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Abstract

In this bachelor thesis we develop an approach how to find similar regions and how to calculate
the probability to which degree two regions are equal. This calculation is based on nutrient
measurements on feed samples in the Swiss Feed Database. We encounter this challenge using
different statistical tests, which we finally implement on the Swiss Feed Database. Moreover,
we will focus on an optimized implementation of the developed algorithm. The experimental
evaluation reveals that the similarity probabilities of the top-k similar regions algorithm can be
computed in reasonable time. Further, it will be shown that there indeed can be very similar
regions.



Zusammenfassung

In dieser Bachelorarbeit entwickeln wir ein Vorgehen um ähnliche Regionen zu finden und zu
welcher Wahrscheinlichkeit dies der Fall ist. Die Berechnung basiert dabei auf Nährstoffmessun-
gen von Futterproben in der Schweizerischen Futtermitteldatenbank. Wir entgegnen dieser Her-
ausforderung mit der Anwendung verschiedener statistischer Tests, welche wir schliesslich auf
der Schweizerischen Futtermitteldatenbank implementieren. Im Übrigen legen wir den Fokus
auf eine optimierte Implementierung des entwickelten Algorithmus. Die experimentelle Evalu-
ierung zeigt auf, dass die Ähnlichkeits-Wahrscheinlichkeiten vom k meist ähnlichen Regionen-
Algorithmus in sinnvoller Zeit berechnet werden können. Im Übrigen werden wir aufzeigen dass
in der Tat sehr ähnliche Regionen existieren können.
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1 Introduction

1 Introduction

Comparison of regions based on the nutrient measurements is highly desirable and novel chal-
lenge to the Swiss Feed Database. It allows researches to find similar regions, on which they
are able to make new conclusion about the nutrient distribution in Switzerland. Moreover, as
measurements are costly, in case of strong similarities, regions may be less often measured in
future, whereas new regions can be examined instead. This contributes to a more complete and
meaningful Swiss Feed Database in future.

In this thesis we investigate statistical techniques in detail to compare the similarity of two
sets of random variables and, as the core result, we develop an efficient approach to compare
regions in the feed data. We employ a number of statistical tests: first, we use the Shapiro-Wilk-
Test to verify whether the underlying measurements are normally distributed in both regions,
second, we use the F-Test to compare the variances of measurements and, at last, we employ
the t-Test to derive the final probability how much the two regions can be considered similar.
Further, we extend our approach to find the top-k similar regions, i.e., for the given region we
aim to find the most similar regions which are possibly separated by the big distances. Note,
that for a human such a task is infeasible because of the high number (currently more than
1000) of distinct regions and nutrients. To ensure the low execution time, we first develop data
views which aggregate the feed data at necessary projections and, next, we implement statistical
procedures as user defined aggregate functions in PostgreSQL.

Finally, we evaluate our approach on the execution time of finding the top-k similar regions.
It reveals that the computation can be done in reasonable time as long as the user selects only
a few nutrients at once or defines other criteria a measurement must fulfil. Furthermore, we
will take a focus on how the execution times varies if there are more or fewer measurements,
distinct nutrients or locations in the Swiss Feed Database. It is shown, that the algorithm depends
linearly on the number of them. Moreover, we show the existence of very similar and dissimilar
regions for some example.

This thesis is organized as follows. In Section 2 the current Swiss Feed Database with its
data is being presented. In Section 3, the statistical calculations are explained in detail. The
algorithm how to find the top-k similar regions is shown in Section 4. Section 5 and 6 describes
the implementation and the evaluation of the implemented algorithm. Finally, conclusions and
forecasts are taken in Section 7.
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2 The Swiss Feed Database

2 The Swiss Feed Database

The Swiss Feed Database is a public service for researchers, farmers and agriculture companies
supplied by Agroscope and University of Zurich. The database contains right now 920 different
feed types and nearly four million nutrient measurements, mostly gathered in Switzerland but
also in Europe. Each measurement contains information about the corresponding feed, nutrient,
origin, harvest time and the feed sample it was taken from. Usually, multiple measurements
on different nutrients are taken from the same feed sample. Furthermore, the same nutrient is
tested more than once from the same feed sample in order to decrease erroneous measurements.
However, a feed sample is not tested on every nutrient, as this is time consuming and costly.

2.1 Current online interface

Users can access the database through an online interface, which is made available in different
languages, in particular in English, French and German. Through this interface, users can makes
searches on the measurements in the Swiss Feed Database.

A search request consists of a selection of feed types and nutrients measured for those. More-
over, the user may choose where the measurement must come from or when it must have been
gathered.

The measurements which fulfil the search request will then be returned to the user, as seen in
Figure 2.1. The result page is divided into three parts:

• Map: On the top left, each measurement is assigned with a flag at the location where it
was gathered. If a user clicks on a flag, the corresponding row in the table below gets
highlighted.

• Table: On the bottom, the table lists all feed samples which fulfil the search request with
the measured nutrient quantities. Each feed sample is shown with parts of its LIMS-Nr.
which uniquely identifies a feed sample, the date when the feed sample was gathered and
its origin.

• Statistics: On the top right, different statistics are available for the user. In the row and
scatter chart, the nutrients quantities are displayed over the time when they were gathered.
The statistics of nutrients section discloses some informations about the measurements,
like the average, variance, smallest and largest quantity of a nutrient which fulfils the
search request. In addition, in the region comparison section, the user can select two
regions and run the ANOVA F-Test or the in this thesis developed t-Test, which returns an
approximate probability of how much the selected regions can be considered equal.
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2 The Swiss Feed Database

Figure 2.1: Result of a search request in the online interface of the Swiss Feed Database
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2 The Swiss Feed Database

2.2 The Swiss Feed Data

The Swiss Feed Database contains the following information:

• Feeds: A feed has a name and an alternative name. It is often assigned to a feed group
which categorizes related feeds together. Each feed group has an id, a name and an id
of the parent feed group which categorizes related feed groups if existent. The feed_key
uniquely identifies a feed. Example:

id feed_key name alt_name feed_group_id parent_feed_group_id feed_name
1 668 Ameisensäure VE-UB 19 18 Säuren und Salze
2 889 Weizenkeime GT-WEKM 5 3 Stärkegewinnung
3 1302 - - 18 1 Zusatzstoffe

• Nutrients: A nutrient has a name and often an abbreviation and a description. Some-
times it is related to a nutrient group which categorizes related nutrients. The nutrient_key
uniquely identifies a feed. Example:

id nutrient_key name abbreviation description nutrient_group
1 38 Arachinsäure C20 Arachinsäure Einzelfettsäuren
2 355 Zucker ZUCK Zucker alkohollöslich Kohlenhydrate
3 359 Kalzium CA Kalzium Mineralstoffe

• Feed Samples: A feed sample has LIMS-Nr. Furthermore it is described with up to two lab
descriptions, the way it was prepared and the source among other biological information.
A feed sample is uniquely identified by the lims_number and the sample_key as well.
Example:

id sample_key lims_number preparation_de info_1 info_2 provenance
1 30933 290688-9 KEINE 58.2 P5_Sevrage Sang - -
2 61540 194158-4 LYO-BR1 9615 K A FECES A2 DIG115

• Origins: An origin contains geographical information like postal code, city, canton, coun-
try, latitude, longitude, its corresponding altitude class and the region name and number it
belongs to according the classification of Agridea. The origin_key uniquely identifies an
origin. Example:

id origin_key pc city canton country altitude r_id r_name lat lon
1 1038 1085 Vulliens Vaud Switzerland 600 - 799 2 VD 46.62 6.79
2 1212 3054 Schüpfen Bern Switzerland < 600 4 Mittelland 47.03 7.37
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2 The Swiss Feed Database

• Times: A time contains a full date, together with its year and month and the season. A
moment indicates the type of the time, meaning whether it stands for the harvesting, sam-
pling, arrival or analysis time. The time is uniquely identified by the time_key. Example:

id time_key t_day t_year t_month season_en moment
1 64 2009-06-30 2009 6 Summer 1
2 9548 1993-09-25 1993 9 Autumn 2

• Measurements: A measurement is made on a feed sample and has a quantity, which is
either converted to the dry matter basis or not. It inherits the corresponding LIMS-Nr. of
the feed. In addition, it links the complementary time and origin where the feed sample
was gathered, the nutrient which was analysed and the feed from which the measurement
was taken from. The measure_pkey uniquely identifies a measurement. Example:

id measure_pkey lims_number quantity d_m_b time nutrient origin sample feed
1 75414 09-22092-005 129 false 75 355 1324 250 1
2 3974244 05-14410273431 5.224039 true 9833 223 1184 3941 1

Descriptions and names are often translated into different languages, particular in English,
German and French. Nevertheless, sometimes translations, short and alternative names as well
as descriptions are missing. Furthermore, feed samples are only measured on few nutrients.
This implies that in a search request with few and possible not so common nutrients, many
measurements are dropped from the result. Nonetheless, the most important parameters and the
quantities for typical nutrients are given mostly, making extensive search requests and statistical
predictions still possible. For this, the Swiss Feed Database is modelled as seen in Figure 2.2,
where the fact_table lists all measurements with the keys to the corresponding feed, nutrient,
time and origin as explained above.
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2 The Swiss Feed Database

Figure 2.2: Architecture of the Swiss Feed Database
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3 Region Comparison

3 Region Comparison

Consider the map in Figure 3.1, where nutrient measurements are presented with a flag at their
corresponding locations. Two circles with a radius of 10km indicate two regions. All nutrient
measurements within those regions are then assigned to the nutrient measurement set X1 for
region 1 and X2 for region 2 respectively (cf. Table 1).

