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Abstract— In today’s world of highly dynamic computing en-
vironments, autonomicapplications are the need of the hour. By
an autonomic application, we mean an application that is able
to adapt to changes in its execution environmentdynamically
and transparently. CASA (Contract-based Adaptive Software
Architecture) provides a framework for enabling the develop-
ment and operation of autonomic applications. CASA helps
in significantly reducing the complexity involved in developing
autonomic applications by separating the adaptation concerns
of an application from its business concerns. CASA further
provides a runtime system for dealing with the adaptation
concerns. In order to meet the adaptation needs of a broad
and diverse set of applications, CASA supports adaptation at
various levels of an application – from lower-level services
to application code. In CASA, the adaptation policy of every
application is defined in a so-called application contract, which
is external to the application and is specified using an XML-
based language, thereby facilitating changes in the adaptation
policy at runtime.

I. I NTRODUCTION

Mobile wireless computing environments provide im-
menseflexibility and value to users. With the growth of
these environments, many new and innovative applications
are being conceived and developed for such environments.
However, in order to cultivate the benefits offered by these
environments, the applications need to successfully face the
challenge of frequent and usually unpredictable changes in
the execution environment, which are invariably associated
with such dynamic environments.

A change in the execution environment can present an
opportunityor a threat for a running application. Let us look
at the threat first. A threat is when a change in the execution
environment results in a loss of certain resources that are
required by an application. This may force the application to
run at a degraded performance or functionality. On the other
hand, a change in the execution environment in the form of
a change in contextual information (such as user’s location
or identity of nearby objects etc.) may present an opportu-
nity for an application to provide a more relevant context-
dependent service. In either case, the application should
be able to adapt to changes in its execution environment,
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preferably dynamically (i.e. at runtime, without requiring
to stop and restart the application) andtransparently(i.e.
without requiring user’s intervention).

An application that is able to adapt to changes in its ex-
ecution environment dynamically and transparently is called
an autonomicapplication.

Consider a hypotheticalCollaborative Workingscenario,
where a number of participants are collaborating on a
common mission. The participants may be geographically
distributed, and some of them may even be mobile at any
given time. For the collaboration to work, each participant
runs a client module of the collaborative working application,
which includes a video display showing other participants, a
shared drawing space and a discussion board. Some of the
resources available to a participant, such as communication
bandwidth and battery power, are likely to vary over time
because of the mobility and other constraints. Similarly, the
contextual information related to a participant (in a meeting,
at home etc.) is likely to vary over time. The runtime
changes in resources and contextual information demand an
appropriate and non-disruptive adaptation of the collaborative
working application. For example, in response to a small drop
in the bandwidth available to a participant, the application
may reduce the quality of the video display accordingly.
Whereas for a large drop in the bandwidth, the application
may remove any video content altogether. A change in the
contextual information may also influence the application
behavior, e.g. only important updates may be sent while the
participant is in a meeting.

The concept of dynamically and transparently adaptable
applications is not entirely new. Several approaches have
been proposed that try to adapt the lower-level services used
by an application at the middleware level, and thereby change
the application behavior. Some other approaches try to adapt
an application by dynamically weaving and unweaving as-
pects into / from an application. The approaches for runtime
software evolution, involving a dynamic recomposition of
application components, also are closely related to software
adaptation.

However, none of these adaptation techniques are individu-
ally sufficient to meet the adaptation needs of different kinds
of applications. In fact, these techniques can complement
each other in order to meet the adaptation needs of a
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broad and diverse set of applications executing in dynamic
environments.

For example, if there is a small drop in the available
bandwidth, an adaptive middleware may use a lower-level
compression service to compress the data before transmis-
sion. But for a large drop, the compression alone may not
be sufficient and a change in application code is required to
reduce the throughput of the application. Similarly, dynamic
changes in aspects and components are complementary to
each other, depending on whether the crosscutting or the
core functionality of an application needs to be changed in
response to a particular change in the execution environment.

