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Abstract

Hierarchical diagrams are well-suited for visualizing the
structure and decomposition of complex systems. With the
advent of UML 2.0, in particular the new composite struc-
ture diagram, hierarchical models have entered the model-
ing mainstream.

However, the current tools poorly support hierarchical
modeling and visualization. Simple explosive zooming is
the most common means for navigating through hierar-
chies; some tools even visualize the complete hierarchy in
a single large diagram. The line routing algorithms used
by the current tools are poorly suited to this task: for ex-
ample, they produce lines that run across nodes or overlap
with other lines.

In this paper, we present a novel algorithm for line rout-
ing in hierarchical models which, together with our previ-
ous work on node positioning, yields visualizations of hi-
erarchical models that can easily be browsed and edited.
In particular, our algorithm (i) produces an esthetically ap-
pealing layout, (ii) routes in real-time, and (iii) preserves
the secondary notation of the diagrams as far as possible.

1 Introduction
With the advent of UML 2.0 [18], there has been re-

newed interest in hierarchical models and their effective
visualization. The traditional way of visualizing hierar-
chically structured models is by explosive zooming: when
looking at the details of a particular node, the diagram with
the details either replaces the previously displayed diagram
or it is opened in a new window that supersedes the previ-
ously viewed one. In both cases, the context of the zoomed
node is lost: with explosive zooming, one cannot view the
details of a node and its context in the same diagram. For
human understanding of diagrams, this is bad because hu-
mans typically want to see their focus of interest in detail
together with its surrounding context.

In our research group at the University of Zurich, we
have investigated hierarchically structured models and their
visualization in the framework of the ADORA project since
1998 and have developed both a hierarchically structured
modeling language and a prototype tool for visualizing such
hierarchies [12, 24].

With hierarchical models, we typically want that tools
display not only the views that have been drawn by the
modeler, but exploit the full power of such models by al-
lowing arbitrarily navigation and zooming in the models. In
particular, abstraction and filtering capabilities are required.
Abstractions help modelers concentrate on their focus of in-
terest by hiding all lower levels of the hierarchy. Filtering
mechanisms display only those model element types that
the modeler is currently interested in and hide all others.

Designing tools with such capabilities is a non-trivial
task because

• in order to support abstraction and filtering, the tool
must be able to generate dynamically different views
from an abstract internal representation of the model,

• generated layouts should resemble the original layout
drawn by the modeler as far as possible.

The second point is important because a modeler builds
a cognitive map [1] of locations and shapes of objects and
lines when creating models and later browsing or modifying
them. This layout information that helps modelers read and
comprehend diagrams, is called secondary notation [21]. In
order to make generated views easily comprehensible for
humans, a tool must preserve the secondary notation as far
as possible when generating a view or when navigating from
a given view to a more abstract or a more detailed one.

However, with the requirement of preserving the sec-
ondary notation, the task of view generation becomes dif-
ficult: the well-known algorithms for graph layout or VLSI
layout, for example [6], cannot be used because they gener-
ate the layout from scratch and ignore the secondary nota-
tion. We have surveyed several UML tools (see Appendix)



and found that none of them solves the problem of preserv-
ing the secondary notation in a satisfactory way.

The layouting problem can be roughly divided into (a)
positioning of nodes (classes, states, activities, etc.) and (b)
routing lines that connect nodes (associations, state transi-
tions, port connections, etc.).

In our previous work on the ADORA tool [24], we have
developed node positioning algorithms for editing, navi-
gating and zooming hierarchical models such that the sec-
ondary notation is preserved. In order to make this paper
more self-contained, we briefly survey these algorithms in
Section 3.

The main contribution of this paper is a novel algorithm
for routing lines between nodes in hierarchically structured
models that

• routes in real-time when a modeler navigates, zooms
or edits a view,

• generates a graphically appealing layout (no colli-
sions / overlaps between lines, short paths),

• preserves the secondary notation (i.e. manual adjust-
ments of the lines) as far as possible,

• allows a modeler to modify the generated layout of a
line route and preserves this modification as a new sec-
ondary notation in subsequent view modifications.

All presented algorithms for node positioning and line
routing have been implemented in our ADORA tool [24].
However, our algorithms work on any hierarchical box-and-
line language, for example, UML 2.0 composite structure
diagrams, activity diagrams or state machine diagrams.

The remainder of the paper is organized as follows. In
Section 2, we briefly survey the capabilities of current hi-
erarchical modeling tools with respect to layout genera-
tion and preservation of secondary notation. Section 3 ex-
plains our algorithms for node positioning in hierarchical
diagrams. Section 4 is the core of this paper, where we de-
scribe our line routing algorithm. In Section 5, we apply our
zoom and line routing algorithm implemented as an eclipse
plugin to a sample model of a heating control system. Re-
lated work is discussed in Section 6. In Section 7, we sum-
marize our results, discuss advantages and limitations and
sketch our future work.

2 Capabilities of Current Hierarchical Mod-
eling Tools

We surveyed about twelve tools with respect to their abil-
ity for visualizing, navigating and editing hierarchical mod-
els. Most of them are UML tools. We concentrated on those

diagram types that allow hierarchical decomposition, in par-
ticular composite structure diagrams, state diagrams and ac-
tivity diagrams.

In our opinion, the minimum features that a hierarchi-
cal modeling tool should support are: smart zooming and
navigation operations for browsing through the hierarchy,
occlusion free positioning of nodes in decomposition hier-
archies, automated line routing, and adequate mechanisms
for filtering and abstraction. All operations on the models
should preserve the secondary notation as far as possible.
Additionally, smart editing functionality would be valuable
for avoiding tedious manual re-layouting work when insert-
ing or deleting model elements. None of the investigated
tools has all these features. The details of our tool survey
can be found in the appendix.