Figure 3.1: Map with nutrient measurements and two regions

Table 1: Nutrient Measurement sets X1 and X2 for some nutrient in region 1 and 2 respectively
Region X1 4 8 3 5 5 7 9
Region X2 6 6 4 5 9 7 -

Given this two nutrient measurement sets X1 and X2, we are now able to calculate the simi-
larity between them. Schematically the steps are illustrated in Figure 3.2.

12



3 Region Comparison

Figure 3.2: Algorithm how to calculate the similarity probability of two regions

13



3 Region Comparison

First, we verify that both nutrient measurement sets X1 and X2 have normally distributed
measurements using the Shapiro-Wilk-Test. For this, we calculate for each region individually
the Shapiro-Wilk value, which is W1 = 0.949 for region 1 and W2 = 0.933 for region 2 respec-
tively. For normal distribution, this value must be greater or equal than the critical Shapiro-Wilk
value, which is W(6,0.05) = 0.803 for the nutrient measurement set X1 and W(7,0.05) = 0.788
for X2 respectively.

Given that both measurement sets are normal distributed, we compute the probability of how
much the variances s21 of the nutrient measurement setX1 and s22 ofX2 can be considered equal.
For this we apply the F-Test which results in a probability of pF = 0.287.

Finally, using the t-Test, we compute the probability of how much the averages x1 of the
nutrient measurement set X1 and x2 of X2 can be considered similar. Since pF = 0.287 ≥ 0.05
we assume equal variance, which implies that we have to apply the two sample t-Test for equal
variance. If this would not be the case, the Welch-t-Test should be applied. Both t-Tests returns
a T value, which can then be transformed to a probability, which for our example is pT = 0.82.
This is also the probability that those two regions are similar.

Reconsidering the introduced example, the most important results are shown in Table 2.

Table 2: Results of example nutrient measurement sets X1 and X2

ni xi s2i Wi W(ni,0.05) pF pT
Region X1 5.86 4.81 7 0.949 0.803
Region X2 6.17 2.97 6 0.933 0.788 0.287 0.82
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3 Region Comparison

3.1 Notation and preliminary definitions

The following table summarizes the notation used in this thesis:

Notation Meaning
a(ni,k′) k′th constant for Shapiro-Wilk-Test and nutrient measurement set of size ni
B(α, β) Complete beta function
Bx(α, β) Incomplete beta function

F value of F-Test
FGFi ith degree of freedom of F-Test
FGT degree of freedom of t-Test
Ix(α, β) Regularized incomplete beta function
ni number of measurements in region i
pF probability that the variances are equal
pT probability that the averages are equal
s2i variance of measurements in region i
T value of t-Test
Wi value of Shapiro-Wilk-Test in region i

W(ni,0.05) Critical Shapiro & Wilk value
xi average in region i
xij jth measurement value in region i
xi(z′) z′th lowest measurement value in measurement set of region i

Moreover, the following definitions completes the statistics presented in the subsections af-
terwards.

We use xij to denote an individual nutrient measurement in a nutrient measurement set
Xi = {xi1, xi2, xi3, ..., xin} of region i.

Example: For our two regions 1 and 2 we have the following nutrient measurement sets X1

and X2 with their individual nutrient measurements xij :

X1 = {4, 8, 3, 5, 5, 7, 9}
with x11 = 4, x12 = 8, x13 = 3, x14 = 5, x15 = 5, x16 = 7, x17 = 9

X2 = {6, 6, 4, 5, 9, 7}
with x21 = 6, x22 = 6, x23 = 4, x24 = 5, x25 = 9, x26 = 7
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3 Region Comparison

Definition: Let xij be the jth nutrient measurement the nutrient measurement set Xi and ni
be the number of measurements in this set. Then, the average xi of the nutrient measurement set
X1 is:

xi =

∑ni
j=1 xij

ni
(1)

Example: For our two measurement sets X1 and X2 we receive the following averages:

x1 =
4+8+3+5+5+7+9

7 = 5.86
x2 =

6+6+4+5+9+7
6 = 6.17

Definition: Let xij be the jth nutrient measurement, xi the average and ni be the number
of measurements in the nutrient measurement set X1. Then, the variance s2i of the nutrient
measurement set Xi is:

s2i =

∑ni
j=1(xij − xi)2

ni − 1
(2)

Example: For our two measurement sets X1 and X2 we get the following variances:

s21 =
(4−5.86)2+(8−5.86)2+(3−5.86)2+(5−5.86)2+(5−5.86)2+(7−5.86)2+(9−5.86)2

7−1 = 4.81

s22 =
(6−6.17)2+(6−6.17)2+(4−6.17)2+(5−6.17)2+(9−6.17)2+(7−6.17)2

6−1 = 2.97

Definition: Let γ ∈ R, x ∈ [0, 1] and α, β > 0. Then the beta functions are as follows:

• Complete beta function

B(α, β) =

∫ 1

0
γα−1 ∗ (1− γ)β−1dγ (3)

• Incomplete beta function

Bx(α, β) =

∫ x

0
γα−1 ∗ (1− γ)β−1dγ (4)

• Regularized incomplete beta function

Ix(α, β) =
Bx(α, β)

B(α, β)
(5)
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3 Region Comparison

Example: For the complete beta function, its values for some α ∈ [−2, 2] and β ∈ [−2, 2]
can be seen in Figure 3.3.

Figure 3.3: Values of the Complete Beta function for α ∈ [−2, 2] and β ∈ [−2, 2]

Explanation: The beta function is common for defining probability density and cumulative
distribution functions, especially for the F-Test and t-Test. α and β refer to the degrees of
freedom of the first and second nutrient measurement set respectively. The γ will omit when
computing the integral. We will further explain this concept when we use this functions.

In this thesis, whenever we speak of a level of significance, we mean a probability up to which
extent we might consider something as unequal although it would be similar. We will always use
a level of significance of 5% as this is one of the most often used probabilities. It is not possible
to set this probability to zero, as this would imply that we consider everything as similar. Of
course, this is not the case and would imply that our result is more likely to be wrong.

3.2 Shapiro-Wilk-Test

This section describes the Shapiro-Wilk-Test which verifies if a nutrient measurement set can
be considered normally distributed or not. According [2], the Shapiro-Wilk value Wi must be
calculated first, before it can be compared against the critical Shapiro-Wilk value W(ni,0.05) for
the considered measurement set Xi.

17



3 Region Comparison

Definition: Let xi(z′) be the z′th lowest value of the nutrient measurement set Xi and a(ni,k′)

the k′th Shapiro-Wilk constant for a nutrient measurement set Xi of size ni as listed in the
Appendix 1. Then the Shapiro-Wilk value is:

Wi =



(∑ni
2

k′=1

(
a(ni,k

′)∗(xi(ni−k′+1)−xi(k′))

))2

(ni−1)∗s2i
, if ni is even(∑ni−1

2
k′=1

(
a(ni,k

′)∗(xi(ni−k′+1)−xi(k′))

))2

(ni−1)∗s2i
, if ni is uneven

(6)

Explanation: In every sum sequence, the two most different remaining measurements in the
corresponding nutrient measurement set Xi are multiplied with the k′th Shapiro-Wilk constant
a(ni,k′). The higher the difference of this two measurements, the higher the numerator of the
Shapiro-Wilk-Test. But as the variance increases faster, the lower the Shapiro-Wilk value and
the less likely normal distribution occurs. The Shapiro-Wilk-Test returns Wi ∈ [0, 1].

Example: For our nutrient measurement setsX1 andX2, this results in the following Shapiro-
Wilk values:

W1 =
(0.6233∗(9−3)+0.3031∗(8−4)+0.1401∗(7−5))2

(7−1)∗4.81 = 0.949

W2 =
(0.6233∗(9−4)+0.3031∗(7−5)+0.1401∗(6−6))2

(6−1)∗2.97 = 0.933

Definition: Let Wi be the Shapiro-Wilk value and W(ni,0.05) be the critical Shapiro-Wilk
value to a level of significance of 5% and a nutrient measurement set Xi of size ni as listed in
the Appendix 2. Then, normal distribution can be considered if:

Wi ≥W(ni,0.05) (7)

Explanation: If the equation is satisfied, the nutrient measurement set Xi can be considered
as normally distributed. The higher the level of significance and the number of measurements
ni in the considered measurement set Xi the higher the critical Shapiro-Wilk value and the less
likely normal distribution can be considered.