The adaptation techniques can be classified according to
the level where the adaptation takes place, as follows:

• dynamic change in lower-level services,
• dynamic weaving and unweaving of aspects,
• dynamic recomposition of application components,
• dynamic change in application attributes.
Ideally, an autonomic application should be able to use any

combination of the above adaptation techniques, depending
on its adaptation needs.

Another challenge facing autonomic applications is that
the development process of these applications has largely
been ad-hoc. In particular, the adaptation concerns of an
application are intertwined with its business concerns. This
increases the complexity involved in developing autonomic
applications. We believe that a framework-based approach
for developing autonomic applications can help in coping
with this challenge.

CASA (Contract-based Adaptive Software Architecture)
provides a framework for enabling the development and
operation of autonomic applications. The key features of
CASA are:

• Separation of the adaptation concerns of an application
from its business concerns,

• A runtime system for dealing with the adaptation con-
cerns,

• Support for adaptation at various levels of an applica-
tion, as identified above,

• A contract-based adaptation policy, facilitating changes
in the adaptation policy at runtime.

A preliminary version of the CASA framework has been
presented in [10]. In this paper, we present the detailed
design, working and evaluation of the framework, including
several enhancements such as support for more adaptation
mechanisms.

The rest of the paper is organized as follows. Section
II gives an overview of CASA. Section III discusses the
design of the CASA framework. Section IV describes the
application contract specification. Section V discusses the
overall working of CASA. Section VI presents some details
of a CASA prototype implementation and its performance
evaluation. Section VII gives an overview of related work.
Finally, Section VIII concludes the paper.

II. OVERVIEW OF CASA

Following the principle ofseparation of concerns, CASA
separates the adaptation concerns of an application from its
business concerns. Separating the adaptation concerns has
an obvious advantage of reducing the complexity involved in
developing autonomic applications. Additionally, it facilitates
reuse and sharing of the adaptation mechanisms among
applications. This, in turn, enables CASA to provide a
runtime system for dealing with the adaptation concerns.

Every computing node hosting autonomic applications is
required to run an instance of the CASA Runtime System
(CRS). The CRS has two responsibilities: firstly, it mon-
itors the execution environment on behalf of the running
applications. Secondly, in case of significant changes in the
execution environment, the CRS carries out the adaptation
of the affected applications.

The adaptation policy of every application is defined in
a so-called application contract. The application contract is
external to the application and is specified using an XML-
based language, thereby facilitating changes in the adaptation
policy at runtime. This ensures that the user / administrator
has a control over the adaptation policy, although the adap-
tation is carried out in a user-transparent manner.

As illustrated in Figure 1, the CASA adaptation process
involves three steps.
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Fig. 1. Working of CASA

Every time the CRS detects a change in the execution
environment (step 1), it evaluates the application contracts
of the running applications with respect to the changed state
of the execution environment (step 2). If the CRS discovers
a need for adapting certain applications, it carries out the
adaptation of the affected applications, in accordance with



the adaptation policies specified in the respective application
contracts (step 3).

In the following sections, we discuss details of the CASA
framework.

III. D ESIGN OF THECASA FRAMEWORK

Figure 2 depicts the CASA framework. The entities within
the dotted area represent the CASA Runtime System (CRS).
These entities are responsible for monitoring the execution
environment and adapting applications. In the following, we
discuss details of each of these entities.

Components Adaptation System (CAS)

Aspects Adaptation System (AAS)

Resource Manager (RM)

Context Monitor (CM)

Autonomic Application

Adaptive Middleware

Application Contract

Fig. 2. The CASA framework

A. Monitoring execution environment

The execution environment of an application can be di-
vided into: contextual information(user’s location, identity
of nearby objects or persons etc.) andresources(bandwidth,
battery power, connectivity etc.).

Contextual information refers to (purely) theinformation
about the context of an application that may influence the
service provided by the application (such as locational in-
formation, temporal information, atmospherical information
etc.), while the resources form thephysical infrastructure
available to the application for providing this service (such
as communication resources, data resources, computing re-
sources etc.).

