Visualization of the Varying Spatial Density
Information in the Swiss Feed Database

Bachelor Thesis in Computer Science
provided from:
Andrin Betschart
Zofingen, Switzerland

Matriculation number: 09-714-882

Made at the
Department of Informatics
at the University of Zurich

Prof. Dr. M. B6hlen

Supervisor: Andrej Taliun

Delivery date: August 16, 2012

Acknowledgments

[would like to express my deep gratitude to Dr. Andrej Taliun, my supervisor who
supported me through the entire work. His patient guidance, enthusiastic
encouragement, explanations and useful critiques contributed in a remarkable way to
the success of this thesis. My grateful thanks also goes to Prof. Dr. Michael Bohlen, who
gave me the chance to work on a project, which was interesting and challenging.

Special thanks also to Annelies Bracher of the Swiss Agronomic Institute for
supporting me during the evaluation and providing me with useful information from the
users’ side.

Abstract

This thesis introduces techniques to visualize information of the spatial feed data for the
online application of the Swiss Feed Database. Since the computation of the Kernel
methods that are used to compute the visualized images is not very time efficient, we
fight the challenge to develop an algorithm of lower complexity, by introducing some
optimizations: query optimization, sparse grid with bilinear interpolation and server
side implementation. The experimental evaluation proves that the implemented
algorithm executes fast on all popular browsers, no matter what criteria were selected
by the user.

Zusammenfassung

Diese Bachelorarbeit behandelt eine Technik zur Darstellung der raumlichen Verteilung
von Nahrungsmitteldaten auf der Online-Applikation der Schweizerischen
Futtermitteldatenbank. Weil die zur Berechnung verwendeten Kernel Methoden nicht
sonderlich zeiteffizient ausgefiihrt werden konnen, war es eine Herausforderung einen
Algorithmus von geringer Komplexitit zu entwickeln. Um dies zu erreichen wurden
einige Optimierungen eingefiihrt: Eine Query-Optimierung, ein sparliches Gitter mit
bilinearer Interpolation und eine serverseitige Implementierung. Die experimentelle
Evaluation beweist, dass der implementierte Algorithmus in allen gangigen Browsern
und unabhédngig von den durch die User selektierten Kriterien schnell ausgefiihrt wird.

Table of Contents

1 INTRODUCTION .oiicceirerersssasssssassssssssssssssssssssssssnssssssssssssssassssssssssssssnssssssssssssssassnsssssnsssssnsssssssssssasssssnsssssnns 6
2 THE SWISS FEED DATABASEooiccetirsessisssssssssssssssssssssssssssssssssssassssssssssssssnsssssssssssss sassnsssssnsssssnsssssnsnss 7
/20 S ¢ 200 DNy T 9
N B ¢ O D N N 27X 11
2.4 THE APPLICATION .cotststetetreseseseseressssssssssssassssssssssssssssssssssssasssssssasasasasssssassssesessssssssssssssssssssssesssssssssesensassssssssasasaes 13
3 DENSITY VISUALIZATION .ooiiietrissesssssnsssssssssssssssssssssssnsssssnsssssssssssssssssasssssnsssssssssssssssssasssssanssssasssasssss 14
3.1 THE KERNEL FUNCTION weotetitrietreseietssesissssssessssssesssssssssssssssssssssassessssssessassssssassssssssssssansassssssasssssssssssssensesssanees 15
3.2 KERNEL DENSITY ESTIMATION woovttiriviesserirssssssssssesssesesssessnssssssssasasasaes 17
3.4 KERNEL REGRESSION ..covetitsieeetreresesessissesssssssssssssssssssssssessassssssasasasasssssassssssessssssssssssssssssssssesssssssssensasasssssssasasasaes 18
3.6 COMPUTATION OF THE OPTIMAL BANDWIDTH u.ucotsiiieiieesiisesssesesesssesessssssssssssssssssssssssssssssssssensasssssssasasasaes 19
4 GREEDY VISUALIZATION APPROACHccccsirsetrismsrsssssssssssssssssssssnsssssssssssssssssasssssnsssssnsssssasssssasssnsn 20
4,1 IMAGE RESOLUTION .iiititiuisirereesssesesesssssssesssssssssssasasssssssassssessssssesessssssssssssssssssssssasesssssssssssssssssesensasasssassasasaes 20
4.2 IMPLEMENTATION woiviuiririeeessssesesssssssesesssssesessasassssatssasssssasassssessssssesessssssssssssssssssssssassssssssssssssssssseseasasssssasasassans 20
G T 010\ 03 115 U 22
5 RUNTIME EFFICIENT VISUALIZATION APPROACHcccuvrrmrssssrssssssssssssssasssssssssssssssssssssssansssss 23
5.2 OPTIMIZE THE SQL QUERY..c.csstuteurerreuresssssssssessesssssssssssssssesssssssssssssssssssssssssssssssssssassssssssssssassessessssssssssssesses 24
5.4 SPARSE GRID uutoieiiesisesiseessesesssssesssssssssssssssssssssssssssssssssssssssasssssssasatasasssstas st st ssssssssssssssssssssssssesesssssesesensssssssssasasasans 26
5.6 SERVER SIDE IMPLEMENTATION ..ouvtiuieiuiriresssssesssessssssesssssssssssssssssssssssssssessssssssssssssssssssssssssssssssessnsasssssssasasasaes 30
6 EVALUATION ..iiiicctrirsssrssnsrssssssssssssasssssassnssssssssssssssasssssassssssssnssssssssssssssassssssssnsssssssssssasssssasssssnnssssnnssasannss 44
0.1 FUNCTIONAL wutttceetsistetetsesesesssesesssssssasssssssssssssssssssssssssssssasssssssasasasasssssas st st ssssssssssssssssssssssssesssssssesesensssasssssasasasaes 44
0.3 EXPERIMENTAL utoteteteisieesssesesesssesessssssssssssassssssssssssssssssssssssasssssssassssasssssasss st stssssssssssssssssssssssesssssssssesensssssssssasasasaes 46
7 CONCLUSION AND FUTURE WORK ..coiticctiisssrmssssssssssssssssssssssssssssssssssssssnsssssssssssssssssasssssasssssasssasasss 49
8 REFERENUCESiccctrtremsisssssisssssssssssssssssasssssssssssssssssssssssasssssassssssssnsssssssssssss sassssssssnsssssnsssssssssnsasssssnnssssnns 50

1 Introduction

1 Introduction

The feed samples of the Swiss Feed Database are collected from different
locations and those are shown on the map in the application. Currently the
locations from where the data samples come from are illustrated as simple flags.
This has the restrictions that it is hard to visually see where the most samples
come from. And moreover it is impossible to figure out where the quality of a
nutrient is high.

The goal of this thesis is to enhance the online application of the Swiss Feed
Database with the density information of the spatial feed data that varies
depending on the search criteria. The Greedy Approach that implements the
Kernels methods in a straightforward way and is executed on a client side is
extremely slow with the running time measured in minutes. This is caused by
two reasons. First, the Greedy Approach has quadratic complexity in the size of
the density image. Second, the performance of the JavaScript degrades
significantly as the amount of the data increases. With this work, we develop a
real-time approach. Moreover, we extend our efficient technique to visualize the
containment of the nutrients of the data samples. This allows the user to see on
the map where the quality of a previously selected nutrient is high and where it
is relatively low.

The runtime efficient density visualization relies on the following key
optimizations. First, we reduce the complexity of the algorithm from quadratic
to linear by using a sparse grid. Second, we reduce the size of the input on the
SQL level. Third, we minimize the use of the JavaScript and data transfer by
splitting the execution of the algorithm between the server and the client
machine.

In order to show that the implementation is useful and runs in real-time, an
evaluation is done. We experimentally prove that the algorithm runs hundreds
of times faster than the Greedy Approach and that the running time does not rise
when the number of feed sample grows. Furthermore, we show that the
performance is stable independent on the browser at the client side, with a
constant execution time of roughly 2 seconds.

This thesis is organized as following. In Section 2 the current online
application of the Swiss Feed Database and its containing data is presented. The
Kernel methods are explained in detail in Section 3. Section 4 describes the
Greedy Visualization Approach and Section 5 reports the Runtime Efficient
approach. In Section 6 the evaluation of the implementations is presented.
Finally Section 7 concludes the thesis and presents further work that might be
done.

2 The Swiss Feed Database

2 The Swiss Feed Database

The Swiss Feed Database is a public service for farmers and researchers, which
is provided by the Swiss Federal government agriculture, food and
environmental research organization, also called Agroscope. The core data that
is stored in the database are measurements of nutrients contained in feed
samples. The data is derived from chemical analyses of field samples, which
were collected from all over Switzerland. Currently nearly four million
measurements for over 900 feed types are stored in the Swiss Feed Database.

Interface:

The Swiss Feed Database is accessible to its users over an online interface
that is available in three different languages (German, English and French). It
allows the users to search either for detailed data or for aggregated data. In both
cases the users must select some feed types and nutrients that should be
displayed. For aggregated data a table is presented after the users selection has
been executed. This table shows the aggregated values for the given selection. In
the case that the user selected detailed data, the user might specify its search
with a further selection of a given time or a geographical restriction. When the
search button is clicked, a query is executed that considers all selections that
were made. The data that is retrieved from the query is then shown in different
ways. For more details we consider an example.

Example:

Figure 2.1 shows how detailed data is represented in the online interface.
For the example the selected feed is hay and the selected nutrients are calcium,
copper and magnesium.

