Before inserting the next request in ¢ + 1 the Workload Handler inserts the
read value into the defined condition of r5(x) and checks it for correctness. 0 < 1 — true.
Whenever the condition is true, the Workload Handler moves the pointer as many steps as
specified in the conditional read statement, in this case 2. So the next request inserted into the
OSM in i + 1 is not wy(x) but c,.

35

6 Conclusion and Future Work

The Oshiya Debugger and Analyzer (ODA) is a tool developed for database developers and
researchers to develop, debug and analyze Oshiya protocol implementations with respect
to performance- and correctness criteria executing user-provided workloads. In this work
ODA was enlarged by three major enhancements: The support of multi-version protocols, the
simultaneous protocol execution, and the sophisticated workload functionalities, to enable the
simulation of realistic client behavior.

In order to enable multi-version protocols, the backend relation (data relation), on which
requests scheduled by the Oshiya scheduling model (OSM) are executed on was adapted
to hold multiple versions of a data item, as required by multi-version protocols. Requests
scheduled by multi-version protocols access a certain version of a data item, thus the Oshiya
scheduling model was enlarged to process such requests. Since requests scheduled by
multi-version protocols are executed differently on the underlying backend relation than
requests scheduled by single-version protocols, a new Executor was implemented. The
support of multi-version protocols opens up a whole new spectrum of concurrency control
techniques to the users of ODA, that are widespread in modern database systems. The
analysis of multi-version protocols is especially interesting, since there exist many different
multi-version protocol implementations with different properties concerning correctness and
performance.

Through the simultaneous protocol execution feature ODA provides the user the oppor-
tunity to generate schedules for multiple protocols concurrently. In combination with the
navigational debugging feature, that lets the user debug the process of schedule generation,
this facilitates detailed investigation and comparison of different protocol behaviors.

In order to make expressive analyzations of protocols, realistic workload functionalities
are important. The following functionalities within a workload were implemented, to give
the user the possibility to define workloads that simulate a sophisticated client behavior, e.g.
to model a customer on a web shop: So-called delay requests were introduced, which can
be inserted in between 'normal’ requests in a workload, e.g., to model the time a customer
has a look on an item within the shop until accessing another one. Introducing conditional
requests, conditions within the workload can be defined that dynamically adjusts the workload
according to the state of the backend relation. This can be used to model, e.g., a minimum or
maximum order quantity of a customer.

36

Future Work ODA does not support simultaneous execution for all types of protocols.
Concurrent protocol execution is restricted by the workload, i.e. the schema of the incoming
requests. Enlarging ODA to the extend that, e.g., Class based 2PL and 2PL can be executed
concurrently, would enable concurrent protocol comparison to a wider spectrum of protocols.

To promote the distribution of ODA, it might be reasonable to make the application
web-enabled within future work.

37

Bibliography

[ENNI10] Ramez Elmasri, Shamkant Navathe, and Shamkant Navathe. Fundamentals of
Database Systems. 2010.

[TGB*11] Christian Tilgner, Boris Glavic, Michael H Bohlen, Carl-Christian Kanne, Patrick
Leibundgut, and Luis Schiiller. Debugging, visualizing, and comparing schedul-
ing protocols. (0), 2011.

[TGBKI11] Christian Tilgner, Boris Glavic, Michael H. Bohlen, and Carl-Christian Kanne.
Declarative Serializable Snapshot Isolation. pages 170-184, 2011.

38