Monitoring contextual information:The Context Monitor
(CM) in CASA is responsible for monitoring contextual
information.

Monitoring the contextual information relevant to an ap-
plication consists of the following steps:

• acquiring the data related to contextual information,
• structuring the acquired data based on an application

domain-specific ontology, and
• deducting the final knowledge, i.e. the contextual infor-

mation relevant to the application, from this data.

Each of these three steps is implemented at a separate
individual level in the CM, as shown in Figure 3.
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Fig. 3. Context Monitor

At the lowest level, a variety of Context Sensors are used
to acquire the data related to contextual information. At
the middle level, the acquired data is structured based on
an application domain-specific ontology by a collection of
Context Interpreters, each one responsible for a different
context parameter. At the top level, a Context Analyzer is
used to deduce the contextual information relevant to the
application from this data.

Monitoring resources:For monitoring local and network
resources, several resource monitoring services have been
developed that operate at the platform (operating system,
network) level, where resources can be monitored efficiently
(e.g. Remos [8], Dproc [1]). Therefore, for monitoring local
and network resources, CASA relies on an external resource
monitoring service.1 The Resource Manger (RM) in CASA
is responsible for interacting with the underlying resource
monitoring service.

For monitoring any remote resources required by an ap-
plication, the RM includes a Remote Resource Coordinator
(RRC) entity. Remote resources can be discovered using
a variety of means. For example, certain standard data
resources required by an application can be discovered by the
RRC using a remote resource discovery infrastructure such
as Jini [4] etc. On the other hand, any specific specialized
services, provided by some peer applications, can be discov-
ered explicitly by the application itself and communicated to
the RRC.

B. Adapting applications

Application adaptation can be realized using one or more
of the following adaptation mechanisms supported by CASA,
depending on the adaptation needs of a specific application.

Dynamic change in lower-level services:Lower-level ser-
vices here mean the underlying services required by an appli-

1As discussed later, several adaptive middleware systems have built-in
resource monitoring services that can be made available to CASA.



cation for its execution, e.g. data transmission, compression,
caching, video coding/decoding etc.

An application adaptation through a dynamic change in
lower-level services is typically required in response to a
change in the availability of resources. It is usually in the
form of a resource vs. resource tradeoff, or a resource vs.
quality of service tradeoff. An example of a resource vs.
resource tradeoff is to compress the data being transmitted
over a communication channel (by invoking a lossless data
compression service), in response to a drop in the bandwidth
available on the channel. Compressing the data will result in
increased CPU consumption, but at the same time it will also
result in saving bandwidth. Note that the quality of service
(here, the quality of data) is not affected by this adaptation.
An example of a resource vs. quality of service tradeoff is
to reduce the frame-rate or resolution of the video being
transmitted over a communication channel, in response to a
drop in the available bandwidth.

Several adaptive middleware systems have been developed
that are capable of adapting an application by dynamically
changing the lower-level services used by the application.
Some of these middleware systems are reflective in nature,
i.e. support external regulation of their adaptation strategy,
and thus can be integrated with CASA.

Many of the adaptive middleware systems have a built-in
resource monitoring service for monitoring local and network
resources. Thus, an adaptive middleware system can serve
the dual purpose of monitoring local and network resources,
and dynamically changing lower-level services.

The RM (Resource Manager) in CASA is responsible for
interacting with the underlying adaptive middleware system.

One such adaptive middleware system that can be used
for monitoring local and network resources, and dynamically
changing lower-level services is Odyssey [12].

Odyssey is able to monitor local and network resources,
and provide information about the availability of these re-
sources to the RM. Any runtime changes in the availability
of resources can be communicated instantly by Odyssey to
the RM. Resource monitoring is carried out at the operat-
ing system level in Odyssey, thus inducing efficiency and
enabling the RM to respond swiftly to any changes in the
availability of resources.