2 The Swiss Feed Database

FEEDv=:s=
DueBAS E s

help | glossar login deutsch-frangais - english admin

NAL SGENCE FOUNOATION

(@ Detaillierte Daten Aggreglene Daten ‘ Fuﬂermmel H Nahrstoffe ’ Zen Geo H Biologie ‘ Technik p K
g P e ‘ scatter chart $ Ca $ljCu 4 | Mg <3

Densny click on the dots for interaction

oi| o Markers |
N H 20 W Ca
W Cu

Quantity
s
(I D ¢ o®

T

0
Jan2005 Jan2006 Jan2007 Jan2008 Jan2009 Jan2010

Timeline
LIMS-Nr. Canton PLZ Ca Cu Mg
1 xxx25 01.02.2005 Wallis 1945 11.519 3.171
2 xxx48 01.02.2006 Wallis 3902 8.407 2.703
3 xxx67 01.02.2005 Wallis 3995 14.898 3.525
4 xxx29 01.02.2006 Vaud 1186 6.330 1777
5 xxx29 01.02.2006 Vaud 1186 7.506 2.017
6 xxx26 01.02.2005 Vaud 1261 10.101 1.776
7 xxx74 01.02.2006 Fribourg 1669 8.647 1.995
8 xxx99 01.02.2006 Fribourg 1669 8513 2.102
9 xxx79 01.02.2006 Vaud 1188 13.336 1.895
10 xxx99 01.02.2006 Vaud 1072 7.226 2.223
11 xxx99 01.02.2006 Fribourg 1667 11.215 2.969
12 xxx03 01.02.2005 Fribourg 1663 10.190 2.448
RACERVIVVIAE) N4 A1 nnna Qarm 20410 4N NRA aRrR72 n RN

>
export of the data is available only for subscribers

© Universitit Ziirich 2011-2012 wir erkennen die Unterstiitzung von Agridea bei der Bereitstellung von Heu Daten

Figure 2.1: Current online representation of detailed data for hay and the nutrients
calcium, cooper and magnesium.

Under “Futtermittel” the feed type hay was selected and under “Nahrstoffe”
the three nutrients calcium, cooper and magnesium were selected. No more
restrictions were selected under “Zeit” and “Geo”, therefore the measurements
from all locations and from anytime are displayed as result.

The resulting data is represented in three ways. See Figure 2.1 as an
example. In the top left corner a map is displayed that as flags shows the
locations, from where the feed samples were collected. Just at the right side of
the map some charts can be displayed. They show the quantity of the measured
nutrients in relation to the time when the samples were collected. It is possible
to select at most three nutrients that can be presented in the chart. As third the
data is also represented in a table. Every sample of the selected feed, for which at
least for one of the selected nutrients the quantity was measured, is shown in a
separate row. Besides the LIMS-number, the collection date and location, the
measured quantity of the nutrients is displayed.

2 The Swiss Feed Database

2.1 The Data

In this section the data of the Swiss Feed Database is described. The following
mentioned data structures are stored in the database in order to run the
application.

Feed: a feed is mostly an agricultural foodstuff that is used to feed animals
but it can also be some animal’s side product such as urine or excrements.
Each feed has a name, which is stored in three different languages
(German, English and French). An artificial identifier is used to be able to
uniquely identify a feed. Example:

name_fr
Avoine
Amidon de mais

id | name_de
1 | Hafer
2 | Maisstaerke

name_en
Oats
Maize starch

Feed Group: a feed group groups different feeds of the same category. It
contains one or more feeds and each feed can only be part of one feed
group but not every feed belongs to a specific feed group. The name of the
feed group can be stored in three different languages (German, English
and French) and an artificial identifier is used to be able to uniquely
identify a feed group. A feed group may have another feed group as its
parent. Example:

id | parent_id | name_de | name_en | name_fr
1 |- Raufutter | Roughage | Fourrages
2 |1 Stroh Straw Pailles

Species: a species of animals has a name, which can be stored in three
different languages (German, English and French) and an artificial
identifier is used to be able to uniquely identify a specie. Example:

id | name_de | name_en | name_fr
1 | Gefliigel | Poultry Volailles
2 | Pferde Horses Chevaux

Nutrient: a nutrient can either be a part of a feed or the rate of
digestibility of the nutrient for a given species of animal. The name of the
nutrient can be stored in three different languages (German, English and
French) and a column for the abbreviation of the name is included. An
artificial identifier is used to be able to uniquely identify a nutrient.
Example:

id | name_de name_en name_fr abbreviation
1 | Kalzium Calcium Calcium Ca
2 | Magnesium | Magnesium | Magnésium | Mg

* Nutrient Group: a nutrient group groups the nutrients according to their

biological properties. For example we can find nutrient groups such as
carbohydrates, minerals or vitamins. A nutrient group contains one or
more nutrients, its name is stored in three different languages (German,
English and French) and an artificial identifier is used to be able to

2 The Swiss Feed Database

uniquely identify a nutrient group. A nutrient group may be bound to an
animal specie. In this case, the rate of digestibility of the different
nutrients for the given species is the purpose. Example:

id | name_de name_en name_fr species_id
1 | Kohlenhydrate | Carbohydrates | Glucides
2 | Energiewert Energy value | Valeurs énergétique | 1

Sample: a sample of a feed is taken to measure the containment of
different nutrients. It stores from what laboratory the sample was
prepared and an artificial identifier is used to be able to uniquely identify
a sample. In addition almost every sample also has a LIMS-number, which
uniquely identifies it. Example:

id | LIMS nr | preparation
1 | 202850-9 | LU-BR1
2 | 318472-7 | LYO-BR1

Origin: an origin is a location from where the sample might have been
taken. All geographical information such us canton, postal code, city
name, latitude and longitude of the locations are stored. An artificial
identifier is used to be able to uniquely identify an origin. Example:

id | canton | postal_code | city latitude longitude
1 | Luzern | 6022 Grosswangen | 47.13677200 | 8.05094400
2 | Bern 3123 Belp 46.89525200 | 7.50462900

Time: a time is a definition of the moment when the samples were taken.
The exact date, the year, the month and the season in three different
languages (German, English and French) are stored. An artificial identifier
is used to be able to uniquely identify a time definition. Example:

id | day year | month | season_de | season_en | season_fr
1 | 2001-09-21 | 2001 | 9 Herbst Autumn -
2 | 2006-09-12 | 2006 | 9 Sommer Summer -

Measurement: a measurement stores the chemical analyzed quantity of a
certain nutrient in a particular sample. In addition the origin of the
sample, the time when the sample was taken and the feed type is stored
as well as an artificial identifier, which ensures that a measurement can
uniquely be identified. Example:

id | quantity | nutrient | sample | origin | time | feed
1 | 1.5854 2 1 1 2 2
2 | 6.6 1 2 2 1 2

The data in the Swiss Feed Database has the properties that it is rather
sparse. This means that for many samples it is common that not all information
is stored. But for this thesis we only consider the measurements for which

complete geographical information respectively quantity is available.

Currently the number of stored geographical locations, which are possible
origins of the collected feed samples, lays around 1510. As we will see, this

number has an important impact on this thesis.

10

2 The Swiss Feed Database

2.2 The Database

In this section the database that stores the data, which was described in the
section above, is described. The central table of the Swiss Feed Database is the
fact_table. For every measurement that was taken within a sample an entry is
created. For further information the fact_table contains many foreign keys to
other tables that contain detailed information about the sample, the time when
the sample was collected, the location where it was collected, its containing
nutrient and from what feed it is. Beside the fact_table the origin_table is
important for this project, because it contains information such as city name,
postal code, canton and the geographical coordinates as longitude and latitude
for each possible location, where samples are collected.
Figure 2.2 shows the model of the slightly reduced Swiss Feed Database:

Time
Origin time key
origin_key day
city month
postal_code year s
canton season_de
country Fact Table season_en
altitude_group fact table key season_fr
Iatltqde O\ LIMS_nr
— guantity Nutrient
time._fkey Auirient key
nutrient_fkey name de
. kFeed origin_fkey \O name en
leed key sample_fkey .
name_de o fkey name_fr
. = abbreviation
name_en
name_fr group_id
group_id A g:gﬂgggﬁ
parent_group_id Sample group_tr
feed_group_de sample_key, specié d
feed_group_en LIMS _nr specie_name de
e D el | preparation specie_name_en
project_code specie_name_fr

Figure 2.2: Model of the Swiss Feed Database.

In this report a simplified example of the database is used to illustrate the
concepts of the implementation. The following four Tables show the example:

Table 2.1: Example fact table table.

f t key | LIMS_nr | quantity | time_fkey | nutrient_fkey | origin_fkey | sample_fkey | feed_fkey
1 01-1 6.2 1 2 3 1 1

2 01-2 7.4 2 2 2 2 1

3 01-2 3.9 2 3 2 2 1

4 01-3 3.7 3 3 4 3 1

5 01-4 6.5 4 1 1 4 1

6 01-4 4.0 4 3 1 4 1

7 01-4 6.3 4 2 1 4 1

8 01-5 8.1 5 2 3 5 1

Table 2.2: Example origin table.

origin_key | city postal_code | canton country ag latitude | longitude
1 Hergiswil NW | 6052 Nidwalden | Switzerland | >1000 | 46.99 8.28

2 Unterwasser | 9657 St. Gallen Switzerland | >1000 | 47.56 8.89

3 Ennetbiihl 9651 St. Gallen Switzerland | >1000 | 47.24 9.27

11

2 The Swiss Feed Database

4 Andermatt 6490 Uri Switzerland | > 1000 | 46.63 8.62

5 Spiringen 6464 Uri Switzerland | >1000 | 46.87 8.74

Table 2.3: Example feed table.

feed_key | name_de name_en name_fr

1 Heu / Emd gemischt | Hay all cuts | Foin / Regain mélange

Table 2.4: Example nutrient table.

nutrient_key | name_de name_en name_fr abbreviation
1 Kalzium Calcium Calcium Ca

2 Kupfer Cooper Cuivre Cu

3 Magnesium | Magnesium | Magnésium | Mg

The example includes eight measurements of the nutrients calcium, cooper
respectively magnesium. Those measurements were collected from four
different locations and within five different samples. All samples were taken
from the feed type hay. The origin table stores geographical information about
five possible locations, from where samples could be collected. But only from
four of those measurements are available.

12

2 The Swiss Feed Database

2.4 The Application

The database for the application is set up on a PostgreSQL system, which is a
free and open source software. It is mostly conform with the SQL programming
language. On the server side the application runs with PHP scripts, which allows
to dynamically load the content of the website. PHP also has built in methods to
get a connection to the PostgreSQL database and to request and receive data.