3 Node Positioning in
Hierarchical Model Views

Dynamic layout algorithms are required to adequately
handle large, hierarchically nested diagrams. Conventional
tools without dynamic layout support either statically dis-
play the whole diagram including all details or show sub
hierarchies in a linked diagram replacing or hiding the cur-
rent content. In both cases, the global context of the visible
model part is lost.

In contrast to this, we visualize the whole model in a sin-
gle window and apply layout algorithms to adapt the desired
level of detail. This allows to display local detail where
needed while keeping the global context visible. We use a
logical fisheye algorithm [11] to perform the rearrangement
of the diagram elements dynamically while the secondary
notation is preserved as far as possible.

Variants of our logical fisheye algorithm [24, 12, 3] per-
form different tasks. We use it (i) for zooming-in and -out
single objects to reveal or hide details, (ii) together with
insertion or deletion operations it generates the necessary
space or removes the free gaps, and (iii) applied on all ob-
jects of a certain type, it can be used as a filter to hide or
re-display objects. All three variants rely on the same algo-
rithmic idea.

The idea is to move surrounding objects radially away
on a space request or contract them radially on freed space.
This is schematically shown in Fig. 1. Object A is being
zoomed-in and therefore has to be expanded from its old
size (solid) to its new size (dashed). The surrounding ob-
jects B, C, and D would get too close or even overlap with
A’s new size. To shift them away, the vectors ~VB , ~VC , and
~VD are calculated by connecting each object’s center to the

center of A. The length of the vector is determined by the
expansion size of A in that direction. For a contraction, the
calculations are reversed correspondingly. The radial shift-
ing assures stable, relative positions among the objects B,
C, and D and to object A.
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Figure 1. Zooming-In: surrounding objects
are shifted away

In a hierarchical diagram, the objects are embedded in a
parent container P. On an expansion or contraction, P’s size
has to be adapted accordingly. The secondary notation in
form of P’s shape is preserved by keeping the distance be-
tween the children and its surrounding container invariant.

Adapting P’s size requires layout adaptations on the next
higher hierarchy level. P’s siblings in turn will be radially
contracted or shifted away. P’s parent container again has
to be adapted in size. We apply our algorithm recursively
up to the root object.

Whenever the layout of a diagram is changed by zoom-
ing or editing nodes, the lines connecting the nodes in the
diagram must be re-routed. In the following section, we
present our novel line routing algorithm that is smart with
respect to avoiding occlusions and overlaps and is able to
preserve user-defined secondary notation.

4 Line Routing for Hierarchical Elements

The lines that represent relationships in a diagram are
usually added in a second step after the placement of the
nodes. To maintain the readability of the diagram it is de-
sirable that a line between two nodes does not pass through
any other nodes or overlap with other lines. The cumber-
some line routing task should be done automatically to let
the user focus on his primary goal of creating a diagram.

The application of a zoom algorithm on the hierarchical
structure leads to a dynamic layout of the diagram, i.e. the
layout is not only changed by editing operations but also by
the logical navigation. Changes of the layout demand an ad-
justment of the lines that has to be done automatically and in
real-time. Otherwise the user would spend most of his time
in rerouting the existing lines. This dynamic layout leads to
the additional requirement that the runtime complexity of
the line routing algorithm has to permit an interactive us-
age.

In contrast to techniques from other domains such as

VLSI design, aesthetics play the more important role in dia-
grams than e.g. physical constraints. The lines in a diagram
have to be easy to follow and add clear meaning to the di-
agram. But there is only little information available about
what is a “good” line [22]. In most areas that use diagrams
to visualize information, a preferred style or common sense
has emerged, e.g. rectilinear lines in circuit diagrams.

Lines in a hierarchical diagram often connect nodes that
are located in different branches of the hierarchy tree that
is visualized by the diagram. It is therefore not always ob-
vious which nodes are potential obstacles for a line. The
gray shaded nodes in Fig. 2 are the potential obstacles for
the line that connects the nodes 1.1 and 4.2. These nodes
lie on different levels of the hierarchy (e.g. nodes 1.2 and 3
are both obstacles even though node 1.2 is one hierarchi-
cal level below node 3). The potential obstacles of a line
have therefore to be computed by traversing the hierarchy
tree from the root node the line is completely contained in
(node 0 in Fig. 2), to both the source and target node of the
line. Thereby, all the nodes on each level are collected that
are not contained in the path from the source or target node
to the root node. When the obstacles are computed, the hi-
erarchical line routing problem becomes an instance of the
usual “flat” line routing problem.
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Figure 2. Line routing in a hierarchical struc-
ture

We are focusing on diagrams that are incrementally cre-
ated by a human user and not on diagrams that are automat-
ically created to visualize an existing structure. The lines
therefore have to be routed sequentially, each line when it
is added to the diagram. As the position and the size of the
nodes define the secondary notation, the line routing algo-
rithm must not change the layout of the diagram.

4.1 The routing problem

If we route the lines, as an initial simplification, indepen-
dently (i.e. without any regard to existing lines) around the
nodes that represent obstacles, we are faced with an instance
of the routing problem that arises in different domains.

The routing problem has been studied extensively in
VLSI design to automatically layout the wires that connect
the circuit components. The first and perhaps best known



routing algorithm for VLSI design is Lee’s algorithm [15],
which is an application of Dijkstra’s breadth-first shortest
path search algorithm [4] to a uniform grid. Lee’s algo-
rithm is based on the expansion of a diamond-shaped wave
from the source point that continues until the target point is
reached. The algorithm always finds a solution if one ex-
ists, and ensures an optimal solution. The major drawback
of this approach is that its space and runtime complexity is
O(mn) for a grid with m ∗ n cells.