Odyssey is able to further invoke appropriate processing
of the application data at the middleware level, according to
the instructions of the RM. Data processing at the middle-
ware level is carried out using specialized code components
called wardens. For every type of data processing, various
alternative wardens may be implemented, differing in the
data fidelity levels and resource requirements. Depending on
the current execution environment conditions, the RM may
switch between alternative wardens at runtime.

CASA can even be integrated with more than one adaptive
middleware system offering different adaptation capabilities.

However, an application adaptation through a dynamic

change in lower-level services is applicable only in limited
scenarios – limited kinds of applications, execution environ-
ment conditions, and the amount of variations therein. In
order to deal with the other scenarios, one or more of the
following adaptation mechanisms may be used.

Dynamic weaving and unweaving of aspects:AOP (aspect-
oriented programming) [6] enables separating the crosscut-
ting functionality of an application from its core function-
ality. Many times a change in the execution environment
requires a corresponding change in the crosscutting func-
tionality of an application, without really affecting the core
functionality of the application. Examples of such adaptation
are changing the security behavior of an application when it
moves from a low-risk area to a high-risk area, changing the
persistence behavior in response to a loss of connection with
a data storage etc.

Thus, the ability to dynamically weave and unweave
aspects into / from an application, generally referred to as
dynamic AOP, presents a powerful adaptation mechanism.

For dynamic weaving and unweaving of aspects, CASA
relies on a dynamic AOP system called PROSE [11], which
is a flexible and efficient Java-based system developed for
this purpose.

The Aspects Adaptation System (AAS) in CASA is re-
sponsible for interacting with PROSE. The AAS can pass the
appropriate aspect details (name and location of the aspect
file) to PROSE at runtime for dynamically weaving the aspect
into an application. The aspect file contains the information
about the join-points (the execution points where the aspect
needs to be weaved) as well as the actual aspect code to
be executed at these points. PROSE is able to intercept the
join-points in a running Java application, and invoke the
corresponding aspect code at these points. At the end of the
execution of the aspect code, the control is returned to the
next execution point in the application. Similarly, the AAS
can instruct PROSE to unweave an already weaved aspect.

However, if a change in the core functionality of an appli-
cation is required in response to a change in the execution
environment, rather than in the crosscutting one, then the
following adaptation mechanisms may be used.

Dynamic recomposition of application components:Modern
software applications are composed of components, where
each component implements a subtask of the application. In
a component-based application development, the components
encapsulate their implementation details and interact with
each other only through their well-defined interfaces.

This makes it possible and convenient to dynamically
change the core functionality of an application through
dynamic recomposition of application components. A change
in the core functionality is most likely required in response to
a change in contextual information, but may also be required
for significant variations in resource availability.



For example, if the contextual information related to a
Tourist-Guide application changes fromshopping mallto
open-air cinema, the application needs to provide relevant
information about the weather conditions and show-timings,
in place of the information about the availability of the items
in the user’s shopping list in the shopping mall. This kind of a
change in the core functionality can be accomplished through
dynamic recomposition of application components. Needless
to say that the possibilities for application adaptation through
dynamic recomposition of application components are enor-
mous.

For dynamic recomposition of application components,
CASA follows an indigenous approach.

The Components Adaptation System (CAS) in CASA
is responsible for dynamic recomposition of application
components. A dynamic recomposition of application com-
ponents may involve addition, removal and/or replacement
of the components at runtime. The CAS takes care to ensure
that the consistency of the application is not compromised as
a result of dynamic recomposition. Ensuring the consistency
involves, among other things, transferring the state of an
outgoing component to its successor (in case of a dynamic
replacement), and maintaining the integrity of the interac-
tions ongoing at the time of dynamic recomposition. More
details on this approach can be found in [9].

However, sometimes only a dynamic change in certain
attributes of an application may be required, rather than
a dynamic recomposition of application components. For
a dynamic change in application attributes, the following
adaptation mechanism may be used.