On the client side the application runs by displaying HTML code in all
common browsers. Executing JavaScript scripts dynamically changes this code
and offers the users the possibility to interact with the system. Some JavaScript
API's are used in order to be able to give the users a greater experience when
using the application. The JQuery Library is used to simplify the client-side
scripting and to support event handling. Moreover the Google Maps API is
needed to present maps to the users. This API allows integrating maps into the
application in a simple way. And finally for the charts and tables that are
displayed on the application, it makes use of the Google Visualization API.

Ajax techniques are used to asynchronously load content into the
application. These allow the system to send requests to the server without
interfering with the currently displayed site and dynamically load the received
data into it. XMIHttpRequest objects respectively ActiveXObjects are used to do
this, depending on the browser that is used by the client. Both of them are API's
that are available for JavaScript. The PHP scripts that are executed using Ajax
also need to return some data. The Document Object Model, so called DOM,
usually does this. According to [3] DOM is an interface that is language-
independent and allows representing data in HTML respectively XML format.
Because DOM objects can easily be read and produced in both, PHP and
JavaScript, it is a convenient option to use it for data transfers.

Figure 2.3 shows a schema of how the application runs.

DB Server Client
c 3 JavaScript
PostgreSQL Pl
XMLHttpRequest / JQuery
ActiveXObject Google Maps API

Google Visualization API

Figure 2.3: Application schema of the Swiss Feed Database.

13

3 Density Visualization

3 Density Visualization

In the online application of the Swiss Feed Database the feed samples are
illustrated on the map using flags. Figure 3.1 (a) illustrates such a representation
with flags for all hay samples that contain measurements of the nutrient
“Absorbierbares Protein Darm”. The essential drawback of this method is, that it
does not allow the users to compare different locations based on the number of
feed samples. For example, if a user wants to see from which location the most
feed samples come from, it cannot be easily seen since many flags overlap and
that visually results in fewer flags than the number of samples.

B Saarbriicken©

) Saarbriicken©
Karisrune | Karte | Satellit @ Karisrune | Karte | Satelit

Strasbourg oStutiga Nancy Strasbourg o Stuttgar]

int.Dizier Nancy
+ e i + oReutling
2 Freiburg im Density ’!{j Fremurg im Density
/,Breiggau
g

Markers LT Markers

&) 99 C 9‘
IS0

99
$% ,?,9,(
) | Roaressin
\o 9909 o
P O e

Regression 'L.‘,.

i Geno#a‘i’f “Modenao

¢ Genova

5 ; Kartendater - Nukungﬁwuhgna; = "ﬁiﬁf‘ 4/, Karendaten - Nuuungh\ohmm; n
(a) Vlsuallzatlon with flags. (b) Den51ty visualization. (c) Visualization of the

“Absorbierbares Protein
Darm” containment.

Figure 3.1: Visualization of feed samples.

We attack this problem with the Kernel Density Estimation. This method
takes into account all feed samples of the query result and allows us to compute
the expected density even in the areas that are between the flags. That results in
a smooth density image, which enables the comparison of the number of
samples between the regions in an easy and more intuitive way. As an example
consider Figure 3.1 (b). The colored density image is placed on the map. The red
color corresponds to the regions with the high number of samples and the blue
color denotes regions with a low number of samples. From the given density
image we can easily detect three hot spots: first, the most of the samples come
from the region around the canton Luzern, second the number of samples in the
cantons Fribourg and St. Gallen is high too.

Another drawback of the visualization with flags (and of the density
visualization) is, that it is not possible for the users to see where the
containment of the selected nutrients for the given feed type is high and where it
is low. To solve this problem we use the Kernel Regression technique. Similarly
to the Kernel Density Estimation, the Kernel Regression results in an image
where hot colors indicate high concentration of the selected nutrient. As an
example consider Figure 3.1 (c). The colored image on top of the map graphically
illustrates the containment of the nutrient “Absorbierbares Protein Darm” in the
collected hay samples. It can be seen, that the concentration in the hay of the
mountains is slightly lower than in the hay samples of the Swiss midland.

14

+/ Regression

3 Density Visualization

3.1 The Kernel Function

The Kernel Density Estimation and Kernel Regression rely on the Kernel
Function which, in order to determine the density at an arbitrary point in space,
must be evaluated for each data point in the worst case. The Kernel Function K
is a symmetric function which integral is equal to 1, i.e.:

o8]

j_ooK(x)dx = 1.

Table 3.1 shows the one-dimensional Gaussian and Epanechnikov Kernel
Functions, which are according to [7] known to result in a low estimation error
of the density function of the data. The shape of both Kernel Functions is a bell
that is placed at point x = 0, i.e.,, the Kernel function takes the highest value at
x = 0 and smoothly decreases down to 0 in both directions. The difference
between these Kernel Functions is their computational efficiency: while the
Gaussian Function requires computationally expensive exponentiation and is
defined in the whole domain, the Epanechnikov Function is quadratic and, more
importantly, is non-zero only in a fixed interval (|x| < 1). Therefore, in our
approach we choose Epanechnikov Function and optimize computation of the
density function at point x by pruning those data points for which the
Epanechnikov Function is 0.

Table 3.1: Gaussian and Epanechnikov Kernel Functions.

Name Equation Graph
gaussian kernel
G K@) = —— e 2% g
aussian x)=— e 2
V2m 3 o~
/ \\
3 ya N
panechnikov kernel
Sa-aifll <1 | | RN
Epanechnikov K(x) = 4(—x9),if Ix| <) // \\
0, otherwise o/
zJV"V \

15

3 Density Visualization

Since our main target is spatial data, we use the two-dimensional
Epanechnikov Kernel Function, which fulfills all the above properties and is
graphically illustrated in Table 3.2.

Table 3.2: Bivariate Gaussian and Epanechnikov Kernel Functions.

Name Equation Graph

1 _x2+y2
Gaussian K(x,y) = 5o e 2
K(x,y)
2
Epanechnikov | = n(l x), ifx“+y-<1
0, otherwise.

16

3 Density Visualization

3.2 Kernel Density Estimation

Given a finite set of data points, the aim of the Kernel Density Estimation is, to
estimate the density of the whole population at every point of the domain.
Differently from other estimation techniques as histograms, the Kernel Density
Estimation results in a smooth density and minimizes the estimation error. The
estimation error decreases as the number of data points increase.

Definition: let L = {(X, Y1), ..., (X;,Y;), ..., (X, Y,)} be a set of locations with
X and Y as X- and Y-Coordinates. The two-dimensional Kernel Density Estimator
fu(x,y) at the location (x, y) is:

n
N 1 x— X y—Y;
faCoy) =3 ZK(PR) (3.1)
1=
with Kernel function K and bandwidth h.
Figure 3.2 illustrates the two-dimensional Kernel Density Estimate of a data
set of 5 locations (L = {(2,2), (3,2),(6,3),(7,7),(8,8)}) with a bandwidth h = 2.

(a) individual Kernels. (b) Kernel Density Estimation.

Figure 3.2: Two-dimensional Kernel Density Estimation.

Figure 3.2 (a) shows the individual Kernel functions placed on top of each
data point. The density function is achieved by summing up these Kernel
functions. The result is illustrated in Figure 3.2 (b): locations, which accumulate
large number of Kernel functions results in the peaks in the density.

17

3 Density Visualization

3.4 Kernel Regression

The Kernel Regression deals with data that consists of one or more independent
variables and a related dependent variable. In the case of the feed data, the
independent variables are locations, i.e., x and z coordinates, and the dependent
variable is the measurement of nutrients at the locations. The goal of the Kernel
Regression is, to estimate the value of the dependent variable for the whole
population and at every possible point, i.e., the value of the nutrient at each
location.

Definition: let M = {(X;,Y;,Q4), ..., X3, Y;, Q)), ..., (X3, Y5, @)} be a set of
measurements where X and Y are the coordinates from the location where the
sample was collected and Q the measured quantity of some nutrient. Then, the
two-dimensional Kernel Regression g, (x, y) at the location (x, y) is:

x— X; y— Y,
Lk () @
x—X; y— Y,
Bk ()

with Kernel Function K and bandwidth h.

Figure 3.3 illustrates the two-dimensional Kernel Regression of a data set of
5 measurements (M = {(2,2,2),(3,2,1),(6,3,2),(7,7,1),(8,8,1)}) with a
bandwidth h = 2.

gn(x,y) = (3.2)

(a) weighted Kernel Density Estimation. (b) Kernel Regression.

Figure 3.3: Two-dimensional Kernel Regression.

Figure 3.3 (a) shows the weighted Kernel Density Estimate, which is the
numerator of Equation (3.2). And Figure 3.3 (b) represents the final Kernel
Regression, which is achieved by dividing the weighted Kernel Density Estimate
by the Kernel Density. It can be seen, that the Kernel Regression results on rapid
jumps for locations with only few data points. Only in the regions where multiple
data points are close the regression becomes smooth.

18

3 Density Visualization

3.6 Computation of the optimal Bandwidth

The bandwidth h has a critical role in the Kernel Density Estimation. It controls
the width of the base of the Kernel function. Therefore, too high values of the
bandwidth results in an over smoothed density and too low values produce a
density function with many oscillations as you can see in Figure 3.4.

(a) over smoothed Kernel Density Estimation (b) under smoothed Kernel Density Estimation
with h=5. with h=1.

Figure 3.4: Over and under smoothed two-dimensional Kernel Density Estimation.

The optimal bandwidth h,,, is computed based on the variance of the given
data as following:

1
hope = 0 A(K) xn"6
where o is the variance of the data samples and A(K) a constant that depends on

the Kernel. For the two-dimensional Gaussian Kernel A(K) = 0.96 and for the
tow-dimensional Epanechnikov Kernel A(K) = 1.77.