Fig. 3 shows the proceeding of Lee’s algorithm after the
sixth iteration of the expansion phase while routing a line
from the source cell s to the target cell t. The arrows indi-
cate for which cells the distance values are calculated in the
next step. The shortest path can be found after the expan-
sion phase by starting at the tile t and moving always to one
of the neighboring tiles that has a lower cost value than the
current tile.
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Figure 3. Lee’s algorithm

4.1.1 Data structure

Instead of a uniform grid we use the corner stitching struc-
ture [20] as the underlying data structure for the line routing.
The corner stitching structure has originally been developed
as an efficient storage mechanism for VLSI layout systems
and has two important features:

• All the space, whether occupied by a node or empty, is
explicitly represented in the structure.

• The space is divided into rectangular areas that are
stitched together at their corners like a patchwork quilt.

Fig. 4 shows four nodes represented in the corner stitch-
ing structure. The space is divided into a mosaic with
rectangular tiles of two types: space tiles and solid tiles.
The space tiles are organized as maximal horizontal strips,
i.e. no space tile ever has another space tile immediately to
its right or left.

Figure 4. Corner Stitching data structure

The organization as maximal horizontal strips results in
clean upper bounds on the number of space tiles indepen-
dently of the layout of the nodes and the overall size of the
diagram. In a diagram with N nodes, there will never be
more than 3N + 1 space tiles (for a proof of this limit see
[20]).

The corner stitching structure in its initial form is re-
stricted to rectilinear geometries, because the tiles have to
be rectangles. This is no real constraint for our diagrams,
because we use rectangles to visualize the nodes. If the
shapes that have to be visualized are not rectangles, the cor-
ner stitching structure can be extended, e.g. to use trape-
zoids instead of rectangles [16].

The corner stitching structure provides a variety of op-
erations, such as neighbor-finding, point-finding, stretching
and compaction. The algorithms for these operations de-
pend only on local information (i.e. the objects in the imme-
diate vicinity of the focus of the operation). The expected
runtime is therefore generally linear to the number of nearby
objects. The most important features of the corner stitching
structure in connection with line routing are the explicit rep-
resentation of white space that can be used for line routing
and the easy determination of all the neighbors of a tile.

4.1.2 White space computation

Our line routing approach is divided into two completely
decoupled steps: The first step computes one or multiple
sequences of space tiles through which the shortest path has
to pass. The second step computes the line itself, i.e. the
bend points in a polyline or the curves of a spline inside the
white space tiles that have been calculated in the first step.
These two steps are described in the current and the next
sub-section.

We apply the fundamental wave expansion idea of Lee’s
algorithm to the corner stitching structure instead of a uni-
form grid structure to compute the path(s) of space tiles
through which the line has to pass. The corner stitching



structure has a clear upper limit on the number of tiles de-
pending only on the number of nodes, whereas the num-
ber of cells in a uniform grid is determined by the size and
resolution of the grid. Diagrams (especially hierarchical
structured diagrams) occupy usually a lot of space while
the number of nodes remains small. Integrated circuits have
the opposite characteristics: the circuit board has to be as
small as possible (highly integrated) and often contains up
to millions of components. So we are applying Lee’s algo-
rithm to a data structure that is better suited for the domain
of diagrams than the algorithm’s initial domain of integrated
circuits.

During its expansion phase, our algorithm computes a
distance value for the space tiles of the structure. Due to
the non-uniform tile size of the corner stitching structure, it
is not possible to use the distance from the source point to
the tiles as distance values, because there may be multiple
different values for one tile. We therefore use a combina-
tion of the source distance and the target distance which are
both measured in the Manhattan distance1. Furthermore,
the algorithm computes for each tile the point P inside the
tile, where the distance is actually measured. For the actual
search, an ordered data structure (e.g. heap, priority queue)
denoted as Ω is used. Below, we present an informal de-
scription of the algorithm:

1. Construct the corner stitching structure and determine
the tile Tstart that contains the source point s and the
tile Tend that contains the target point t.

2. Set the point P for Tstart to the source point s, the
source distance of Tstart to 0 and the distance of Tstart
to the Manhattan distance between P and the target
point t. Insert Tstart into Ω.

3. As long as Ω contains tiles: Remove the tile T with
the lowest distance value from Ω. If this tile is the
tile Tend, a path has been found. Otherwise, calculate
for each neighboring space tile Tnext the point Pnext,
i.e the point inside Tnext closest to the point P of the
current tile T . Compute for each of these neighboring
tiles two distance values: The source distance σ is cal-
culated by adding the Manhattan distance between the
point P and the point Pnext to the source distance of
T . The distance δ is calculated by adding the Manhat-
tan distance between Pnext and the target point t to σ.
Equations 1 and 2 show the calculation of the source
distance σ and the distance δ for the tile Tnext relative
to the tile T , whereas λ(P1, P2) denotes the Manhattan
distance between the points P1 and P2:

σ(Tnext) = σ(T ) + λ(P, Pnext) (1)

1The Manhattan distance, also known as the L1-distance, between two
points P andQ is defined as the sum of the lengths of the projections of the
line segments onto the coordinate axes: λ(P,Q) = |xP−xQ|+|yP−yQ|

δ(Tnext) = σ(Tnext) + λ(Pnext, t) (2)

Check whether the calculated distance value for Tnext
is lower than a previously calculated value for this tile.
If so, update the distance δ and source distance σ val-
ues of Tnext. Insert the tile Tnext into Ω.