Dynamic change in application attributes:Examples of ap-
plication adaptation through a dynamic change in application
attributes include changing the value of a certain timeout
period, frequency of data transmission, size of each trans-
mission, or some other threshold parameters affecting an
application’s behavior in response to a change in resource
conditions.

For a dynamic change in application attributes, the con-
cerned application needs to provide appropriate callback
methods that can be called by the RM (Resource Manager) at
runtime. This allows the application to decide the appropriate
timing and order of changing these attributes.

In addition to the above adaptation mechanisms, certain
resource-level adaptations are carried out transparently at
the level of the RM. Such adaptations involve dynamically
negotiating and selecting among the alternative resources
available. For example, if the availability of a remote re-
source being used by an application drops, the RRC (Remote
Resource Coordinator) may dynamically switch to an alter-
native remote resource providing the same type of service
but with better availability.

The overall working of the CASA framework is described

in Section V. In the next section, the specification of an
application contract is discussed.

IV. T HE APPLICATION CONTRACT

The adaptation policy of every application is defined in
a so-called application contract. The application contract is
external to the application, and is specified using an XML-
based language. This facilitates easy modification, extension
and customization of the adaptation policy at runtime. The
contract-based adaptation policy also plays a key role in
separating the adaptation concerns of an application from
its business concerns.

An excerpt of an application contract of aTourist-Guide
application is shown in Figure 4.

<app-contract name="Tourist-Guide">
    <context id="1">
        <params>
            <par name="vicinity" value="museum"/>
        </params>
        <config id="1">
            <resources>
                <res name="bandwidth" unit="Kbps" value="56-35"/>
                .
                .
            </resources>
            <components .../>
            <aspects .../>
            <callbacks .../>
            <llservices .../>
        </config>
        <config id="2">
            .
            .
        </config>
        .
        .
    </context>
    .
    .
</app-contract>

Fig. 4. Application contract

The application contract is divided into<context> ele-
ments, where each<context> element represents a state
of contextual information of interest to the application.
The parameters characterizing this state are specified within
<params> element.

The<params> element contains one or more<par> ele-
ments, with each<par> element corresponding to a distinct
context parameter. Every<par> element contains a “name”
attribute specifying the name of the context parameter, an
optional “unit” attribute specifying the unit of measurement,
and a “value” attribute specifying the corresponding value of
the parameter. The names of context parameters are standard
and unique for the corresponding application domain. Exam-
ples of the parameter names for theTourist-Guideapplication
are “vicinity” (referring to a place of interest nearby), “time”
(referring to the time of day) etc.

Each<context> element further contains a list of alterna-
tive configurations of the application, suited to the particular
state of contextual information. These configurations vary in



their resource requirements, and are listed in an ordering that
reflects their user-perceived preference.

Each <config> element, representing a configuration,
specifies the resource requirements of the configuration
(<resources> element), the components and aspects con-
stituting the configuration (<components> and <aspects>
elements), the callback methods to be called for the config-
uration (<callbacks> element), and the lower-level services
related to the configuration (<llservices> element).

The <resources> element contains a number of<res>
elements, with each<res> element representing a distinct
resource. A<res> element may represent a local, network
or remote resource required by the corresponding config-
uration. Every<res> element contains a “name” attribute
specifying the name of the resource, an optional “unit”
attribute specifying the unit of measurement, and a “value”
attribute specifying the corresponding resource value. The
resource names are standard and unique, i.e. every resource
is uniquely represented by a standard resource name. For a
quantifiable resource, the resource value is usually specified
in terms of a range of numbers separated by a hyphen, with
the number on the left being most preferred and the one on
the right being least preferred.

Resource requirements can also be specified at a high level
of abstraction such as in terms of throughput and packet
size, instead of directly specifying them in terms of actual
resources such as bandwidth. If the resource requirements are
specified at an abstract level, then the RM needs to convert
these into actual resource values to be allocated.