19

4 Greedy Visualization Approach

4 Greedy Visualization Approach

Technically, the integration of the density information into the online application
of the Swiss Feed Database consists of three steps: we must estimate the density,
transform it into a color image and draw this image on top of the map. In this
section we present and evaluate the Greedy Approach for density visualization
that involves straightforward implementation of the Kernel Density Estimator
on the client side with JavaScript. The resulting performance of the Greedy
Approach is strongly affected by the data size, resolution of the image and the
execution speed of the JavaScript engine that varies substantially between
different browsers.

4.1 Image Resolution

The first thing to consider is the resolution of the density image. Because the
users usually zoom in and out of the map, it is the default requirement for the
density image to have a resolution. Otherwise, the visual appearance degrades
significantly when the user starts to investigate some regions in more details.
With the default size of the map in the online application of the Swiss Feed
Database, the image should have at least 1’000 pixels in every dimension. We
call this parameter 7j,,qg4, for image resolution and, with the default settings, it
results in a density image with 7,440 * Timage = 1'000°000 pixels.

4.2 Implementation

In more details, the computation of the density image consists of the following
four steps:

1. Query execution: a SQL query that fetches the relevant data based on the
users’ selection is executed by the database. The resulting tuples are
transferred to the client machine and stored in a two-dimensional array
by the JavaScript script.

2. Calculation of the density: we create a temporal two-dimensional array
whose size is equal to the number of pixels in the density image. Then,
each element of the array represents a distinct location and for each
location we scan the data and compute the density value. The additional
step is to transform geographic coordinates of each origin into xy-
coordinates in Euclidean space.

3. Coloring of the image: in this step the density image is created and the
pixels are colored according to their corresponding density values in the
temporal two-dimensional array.

4. Placing the image on the map: Finally the density image is placed on the
map using an OverlayView of the Google Maps API.

20

4 Greedy Visualization Approach

Figure 4.1 graphically illustrates these steps for the Greedy Approach. Next,
we in details explain Steps 1 and 2. The other steps (3 and 4) are explained in
Section 5 together with the runtime efficient approach.

Server Client
DB 3. Coloring of
: the image
i
1.Query 2. Calculation of 4. Placing the image
execution the density on the map

Figure 4.1: Steps of the greedy density visualization algorithm.

Query execution

When a user clicks on the button to show the density information, the first
thing to execute is a PHP script on the server side that fetches all relevant data
from the database. The underlying SQL query is illustrated in Example Code 4.1.

1: $query = "select latitude, longitude "
2: "from fact_table, d_origin, d_feed, d_nutrient, d_time "
3: "where fact_table.id_origin_fkey = d_origin.origin_key $where";

Example Code 4.1

The query makes a natural join between four tables and selects latitude and
longitude of all nutrient measurements that satisfy the where statement. The
where statement is constructed dynamically, based on the user selections, in the
online application. Table 4.1 shows the result of the SQL query for the example
data (cf. Section 2) when a user puts no restrictions for nutrients, locations or
the time. As we see, the output is latitude and longitude of each nutrient
measurement that satisfies the search criteria. Note, that in the output we can
have repetitions. For example, coordinate (47.56, 8.89) appears 2 times since
there are two measurement from this location.

Table 4.1: Query result for the example data.

latitude | longitude
47.24 9.27
47.56 8.89
47.56 8.89
46.63 8.62
46.99 8.28
46.99 8.28
46.99 8.28
47.24 9.27

21

4 Greedy Visualization Approach

Calculation of the density

The implementation is done exactly as the Kernel Density Estimator is
defined. For every position, in our case pixel, for which we want to have the
density, the influence of every data tuple (which essentially corresponds to
geographic coordinates returned by the SQL query) to this pixel has to be
summed up. Example Code 4.2 shows how it is implemented.

1: function epanechnikovKernel(dx,dy)
2: {
3: var t = Math.pow(dx,2) + Math.pow(dy,2);
4: if (t >= 1)
5: return 0;
6: return 2 / Math.PI * (1 - t);
7: }
8: function computeDensity(x, y, data, hopt)
9: {
10: var density = 0;
11: for (var p = 0; p < data.length; p++)
12: {
13: var point = data[p];
14: density += epanechnikov_kernel((point.x-x)/hopt,(point.y-y)/hopt);
15: }
16: return density;
17: }
Example Code 4.2

On lines 1 to 7 in Example Code 4.2 the implementation of the Epanechnikov
Kernel is illustrated. As an input, this function takes dx and dy, which are
distances along both dimensions from the center of the Epanechnikov Kernel. On
lines 8 to 17 the implementation of the Kernel Density Estimation is shown. The
function takes the x and y coordinates of the considered pixel, the array with all
data tuples and the optimal bandwidth as arguments. Lines 11 to 15 iterate
through all data tuples. For every data tuple we compute the distance to the
considered pixel and evaluate the Epanechnikov Kernel. At last, the outputs are
summed up and the function returns the density of the current pixel. In order to
have the density values for the whole image calculated, the computeDensity
function needs to be executed for every pixel of the image.

4.3 Complexity

As we already specified, we are calculating an image that has a resolution of
Timage = 1’000 pixels in each dimension and that results in 1,446 * Timage =
1'000'000 pixels. For every pixel the Kernel Density Estimator needs to be
calculated. To do so every data point must be considered. If n is the number of
data points, then the final complexity of the computation is: O(rj,.ge * 1.
Practically, because of the high resolution, slow JavaScript and large n of more
than 1'000'000 that results in an unacceptable runtime that is measured in
minutes.

22

5 Runtime Efficient Visualization Approach

5 Runtime Efficient Visualization Approach

In this section we present the critical optimizations that are necessary in order
to improve the performance of the density visualization. Three steps, which
improve the efficiency of the Greedy Approach, are implemented:

1.

2.

3.

Optimize the SQL query: As the first step the SQL query is optimized.
This optimization aims to reduce the number of measurements n. The
idea is that measurements from feed samples, which were collected at the
same location, are grouped together. Since the number of distinct
locations in the Swiss Feed Database is much smaller than the number of
measurements, with this optimization we are able to reduce n from about
10° to 103.

Sparse grid: As the second step the calculation of the density is done for
a smaller number of points/pixels. Instead of computing the density for
each pixel of a high-resolution image, we introduce a sparse grid that has
a small number of points. Then, we compute the density for each point of
the sparse grid. The transition from the sparse grid to a high-resolution
image is achieved with the help of linear interpolation.

Server side implementation: As the third step, we shift the calculation of
the density from the client machine to the server. That helps to reduce
the runtime in two ways. First, we eliminate the use of the JavaScript
which performance is very dependent on the browser and computer the
users use. Second, we reduce the amount of the data that must be
transferred (and stored) to the client machine, i.e., instead of transferring
geographic coordinates for each nutrient measurement, we send only the
resulting density measurement at points of the sparse grid.

23

5 Runtime Efficient Visualization Approach

5.2 Optimize the SQL query

Because many data points usually come from the same location, it is possible to
optimize the query. The idea is to take all data points from the same location
together and count its occurrences. Afterwards the data points can be seen as a
triple of latitude, longitude and the number of occurrences. With this
information the density can be computed. Example Code 5.1 shows the query
that is used to fetch the data from the database.

1: $query = "select latitude, longitude, count(*) ".
2: "from fact_table, d_origin, d_feed, d_nutrient, d_time "
3: "where fact_table.id_origin_fkey = d_origin.origin_key $where".
4: "group by latitude, longitude";
Example Code 5.1

If we have a look at the example from the beginning of this report the tuples
in Table 5.1 result from a query that includes all eight available measurements.

Table 5.1: Query result for the example data.

latitude | longitude | count
46.99 8.28 3
47.56 8.89 2
47.24 9.27 2
46.63 8.62 1

With this optimization we are able to reduce the complexity of the
computation. The Swiss Feed Database contains at the moment about 1510
different possible locations. We call this parameter m. So we can say the
complexity is in worst-case O(rifnage * m). Note that m is by hundreds of times
lower than the number of measurements in the fact table n.

For the Kernel Regression we need to take a slightly different query,
because we can only calculate the regression for the measurements of one
nutrient. Therefore the user previously needs to select the nutrient for which the
values should be visualized. The selected nutrient is then passed as parameter to
the script that executes the query. The second change comes because we also
need the quantity of the measurements. Therefore the query also selects the
average of the quantity of the measurements at every location. So the data points
finally can be seen as a quadruple of latitude, longitude, the number of
occurrences and the average quantity of all data points at the given location.
With this information the Kernel Regression can be computed. Example Code 5.2
shows the query that is used to fetch the data from the database.

1: $query = "select latitude, longitude, count(*), avg(quantity) ".
2: "from fact_table, d_origin, d_feed, d_nutrient, d_time "
3: "where fact_table.id_origin_fkey = d_origin.origin_key $where "
4: "and d_nutrient.z_abbreviation_de in ('$nutrient’)".
5: "group by latitude, longitude";
Example Code 5.2

24

5 Runtime Efficient Visualization Approach

If we have a look at the example from the beginning of this report, the tuples
in Table 5.2 result from a query that includes all measurements of the nutrient
cooper.

Table 5.2: Query result for the example data.

latitude | longitude | count | quantity
46.99 8.28 1 6.3
47.56 8.89 1 7.4
47.24 9.27 2 7.15

25

5 Runtime Efficient Visualization Approach

5.4 Sparse grid

We now introduce a sparse grid, with which the running time of the density
computation can be decreased. The idea is, that we do not calculate the density
value of each pixel itself, but we calculate the density for a defined grid and
finally draw an image with high resolution by using bilinear interpolation to
derive the density values within the grid points.

(a) simple grid. (b) grid with one data point.

Figure 5.1: Sparse Grid.

When we use a sparse grid we have the advantage that every data point only
has an influence on a few grid points. Figure 5.1 (b) shows in red a data point for
which the contribution to the density of the grid points should be calculated.
This data point has actually only some influence on the orange grid points that
lay within the red circle. The red circle has a radius of h,,;.