Example: For our nutrient measurement sets X1 and X2, both do not violate the equation and
can therefore be considered normally distributed to a level of significance of 5%:

W1 = 0.949 ≥W(7,0.05)=0.803

W2 = 0.933 ≥W(6,0.05)=0.788

If a nutrient measurement set cannot be considered normally distributed, further calculations
are not possible for this nutrient measurement setXi with the algorithms developed in this thesis.

18
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3.3 F-Test

This section describes the F-Test which verifies if the variances of two normally distributed mea-
surement sets can be considered equal or not. According [2] and [3], we first have to calculate
the F value, before we can derive the probability to which extent they are similar.

Definition: Let s21 and s22 be the variance of the nutrient measurement sets X1 and X2 respec-
tively. Then the F-Test is:

F =


s21
s22
, if s21 ≥ s22

s22
s21
, else

(8)

Explanation: The F-Test divides the larger variance through the smaller variance of the two
nutrient measurement sets. The result is a F value, a positive number greater or equal than 1.

Example: Since the variance of the nutrient measurement set X1 of Region 1 is higher than
this of the nutrient measurement set X2 of Region 2, the F value is:

F = 4.81
2.97 = 1.62

Given the F value, we can derive the probability how much the variances of the two nutrient
measurement sets X1 and X2 can be considered equal. For this we introduce the probability
density function for the F-Distribution as seen in Figure 3.4. It is a function, whose area below
is always 1 between 0 and infinity. We now cut the function at the position of the obtained F
value, whereupon the tail correlates to the probability how similar the two nutrient measurement
sets X1 and X2 are according their variance. Reconsidering our example, we cut at F = 1.62,
whereupon the blue shaded tail corresponds to 0.287, the searched probability.

Figure 3.4: probability density function of F-Distribution for some degrees of freedom FGF1 =
6 and FGF2 = 5
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3 Region Comparison

Definition: Let n1 and n2 be the number of measurements and s21 and s22 the variance in the
nutrient measurement set X1 and X2 respectively. Then the degrees of freedom for the F-Test
are as follows:

FGF1 =

{
n1 − 1, if s21 ≥ s22
n2 − 1, else

(9)

FGF2 =

{
n2 − 1, if s21 ≥ s22
n1 − 1, else

(10)

Explanation: The degrees of freedom influence the shape of the probability density function
of the F-Distribution. For example, in Figure 3.4, lower values of the degree of freedom would
flatten the tail of the density function.

Example: Since the variance of the nutrient measurement set X1 is higher than this of X2, the
degrees of freedom for the F-Test are:

FGF1 = 7− 1 = 6
FGF2 = 6− 1 = 5

We can now compute the corresponding probability, how much the two nutrient measurement
sets X1 and X2 can be considered equal according their variances. As was explained earlier, we
need to evaluate the area enclosed by the tail of the probability density function. In other words,
the probability we search is 1 minus the probability received from the cumulative distribution
function.

Definition: Given the F value denoted as F , and the degrees of freedom FGF1 and FGF2, the
probability to which extent two measurement setsX1 andX2 can be considered equal according
their variances is:

pF = Ik

(
FGF2

2
,
FGF1

2

)
(11)

where k = FGF2
FGF2+FGF1∗F .

Explanation: The higher the received probability the more likely the variances are similar.
We will consider the variances of the two nutrient measurement sets X1 and X2 as equal, if the
probability is at least as high as the level of significance, which is 5%.

Example: Given the nutrient measurement sets X1 and X2 of region 1 and 2 respectively, the
probability that the two measurement sets can be considered equal according their variances is:

20



3 Region Comparison

pF = I0.35(3, 3.5)) = 0.287

Since pF = 0.287 is greater than 5%, the level of significance, we consider the variances of
the two nutrient measurement sets X1 and X2 as equal.

3.4 t-Test

This section describes the t-Test which calculates the probability of how much two nutrient mea-
surement sets can be considered equal according their averages. This will also be the probability
we use to describe to which extent two regions are similar. According [2] and [3], we first have
to calculate the T value, before we can derive the probability to which extent the two nutrient
measurement sets, respectively regions are similar.

Depending if the variances of the two nutrient measurement setsX1 andX2 can be considered
equal (pF ≥ 0.05) or not (pF < 0.05), either the two sample t-Test for equal variance, or the
Welch-t-Test must be applied. According our example, the two sample t-Test for equal variance
must be applied.

3.4.1 Two sample t-Test for equal variance

Definition: Let si be the variance, xi be the average and ni the number of measurements in the
nutrient measurement set Xi. Then the two sample t-Test is:

T =


|x1−x2|√

s21
n1

+
s22
n2

, if n1 = n2

|x1−x2|√
s21∗(n1−1)+s22∗(n2−1)

n1+n2−2

∗
√

n1∗n2
n1+n2

, else
(12)

Explanation: The T value is obtained using the average, variance and the number of measure-
ments in both nutrient measurement sets. The higher the T value, the less likely the two nutrient
measurement sets X1 and X2 can be considered equal according their averages.

Example: Given the variances s21 and s22 of the two nutrient measurement sets X1 and X2

respectively, the T value is:

T = |5.86−6.17|√
4.81∗(7−1)+2.97∗(6−1)

7+6−2

∗
√

7∗6
7+6 = 0.14

To get the probability how much the averages of the two nutrient measurement sets X1 and
X2 can be considered equal, we also have to define the degree of freedom, as they influence the
probability density function of the t-Distribution as explained in Section 3.4.3.
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Definition: Let n1 and n2 be the number of measurements in the nutrient measurement setX1

and X2 respectively. Then, the degree of freedom for the t-Test is:

FGT = n1 + n2 − 2 (13)

Explanation: The degree of freedom has an influence on the probability density function of
the t-Distribution.

Example: Given the nutrient measurement sets X1 and X2, the degree of freedom for the two
sample t-Test for equal variance is:

FGT = 7 + 6− 2 = 11

3.4.2 Welch-t-Test

Definition: Let si be the variance, xi the average and ni the number of measurements in the
nutrient measurement set Xi. Then the Welch-t-Test is:

T =
|x1 − x2|√
s21
n1

+
s22
n2

(14)

Explanation: The T value is obtained using the average, variance and the number of measure-
ments in both nutrient measurement sets. Again, the higher the T value, the less likely the two
nutrient measurement sets can be considered equal according their averages.

Example: Assuming that the level of significance would have been 50% for the F-Test, im-
plying that the variances would be considered dissimilar, the T value would have been:

T = |5.86−6.17|√
4.81
7

+ 2.97
6

= 0.26

To get the probability how much the averages of the two nutrient measurement sets X1 and
X2 can be considered equal, we also have to define the degree of freedom, as they influence the
probability density function of the t-Distribution as explained in Section 3.4.3.

Definition: Let si be the variance and ni the number of measurements in the measurement set
Xi. Then the degree of freedom for the t-Test is:

FGT =



(n1 − 1) + (n1+n2)−2
s21
s22

+
s22
s21

, if n1 = n2

(
s21
n1

+
s22
n2

)2

(
s21
n1

)2

n1−1
+

(
s22
n2

)2

n2−1

, else
(15)
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Explanation: The degree of freedom has an influence on the probability density function of
the t-Distribution.

Example: Given the nutrient measurement sets X1 and X2, the degree of freedom for the
Welch-t-Test would be:

FGT =
( 4.81

7
+ 2.97

6 )
2

( 4.81
7 )

2

7−1
+
( 2.97

6 )
2

6−1

= 10.94

3.4.3 Similarity probability

Given the T value, we can derive the probability how much the averages of the two nutrient
measurement sets X1 and X2 can be considered equal according [3]. For this we introduce
the probability density function for the t-Distribution as seen in Figure 3.5. It is a function,
whose area below is always 1 between minus infinity and infinity. We now cut the function
at the position of the obtained T value, whereupom the tail correlates to the half probability
how similar the two nutrient measurement sets X1 and X2 are according their average. As
the probability density function is symmetric, we just have to multiply this probability by two,
or we alternatively add the blue shaded area between minus infinity and minus the T value.
Reconsidering our example, we cut at T = 0.14, whereupon both blue shaded areas corresponds
to 0.445, resulting in a total of 0.89, the searched probability.

Figure 3.5: probability density function of t-Distribution for some degree of freedom FGT = 11

Definition: Let T be the T value, and bFGT c the to the next integer rounded degree of
freedom not greater than FGT . Then, the probability to which extent two measurement sets X1

and X2 can be considered equal according their averages is:

pT = 1− 2 ∗
T∫
0

(
1 + T 2

bFGT c

)−(bFGTc+1)
2

B(0.5, 0.5 ∗ bFGT c) ∗
√
bFGT c

dT (16)
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Explanation: The higher the received probability the more likely the averages of the two
nutrient measurement sets X1 and X2 and herewith the regions are similar.