The <components> element contains a list of adaptable
application components, i.e. those components that may
differ from one configuration to another. The non-adaptable
components, which remain the same across all configura-
tions, are not specified in the<components> element. In the
same way, the<aspects> element contains a list of adaptable
aspects. Every component and aspect is specified along with
its namespace location, as this is required by the CRS (CASA
Runtime System) for activating a configuration. Similarly, the
<callbacks> element contains a list of methods to be called,
and the<llservices> element contains a list of lower-level
services related to the configuration.

All the elements specifying the constituents of a config-
uration (i.e. the<components>, <aspects>, <callbacks>
and <llservices> elements) are optional. That is, any of
these elements may or may not appear in a configuration
specification, depending on the adaptation requirements of
the corresponding application. For example, if an application
has no adaptable components, but only adaptable aspects,
attributes and lower-level services, then the<components>
element will not appear in the specification of an application
configuration.

Similarly, if an application needs to respond only to the
changes in contextual information, but not to the changes
in resource availability, then the<resources> element can

be omitted from the configuration specification (e.g. if all
the resources required by an application are guaranteed to
be available sufficiently). In this case, every<context>
element will contain only a single configuration, suited to the
corresponding state of contextual information. On the other
hand, if an application needs to respond only to the changes
in resource availability, but not to the changes in contextual
information, then there will be no<context> element in
the application contract. In this case, the application contract
will contain a simple listing of the alternative configurations
of the application, ordered according to their user-perceived
preference.

Depending on the current state of the execution environ-
ment (contextual information and resources), the appropriate
configuration from the application contract is selected and
activated by the CRS, as explained in the next section.

V. WORKING OF CASA

When starting up, an application registers itself with the
CRS (CASA Runtime System). As a part of the registration,
the application contract is passed to the CRS and is accessible
to all the entities of the CRS.

Next, the CM (Context Monitor) discovers the contextual
information relevant to the application. The contextual infor-
mation discovered by the CM is matched with the<context>
elements specified in the application contract, in order to
determine the currentlyvalid <context> element. This is
done by matching the values of parameters of the discovered
contextual information with the corresponding values speci-
fied in the<params> element of every<context> element
in the application contract.

It is possible that more than one<context> element
specified in the application contract is eligible to be valid
simultaneously. For example, one<context> element may
be valid if the user is currently in her office-building, and
the other may be valid if the user is currently in her
office-room. So, if the user is currently in her office-room,
then both the above<context> elements are eligible to be
valid at the same time. In this case, the ordering of the
<context> elements in the application contract is important
for determining the currently valid<context> element, as
this ordering reflects the relative preference of the<context>
elements. That is, the CM identifies the highest listed valid
<context> element as the currently valid<context> ele-
ment. Practically, the CM starts searching for the currently
valid <context> element from the top of the application
contract, and the search ends as soon as a valid<context>
element is found.

There may be a default<context> element in an applica-
tion contract that is valid when none of the other<context>
elements is valid. This default<context> element is listed
at the end of the application contract, and need not have a
<params> element.



The information about the currently valid<context>
element is passed by the CM to the RM (Resource Manager).
Recall that every<context> element in the application con-
tract contains a list of alternative configurations, represented
by <config> elements, that are suitable for the correspond-
ing state of contextual information defined by the<context>
element. As with the ordering of the<context> elements,
the<config> elements are also preferentially ordered within
every<context> element in the application contract.

Every<config> element contains a<resources> element
that specifies the resource requirements of the corresponding
configuration. For the discussion here, we assume that CASA
is integrated with an adaptive middleware that is able to
monitor local and network resources, as well as dynamically
change lower-level services.

The RM allocates resources to the application based on
the current availability of resources, as informed by the
underlying adaptive middleware and the RRC (Remote Re-
source Coordinator). Since the configurations are listed in
a preferential ordering within the<context> element, the
RM tries to allocate resources for the first configuration
listed in the<context> element. If there are not sufficient
resources for the first configuration then it tries the second
configuration and so on. The resource allocation phase ends
as soon as a match between the resource requirements of
a configuration and the current availability of resources is
found.