If a grid is used that is very sparse the number of grid points that need to be
considered for the density contribution of a data point decreases significantly.
But to get a resulting high-resolution image that has a good enough quality, the
grid cannot be infinitely sparse. To get a good balance, we choose the size of the
grid based on the value of h,,,, so that within a circle of radius h,,, there are at
most 20 grid points per dimension. Such an approach leads to the following
linear algorithm for density computation.

Example Code 5.3 shows the algorithm that is used to calculate the density
values of all grid points.

26

5 Runtime Efficient Visualization Approach

1: function computeDensity($data, $height, $width, $hopt)
2: {
3: $densities = array_fill(@, $height, array_fill(@, $width, 0));
4: for ($p = 0; $p < count($data); $p++)
5: {
6: $point = $datal$p];
7: for ($1 = $point['y'] - $hopt; $i <= $height && $i <= $point['y'] + $hopt; $i++)
8: {
9: for ($j = $point['x'] - S$hopt; $j <= $width && $j <= $point['x'] + $hopt; $j++)
10: {
11: if (31 > 0 && $j> @)
12: {
13: $x = ($point['x']-$3j)/$hopt;
14: $y = ($point['y']-$i)/$hopt;
15: $t = $x*$x + $y*Sy;
16: if ($t <= 1)
17: {
18: $densities[$i-1][$j-1] = $densities[$i-1][$j-1]
+ @27/ piQ * (1 - 3%t)) * $point['count'];
19: }
20: }
21: }
22: }
23: return $densities;
24: }
Example Code 5.3

The function shown in Example Code 5.3 takes the whole data set, the height
and width of the grid and the optimal bandwidth as arguments. On line 3 a two-
dimensional array, which contains at the beginning a 0 for every grid point, is
created. Afterwards on lines 4 to 22 an iteration through all data points is done.
For every data point we go to the data points that lay at most h,,, away in each
dimension. This is first, on line 7, done for the vertical dimension and afterward
on line 9 for the horizontal dimension. We also check if the grid point still lies
within the allowed bounds. On lines 13 to 15 the exact distance of the current
data point to the current grid point is normalized with respect to h,,,. If this
value is at most 1 the Epanechnikov Kernel is calculated for this distance and the
value is summed up to the value of the currently considered grid point. This is
done on line 18. Because we might have multiple data points at the currently
considered location we also multiply the contribution by the number of data
points. Finally, the array with the calculated density values is returned by the
function on line 23.

The algorithm to calculate the Kernel Regression needs to be slightly
different. It is listed in Example Code 5.4.

27

5 Runtime Efficient Visualization Approach

1: function computeRegression($data, $height, $width, $hopt)
2: {
3: $regressionNumerator = array_fill(@, $height, array_fill(@, $width, @));
4: $regressionDenominator = array_fill(@, $height, array_fill(0, $width, @));
5: $regression = array_fill(@, $height, array_fill(@, $width, 0));
6: for ($p = 0; $p < count($data); $p++)
7:
8: $point = $data[$p];
9: for (31 = $point['y'] - $hopt; $i <= $height && $i <= $point['y'] + $hopt; $i++)
10: {
11: for ($j = $point['x'] - $hopt; $j <= $width && $j <= $point['x'] + $hopt; $j++)
12: {
13: if (31 > 0 && $j> @)
14: {
15: $x = ($point['x']-$j)/$hopt;
16: $y = ($point['y']-$i)/$hopt;
17: $t = $x*$x + $y*$y;
18: if ($t <= D
19: {
20: $value = (2 / pi() * (1 - $t)) * $point['count'];
21: $regressionNumerator[$i-1][$j-1] += $value * $point['quantity'];
22: $regressionDenominator[$i-1][$j-1] += $value;
23: }
24: }
25: }
26: }
27: }
28: for ($1 = 0; $i < count($regression); $i++)
29: {
30: for ($j = 0; $j < count($regression[$i]); $j++)
31: {
32: if ($regressionDenominator[$i][$j] != @)
33: {
34: $regression[$i][$j] = $regressionNumerator [$1][$3]
/ $regressionDenominator[$i][$j];
35: }
36: }
37: }
38: return $regression;
39: }
Example Code 5.4

On lines 3 and 4 the first differences to the density calculation algorithm
occur. In addition to the array that is returned, two other temporary arrays are
initialized. One of those will contain the values of the numerator of the Kernel
Regression formula and the other one the values of the denominator. Afterwards
the same iteration, through all data points, is executed. The only difference is,
that on lines 20 to 22 the values of the numerator and denominator are summed
up. And afterwards on lines 28 to 37 we iterate through all grid points. This is
done because on line 34 the regression values are calculated by dividing the
value of the numerator array through the value of the denominator value.
Finally, on line 38 the array that contains the regression values for all grid points
is returned.

Let us have a look at the complexity of these algorithms. Since the size of the
grid is fixed based on the h,,,, then for every data point, which number is by

now at mostm, we need to consider up to a constant number of grid points.
Therefore, that results on the linear time complexity O(m).

28

5 Runtime Efficient Visualization Approach

Bilinear Interpolation:

We now have the density values at all grid points calculated. But, because
we must create a high-resolution image we need to have the density value at
every pixel between the grid points. We use bilinear interpolation to derive the
missing density values.

K(0.3,1) K(0.3,1)

_ _K(©O1) 4 , K(1,1) _ _K(©O1) 4 - , K(1,1) _ _K(©O1) 4 , K(1,1)
o K0308)=2 o K0308)=2 K(0.3,0.8)
° 7K(©0,0) * K(1,0) ° 7 K©,0) * 'K(O 30) " K(1,0) ° 7K, * ‘K(0A3,0) " K(1,0)
0 1 0 1 0
(a) Initial state. (b) Horizontal interpolation. (c) Vertical interpolation.

Figure 5.2: Bilinear interpolation.

To simplify the definition of the bilinear interpolation we assume, that each
cell has his bottom left corner at (0,0) and its top right corner at (1,1). For all
four corners of the grid cell the density value f;, is known. But now we want to
derive the density value for every (x,y) with x € [0,1] and y € [0,1]. To do this
we first interpolate in the horizontal dimension. The density values at (x, 0) and
(x,1) are calculated as follows:

fa(x,0) = fu(0,0) % x + f,(1,0) * (1 = x)
fo(x, 1) = fr(0,1) *x + fr(1,1) * (1 — x)
With those two values we are able to interpolate in the vertical dimension.
We finally define the density value at position (x, y) as:
fn(x,9) =fﬁh(X.02*}’+fh(x;1)ﬁ* (1-y) = fu(x,0) X X
= n(0,0) * xy + fr(1,0) * (1 = x) * y + fr(x, 1) + f(0,0) * x
*A-»+HAD A -x)x(1-y)

Let us consider an example. We want to calculate the density value at
position (x,y) = (0.3,0.8) and we take the values of the grid points as f;,(0,0) =
0.2; /,(1,0) = 0.7; £,(0,1) = 0.6; f,(1,1) = 0.3. From £,(0,0)and f£,(1,0) we get
an interpolated density value at position f, (0.3,0):

£,(0.3,0) = 0.2+ 0.3+ 0.7 * (1 —0.3) = 0.55.

From f,(0,1)and f,(1,1) we get an interpolated density value at position

fr(0.3,1): A
fr(0.3,1) = 0.6 * 0.3 + 0.3 * (1 —0.3) = 0.39.

Finally we linearly interpolate in the vertical dimension between

£,(0.3,0)and £,,(0.3,1) and get the density value at position f;,(0.3,0.8):
£,(0.3,0.8) = 0.55 % 0.8 + 0.39 * (1 — 0.8) = 0.518.

29

5 Runtime Efficient Visualization Approach

5.6 Server side implementation

The aim is to execute the most time-consuming parts of the implementation on
the server rather than on the client side. That helps us to avoid using slow
JavaScript to calculate the density and substantially reduces the data transfer.
Since the data required computing the density does not need to be transferred,
but only the calculated density values of the grid points.

The critical steps of the implementation are the following:

1.

Query execution: the query that fetches the relevant data from the
database needs to be executed.

Data transformation: the coordinates of the data samples are retrieved
as longitude and latitude, but to compute the density image the position
of the data samples on the image need to be calculated.

Calculation of the density: in this step the density value for every grid
point is calculated. This step includes the calculation of the optimal
bandwidth h, which is needed to calculate the density.

Density transfer: the calculated density values for the grid points are
transferred from the server side to the client side.

Coloring of the image: in this step the image is created and the pixels are
colored according to their corresponding density values. In order to get a
high-resolution image also the bilinear interpolation is done in this step.

Placing the image on the map: Finally the image is placed on the map
using an OverlayView of the Google Maps APL.

30

5 Runtime Efficient Visualization Approach

Query execution

When the users first click on the button, which starts the computation of the
density visualization, a PHP script that fetches the relevant data from the

database is executed. The code that is used to do this is listed in Example Code
5.5.

1: $where = getWhereStatement();

2:

3: query = "select latitude, longitude, count(*) ".

4: "from fact_table, d_origin, d_feed, d_nutrient, d_time "

5: "where fact_table.id_origin_fkey = d_origin.origin_key $where".
6: "group by latitude, longitude";

7:

8: // Connection to PostgreSQL-DB

9: $conn = pg_connect("host=$host port=$port dbname=$database user=$username password =

$password") or die ('Error connecting to Postgres');

10: if (!$conn) die('Not connected : ' . pg_error());

11:

12: $result = pg_query($conn, $query);

13: $numrows = pg_numrows($result);

14: $tuples = arrayQ);

15:

16: for($ri = 0; $ri < $numrows; $ri++) {

17: $row = pg_fetch_array($result, $ri);

18: array_push($tuples, $row);

19: }
20:
21: pg_close($conn);

Example Code 5.5

The query defined on lines 3 to 6 is the optimized query, which was
discussed in section 5.2. in detail. It selects latitude and longitude and some
additional information of all data samples that satisfy the where statement. This
where statement considers all selections the user took, in order to only select
the relevant tuples. The connection to the PostgreSQL database is established on
line 9 and again closed on line 21. Errors that may occur because of connecting
problems are handled on line 10. On line 12 the defined query is executed by
calling the pg_query() function. From line 16 to line 19 the resulting tuples of the
SQL query are handled, by iterating through all tuples and storing their values in
the previously defined tuples array. Finally we have a tuples array, which
contains the latitude, longitude, count and possibly quantity of all tuples.