Example: Given the nutrient measurement sets X1 and X2, the probability that the two nutri-
ent measurement sets can be considered equal according their averages is:

pT = 1− 2 ∗
T∫
0

(
1+T2

11

)−(11+1)
2

B(0.5,0.5∗11)∗
√
11
dT |T=0.14 = 0.89

This means that the regions 1 and 2 can be considered to be 89% similar.
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4 Top-k similar regions

This section describes the algorithm how to find the most similar regions to a user selected
region.

The approach for finding the top-k similar regions to a user defined region is based on the
calculation of the two region comparison. Basically, it is a region comparison of every possi-
ble region with the user defined region for some nutrient, which is then ordered according the
similarity probability. However in some cases regions can be pruned. These constraints are now
explained in detail:

• A nutrient measurement set Xi of a region i must contain at least five measurements:

ni ≥ 5 (17)

Explanation: If a region contains less than five measurements, the calculated probability
may be very inaccurate. A single outlier could imply that a region would be considered as
dissimilar to the user defined region although it would be similar if more measurements
would have been taken from this region.

• A nutrient measurement set Xi of a region i may contain at most fifty measurements:

ni ≤ 50 (18)

Explanation: If a region contains more than fifty measurements, the Shapiro-Wilk value
cannot be computed, as Shapiro & Wilk listed the a(ni,k′) weights only for measurement
sets of up to fifty measurements.

• For every region comparison, no region shall intersect the other region.

Explanation: It is very likely that the most similar region is a region intersecting the user
defined region as most of the measurements are taken from the same locations and are
therefore identically. However, we are not interested in those regions as we want to find
other regions not intersecting the user defined region.

• If a region has no normal distributed nutrient measurement set, the region must be ignored.

Explanation: For not normal distributed measurement sets, the F-Test and the t-Test cannot
be applied.

Given this constraints, the similarity probability can be computed for every remaining region
pair. The descended ordering of this probabilities results in the most similar regions to the user
defined regions.
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4.1 Views

With the PostgreSQL, the programming language on the relational database, we design four
views to calculate those similarity probabilities. They return the following tables if executed
individually:

• top_k_similiar_regions: This view lists the similarity probability for every region, nutrient
pair, whereupon the origin_key of the centre of each region is given. The similarity prob-
ability is always computed between the user defined region (not listed) and the presented
region.

id origin_key nutrient_key similarity_probability
1 1227 283 0.994
2 2039 283 0.991

• region_summary_data: This view lists the regions, nutrients, the number, average and
variance of the corresponding nutrient measurement set. Furthermore, the Shapiro-Wilk
value is listed if the nutrient measurement set can be considered normally distributed. In
the other case, the displayed value is negative.

id origin_key nutrient_key count avg variance shapiro_wilk
1 1044 283 34 132.86 621.83 0.95
2 1146 283 48 132.19 181.55 0.98

• region: This view lists for every location all other locations which are located within some
user defined distance including itself in multiple rows.

id origin_key neighbour
1 1038 1038
2 1038 1062
3 1043 1044

• aggregated_data: This view lists for every location, nutrient pair, respectively feed sample,
the aggregated or rather average measurement quantity.

id nutrient_key origin_key aggregated_quantity
1 283 1077 125.84
2 283 1102 111.06
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These views are composed as seen in Figure 4.1. It lists all the needed views and the new
developed aggregate user defined functions. We will explain its parts in detail, using a top to
bottom approach.

Figure 4.1: Introduced views and important user defined functions and aggregates for top-k sim-
ilar regions algorithm

4.1.1 top_k_similar_regions

The top_k_similar_regions view is based on the region_summary_data view and uses the
get_similarity_probability function. It has the following PostgreSQL-Query:

1 CREATE VIEW
2 t o p _ k _ s i m i l a r _ r e g i o n s
3

4 AS SELECT
5 n e i g h b o u r s . o r i g i n _ k e y ,
6 n e i g h b o u r s . n u t r i e n t _ k e y ,
7 g e t _ s i m i l a r i t y _ p r o b a b i l i t y (
8 n e i g h b o u r s . count ,
9 n e i g h b o u r s . avg ,

10 n e i g h b o u r s . v a r i a n c e ,
11 s e l e c t e d _ r e g i o n . count ,
12 s e l e c t e d _ r e g i o n . avg ,
13 s e l e c t e d _ r e g i o n . v a r i a n c e ) AS s i m i l a r i t y _ p r o b a b i l i t y
14

15 FROM
16 r eg ion_summary_da ta AS s e l e c t e d _ r e g i o n
17 INNER JOIN reg ion_summary_da t a AS n e i g h b o u r s
18 ON s e l e c t e d _ r e g i o n . n u t r i e n t _ k e y = n e i g h b o u r s . n u t r i e n t _ k e y
19

20 WHERE
21 s e l e c t e d _ r e g i o n . o r i g i n _ k e y = 2094 /∗ o r i g i n _ k e y of u s e r d e f i n e d r e g i o n ∗ /
22 AND n e i g h b o u r s . o r i g i n _ k e y <> 2094 /∗ o r i g i n _ k e y of u s e r d e f i n e d r e g i o n ∗ /
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23 AND s e l e c t e d _ r e g i o n . s h a p i r o _ w i l k >= 0
24 AND n e i g h b o u r s . s h a p i r o _ w i l k >= 0
25

26 ORDER BY
27 s i m i l a r i t y _ p r o b a b i l i t y DESC

The query joins two region_summary_data views on their nutrient_key as seen on lines 16
to 18. This is essential, as for every region comparison two regions, respectively two nutrient
measurement sets are needed. From the as selected_region denoted region_summary_data view,
the number of measurements, average and variance of the nutrient measurement set of the user
defined region is taken if it is normally distributed for the considered nutrient, as seen on lines
21 and 23. This results in at most one entry per nutrient. In contrast, the as neighbours denoted
region_summary_data view contains all those values for all other regions. At this position we
have to remark, that all regions which intersect the user defined region were already dropped in
the region_summary_data view. This makes it possible to compute the similarity probabilities
as seen on lines 7 to 13 instantly. Finally, those similarity probabilities are ordered descending,
whereupon the most similar regions for some nutrient are listed on top.

get_similarity_probability
For calculating the similarity probability, the get_similarity_probability function is used. It

has the following PostgreSQL-Query:

1 CREATE FUNCTION
2 g e t \ _ s i m i l a r i t y \ _ p r o b a b i l i t y (
3 c o u n t do ub l e p r e c i s i o n ,
4 avg d ou b l e p r e c i s i o n ,
5 v a r do ub l e p r e c i s i o n ,
6 _c ou n t do ub l e p r e c i s i o n ,
7 _avg d ou b l e p r e c i s i o n ,
8 _va r do ub l e p r e c i s i o n )
9

10 RETURNS do ub le p r e c i s i o n AS
11 $$
12

13 DECLARE
14 t _ t e s t _ p do ub l e p r e c i s i o n ;
15 f _ t e s t _ p d oub l e p r e c i s i o n ;
16

17 BEGIN
18

19 f _ t e s t _ p := 1 − f t e s t ( var , count , _var , _co un t ) ;
20

21 IF f _ t e s t _ p >= 0 . 0 5 THEN
22 /∗ e q u a l v a r i a n c e ∗ /
23 t _ t e s t _ p := t t e s t ( count , avg , var , _count , _avg , _var , 1 , 2 ) ;
24

25 ELSE
26 /∗ u n e q u a l v a r i a n c e ∗ /
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27 t _ t e s t _ p := t t e s t ( count , avg , var , _count , _avg , _var , 1 , 3 ) ;
28

29 END IF ;
30

31 RETURN t _ t e s t _ p ;
32

33 END;
34

35 $$
36 LANGUAGE p l p g s q l VOLATILE

It takes as input the average, variance and the number of measurements of the two nutrient
measurement sets being considered when this function is called. We then apply the F-Test and
t-Test as explained in Section 3.3 and 3.4 respectively. This means, that we first calculate the
probability to which extent the variances of the two nutrient measurement sets can be considered
equal as seen on lines 19. Then, depending if the probability is greater or equal than the level of
significance of 5% as seen on line 22, the two sample t-Test or the Welch-t-Test behind the func-
tion on lines 24 and 28 respectively is applied. We will go into the details of those functions in
a moment. Irrespective which t-Test is applied, both functions will return a probability to which
extent the two nutrient measurement sets can be considered equal according their averages.

ftest
This function returns the probability to which extent the two nutrient measurement sets can

be considered equal according their variances. It has the following PostgreSQL-Query:

1 CREATE FUNCTION f t e s t (
2 V1 do ub le p r e c i s i o n ,
3 N1 do ub le p r e c i s i o n ,
4 V2 do ub le p r e c i s i o n ,
5 N2 do ub le p r e c i s i o n )
6

7 RETURNS do ub le p r e c i s i o n AS
8 $$
9

10 DECLARE
11 p d ou b l e p r e c i s i o n ;
12

13 BEGIN
14 /∗ a v o i d d i v i s i o n by z e r o ∗ /
15 IF V1 = 0 THEN
16 va r1 := 0 . 0 0 0 0 0 1 ;
17 END IF ;
18

19 IF V2 = 0 THEN
20 va r2 := 0 . 0 0 0 0 0 1 ;
21 END IF ;
22

23 IF V1 > V2 THEN
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24 p := pgnumer i c s . f c d f ( va r1 / var2 , N1−1, N2−1) ;
25 ELSE
26 p := pgnumer i c s . f c d f ( va r2 / var1 , N2−1, N1−1) ;
27 END IF ;
28

29 RETURN p ;
30 END;
31

32 $$
33 LANGUAGE ’ p l p g s q l ’ ;

It takes as input the variance and the number of measurements of the two nutrient measure-
ment sets being considered when this function is called as seen on lines 2 to 5.