In case of multiple applications contending for the same
resources, the RM takes into account the relative priorities
(as defined by the user), as well as the adaptation possibilities
of the applications for allocating resources. The details of the
resource allocation algorithm followed by the RM are out of
scope of this paper.

At the end of the resource allocation phase, the RM
instructs the underlying adaptive middleware, the AAS (As-
pects Adaptation System) and the CAS (Components Adap-
tation System) to activate the lower-level services, aspects
and components related to the selected configuration, respec-
tively. The RM also issues any callbacks specified for this
configuration. Recall that the lower-level services, aspects,
components and callbacks related to the selected config-
uration are specified within the corresponding<config>
element.

If there is a runtime change in the contextual information
relevant to the application, then this change is detected by
the CM. The CM communicates the new<context> element
to the RM. The RM allocates resources for a new con-
figuration from the new<context> element, following the
same procedure as during the initial allocation. The existing
configuration is then replaced with this new configuration.

Similarly, if there is a runtime change in the availability
of resources, but not a change in the contextual informa-
tion, then the RM is informed about the change by the
underlying adaptive middleware or the RRC. If the new

resource availability makes it impossible for the application
to continue with its current configuration, then the RM
allocates resources for a new configuration from the current
<context> element, based on the changed availability of
resources. The existing configuration is then replaced with
this new configuration.

A dynamic change in configuration may imply a change in
lower-level services, aspects, application components, and/or
application attributes. These changes are carried out by the
appropriate entities of the CASA framework.

A. Service notification / negotiations

An application executing in a dynamic environment is
likely to participate in a distributed software system, i.e.
collaborate with other applications for a common mission.
An application participating in a distributed software system
may need to notify its peer applications before activating
a particular configuration (both initially and in response to
a change in the execution environment), so that the peer
applications may adapt accordingly if required. In some
cases, the application may even need to carry out service
negotiations with its peer applications, in order to select
the appropriate configuration to activate. CASA provides
support for service notification and negotiations among peer
applications.

For service notification or negotiations, the concerned
application needs to implement a Service Coordinator (SC)
component. In the following, we describe the changes in the
working of CASA that are implied by the inclusion of service
notification and negotiations.

When service notification is required, the RM informs the
SC about the selected configuration at the end of the resource
allocation phase. The SC then informs the peer applications
about the changes in the application’s functionality and
performance characteristics, which are implied by changing
to the new configuration.

The peer applications need not be developed according
to the CASA framework. However, for a CASA-based
peer application, the information about the functionality
and performance characteristics of the above application
is forwarded to the RRC (Remote Resource Coordinator)
of the peer application. This enables the RM (Resource
Manager) of the peer application to decide the appropriate
adaptation based on the changed value of the remote resource
(i.e. the functionality and performance characteristics of the
above application). Whereas, for a non-CASA-based peer
application, the peer application itself is responsible for
deciding the appropriate adaptation based on the change in
configuration of the above application.

When service negotiations are involved, the resource al-
location phase does not end as soon as a match between
the resource requirements of a configuration and the current
availability of resources is found. Rather, the RM identifies
all the configurations from the given<context> element



that can be activated in the current availability of resources.
The RM passes the list of identified configurations to the
SC. The SC sends the information about the functionality
and performance characteristics associated with each of the
identified configurations to the peer applications. The peer
applications are then required to rank these configurations
based on the information about their functionality and per-
formance characteristics, and send the ranked list back to the
SC. The SC then selects the most appropriate configuration
for activation, based on the rankings given by the peer
applications, and informs the RM accordingly.

Different peer applications may be assigned different
weights by the SC, so that the rankings by these applications
are treated accordingly for the final selection of a configura-
tion. Any ties for the top-ranked configuration are resolved
by selecting the configuration listed highest in the application
contract.