31

5 Runtime Efficient Visualization Approach

Data transformation

The data points that are received from the database in form of longitude and
latitude need to be transformed into the position they have on the map. This is a
challenging task since the earth is a three-dimensional sphere, but we need to
represent it on a two-dimensional plane. This leads to the fact that, the same
difference of latitudes does not lead to the same distance at every point of the
mabp.

As an example consider Figure 5.3. The red rectangle covers an area on the
map, which is 10 degree larger along each side than the yellow rectangle. As we
see in the following figure the same difference of 10 degrees leads in the north to
a much larger distance than around the equator. Because of this problem we
cannot use latitude and longitude for computation of distances on the map in a
direct way.

[0 Nigeria

Figure 5.3: Two-dimensional sphere representation.

We solve this problem by using the Mercator projection to transform the
data points to their position on the map. The following formulas are used to
calculate the x and y coordinates of a point on the Mercator map from its
latitude ¢ and longitude A:

X = A - AO
1 (1 + sin go)
=721 sing
with Ajas longitude of the center of the map [1].
As an example we consider the location with latitude ¢ = 436;)9 * 21 and

longitude A = % * 2w and 4; = 0. With this we can calculate the x and y
coordinates of this location on the map, which are:

= * — 0= 44
3 Vs .

X

32

5 Runtime Efficient Visualization Approach

1 1+ sin(M * 21

y=—3in 360

~ 46.99 = 0.93137 ...
1- sm(w * 21)

The Example Code 5.6 shows how it is implemented. We slightly adjusted
the calculation, so that the distance around the globe has a value of 1 and that
the center of the map (latitude ¢ = 0 and longitude A = 0) is at 0.5 in both
dimensions.

1: function bound($value, $opt_min, $opt_max) {
2: if ($opt_min != null) $value = max($value, $opt_min);
3: if ($opt_max != null) $value = min($value, $opt_max);
4: return $value;
5: }
6:
7: function fromLatLngToPoint($lat, $lng)
8: {
9: $center["x"] = 1/2;
10: $center["y"] = 1/2;
11: $distancePerDegree = 1/360;
12: $distancePerRadian = 1/(2*pi());
13: $x = $center["x"] + $1lng * $distancePerDegree;
14: $siny = bound(sin(deg2rad($lat)), -0.9999, 0.9999);
15: $y = $center["y"] - 0.5 * log((1+$siny)/(1-$siny)) * $distancePerRadian;
16: return array("x" => $x, "y" = $y);
17: }
18: function fromPointToLatLng ($x, $y)
19: {
20: $center["x"] = 1/2;
21: $center["y"] = 1/2;
22: $distancePerLonDegree = 1/360;
23: $distancePerLonRadian = 1/(2*pi());
24: $1lng = ($x - $origin['x']) / $distancePerLonDegree;
25: $latRadians = ($y - $origin['y']) / -$distancePerLonRadian;
26: $lat = rad2deg(2 * atan(exp($latRadians)) - pi() / 2);
27: return array('lat' => $lat, 'lng' => $lng);
28: }
29:
30: $data = arrayQ;
31: for($t = 0; $t < count($tuples); $t++)
32: {
33: $point = fromLatLngToPoint($tuples[$t]['latitude'], $tuples[$t]['longitude']);
34: $point['count'] = $tuples[$t]['count'];
35: $point['quantity'] = $tuples[$t]['quantity'];
36: array_push($data, $point);
37: 3
Example Code 5.6

The function bound, which is implemented on lines 1 to 5 takes a value and
the minimum (respectively maximum) as arguments and returns the value or
the maximum (respectively minimum), if the value lays outside of these bounds.
The fromLatLngToPoint function transforms the given latitude and longitude
into x and y coordinates as described in the formulas above. It returns an array
containing those coordinates. The function fromPointToLatLng that is
implemented on lines 18 to 28 does exactly the opposite. It transforms x and y
coordinates back to latitude and longitude. This function will be used later in the
implementation. On lines 31 to 37 the transformation of the data points is
executed. The for loop iterates through all tuples in the tuples array and the
transformed coordinates are appended in the newly created data array. The
output of this code for the example data is illustrated in Table 5.3.

33

5 Runtime Efficient Visualization Approach

Table 5.3: Transformation result of the example data.

latitude | longitude
46.99 8.28
47.56 8.89
47.24 9.27
46.63 8.62

9

X y

0.523 0.35177
0.52469 | 0.34943
0.52575 | 0.35075
0.52394 | 0.35323

34

5 Runtime Efficient Visualization Approach

Density calculation

The density at the grid points is calculated as described in the previous
section. But before this we must derive the value for the optimal bandwidth. The
formula that we are using is as following:

1
hope = 0% A(K) xn"6
with A(K) = 1.77 because we are using the Epanechnikov Kernel.
To calculate the variance we take the following formula:

no.2 (Z?=0 xi)z noo.2 (Z?=03’i)2

i=0Xi i=0Yi
n—1 . + n—1 .
2

It allows us to calculate the variance with one scan of the data points. This is
because all sums in the formula can be computed in parallel by iterating through
all data points.

Example Code 5.7 shows how the computation of the optimal bandwidth is
implemented.

o=

1: function optimalBandwidth($data)
2: {
3: $n = 0;
4: for ($p = 0; $p < count($data); $p++)
5: {
6: $xweight += ($data[$p]['x'] * $data[$p]['count']);
7: $yweight += ($data[$p]['y'] * $data[$p]['count']);
8: $xgweight += (pow($data[$p]['x'], 2) * $data[$p]['count']);
9: $ygweight += (pow($datal[$p]['y'], 2) * $data[$p]['count']);
10: $n += $data[$p]['count'];
11: }
12: $sx = ($xgweight - ($xweight * $xweight / $n)) / ($n-1);
13: $sy = ($ygweight - ($yweight * $yweight / $n)) / ($n-1);
14: $sigma = sqrt(($sx + $sy) /2);
15:
16: return $sigma* 1.77 * pow($n, -1/6);
17: }
Example Code 5.7

The function optimalBandwidth takes as input the array that contains all
transformed data points and returns the optimal bandwidth for those data
points. On lines 4 to 11 we iterate through all data points and calculate the
number of data points n, the sum of x and y coordinates as well as the sum of the
square of x and y coordinates. From lines 12 to 14 the rest of the variance
computation is executed and finally on line 16 the optimal bandwidth is
calculated and returned.

Now, that we have the optimal bandwidth we can calculate the exact size of
the grid and compute the density values at the grid points. Example Code 5.8
shows how this step is implemented.

35

5 Runtime Efficient Visualization Approach

1: $hopt = optimalBandwidth($data);

2: $height = 0; $width = 0;

3:

4: $minx = 1; $miny = 1; $maxx = @; $maxy = 0;
5: for ($p = @; $p < count($data); $p++)
6: {

7: $minx = min($data[$p]["x"], $minx);
8: $miny = min($datal[$p]["y"], $miny);
9: $maxx = max($data[$p]["x"], $maxx);
10: $maxy = max($data[$p1["y"], $maxy);
11: 3
12:

13: $gridResolution = floor(($maxx-$minx+2*$hopt) / $hopt * 20);
14: if ($maxx - $minx > $maxy - $miny)

15: {

16: $width = $gridResolution;

17: $height = floor($gridResolution/($maxx-3$minx+2*$hopt)*($maxy-$miny+2*$hopt));
18: } else {

19: $width = floor($gridResolution/($maxy-$miny+2*$hopt)*($maxx-$minx+2*$hopt));
20: $height = $gridResolution;

21: 3

22: for ($p = 0; $p < count($data); $p++)

23: {

24: $datal[$p]['x'] = ($data[$p]['x"']-$minx+$hopt) / ($maxx-$minx+2*$hopt) * $width;
25: $datal[$p1['y'] = ($data[$p]['y']I-$miny+$hopt) / ($maxy-$miny+2*$hopt) * $height;
26: 3

27:

28: $densities
29: $densities

computeDensity($data, $height, $width, $hopt);
computeRegression($data, $height, $width, $hopt);

Example Code 5.8

On the first line of the Example Code 5.8 the execution of the calculation of
the optimal bandwidth is done. On lines 4 to 11 the extreme values in both
dimensions are calculated with one scan of all data points. Then on line 13 the
grid resolution is set depending on the size of the optimal bandwidth. Finally the
grid resolution is such that the optimal bandwidth covers at most 10 grid points,
this means that a circle of radius h,,, at most covers 20 grid points per
dimension Afterwards on lines 14 to 21 the height and width of the grid are
calculated. The number of points in the dimension in which the distance of the
extreme values is greater is set to the calculated grid resolution and the number
of points in the other dimension is calculated in order to keep the distance ratio.
As next step, the data points are converted so that the x and y coordinates now
correspond to the position the location has on the grid. This is done on lines 22
to 26 by iterating through all data points. Finally, on lines 28 or 29 the density
values are calculated as seen in the previous section. Either line 28 is active,
when the density should be calculated or line 29 is executed when the aim is to
compute the regression.

36

5 Runtime Efficient Visualization Approach

Density transfer

When the density values of all points of the grid are calculated, the values
must be sent to the client side. A DOM object is created to pass the density values
to the JavaScript. Also the position and the size of the calculated density image
need to be transferred. Example Code 5.9 shows the PHP code that is needed to
transfer the information.