4. The sequence(s) of space tiles that constitute the short-
est path can be found, in analogy to Lee’s and Dijk-
stra’s algorithm, by moving from a tile to the neighbors
that have the same distance value δ. If multiple neigh-
bors have the same value, there exist multiple solutions
and the current tile is a branch.

Fig. 5 shows the corner stitching structure after the sec-
ond iteration through step 3 of the algorithm. The current
tile T corresponds to T6 and the distance values σ and δ
for the tiles T4, T5 and T7 are calculated. According to
equation 1, the source distance σ for T7 corresponds to the
addition of the source distance of T6 (which is zero in this
case) to the Manhattan distance between the points P and
Pnext in T or Tnext, respectively, which is 36. The distance
δ is calculated by adding the Manhattan distance between
the point Pnext and the target point t, which is 576, to the
source distance σ.

δ(T
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Figure 5. Routing algorithm

4.1.3 Line routing
As the algorithm for finding the space tiles that the shortest
path has to pass through is decoupled from the algorithm
that does the actual routing, i.e. determine the informations
that are necessary to draw the line, different algorithms that
produce different styles of lines can be implemented on top
of the algorithm described in Section 4.1.2. Fig. 6 shows
three different line routing styles: a rectilinear polyline, an
unconstrained polyline and a spline.

We have currently implemented a rectilinear line routing
style because this style nicely fits the general diagram lay-
out that uses rectilinear nodes. Furthermore, it is straight-



Figure 6. Different line routing styles

forward and easy to implement due to the rectilinear nature
of the tiles in the corner stitching structure.

4.2 Line crossings

As long as the lines are routed independently from each
other, it is impossible to reduce line crossings or avoid the
overlapping of line segments. But line crossings and over-
lappings reduce the readability of a diagram dramatically,
because it becomes hard to follow the lines and to find out
which nodes are connected. To maintain a good readability
of the diagram, it is therefore unavoidable to take existing
lines into account while routing a new line.

It is possible to route the lines independently and reduce
line crossings afterwards by explicitly checking for inter-
secting lines and move the lines or line segments to reduce
crossings or avoid overlappings. However, this solution can
only provide local optimizations because the overall path is
already defined. It is therefore not possible to avoid areas
that are already occupied by a lot of lines by looking for a
detour through areas that are occupied by less lines.

By extending the corner stitching structure and the al-
gorithm of Section 4.1.2, we can consider global properties,
like avoiding line crossings, during the routing of a line. We
extend the corner stitching structure by a third tile type: the
line tile. Line tiles are space tiles weighted by a constant
cost factor α. The algorithm now calculates cost values in-
stead of distance values for the tiles. A higher cost factor
α of a tile increases the costs for a line to pass through this
tile. We are therefore transforming the source distance σ
and the distance δ into a source cost ω and a cost γ. Equa-
tions 3 and 4 show the extension of equations 1 and 2 with
the cost factor α:

ω(Tnext) = ω(T ) + α ∗ λ(P, Pnext) (3)

γ(Tnext) = ω(Tnext) + λ(Pnext, t) (4)

Fig. 7 shows a snapshot after the third iteration through
step 3 of the algorithm of Section 4.1.2 extended by the cost
factor, while routing a line from the source point s to the
target point t. The cost γ for the tile T8 has been calculated
during the first iteration. The second iteration lead to the
costs for tiles T4, T9, T10 and T13. The cost for tile T11 is
increased by a cost factor α of 4 because tile T10 is a line
tile. Therefore, the Manhattan distance λ between the point
P in T10 and the point Pnext in tile T11 is multiplied by the
cost factor of the line tile T10.
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Figure 7. Weighted tiles

The corner stitching structure has to be extended by an
additional invariant in order to make the described algo-
rithm work in all situations as expected: A line tile can
never have multiple space tiles as left or right neighbors,
i.e. if a line tile touches two or more space tiles on the left
or right side, it has to be split accordingly. That is the rea-
son why there are four line tiles in Fig. 7 instead of only
one that covers the whole existing line. As noted in Sec-
tion 4.1.1, the corner stitching structure in its initial form
is restricted to a rectilinear geometry, and the technique to
avoid line intersections can therefore only be applied to rec-
tilinear lines2.

Step 4 of the algorithm in Section 4.1.2 has to be ex-
tended so that the neighbors with the same or a lower cost
value are selected during the retracing. The cost value be-
comes lower, if a line tile is crossed during the retrace.

The cost factor α offers a possibility to the user to in-
fluence the line routing of a diagram. By setting α for the
line tiles, the user can express the length of the detour s/he
is willing to accept to avoid a line crossing. The idea of
weighted tiles is not restricted to line tiles. It may be ex-
tended to avoid intersections with labels or to indicate pre-
ferred areas for the routing.

4.3 Preserving Secondary Notation

In connection with line routing, the secondary notation
has two aspects: The routing algorithm has to tolerate some
user influence, i.e. the line should not be routed completely
automatically. And once defined, the secondary notation of
the lines has to be preserved in the case of layout changes
e.g. produced by the zooming algorithm.

The algorithm that has been described so far, lets the user
select where the source and target points are anchored on
the source and target node. Furthermore, by varying the

2The approach is actually not restricted to the corner stitching structure.
It can be used for any geometric structure that provides informations about
the white space in the diagram.



cost factor α, the user can define to what extent the algo-
rithm should avoid line intersections. If there exist multiple
shortest paths, it is also possible to let the user select one so-
lution manually or let him/her provide a selection function
to the algorithm.