We then assure that the variances are non zero as seen on lines 15 to 21, to avoid division by
zero when we calculate the F-Test on lines 24 or 26. If this would be the case, we slightly add
some negligible millionth to the variance.

Given non zero variances, we apply the F-Test as described in the equation 8, before we
compute the tail of the probability density function of the F-Distribution as seen on lines 24 and
26. For this, we also have to compute the two degree of freedoms, FGF1 and FGF2 as proposed
in equation 9 and 10 respectively.

The problem which arises now is that we have to calculate the integral over the tail the prob-
ability density function. As this is not possible without further ado, we use the pgnumerics
library. This library has statistical functions, like the pgnumerics.fcdf function. It uses constants
for approximating the integral of the probability density function of the F-Distribution.

ttest
This function returns the probability to which extent the two nutrient measurement sets can

be considered equal according their averages. It has the following PostgreSQL-Query:

1 CREATE FUNCTION t t e s t (
2 co un t1 do ub l e p r e c i s i o n ,
3 avg1 d ou b l e p r e c i s i o n ,
4 va r1 do ub l e p r e c i s i o n ,
5 co un t2 do ub l e p r e c i s i o n ,
6 avg2 d ou b l e p r e c i s i o n ,
7 va r2 do ub l e p r e c i s i o n ,
8 t a i l do ub l e p r e c i s i o n ,
9 T do ub le p r e c i s i o n

10 ) RETURNS do ub le p r e c i s i o n
11

12 AS $$
13 DECLARE
14 df d oub l e p r e c i s i o n ;
15 t x do ub l e p r e c i s i o n ;
16 s i g d oub l e p r e c i s i o n ;
17 pv do ub l e p r e c i s i o n ;
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18 BEGIN
19 −− two sample e q u a l v a r i a n c e
20 IF T=2 THEN
21 pv := ( ( count1 −1.0)∗ va r1 + ( count2 −1.0)∗ va r2 ) / ( co un t1 + count2 −2.0) ;
22 t x := ( avg1−avg2 ) / s q r t ( pv ∗ ( 1 / c ou n t1 + 1 / c ou n t2 ) ) ;
23 df := ( c oun t1 + count2 −2.0) ;
24 s i g := t a i l ∗ pgnumer i c s . t c d f ( tx , d f ) ;
25

26 −− two sample u n e q u a l v a r i a n c e
27 ELSIF T=3 THEN
28 df := ( ( ( va r1 / c ou n t1 ) +( va r2 / c ou n t2 ) ) ∗ ( ( va r1 / c ou n t 1 ) +( va r2 / cou n t 2 ) ) )

/ ( ( va r1 ∗ va r1 ) / ( co un t1 ∗ co un t1 ∗ ( count1 −1.0) ) +( va r2 ∗ va r2 ) / ( co un t2 ∗
co un t2 ∗ ( count2 −1.0) ) ) ;

29 t x := ( avg1−avg2 ) / s q r t ( va r1 / c ou n t1 + va r2 / c ou n t 2 ) ;
30 s i g := t a i l ∗ pgnumer i c s . t c d f ( tx , d f ) ;
31 END IF ;
32

33 RETURN s i g ;
34

35 END;
36

37 $$ LANGUAGE ’ p l p g s q l ’ ;

This function is based on the pgnumerics.ttest function and was slightly modified in order that
it takes aggregates like the number of measurements, average and the variance of a nutrient
measurement set instead of the whole nutrient measurement set.

It takes as input the average, variance and the number of measurements of the two nutrient
measurement sets being considered when this function is called as seen on lines 2 to 7. Further-
more it requests the parameters tail and T as seen on lines 8 and 9. If tail equals 1, twice the tail
of the cumulative distribution function of the t-Test is returned, the probability we search. On
the other hand, the T is a parameter which defines which t-Test must be applied. T = 2 stands
for the two sample equal variance t-Test as seen on line 20, whereupon T = 3 stands for the
Welch-t-Test on line 27.

On lines 21 and 22, the T value for the two sample t-Test for equal variance is calculated in an
equivalent way as in equation 12. It does not distinguish between n1 6= n2 and n1 = n2 as the
formula for n1 6= n2 also holds for n1 = n2. Afterwards, the degree of freedom is calculated on
line 23, like in equation 13, before the similarity probability is being calculated on line 24.

In case that the variances of the two nutrient measurement sets cannot be considered equal,
the T value is calculated on line 29 like in equation 14. The degree of freedom are calculated
on line 28, equivalently to equation 15. Again, the formula for n1 6= n2 can be also applied for
n1 = n2.
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4.2 region_summary_data

The region_summary_data view is based on the region and aggregated_data view and uses the
shapiro_wilk-function. It has the following PostgreSQL-Query:

1 CREATE VIEW
2 r eg ion_summary_da ta
3

4 AS SELECT
5 r e g i o n . o r i g i n _ k e y ,
6 n u t r i e n t _ k e y ,
7 c o u n t ( a g g r e g a t e d _ q u a n t i t y ) ,
8 avg ( a g g r e g a t e d _ q u a n t i t y ) ,
9 v a r i a n c e ( a g g r e g a t e d _ q u a n t i t y ) ,

10 s h a p i r o _ w i l k ( a g g r e g a t e d _ q u a n t i t y )
11

12 FROM
13 r e g i o n INNER JOIN a g g r e g a t e d _ d a t a
14 ON r e g i o n . n e i g h b o u r = a g g r e g a t e d _ d a t a . o r i g i n _ k e y
15

16 WHERE
17 r e g i o n . o r i g i n _ k e y NOT IN
18 (SELECT ∗ FROM g e t _ n e i g h b o u r s ( 4 7 . 2 0 8 1 1 0 0 0 , 9 .18687000 , 20) )
19 /∗ l o n g i t u d e and l a t i t u d e o f u s e r d e f i n e d r e g i o n ∗ /
20 /∗ t w i c e t h e u s e r d e f i n e d d i s t a n c e / r a d i u s ∗ /
21 OR r e g i o n . o r i g i n _ k e y = 2094 /∗ o r i g i n _ k e y of u s e r d e f i n e d r e g i o n ∗ /
22

23 GROUP BY
24 r e g i o n . o r i g i n _ k e y , n u t r i e n t _ k e y ;

The query assembles the corresponding entries from the region and the aggregated_data view
through an INNER JOIN as seen on line 13 and 14. At this step, we still have individual locations
with their aggregated measurement quantities. In fact, there is an entry for every two locations
which are within the user defined distance, whereupon region.origin_key will later become the
centre of a region and region.neighbour will be the locations within this region. On line 17 and
18, we now drop those locations which would become the centre of a region which are closer
than twice the user defined distance. Without this statement a region may intersect the user
defined region.

The get_neighbours function itself returns a set of origins respectively locations which are
within the user defined distance to the commited coordinates. However, the development of this
function was not part of this thesis.

As we still need the user defined region in the view, we have to explicitly formulate the
origin_key of its centre, which is 2094 here as seen on line 21.