$dom = new DOMDocument("1.@", "UTF-8");
$node = $dom->createElement("data");
$parnode = $dom->appendChild($node);

$sw = fromPointToLatLng($minx-$hopt, $maxy+$hopt);
$node = $dom->createElement('sw');

$newnode = $parnode->appendChild($node);
$newnode->setAttribute("lng", $sw["1lng"1);
$newnode->setAttribute("lat", $sw["lat"]);

W oONOOUVIRAWNER

11: $ne = fromPointToLatLng($maxx+$hopt, $miny-$hopt);
12: $node = $dom->createElement('ne');

13: $newnode = $parnode->appendChild($node);

14: $newnode->setAttribute("lng", $ne["lng"]1);

15: $newnode->setAttribute("lat", $ne["lat"]);

17: $values = $dom->createElement('values');
18: $newnode = $parnode->appendChild($values);
19: $newnode->setAttribute("max", $max);

20: $newnode->setAttribute("min", $max);

21:
22: for ($1 = 0; $1 < count($densities); $i++)
23: {
24: $row = $dom->createElement('row');
25: $newnode = $values->appendChild($row);
26: $newnode->setAttribute("values", implode(";", $densities[$i]));
27: 3
28: echo $dom->saveXML();
Example Code 5.9

The DOM object is organized into nodes. In this implementation we have
four different node types. We have an ‘sw’ node, which contains the information
about the southwest corner of the density image. It has the latitude and
longitude of this location set as attributes. Similarly the ‘ne’ node contains the
latitude and longitude of the location at the northeast corner of the density
image. Moreover a ‘values’ node is used. This node has the maximum and
minimum density value stored as attributes and it contains a number of child
nodes of the type ‘row’. The ‘row’ nodes contain the density values of one row of
the grid. The values are separated with a semicolon. For every row of the grid a
‘row’ node is appended as child to the ‘values’ node.

On line 1 of the Example Code 5.9 a DOM obiject is initiated. This is used to
create an XML document that contains the data, which need to be transferred.
The data is organized as described in the previous paragraph. And finally on line
28 the created XML document is put out as echo of the PHP script. This echo is
afterwards read and used by the JavaScript script. Example Code 5.10 shows an
example of how the resulting XML document can look like.

37

5 Runtime Efficient Visualization Approach

1: <?xml version="1.0" encoding="UTF-8"?>

2: <data>

3: <sw 1ng="5.80287078539" lat="45.7798785199"></sw>

4: <ne 1ng="10.4993332146" lat="47.8538699134"></ne>

5: <values max="5.94981317995" min="3.9824578685">

6: <row

7: values="0;5.56,;5.56;..."></row>

8: <row

9: values="5.58736600765;5.632839196,5.56743431818; ... "></row>
10: <row
11: values="5.57152163631;5.58022641738;5.58854749799; . .. "></row>
12:
13: </values>
14: </data>

Example Code 5.10

On the client side the sent data is retrieved reading the XML response of the

httpObject. All information is read from the response and stored into the own
variables. The elements are found in the response by searching for the
corresponding tag names. As the density values were stored as semicolon
separated strings they are again split and put into an array.

1: var resultXML = httpObject.responseXML.documentElement;
2:
3. var swBound = new
4: google.maps.LatLng(resultXML.getElementsByTagName("sw")[@].getAttribute("lat"),
5: resultXML.getElementsByTagName("sw")[@].getAttribute("1ng"));
6: var neBound = new
7: google.maps.LatLng(resultXML.getElementsByTagName("ne")[@].getAttribute("lat"),
8: resultXML.getElementsByTagName("ne")[@].getAttribute("1ng"));
9: bounds = new google.maps.LatLngBounds(swBound, neBound);
10:
11: var max = resultXML.getElementsByTagName("values")[@].getAttribute("max");
12: var min = resultXML.getElementsByTagName("values")[@].getAttribute("min");
13:
14: var valuesArray = resultXML.getElementsByTagName("row™");
15: var valuesLength = resultXML.getElementsByTagName("row").length;
16: var values = new Array(Q);
17: for (var i = 0; i < valuesLength; i++)
18: {
19: var valuesString = valuesArray[i].getAttribute("values");
20: var newValues = valuesString.split(";");
21: values.push.apply(values, newValues);
22: | 1}
Example Code 5.11

38

5 Runtime Efficient Visualization Approach

Coloring of the image

Once the array that contains the density values for every point of the grid is
retrieved at the client side, the coloring of the image can be done. Therefore a
color palette is needed. The grid point with the highest density value is colored
red, average density values correspond to the green color and the lowest density
values are colored blue. Figure 5.4 shows the color palette, which is used for the
implementation.

I EE

Figure 5.4: Color palette used to visualize the density.

The color palette is defined as following. Consider a density value x, which is
in the range between [0,1], then the red intensity value is computed as following:

(o P
) if x < >
255 if x = 3
) if x =>—
R(x) = < 4
1
)
1 * 255 + 0.5(, else
VAN
The green intensity value is computed as following:
(1 3
2 f—-<x<-
55, Lf4 <x<7
Z 4255405 <
— % o1, ly X -
Gx) = {1 4
L4
3
!
1-— 1 * 255 + 0.5(, else
\L 4
And the blue intensity value is computed as following:
(1
255, ifx < —
ifx 2
0 if x = !
) Il X =2 —
1
X7
1-— 1 * 255 + 0.5(, else
|)

Let us consider an example. If we have an x value of 0.4 the color intensities
are as following:
R(x)=10

39

5 Runtime Efficient Visualization Approach

G(x) = 255
!
4

Because until now we only calculated the density of the points on the grid,
we need to interpolate the values to get a smooth density map. The HTML5
‘canvas’ element has a method that allows us to do this in a very simple way. We
first create a ‘canvas’ element with the size of the grid and color this according to
the density values. Afterwards a new and by a scale factor larger ‘canvas’
element is created. And finally the old element is simply scaled up to fit the new
element. Example Code 5.12 shows how this is implemented.

1: function red(density)

2: {

3: if (density <= 0.5) return 0;

4: if (density >= 0.75) return 255;

5: return Math.round((density-0.5)/0.25*255);

6: }

7: function green(density)

8: {

9: if (density >= 0.25 && density <= 0.75) return 255;
10: if (density < 0.25) return Math.round(density/0.25*255);
11: return Math.round((1-((density-0.75)/0.25))*255);
12: }

13: function blue(density)

14; {

15: if (density <= 0.25) return 255;

16: if (density >= 0.5) return 0;

17: return Math.round((1-((density-0.25)/0.25))*255);
18: }

19: var opacity = 180; var scale = 10;

20:

21: var canvas_colors = document.createElement('canvas');
22: canvas_colors.width = width;

23: canvas_colors.height = height;

24:

25: var context_colors = canvas_colors.getContext('2d');

26: context_colors.fillStyle = 'rgba(0,0,0,1)";
27: context_colors.fillRect(@, @, width, height);
28: var image_colors = context_colors.getImageData(@, @, width, height);

29: var data = image_colors.data;

30:

31: for (var i = 0; i < values.length; i++)

32: {

33: var density = (values[i]-min) / (max-min);

34; data[i*4] = red(density);

35: data[i*4+1] = green(density);

36: data[i*4+2] = blue(density);

37: data[i*4+3] = opacity;

38: if (values[i] == @) data[i*4+3] = 0;

39: }

40:

41: context_colors.putImageData(image_colors, @, 0);

42:

43: var canvas = document.createElement("canvas");

44: canvas.width = scale*width;

45: canvas.height = scale*height;

46:

47: var context_canvas = canvas.getContext('2d');

48: context_canvas.scale(scale, scale);

49: context_canvas.drawImage(canvas_colors, 0,0);
Example Code 5.12

40

5 Runtime Efficient Visualization Approach

On lines 1 to 18 of the Example Code 5.12 the three functions that compute
the color intensity for the colors red, green and blue are listed. They are
implemented as described in the previous paragraphs. As first thing, on lines 22
to 24, a ‘canvas’ element of the size of the grid is created. Afterwards, on line 26
the getContext method of the ‘canvas’ element is called. This method returns an
object that provides methods to draw on the ‘canvas’ element. Then the whole
canvas is filled with a rectangle of black color. The array that contains the color
data of the ‘canvas’ element is on line 29 stored in the data variable. The coloring
itself is done on lines 31 to 39. There we iterate through all density values that
we received from the PHP script. On line 33 the density value of every grid point
is normalized to be in the interval [0,1]. And then the color data of the ‘canvas’
element are overwritten with the calculated color intensities that correspond to
the given density values. On lines 37 and 38 the opacity of the pixel is set to the
previously defined 180 if some density value is available and to 0 otherwise.
When all pixels of the ‘canvas’ element are colored the new calculated image
data is drawn on the ‘canvas’ element on line 41. Afterwards on lines 43 to 45 a
new ‘canvas’ element, which is with the scale factor 10 greater than the other
one is created. Finally on line 48 the scale method of the context of the ‘canvas’
element is called. This method scales up everything that is put onto the ‘canvas’
element afterwards with bilinear interpolation. So at the very end we draw the
image of the old ‘canvas’ element on the new element and the image is ready to
be used.

41

5 Runtime Efficient Visualization Approach

Placing the image on the map

As last step, the image respectively the ‘canvas’ element, that displays the
densities, needs to be placed on the map. This is done using an OverlayView of
the Google Maps API. With the OverlayView one can put Objects, which are tied
to latitude/longitude coordinates, on the map, like that the Objects move when
dragging or zooming the map. Example Code 5.13 shows how this step is
implemented.