But the definition of the secondary notation by the user
does not have to end with the application of the routing al-
gorithm. The user can change the line that has been pro-
posed by the routing algorithm by moving the segments of
a rectilinear line or the bending points of a unconstrained
polyline. These changes have to be preserved when the line
has to be rerouted in case of a layout modification. The
corner stitching structure is a valuable source of informa-
tion for preserving the secondary notation, because it per-
mits an easy extraction of geometric informations (e.g clos-
est neighbor or available free space) about the layout of the
diagram. It is therefore possible to let the user move the
line segments in Fig. 8 closer to the node that the line has
to be routed around, store this information (symbolized by
the arrows in the figure) and restore the line after a layout
modification has occurred. Fig. 9 shows a screenshot of the
ADORA modeling tool during a zoom operation while pre-
serving the secondary notation of the lines.

Figure 8. Preserving the secondary notation

It is usually necessary to use the routing algorithm to re-
route the lines completely after a layout modification, be-
cause additional segments or bending points may be neces-
sary or existing segments may be no longer needed. The
routing algorithm can therefore not always guarantee that
the lines look still the same after a layout modification, be-
cause the former routing may have become absurd in the
new layout.

4.4 Performance Analysis

We have done a short performance analysis to test
whether our routing algorithm can be used in an interactive
environment. The results show that the algorithm is able to
route a large number of lines fast enough to avoid a user ir-
ritation. The setup and detailed results of the performance

analysis can be found in the appendix.

5 Example Application

We have implemented our approach as an Eclipse plu-
gin [19] that allows to create models based on our ADORA
language. Furthermore, the presented zoom and line algo-
rithm are integrated to support navigation through the model
while preserving secondary notation. We will use a dis-
tributed heating control system as an example to demon-
strate our zoom and line routing algorithm.

In Fig. 9, we can see an abstracted version of the heating
control system modeled in ADORA that shows the general
hierarchical composition in one master module and several
room modules. They are modeled as abstract object and
object set represented as rectangle and pile of rectangles re-
spectively. The three dots appended to the object names
indicate that details are currently hidden. An operator can
control the complete system, setting default temperatures
for the rooms. Actors are represented by sexangles con-
nected to scenariocharts. A scenariochart models an in-
stance scenario represented by an adapted form of Jackson
JSP diagrams [14, 12]. States are represented as rounded
rectangles. Objects and states together form one hierarchi-
cal statechart.

Zooming into the object HeatingOn yields the situation
in Fig. 10. Our zoom algorithm is applied to extend the
object and adapt the surrounding context correspondingly.
The inner objects and their associations to other objects are
revealed. Our line routing algorithm adapts the routings of
associations if required.

If we compare the two situations in Fig. 9 and Fig. 10, we
can notice the secondary notation has been preserved well
by our zoom and line routing algorithm. The relative posi-
tions among the objects have been kept stable. For example,
RoomTempControlPanel can be found at the top right of
HeatingOn before and after the zoom operation. And also
the line routings have been adapted in a intuitively useful
way. Both newly drawn association from the BoilerControl
to the RoomControl and Settings object, for example, fol-
low the path of the existing, hierarchical superposed associ-
ation from BoilerControl to RoomModule yielding a pleas-
ant layout.

6 Related Work

The existing approaches to visualization and editing hi-
erarchical models are very limited concerning node posi-
tioning and employ rather primitive line routing techniques
only (see Section 2). Significant work on line routing, how-
ever, has been done in domains other than modeling, where
line routing is a major concern:

In the field of automatic graph drawing the routing of
the edges that connect the nodes is an integral part of the



Figure 9. Screenshot of the ADORA modeling tool

Figure 10. Screenshot of the ADORA modeling tool showing the expanded heating system



node placement algorithm. The graphs visualize existing
data and the drawing algorithm therefore can generate the
layout for all the nodes and edges together. There is no
need for incremental layout adaptation or preservation of a
layout produced by a human. The nodes have to be laid out
in a manner that places connected nodes close to each other
and avoids line intersections (see e.g. [6]).

The wire routing problem that occurs inVLSI design has
to deal with a fixed placement of the circuit components
and therefore is similar to our line routing problem. The
most important routing algorithms in this domain are those
developed by Lee [15] and Soukup [25] and their variants.
Due to their runtime complexity, wire routing algorithms
cannot be computed in real time on a personal computer.

The geometric shortest path problem in computational
geometry has many applications in robotics, geographic in-
formation systems and diagram drawing. The best known
approach constructs a visibility graph [17] and computes
the shortest path on this graph according to Dijkstra’s ap-
proach [4]. A visibility graph is the undirected graph that
has the corners of each obstacle and the source and tar-
get point as vertices and in which two vertices are adjacent
whenever they “see” each other, i.e. the nodes can be con-
nected by a straight line without intersecting any obstacle.
The avoidance of line crossings can’t be integrated directly
into the visibility graph and therefore has to be done in a
second step after the routing.

There are many approaches dealing with the aesthetics
and readability of visualized software structures or the vi-
sualization of networks. In [23], an approach for using a
fisheye view in diagrams is described. This approach does
not deal with hierarchical decomposed nodes and it does
not deal with an appealing layouting of the connections be-
tween the nodes.

The approach [5] visualizes hierarchical network struc-
tures by an approach which is related to a physical fisheye
view [11] for diagrams as described in [23]. This approach
is able to have several foci on a diagram and is able to pre-
serve the secondary notation for the nodes. Nodes contain-
ing a hierarchy of sub nodes are resized to a small size if
the content of them is hidden, whereas the context of the
zoomed nodes is expanded relatively to the space freed. Un-
fortunately, this approach routes the lines between the nodes
by directly drawing them, i.e. without caring about the read-
ability of the diagram, which may result in confusing over-
lapping between connections and nodes.