Given all this entries, the GROUP BY clause on lines 23 and 24 assembles all neighbour
locations (region.neighbour) to locations (region.origin_key) and forms herewith regions for
every nutrient. Given the SELECT statement on lines 4 to 10, this means that the average,
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variance, the number of entries and the Shapiro-Wilk value of all aggregated measurement which
correspond to the same region is being calculated for every region, nutrient pair.

shapiro_wilk
This aggregate returns the Shapiro-Wilk value if the nutrient measurement is normally dis-

tributed. Otherwise, some negative value is returned. It has the following PostgreSQL-Query:

1 CREATE AGGREGATE s h a p i r o _ w i l k ( do ub l e p r e c i s i o n ) (
2 SFUNC= ar r a y _a pp en d ,
3 STYPE= do ub le p r e c i s i o n [ ] ,
4 FINALFUNC= a r r a y _ s h a p i r o _ w i l k
5 ) ;
6

7 CREATE FUNCTION a r r a y _ s h a p i r o _ w i l k ( measurements do ub l e p r e c i s i o n [ ] )
8 RETURNS do ub le p r e c i s i o n AS
9 $$

10

11 DECLARE
12 s h a p i r o _ w i l k _ a do ub l e p r e c i s i o n [ ] [ ] ;
13 s h a p i r o _ w i l k _ c r i t i c a l d oub l e p r e c i s i o n [ ] ;
14 o r d e r e d _ m e a s u r e m e n t s do ub l e p r e c i s i o n [ ] ;
15 N i n t e g e r ;
16 N_ha l f i n t e g e r ;
17 i d ou b l e p r e c i s i o n ;
18 n u m e r a t o r d ou b l e p r e c i s i o n ;
19 d e n o m i n a t o r do ub l e p r e c i s i o n ;
20 y d ou b l e p r e c i s i o n ;
21 y _ s q u a r e d ou b l e p r e c i s i o n ;
22 z i n t e g e r ;
23 W d ou b l e p r e c i s i o n ;
24

25 BEGIN
26 SELECT ARRAY( s e l e c t u n n e s t ( measurements ) a s measurement o r d e r by

measurement a s c ) INTO o r d e r e d _ m e a s u r e m e n t s ;
27

28 s h a p i r o _ w i l k _ a = ARRAY [ . . . ] ;
29

30 s h a p i r o _ w i l k _ c r i t i c a l := ARRAY [ . . . ] ;
31

32 N := a r r a y _ u p p e r ( o rde red_measu remen t s , 1 ) − a r r a y _ l o w e r (
o rde red_measu remen t s , 1 ) + 1 ;

33 N_ha l f := f l o o r (N/ 2 ) ;
34 n u m e r a t o r = 0 ;
35 y = 0 ;
36 y _ s q u a r e = 0 ;
37

38 /∗ t o few n u t r i e n t measurements i n n u t r i e n t measurement s e t ∗ /
39 IF n < 5 THEN
40 RETURN −1;
41 /∗ t o many n u t r i e n t measurements i n n u t r i e n t measurement s e t ∗ /
42 ELSIF n > 50 THEN
43 RETURN −2;
44 END IF ;
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45

46 FOR i IN 1 . . N_ha l f LOOP
47 n u m e r a t o r := ( s h a p i r o _ w i l k _ a [ i ] [N] ∗ ( o r d e r e d _ m e a s u r e m e n t s [ n−i +1] −

o r d e r e d _ m e a s u r e m e n t s [ i ] ) ) + n u m e r a t o r ;
48 y := o r d e r e d _ m e a s u r e m e n t s [ n−i +1] + o r d e r e d _ m e a s u r e m e n t s [ i ] + y ;
49 y _ s q u a r e := pow ( o r d e r e d _ m e a s u r e m e n t s [ n−i + 1 ] , 2 ) + pow (

o r d e r e d _ m e a s u r e m e n t s [ i ] , 2 ) + y _ s q u a r e ;
50 END LOOP;
51

52 IF 2 ∗ N_ha l f < N THEN
53 y := o r d e r e d _ m e a s u r e m e n t s [ N_ha l f +1] + y ;
54 y _ s q u a r e := pow ( o r d e r e d _ m e a s u r e m e n t s [ N_ha l f + 1 ] , 2 ) + y _ s q u a r e ;
55 END IF ;
56

57 d e n o m i n a t o r := y _ s q u a r e − pow ( y , 2 ) / N;
58

59

60 /∗ normal d i s t r i b u t i o n i s g i v e n i f t h e d e n o m i n a t o r z e r o ∗ /
61 IF d e n o m i n a t o r = 0 THEN
62 RETURN 1 ;
63 END IF ;
64

65 W := pow ( numera to r , 2 ) / d e n o m i n a t o r ;
66

67 /∗ n u t r i e n t measurements a r e n o t n o r m a l l y d i s t r i b u t e d ∗ /
68 IF W < s h a p i r o _ w i l k _ c r i t i c a l [N] THEN
69 RETURN −3;
70 END IF ;
71

72 RETURN W;
73

74 END;
75

76 $$
77 LANGUAGE ’ p l p g s q l ’ ;

As we need individual access on the measurements for calculating the Shapiro-Wilk value,
we first build an array containing all aggregated measurement quantities for some nutrient which
belong to the same region. Keep in mind, that this will happen due to the construction of our
SELECT and GROUP BY clause of our region_summary_data view. After the array is built
on line 4, the array_shapiro_wilk function is executed. We then apply the Shapiro-Wilk-Test
as explained in Section with reserve of the constrains above. In case that a region contains less
than five measurements for some nutrient, we let the Shapiro-Wilk-Test fail on lines 39 and
40 irrespective what the result would actually be, due to error-proneness. Furthermore, as no
a(ni,k′) Shapiro-Wilk constants are available for nutrient measurement sets with more than fifty
measurements, also those regions are excluded for the considered nutrient as seen on lines 42
and 43.
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4 Top-k similar regions

From line 46 on we calculate the Shapiro-Wilk value as explained in 6. In case of an uneven
number of measurements in a nutrient measurement set, the addition on lines 51 to 55 ensures
that the denominator gets correctly calculated, as the median is not considered in the numerator.

On line 61 we assure that the denominator is non zero. If this would not be the case, the
variance of the nutrient measurement set would be zero, implying that it is normally distributed
anyway.

Finally, on line 65, the Wi value is computed, before it is compared against the critical
W(ni,0.05) value on line 68 like in equation 7. If the nutrient measurement set can be consid-
ered normally distributed, the Shapiro-Wilk value is returned, otherwise a negative integer.

4.3 region

The region view is based on the d_origin table and uses the get_neighbours function. It has the
following PostgreSQL-Query:

1 CREATE VIEW r e g i o n AS
2

3 SELECT
4 o r i g i n _ k e y , g e t _ n e i g h b o u r s ( l a t i t u d e , l o n g i t u d e , 10) AS n e i g h b o u r
5

6 FROM
7 d _ o r i g i n

This view aggregates to every location (origin_key) a set of locations containing all locations
which are within a user defined distance to the corresponding location. For this, the function
get_neighbours is used as seen on line 4 which takes as parameter the coordinates of the corre-
sponding location and the selectable radius of a region.

4.4 aggregated_data

The aggregated_data view is based on the fact_table, d_time, d_nutrient, d_origin and d_feed
table. It has the following PostgreSQL-Query:

1 CREATE VIEW
2 a g g r e g a t e d _ d a t a AS
3

4 SELECT
5 n u t r i e n t _ k e y , o r i g i n _ k e y , avg ( q u a n t i t y ) AS a g g r e g a t e d _ q u a n t i t y
6

7 FROM
8 f a c t _ t a b l e INNER JOIN d_t ime ON i d _ t i m e _ f k e y = t ime_key
9 INNER JOIN d _ n u t r i e n t ON i d _ n u t r i e n t _ f k e y = n u t r i e n t _ k e y

10 INNER JOIN d _ o r i g i n ON i d _ o r i g i n _ f k e y = o r i g i n _ k e y
11 INNER JOIN d_ f ee d ON i d _ f e e d _ f k e y = f e e d _ k e y
12
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4 Top-k similar regions

13 WHERE
14 /∗ u s e r s e l e c t i o n ∗ /
15 z _ a b b r e v i a t i o n _ d e = ’Ca ’
16

17 GROUP BY
18 l ims_number , n u t r i e n t _ k e y , o r i g i n _ k e y ;

This view connects for every measurement the corresponding entries in the time, nutrient,
origin and feed table together. Those measurements which do not fulfil the user selection, here
the nutrient must be calcium as seen on line 15, are then dropped. Furthermore, this view
aggregates multiple measurements of one nutrient from one feed sample together. This can be
seen on lines 5, 17 and 18 with the aggregate with calculates the average over the feed samples.

36



5 Implementation

5 Implementation

This section describes optimizations made when the top k similar regions algorithm was elabo-
rated.

The goal was to minimize the execution time, by minimizing the number of tuples in each
view. For this, the statistics used to calculate the similarity probabilities was analysed in detail,
to investigate whether a region could be summarized with few aggregates instead of storing the
whole nutrient measurement set. It reveals, that the t-Test and its probability pF can be computed
given the variance, average and the number of measurements in each nutrient measurement
set Xi. Further, the F-Test can be computed given those aggregates as well, it does not even
depend on the average of a nutrient measurement set. As those aggregates are easily to be
retrieved in PostgreSQL, the numerator of the Shapiro-Wilk-Test is more complex as it depends
on different a(ni,k′) Shapiro-Wilk constants and the ascending ordered nutrient measurement
set. However, defining a user defined aggregate with a final function as explained in Section
4.2, solves also this problem. Moreover, it does not only calculate the Shapiro-Wilk value, but
verifies also if the nutrient measurement set is normally distributed and if it has the right size. If
not, a negative value indicates this, whereupon this region, nutrient pair will be dropped in the
following top_k_similar_regions view.

Given the fact that it is sufficient to have those four aggregates per region, we now have only
one entry in the region_summary_data view per region, nutrient pair instead of several tuples
each containing a single measurement. The difference can be seen between Tables 3 and 4.