1: function DensityOverlay(map){

2: this.div = null;

3: this.bounds = null;

4: this.setMap(map);

5: }

6:

7: DensityOverlay.prototype = new google.maps.OverlayView();

8:

9: DensityOverlay.prototype.onAdd = function() { }
10: DensityOverlay.prototype.onRemove = function() { }
11: DensityOverlay.prototype.draw = function()

12: {
13: var overlayProjection = this.getProjection(),
14: var sw = overlayProjection.fromLatLngToDivPixel(this .bounds.getSouthWest());
15: var ne = overlayProjection.fromLatLngToDivPixel(this .bounds.getNorthEast());
16:
17: var div = this.div;
18: div.style.left = sw.x + 'px';
19: div.style.top = ne.y + 'px';
20: div.style.width = (ne.x - sw.x) + 'px';
21: div.style.height = (sw.y - ne.y) + 'px';
22: 3
23:
24: DensityOverlay.prototype.update = function(data)
25: {
26: //Steps 1-5 are executed here
27:
28: this.div = document.createElement('DIV');
29: this.div.style.position = "absolute";
30: this.div.appendChild(canvas);
31:
32: var panes = this.getPanes(Q);
33: panes.overlaylLayer.appendChild(this.div);
34: }
Example Code 5.13

On lines 1 to 5 the constructor of the DensityOverlay class is defined. It
takes the Google Map, on which the density image needs to be placed, as a
parameter and sets it to its map on line 4. The class has two new member
variables, which are as first the ‘div’ element, which at the end contains the
image and the bounds, which are set when the data from the PHP script arrive
and contain the information about where to put the image on the map. On line 7
the DensityOverlay is instantiated as a new subclass of the Google Maps API
Overlay View class. This class has the methods onAdd, onRemove and draw as
functions. The draw function is the most important for this implementation. It
gets called when the user zooms in or out of the map. Because the image needs
to change its position and size when the user zooms in or out, we handle this
resizing and repositioning there. On line 13 the projection of the map is stored.
This projection allows us to get the new position of the previously stored bounds
on the map. With this information we can resize the ‘div’ element, which

42

5 Runtime Efficient Visualization Approach

contains the density image. As last method of the DensityOverlay, the update
method is implemented. This method is called when a new density image must
be calculated, basically when the user makes a new selection. In this method the
five previously described steps of the implementation are called. After all this
steps were executed a ‘div’ element is created on line 28. On line 30 the ‘canvas’
element is appended as child to the ‘div’ element. And finally on line 33 the ‘div’
element is put into the pane of the Google Map.

43

6 Evaluation

6 Evaluation

6.1 Functional

The interface to use the new available visualization methods is described in this
section. In addition some information that can be obtained by using the
visualization methods are presented. Figure 6.1 shows the online interface for a
selection of the hay feed samples and the nutrients calcium, cooper, magnesium
and phosphor.

Searbicken® argune. [varte | Satoin | g S*OCkenS rgnne [arte Satoi]
|§ ¥’ 1

u o Na Nancy g
Sy ncy Strasgmtg oimeu:a Markers o S}fasgwg ?)Fs!weu:a Markers
z % % g g
% Ffe'b"rg'm = Density - Freiburg im Density
;,i{’ (,y’, Regression 2] Q’ i [+ Regression

P e

,D%F?,E

P 7 SC&OIZ
P Smss,\af
/ Svtzia ;

NutzungBE8aEGangen p-

o Kaﬁen;iaten .
(a) density visualization. (b) calc1um containment visualization.

Figure 6.1: Online interface.

On the map of the online interface some new control buttons were added.
These allow the user to display the density image respectively the Kernel
Regression for a selected nutrient. The density image is always calculated for all
selected data samples therefore no selection of the nutrient is necessary. But the
Kernel Regression is always for only one nutrient. Thus a dropdown box is
available. With this the users can choose for which nutrient the Kernel
Regression should be displayed. This box can be seen in Figure 6.1 (b).

For the Kernel Regression also a scale is shown. This scale allows the users
to see for which values of the nutrient the colors are. For example in in Figure
6.1 (b) the red color means, that the hay samples from the red colored region
have a calcium containment of about 14.9 and the regions that are blue a
containment of about 5.

44

6 Evaluation

1 g
Karte | Satellit |
9 ma'}

7 'éch\;ei‘z =

BeMSS yisse

= P j £
sis-DE/BKG {£2008) Googta, TelARSE:

Figure 6.2: Phosphor containment of hay.

If we have a look at the phosphor containment of hay shown in Figure 6.2,
we can see, that the resulting image has quite smooth changes from one color to
the other. Especially at locations where the density of data sample is high. What
we clearly can see from this visualization is, that the phosphor containment of
the hay samples is much less in the mountain region than in the lower middle
land. To visualize such differences is the main aim of this implementation.

Figure 6.3: Example of Kernel Regression with only few data samples.

The used regression technique has not only advantages. A disadvantage
appears when only few data samples are available, as shown in Figure 6.3. The
Kernel Regression then has the tendency to show large circles of the same color.
This is because in the Kernel Regression a single data sample has an impact on
the surrounding region and the size of such a region is determined by the value
of hope. Since hy,y, is high for a small number of data points, the regions of the
influence, i.e., the circles in the image, become large.

45

6 Evaluation

6.3 Experimental

In this section an experimental evaluation of the implemented algorithms is
presented. We compare the Greedy Approach to the Runtime Efficient Approach
and we show that the running time is no longer dependent on the number of
data points that are returned by the query or the resolution of the density image.
All evaluations were done with the same settings. A computer running Mac OS X
10.8 with 4 GB ram and a 2.4 GHz Intel Core 2 Duo processor was used. The
execution was done using the Chrome browser, except for the tests where the
running time on the different browsers was evaluated. To test the performance
in the Internet Explorer browser a similar computer running Windows 7 was
used. The newest versions of all browsers were used for the evaluation.

60
50

40

30 @ (Greedy Approach

20 e===Runtime Efficient
Approach

Execution time [s]

10

0 1000 2000 3000 4000
Number of data points

Figure 6.4: Execution time dependent on the number of data points.

Figure 6.4 shows the duration of the calculation for the Greedy Approach
and the Runtime Efficient Approach dependent on the number of data points
that are retrieved by the query. It can be seen that the running time of the
Greedy Approach linearly grows when the number of data points increases.
Whereas the Runtime Efficient Approach runs nearly the same time independent
of how many data points are considered. This can be explained with the fact that
the number of locations is the crucial factor for the Runtime Efficient Approach
and not the number of data points itself.

46

6 Evaluation

o))
o

4

/ e (reedy Approach

Ul
o

S
o

Execution time [s]
w
o

20 e==»Runtime Efficient
Approach
10
0 T T T 1
0 500 1000 1500 2000

Image resolution in pixels per dimension

Figure 6.5: Execution time dependent on the used image resolution.

According Figure 6.5 the execution time for the Runtime Efficient Approach
is not dependent on the image resolution. This can be explained with the fact
that the density values are calculated for the grid points of the sparse grid.
Whereas for the Greedy Approach the running time grows quadratically with the
increase of the image resolution. This is because the algorithm calculates the
density value of every pixel of the image.

Greedy Approach

400 A

w
ol
(@)

(=]
o

Ul
o

@===Chrome

em=»Firefox

ul
o
I

Safari

Execution time [s]
== NN W
o ()
o ()

Ul
o

— em=Internet Explorer
| (e —

0 1000 2000 3000 4000
Number of data points

(e
|

Figure 6.6: Execution time of the Greedy Approach in four different browsers

Figure 6.6 shows that the performance of the Greedy Approach is strongly
dependent on the browser that is used. It can be seen that the Chrome browser
is way faster than the other browsers. The Safari and Firefox browsers already
need a minute to compute the density for 1000 data points. By far the slowest
browser is the Internet Explorer. The calculation of the density image for only

47

6 Evaluation

100 data points already takes more than a minute. What also can be seen is that
the execution time grows linearly to the number of data points for all browsers.

Runtime Efficient Approach

3.5
— 3
& -
o 2.5
g v
s 2 e===Chrome
=
-§ 1.5 em==FEirefox
=
§ 1 Safari
]
0.5 e===[nternet Explorer
0
0 1000 2000 3000 4000

Number of data points

Figure 6.7: Execution time of the Runtime Efficient Approach in four different
browsers.

According to Figure 6.7 the execution time of the Runtime Efficient
Approach is nearly the same in all four browsers. This shows that the algorithm
is usable no matter what browsers the users have. Whereas the JavaScript
implementation as the Greedy Approach have the disadvantage, that they are
very dependent on the users browser choice, as we have seen in Figure 6.6.

48

7 Conclusion and Future Work

7 Conclusion and Future Work

The high complexity of the Kernel methods makes the visualization of the
density a challenging task. However, despite this we managed to develop an
algorithm, which computes the density images in an efficient manner. With the
introduction of a sparse grid we were able to reduce the running time of the
algorithms from quadratic to linear, and with bilinear interpolation we ensure
that the resolution of the resulting density image is still high enough. At the end
of this work the visualization of the density of the feed samples and the
visualization of nutrient containment of feed samples are new functionalities of
the online application of the Swiss Feed Database.

The evaluation part of this thesis clearly evidences that the developed
algorithms execute independently of the users’ browsers and selection criteria
in a pleasing time. Moreover the new functionalities allow the users to visually
compare the density of feed samples and the nutrient quality of feed samples
from different regions with each other. Especially for regions where a lot of data
samples come from the algorithm delivers useful information.

Although the visualization delivers good information it also has some
restrictions. First of all, the visualization allows only limited comparison of two
different selections for the same nutrient. This is because the bandwidth that is
used for the Kernel methods changes and because the different colors not always
represent the same nutrient value. As second, a similar but a bit expanded
problem is, that the change of the nutrient containment over the years cannot be
visually seen. The challenges might be to figure out how the image changes when
some new measurements need to be considered and when to replace old
measurements by new ones. It is left open to find a solution to address these
problems in future works.

49

8 References

8 References

[1]

[2]
[3]
[4]
[5]

[6]

[7]

https://developers.google.com/maps/documentation/javascript/
(15.08.2012)

http://www.agroscope.admin.ch/ (15.08.2012)
http://www.w3.org/DOM/ (15.08.2012)
http://www.w3.org/TR/XMLHttpRequest2/ (15.08.2012)

Hardle, Miiller, Sperlich, Werwarz (1995). Nonparametric and
Semiparametric Models. Springer, Berlin.

Scott, D.W. (1992). Multivariate Density Estimation: Theory, Practice, and
Visualization. John Wiley & Sons, New York.

Silverman, B.W. (1986). Density Estimation for Statistics and Data Analysis.
Chapman and Hall, London.

50