In [10], a line layouting algorithm is presented which
takes care of several aesthetics criteria, such as minimiz-
ing the crossing of the connections, evenly distributed nodes
and connections with the same length in the diagram. How-
ever, this approach describes an automatic layouting algo-
rithm without any influence of the user and without taking
care of the secondary notation.

Storey et al. [26] and [27] uses (amongst other strate-
gies) a fisheye view technique to visualize the structure of
large software system. The usage of a fisheye preserves
the secondary notation of the nodes. The hierarchically de-
composed graph nodes are connected by direct connections
During the zoom operations, confusing situations can result
from the overlapping of connections and nodes.

In [9] an approach is described for automatically layout-
ing UML class diagrams for edges and nodes. The approach
layouts diagrams in an appealing way according to several
identified aesthetics criteria. Due to the fact that the user
has no direct way to influence the way of layouting and the
layout occurs fully automatic, the secondary notation for
the nodes and the lines is not necessarily preserved. An
approach which has quite a similar aim but which uses a
different technique can be found in [13].

Discussions about diagram layout aesthetics criteria can
be found amongst others in [28], [8] and [22]. Both are
discussing the layout aesthetics on the basis of UML class
diagrams.

7 Conclusions

Summary and state of work. In the field of human-
centric, hierarchical modeling, a stable secondary notation
plays an important role. However, generating views from
the model to adapt the level of displayed detail, e.g. pro-
jecting and zooming, requires layout manipulations. Al-
gorithms for both node positioning and line routing are re-
quired that (i) produce a new layout on the fly, (ii) generate
appealing layouts, and (iii) preserve a human’s secondary
notation.

A survey of current tools revealed that these tools poorly
support the visualization of hierarchical models, in particu-
lar due to poor line routing and insufficient preservation of
secondary notation.

We have briefly presented our existing layout algorithm
for node positioning. Based on a logical fisheye algorithm,
new node layouts are computed for zooming, inserting,
deleting, and filtering nodes. The algorithms takes the cur-
rent layout into account and preserve it as far as possible.

As the main contribution of this paper, we have presented
a novel line routing algorithm, which is based on the idea of
using Lee’s algorithm on a corner stitching data structure.
To achieve our goals of appealing layout and preservation
of secondary notation, we have adapted and extended the
basic algorithm. All presented algorithms have been imple-
mented in our ADORA modeling tool written in Java, which
is able to generate views from hierarchical models.

Practical application. We have applied our algorithm to
example models with encouraging results, both concerning
usability and routing speed. As a next step, we are planning
to do usability tests with practitioners. We are also confi-
dent that our algorithm will scale to large models because



we benefit from the hierarchical model structure which de-
couples the number of lines to be rerouted. When the layout
of a node is changed, we have to reroute all directly embed-
ded lines (not the ones of children nodes) plus all parent
nodes up to the route node. The layout of any other node
remains unchanged. So, the number of nodes in which lines
need to be re-routed primarily depends on the depth of the
hierarchy. A formal analysis of the performance of our al-
gorithm will be part of our future work.

Limitations. Currently, our line routing algorithm is lim-
ited to rectilinear routing. Splines may be an alternative.
However, determining intersections is more complex for
splines. Label positioning is also not implemented yet.

Future work. In our ongoing research, we want to inves-
tigate to what extent nicer aesthetics justify a more complex
routing algorithm. As pointed out in Section 4, we want to
exploit the tile structure also for a better positioning of line
labels. Ongoing research will also include a formal per-
formance analysis and further optimizations, in particular
concerning the stability of generated layouts.
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A Appendix

A.1 Tool Support of Hierarchical Model-
ing with a Preservation of the Sec-
ondary Notation

The results of our study of the visualization features of cur-
rent tools are summarized in Table 1. We concentrated mainly
on UML tools and focused on the visualization features that these
tools provide for hierarchically decomposable diagrams, i.e. com-
posite structure diagrams, state diagrams and activity diagrams.
Some tools do not support hierarchical decomposition in the men-
tioned diagrams, and some of them do not implement these dia-
grams at all. If these three diagram types were not available, we
investigated other diagrams available, e.g. class diagrams. We use
the following abbreviations for the type of diagrams: composite
structure diagram (C), activity diagram (D), state diagram (S), all
diagrams supported (A=CDS), object diagram / collaboration dia-
gram (O), class diagram (K).

a. Language Support We started our investigation by having a
look on the tools presented as UML 2.0 compliant on the of-
ficial UML webpage. Unfortunately, only a few of the tools
implement the full UML 2.0 standard. Some of them im-
plement UML 1.4 standard with some elements taken from
UML 2.0, indicated in row a of Tab. 1 by the label UML1.4+.
Other tools implemented the UML 2.0 standard but with
some small differences to the UML 2.0 standard. This is
indicated by the label UML 2.0- in Tab. 1:

b. Hierarchical Decomposition There are different types of hi-
erarchical decomposition and the corresponding layout tech-
niques that can be found in the mentioned tools.