Table 3: Optimized region_summary_data view
id origin_key nutrient_key count avg variance shapiro_wilk
1 1040 283 8 147.45 2454.77 0.852

Table 4: Not optimized region_summary_data view
id origin_key nutrient_key aggregated_quantity
1 1040 283 97.89
2 1040 283 120.27
3 1040 283 188.66
4 1040 283 102.08
5 1040 283 207.53
6 1040 283 137.01
7 1040 283 217.97
8 1040 283 108.20

Another point was whether to first assemble all measurements to every tuple in the aggre-
gated_data view which belongs to the same region, or to list for every location a set of neighbour
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locations. An advantage of assembling all measurements which belong to the same region to ev-
ery tuple in aggregated_data view is that in case the user has a hard selection criteria involving
measurements only from some locations, that no unnecessary neighbours would be searched for
regions which will be dropped later on. In contrast, if two or more measurements from the same
nutrient are from the same location, the assembling would be done more than once, creating
unnecessary duplicates. Assuming regular search request, usually all or nearly all of the 1510
different locations will remain in the result, leading to the fact that it is faster to obtain the re-
gions, respectively the set of locations to every location first. Afterwards, the quantities in the
aggregated_data view are assigned to their corresponding region, nutrient pairs as described in
Section 4.2.
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6 Evaluation

This section describes the evaluation of the top-k similar regions algorithm.

Given the Swiss Feed Database, we evaluate the performance of our algorithm depending on
the number of:

• measurements

• distinct nutrients

• distinct regions

Furthermore we investigate the query plan.

6.1 Impact on the number of measurements

Given the Swiss Feed Database with its nearly four million nutrient measurements, 87’702 mea-
surements were taken on the nutrient calcium. The following diagram shows the execution time
in dependence of the number of all measurements over all nutrients.

Figure 6.1: Execution time in dependence of the number of measurements over all nutrients

According Figure 6.1, we can clearly see that the execution time increases approximately
linear in the number of measurements over all nutrients. However, in case the user defined
region does not pass the Shapiro-Wilk-Test, or if the region has to few or many measurements,
the execution time is only about 156 ms. The user can encounter to small or large regions
by adjusting the radius of the region. This may also help in case the region is not normally
distributed.
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6.2 Impact on the number of distinct nutrients

The top-k similar regions algorithm delivers for every region, nutrient pair a similarity prob-
ability to the user defined region. This implies that a region might have different similarity
probabilities on different nutrients to the user defined region. Depending on the number of mea-
sured nutrients the user selects in the user defined region, the execution time on nearly four
million measurements is as follows.

Figure 6.2: Execution time in dependence of the number of distinct nutrients measured in the
user defined region

According Figure 6.2, we can make out a slight S-curve. This can be explained with the fact,
that for some nutrients many measurements were taken whereas for others nearly none. In this
case here, only twenty thousand measurements were taken on the third nutrient, whereas sixty
to ninety thousand measurements were taken on the other four nutrients.

6.3 Impact on the number of distinct regions

As discussed in the subsection before, we get a similarity probability for every nutrient, region
pair to the user defined region. Assuming that the user only selects the nutrient calcium, the
execution time in dependence of the number of distinct regions is as follows:
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Figure 6.3: Execution time in dependence of the number of distinct regions for nutrient calcium

According Figure 6.3, we can make out a linear increase in execution time in dependence of
the number of the number of distinct regions up to 1300 regions. For more than 1300 regions,
the execution time seems exploding, but this is only as most measurements are part of the last
two hundred regions in this example. The outcome is not unexpected, as the region view lists
for every location its corresponding neighbours, before each entry is assembled with the set of
nutrient measurements of the aggregated_data view in the region_summary_data view. There-
fore, the number of regions have a direct and nearly a linear impact on the number of entries
in the region_summary_data view if all measurements would be uniformly distributed over all
regions.

6.4 Query execution plan

The query execution plan for finding the top-k similar regions can be seen in Figure 6.4. As al-
ready discussed in Section 4, the algorithm is based on four views, whereas the top_k_similar_regions
view is red bordered and based on the composition of two region_summary_data views, which
itself are orange bordered and depend on the aggregated_data and region view. Both green
shaded areas shows the composition of the aggregated_data view, whereas the blue shaded ar-
eas displays the composition of the region view.

The complexity of computing the views depends on the number of nutrients the user selected.
This can be seen in Table 5.
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Figure 6.4: Query execution plan for finding the top-k similar regions for the nutrient calcium
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Table 5: Execution time for different views
hhhhhhhhhhhhhhhhhhhhhhhView

Nutrient
Calcium All

aggregated_data 3.93% 20.83%
region 30.67% 1.21%

region_summary_data (neighbours) 49.06% 48.50%
region_summary_data (user defined region) 4.20% 11.99%

top_k_similar_regions 12.14% 17.48%

If the top-k similar regions for the nutrient calcium shall be found, it is hardest to compute
the region_summary_data view containing all the entries of the other regions. It takes about
12.5 times as long as the computation of the aggregated_data view. This might be due to the
complex Shapiro-Wilk aggregate beside the fact that the same get_neighbours function is used
here like in the region view to drop regions intersecting the user defined region. On the other
hand, the region_summary_data view is quite as fast as the aggregated_data view, as it lists only
the entry for the user defined region. A further complex view is the region_view which computes
all the neighbour locations to a location. The query needs 6.8 times longer to build the view in
comparison to the aggregated_data view.

In case all nutrients were selected, the region_summary_data view containing all the entries
of the other regions is still the slowest, but the region view is now the fastest as its number of
entries remain unchanged. On the other hand, there are now more entries in the aggregated_data
view, making it more complex, which results in the fact that it already needs half as long as the
region_summary_data view. Furthermore, also the region_summary_data view containing all
the entries of the user defined region is now much slower, as it has to list an entry for every
value. Fortunately, the complexity of the top_k_similar_regions view is now about 1.2 times
faster than the aggregated_data view.

We have to acknowledge that some views, like the aggregated_data and region view can
be computed in parallel. If those two views are at least partially computed, also the two re-
gion_summary_data views, which depend on this two views, can be computed in parallel, re-
ducing the total execution time.

6.5 Top k (dis)similar regions

Given the nutrient calcium with Nesslau as the centre of the user defined region, the most similar
region is around Vignon near Illanz in Grisons as seen in Figure 6.5. The two regions can be
considered 99.9% similar. The next eight most similar regions are all within the same area
around Illanz. This is not very surprising, as most of their measurements are part of some
nearby region as well. With 97.9% the next completely different region around Grandvillard
follows up.
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Figure 6.5: Most similar region to Nesslau for nutrient calcium

On the other hand, the most dissimilar region can be found around Rohrbach near Burgdorf
as seen in Figure 6.6. Its similarity probability is nearly 0.0%. Moreover, nearby regions are as
dissimilar as well, as most measurements are similar in both regions.

Figure 6.6: Most dissimilar region to Nesslau for nutrient calcium
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7 Conclusions and Future Work

The developed algorithm for finding the top-k similar regions, contributes to the work of Agro-
scope. Researches are now able to identify similar regions, which allows them to make further
studies. They can now make decision whether measurements shall be further taken from some
region or if they can analyse new regions due to similarities. Furthermore, researchers can com-
pare two regions individually on their similarity probability for some nutrient.

The evaluation revealed that the computation of the top-k similar regions can be done in
reasonable time for few nutrients. Furthermore, there indeed exist very similar and dissimilar
regions, at least for the considered example. Moreover, the execution time increases linearly in
the number of measurements, distinct nutrients and regions if the measurements are uniformly
distributed among them. However, the algorithm returns a similarity probability for every region,
nutrient pair to the user defined region. The use of a multivariate approach would encounter this
problem and give more meaningful results about which regions are most similar and to which
degree irrespective of the nutrient. Furthermore, a work around for nutrient measurement sets
which are not normally distributed should be invented using other statistical tests.
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Appendix 1

According [4] the a(ni,k′) Shapiro-Wilk constants are as follows:
H
HHHHi

n 1 2 3 4 5 6 7 8 9 10

1 0.0000 0.7071 0.7071 0.6872 0.6646 0.6431 0.6233 0.6052 0.5888 0.5739
2 - - 0.0000 0.1667 0.2413 0.2806 0.3031 0.3164 0.3244 0.3291
3 - - - - 0.0000 0.0875 0.1401 0.1743 0.1976 0.2141
4 - - - - - - 0.0000 0.0561 0.0947 0.1224
5 - - - - - - - - 0.0000 0.0399