• n/a Means that the diagram type is not implemented
• – Indicates, that the given diagram type is imple-

mented, but with no hierarchical decomposition.
• 1 Indicates the implementation of a hierarchical de-

composition with a hierarchy of one nested level.
• n Indicates the implementation of a hierarchical de-

composition with a hierarchy of n nested levels.
• o Means that no occlusion occur when inserting or

moving child objects in the hierarchy.
• F Possibility to zoom into details of the hierarchy with

a less detailed context (Fisheye view)
• E Means that the hierarchy can consist of sub diagrams

which are displayed by explosive zoom.
• S Means that the hierarchy can be viewed by using

scrolling to different locations in the model. This prop-
erty can be combined with property E.

c. Smart Space Management The column c in Tab. 1 de-
scribes how far a smart space management is implemented
in the corresponding tools. A smart space management helps
when inserting new nodes or deleting nodes, to automatically
expand or contract the canvas of the parent. The following
abbreviations are used:

• – No Smart Space management

• I Means that smart space management is supported for
inserting elements (automatically resize the parent),
when the new element is inserted in the right lower
corner of the parent.

• D Means that smart space management is supported
for deleting elements (automatically resize the parent),
when the element is located in the right lower corner
of the parent.

• S Means that smart space management is given for in-
serting and deleting element anywhere in the parent.

• R Indicates smart space management when resizing a
child element in the parent left right lower corner.

d. Model Projection The column d in Tab. 1 describes how el-
ements of the model can be filtered out.

• m Manual projection, i.e. creating a new diagram man-
ually by copying references of the elements that should
be shown.

• I Automated projection facility, i.e. model parts can be
selected for automatically filtering them out.

• – No projection facility

e. Line routing We had a look on different properties in line
routing (see column d in Tab. 1). If no hierarchical model
was available, we had a look on the line routing in other dia-
gram types of the language.

• d Direct (straight) line routing
• s Splines Routing
• m Rectilinear line routing
• a The line route is computed automatically.
• b There is the possibility to insert bend points
• C Collision free line routing (no node collisions)
• L Overlapping free line routing
• K Crossing free line routing
• M midpoint label positioning with occlusion
• O Occlusion free label positioning

A.2 Performance Analysis of the Algo-
rithm

We have analyzed the performance of our line routing
algorithm by executing and measuring nine test cases. The
test cases consist of ADORA diagrams with different layout-
ing complexity.

A.2.1 A Short Overview of the Routing Algorithm’s
Implementation

We implemented our line routing algorithm as an Eclipse
plugin [19] for the ADORA [12] language. The plugin uses
the Graphical Editing Framework (GEF) [7] which pro-
vides the ability to use an arbitrary implementation of a
line router. We used this line router interface of the GEF
to implement our line routing algorithm. This implementa-
tion for the ADORA editor executes the following steps each
time a line is routed:



Table 1. Feature matrix of investigated tools
Vendor Tool Version a b c d e

Altova Altova UModel 2005 sp1 UML1.4+ A:n/a A: – A:m A:mabML
Sparx Systems Enterprise Architect 5.00.769 UML2.0 D:nES, C:nS, S:nES A: – A:m A:dM
ARTiSAN Real-time Studio 5.0.22 UML 1.4+ D:–, S:nS, C:n/a S:D,I A:m S,D:dMb
Embarcadero Technologies,
Inc.

DescribeEnterprise 6.1.7.1119hEE UML1.4+ D:–, S:nS, C:n/a A:– A:m A:dMB |
K:mabM

No Magic, Inc. MagicDraw UML 9.5 UML1.4+ D:–, O:Sn, S:Sn S,O: I A:m A:maMbL
I-Logix Inc. Rhapsody 6.0 Developer UML1.4+ D:n/a, O:1,S:Sn A: – A:m S:sa, O:mabM
MathWorks Stateflow 6.0 Other S:Sn S:– S:– S:sam
IBM Corp. Rational Modeler 6.0.0 UML2.0– D:– C:–, S:Sn S: I, D A:m A:dbM
Borland Together Designer 2005 (5552.0) UML2.0– D:–, S:Sn, C:S1 S: I, D, C:– A:m A:dbMO
Visual Paradigm UML Enterprise Edition 5.0 UML2.0– C:Sn, S:SEn A:– A:m A:dbaM
Gentleware Poseidon Community

Edition
3.1.0 CE UML1.4+ D:–, S:SEn, S: I, D A:m AdbM

University of Paderborn Fujaba 4.0.1 UML1.4 D:–, S:nS, C:n/a S: I,R A:– S:mbaM

Table 2. Performance Test Configuration Line Routing
Hardware/Software Speed/Size/Version
Pentium 4 3 Ghz
RAM Memory 2 GB
Windows XP Professional Version 2002 – Service Pack 2
Sun Java Runtime Environment 1.5.0 06-b05, mixed mode
Eclipse Software Development Kit 3.1.2 – M18012006-1600
Graphical Editing Framework 3.1.1
Adora Editor Plugin Version pre-1.0.0, build 186

1. The start and the end point of the line are determined.
The start and the end point are represented by the click
points, i.e. the start and the end point where the user
clicked to draw the line.

2. The tile structure is created. This is currently done
each time a line is routed. However, a much more effi-
cient way would be just to do it the first time in a series
of lines that have to be routed.

3. The white space tiles are determined. This is done ac-
cording to the algorithm described in 4.1.2.

4. The exact path of the drawn rectangular line segments
which connect the start and the end tile are calculated.

5. The connection is drawn.

A.2.2 The Test Configuration and the Performance
Test Cases

The test environment used for the performance test con-
sisted of the configuration shown in Tab. 2. The line routing
algorithm is contained in the implementation of the ADORA
plugin. Fig. 11 – Fig. 19 show the diagrams which were
used as performance test cases. Some of the diagrams were
prepared in a way that their routing computation was more
complex. We achieved this by positioning the nodes and by

setting the start and end point of the lines so that more obsta-
cles between the start and the end tile resulted and therefore
the computing effort was bigger.