HHH
HHi
n 11 12 13 14 15 16 17 18 19 20

1 0.5601 0.5475 0.5359 0.5251 0.5150 0.5056 0.4968 0.4886 0.4808 0.4734
2 0.3315 0.3325 0.3325 0.3318 0.3306 0.3290 0.3273 0.3253 0.3232 0.3211
3 0.2260 0.2347 0.2412 0.2460 0.2495 0.2521 0.2540 0.2553 0.2561 0.2565
4 0.1429 0.1586 0.1707 0.1802 0.1878 0.1939 0.1988 0.2027 0.2059 0.2085
5 0.0695 0.0922 0.1099 0.1240 0.1353 0.1447 0.1524 0.1587 0.1641 0.1686
6 0.0000 0.0303 0.0539 0.0727 0.0880 0.1005 0.1109 0.1197 0.1271 0.1334
7 - - 0.0000 0.0240 0.0433 0.0593 0.0725 0.0837 0.0932 0.1013
8 - - - - 0.0000 0.0196 0.0359 0.0496 0.0612 0.0711
9 - - - - - -0 0.0000 0.0163 0.0303 0.0422
10 - - - - - - - - 0.0000 0.0140

HH
HHHi

n 21 22 23 24 25 26 27 28 29 30

1 0.4643 0.4590 0.4542 0.4493 0.4450 0.4407 0.4366 0.4328 0.4291 0.4254
2 0.3185 0.3156 0.3126 0.3098 0.3069 0.3043 0.3018 0.2992 0.2968 0.2944
3 0.2578 0.2571 0.2563 0.2554 0.2543 0.2533 0.2522 0.2510 0.2499 0.2487
4 0.2119 0.2131 0.2139 0.2145 0.2148 0.2151 0.2152 0.2151 0.2150 0.2148
5 0.1736 0.1764 0.1787 0.1807 0.1822 0.1836 0.1848 0.1857 0.1864 0.1870
6 0.1399 0.1443 0.1480 0.1512 0.1539 0.1563 0.1584 0.1601 0.1616 0.1630
7 0.1092 0.1150 0.1201 0.1245 0.1283 0.1316 0.1346 0.1372 0.1395 0.1415
8 0.0804 0.0878 0.0941 0.0997 0.1046 0.1089 0.1128 0.1162 0.1192 0.1219
9 0.0530 0.0618 0.0696 0.0764 0.0823 0.0876 0.0923 0.0965 0.1002 0.1036
10 0.0263 0.0368 0.0459 0.0539 0.0610 0.0672 0.0728 0.0778 0.0822 0.0862
11 0.0000 0.0122 0.0228 0.0321 0.0403 0.0476 0.0540 0.0598 0.0650 0.0697
12 - - 0.0000 0.0107 0.0200 0.0284 0.0358 0.0424 0.0483 0.0537
13 - - - - 0.0000 0.0094 0.0178 0.0253 0.0320 0.0381
14 - - - - - - 0.0000 0.0084 0.0159 0.0227
15 - - - - - - - - 0.0000 0.0076
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HH
HHHi

n 31 32 3 34 35 36 37 38 39 40

1 0.4220 0.4188 0.4156 0.4127 0.4096 0.4068 0.4040 0.4015 0.3989 0.3964
2 0.2921 0.2898 0.2876 0.2854 0.2834 0.2813 0.2794 0.2774 0.2755 0.2737
3 0.2475 0.2463 0.2451 0.2439 0.2427 0.2415 0.2403 0.2391 0.2380 0.2368
4 0.2145 0.2141 0.2137 0.2132 0.2127 0.2121 0.2116 0.2110 0.2104 0.2098
5 0.1874 0.1878 0.1880 0.1882 0.1883 0.1883 0.1883 0.1881 0.1880 0.1878
6 0.1641 0.1651 0.1660 0.1667 0.1673 0.1678 0.1683 0.1686 0.1689 0.1691
7 0.1433 0.1449 0.1463 0.1475 0.1487 0.1496 0.1505 0.1513 0.1520 0.1526
8 0.1243 0.1265 0.1284 0.1301 0.1317 0.1331 0.1344 0.1356 0.1366 0.1376
9 0.1066 0.1093 0.1118 0.1140 0.1160 0.1179 0.1196 0.1211 0.1225 0.1237
10 0.0899 0.0931 0.0961 0.0988 0.1013 0.1036 0.1056 0.1075 0.1092 0.1108
11 0.0739 0.0777 0.0812 0.0844 0.0873 0.0900 0.0924 0.0947 0.0967 0.0986
12 0.0585 0.0629 0.0669 0.0706 0.0739 0.0770 0.0798 0.0824 0.0848 0.0870
13 0.0435 0.0485 0.0530 0.0572 0.0610 0.0645 0.0677 0.0706 0.0733 0.0759
14 0.0289 0.0344 0.0395 0.0441 0.0484 0.0523 0.0559 0.0592 0.0622 0.0651
15 0.0144 0.0206 0.0262 0.0314 0.0361 0.0404 0.0444 0.0481 0.0515 0.0546
16 0.0000 0.0068 0.0131 0.0187 0.0239 0.0287 0.0331 0.0372 0.0409 0.0444
17 - - 0.0000 0.0062 0.0119 0.0172 0.0220 0.0264 0.0305 0.0343
18 - - - - 0.0000 0.0057 0.0110 0.0158 0.0203 0.0244
19 - - - - - - 0.0000 0.0053 0.0101 0.0146
20 - - - - - - - - 0.0000 0.0049

H
HHHHi

n 41 42 43 44 45 46 47 48 49 50

1 0.3940 0.3917 0.3894 0.3872 0.3850 0.3830 0.3808 0.3789 0.3770 0.3751
2 0.2719 0.2701 0.2684 0.2667 0.2651 0.2635 0.2620 0.2604 0.2589 0.2574
3 0.2357 0.2345 0.2334 0.2323 0.2313 0.2302 0.2291 0.2281 0.2271 0.2260
4 0.2091 0.2085 0.2078 0.2072 0.2065 0.2058 0.2052 0.2045 0.2038 0.2032
5 0.1876 0.1874 0.1871 0.1868 0.1865 0.1862 0.1859 0.1855 0.1851 0.1847
6 0.1693 0.1694 0.1695 0.1695 0.1695 0.1695 0.1695 0.1693 0.1692 0.1691
7 0.1531 0.1535 0.1539 0.1542 0.1545 0.1548 0.1550 0.1551 0.1553 0.1554
8 0.1384 0.1392 0.1398 0.1405 0.1410 0.1415 0.1420 0.1423 0.1427 0.1430
9 0.1249 0.1259 0.1269 0.1278 0.1286 0.1293 0.1300 0.1306 0.1312 0.1317
10 0.1123 0.1136 0.1149 0.1160 0.1170 0.1180 0.1189 0.1197 0.1205 0.1212
11 0.1004 0.1020 0.1035 0.1049 0.1062 0.1073 0.1085 0.1095 0.1105 0.1113
12 0.0891 0.0909 0.0927 0.0943 0.0959 0.0972 0.0986 0.0998 0.1010 0.1020
13 0.0782 0.0804 0.0824 0.0842 0.0860 0.0876 0.0892 0.0906 0.0919 0.0932
14 0.0677 0.0701 0.0724 0.0745 0.0765 0.0783 0.0801 0.0817 0.0832 0.0846
15 0.0575 0.0602 0.0628 0.0651 0.0673 0.0694 0.0713 0.0731 0.0748 0.0764
16 0.0476 0.0506 0.0534 0.0560 0.0584 0.0607 0.0628 0.0648 0.0667 0.0685
17 0.0379 0.0411 0.0442 0.0471 0.0497 0.0522 0.0546 0.0568 0.0588 0.0608
18 0.0283 0.0318 0.0352 0.0383 0.0412 0.0439 0.0465 0.0489 0.0511 0.0532
19 0.0188 0.0227 0.0263 0.0296 0.0328 0.0357 0.0385 0.0411 0.0436 0.0459
20 0.0094 0.0136 0.0175 0.0211 0.0245 0.0277 0.0307 0.0335 0.0361 0.0386
21 0.0000 0.0045 0.0087 0.0126 0.0163 0.0197 0.0229 0.0259 0.0288 0.0314
22 - - 0.0000 0.0042 0.0081 0.0118 0.0153 0.0185 0.0215 0.0244
23 - - - - 0.0000 0.0039 0.0076 0.0111 0.0143 0.0174
24 - - - - - - 0.0000 0.0037 0.0071 0.0104
25 - - - - - - - - 0.0000 0.0035
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Appendix 2

According [4] the critical Shapiro-Wilk values W(ni,0.05) are as follows:

hhhhhhhhhhhhhhhhhhn

level of significance
5%

3 0.767
4 0.748
5 0.762
6 0.788
7 0.803
8 0.818
9 0.829
10 0.842
11 0.850
12 0.859
13 0.866
14 0.874
15 0.881
16 0.887
17 0.892
18 0.897
19 0.901
20 0.905
21 0.908
22 0.911
23 0.914
24 0.916
25 0.918
26 0.920
27 0.923
28 0.924
29 0.926
30 0.927
31 0.939
32 0.930
33 0.931
34 0.933
35 0.934
36 0.935
37 0.936
38 0.938
39 0.939
40 0.940
41 0.941
42 0.942
43 0.943
44 0.944
45 0.945
46 0.945
47 0.946
48 0.947
49 0.947
50 0.947
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