The described positioning of the nodes and the click
points results in a rather unappealing layout which is the
case for the shown performance test cases. Additionally,
normal ADORA diagrams should not show too many model
elements at the same time. The user of the tool would hide
several elements, e.g. connections, in the model to reduce
the cognitive overhead as described in [2].

A.2.3 The Performance Test Results

For the test cases shown in Fig. 11 – Fig. 19, we measured
the time for the routing of each line in the given test cases.
Concretely, the value of the system clock immediately be-
fore and after the execution of the routing algorithm for each
single line was determined. The results of this test are given
in Tab. 3 to 8. When analyzing these results, one has to
take into account that several factors may bias the measured
time.

Firstly, taking the starting time as well as the ending time
of routing algorithm takes time itself. However, the compu-
tation time required for taking the current time can be ne-
glected as it is rather small and contained in all samples.

Secondly, the implementation of the routing algorithm
is written in Java and was executed with a standard JVM
of Sun’s Java Runtime Environment which uses a state of



the art garbage collector. This garbage collector is executed
non-deterministically. When the garbage collector is run, it
uses a non-deterministic period of time which is bounded
by an upper limit [29, 30]. For executing the test, we used
the default settings for the garbage collector of the JVM.
Hence, particular results were biased by the execution of
the garbage collector. Some of these results may be:

• Test case 6 (Tab. 5)

– Connection 15/16
– Connection 18/17

• Test case 9 (Tab. 8)

– Connection 15/16
– Connection 27/23
– Connection 36/29

These connections have a significantly higher time
needed for computing the route of the connection and there-
fore its highly probable that during the calculation of these
connections, the garbage collector was executed.3

In our test sample, the average time required for routing
one connection is 3.33 milliseconds. Assuming that a user

is irritated when having a system reaction time greater than
500 milliseconds, about 151 lines can be routed in sequence
without user irritation. This value represents a lower bound
for the actual performance of the algorithm. A better per-
forming implementation (for example, one which computes
the tile structure only when necessary and blocks garbage
collection while computing a diagram) will result in a much
higher number of lines that can be routed in less than 500
milliseconds. Moreover, the current implementation of the
above algorithm in GEF 3.1.1 calculates and draws the con-
nection routes asynchronously which mitigates the problem
of an irritated user dramatically. Additionally, one should
take into account that a diagram with 151 connections is
rather unreadable. Most of the connections in such a case
are not in the focus of interest and may be hidden for the
sake of understandability. A view mechanism capable of
doing this is described in [12]. Hiding connections that
are not in the focus of interest additionally helps reduce the
computational effort for line routing.

In summary, our analysis demonstrates that the algo-
rithm described in section 4 is suitable for real time routing
of connections in hierarchically decomposed diagrams.

Table 3. Performance test results for the test cases 1– 4 shown in Fig. 11 – Fig. 14
Test Case No. Start Node End Node Time in Milliseconds

1 2 1 0.17
2 2 1 0.39
3 2 1 1.06
4 2 1 1.18

3 4 1.20
5 6 0.82

Table 4. Performance test results for the test case 5 shown in Fig. 15
Test Case No. Start Node End Node Time in Milliseconds

5 2 1 0.37
4 3 0.41
6 5 0.64
7 8 1.48
9 9 2.48

3Actually, we did not check if and when the garbage collector was running during the test execution.



Table 5. Performance test results for the test case 6 shown in Fig. 16
Test Case No. Start Node End Node Time in Milliseconds

6 2 1 0.37
4 3 0.47
6 5 0.64
7 8 1.07
9 10 2.12

11 12 4.88
13 14 9.04
15 16 16.91
18 17 25.84

Table 6. Performance test results for the test case 7 shown in Fig. 17
Test Case No. Start Node End Node Time in Milliseconds

7 2 1 0.60
4 3 2.13
6 5 5.81
7 8 4.30
9 10 4.75

11 12 1.05
13 14 1.04
15 16 0.83
18 17 0.62

Table 7. Performance test results for the test case 8 shown in Fig. 18
Test Case No. Start Node End Node Time in Milliseconds

8 2 1 1.26
4 3 0.60
6 5 0.51
7 8 0.87
9 10 0.80

11 12 1.35
13 14 0.91
15 16 1.21
18 17 0.60



Table 8. Performance test results for the test case 9 shown in Fig. 19
Test Case No. Start Node End Node Time in Milliseconds

9 2 1 2.31
4 3 0.92
6 5 1.08
7 8 1.86
9 10 3.77

11 12 6.35
13 24 6.12
15 16 10.88
32 17 7.36
18 17 8.64
28 19 0.85
21 34 3.53
23 25 2.60
26 23 6.91
27 23 12.12
25 36 8.44
36 29 14.38
20 32 0.81

2
1

Figure 11. Performance test case 1– A simple connection routed from node 1 to node 2.
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Figure 12. Performance test case 2 – A connection between node 1 and 2 routed through several
obstacle nodes
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Figure 13. Performance test case 3 – A connection routed from node 1 to node 2 in a hierarchy of
nested nodes.
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Figure 14. Performance test case 4 – Routing a connection from node 1 to node 2 and another from
node 3 to node 4 in a diagram with nested nodes.
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Figure 15. Performance test case 5 – Routing several connections in a diagram of deeply nested
nodes.
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Figure 16. Performance test case 6 – Another routing of several connections in a diagram of deeply
nested nodes.
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Figure 17. Performance test case 7 – A more complex diagram with several nested nodes and several
connections.
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Figure 18. Performance test case 8 – A more complex diagram with several nested nodes and several
connections.
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Figure 19. Performance test case 9 – Another complex diagram with deeply nested nodes and several
connections.