The peer applications need not be developed according to
the CASA framework, but they must provide a component
for receiving a list of alternative configurations and ranking
them. If a peer application also needs to be adapted due to
a change in the configuration of the above application, then
the ranking is decided based on the relative preferences of
the corresponding adaptations of the peer application itself
for each of these alternative configurations.

As an example where service negotiations may be re-
quired, consider an application transmitting high-quality mul-
timedia (video + audio) to a number of clients. In response to
a drop in the available bandwidth, the application may have
an option either to switch to a configuration that reduces
the quality of audio but maintains the high quality of video,
or to a configuration that reduces the quality of video but
keeps the quality of audio high. Before actually changing
its configuration, the application needs to carry out service
negotiations with the clients. The clients’ decision, on the
other hand, may be governed by the actual content of the
transmission. For instance, if the transmission is that of a
soccer match, the clients may choose to reduce the quality of
audio while maintaining the high quality of video. Whereas,
if the transmission is that of a musical concert, the clients
may choose to reduce the quality of video without disturbing
the quality of audio.

However, service negotiations are not essential for all
kinds of applications that participate in distributed software
systems. For instance, if in the above example the application
transmits sports events only, then it may have the default
adaptation behavior of switching to the first kind of config-
uration, without requiring any service negotiations with its
clients.

At the time of registering with the CRS, an application
needs to indicate whether service notification or negotiations
are required, and pass a reference of its SC component to
the CRS accordingly.

B. Runtime changes in the adaptation policy

As seen from the description of working of CASA, the
ordering of the<context> elements within an application
contract, as well as the ordering of the<config> elements
within a<context> element, effectively define the adaptation
policy of an application.

The ordering of these elements can be changed by the
user at runtime. In addition to changing the order, the user
can also remove certain<context> or <config> elements
at runtime. This way the user is able to customize the
adaptation policy of the application according to her needs
or preferences.

For customizing the adaptation policy, a graphical user
interface for the application contract is provided, which
explains the significance of the various<context> and
<config> elements in user-understandable terms. That is,
instead of displaying the list of parameters characterizing
a <context> element, it displays what the particular state
of contextual information means for the user. And instead of
displaying the detailed constituents of a<config> element, it
displays the appropriate functionality and performance char-
acteristics associated with the corresponding configuration.

In a similar manner, new<context> or <config> ele-
ments can be added to an application contract at runtime,
which were not foreseen at the time of application develop-
ment. And any obsolete<context> or <config> elements
can be removed from an application contract at runtime.

VI. PROTOTYPE IMPLEMENTATION AND EVALUATION

A prototypeDisaster Controlsystem, based on the CASA
framework, has been implemented in Java. This system
consists of two applications:ObserverandSupport. Observer
is responsible for monitoring a disaster-affected area, and
sending its observations toSupport over a wireless link.
Support is, in turn, responsible for coordinating the rescue
operations based on the information received by it. A typical
deployment of this system has several instances ofObserver
and one ofSupport. EveryObserverinstance needs to move
frequently while surveying the disaster-affected area. Be-
cause of the nature of the operation, bandwidth fluctuations
betweenObserverinstances andSupportare very common.

Observerprovides a number of alternative configurations
with varying resource (mainly bandwidth) requirements.
These configurations differ in the quality of data sent from
Observer to Support. Among the various alternative qual-
ities of data supported by these configurations are: high-
quality video, low-quality video, high-resolution images,
low-resolution images, detailed textual description and brief
textual description. Depending on the current resource avail-
ability, the appropriate configuration ofObserveris selected
and activated. A change in configuration may involve only a
dynamic change in lower-level services (e.g. when switching
from high-quality video to low-quality video, only the video
coding/decoding service needs to be changed), or it may



involve a dynamic change in application components (e.g.
when switching from low-resolution images to detailed tex-
tual description, the concerned application components need
to be changed).

Performance evaluation tests with this prototype have
been carried out, and the results are encouraging. These
tests were carried out primarily to evaluate the performance
of our components adaptation approach. The performance
evaluation of the aspects adaptation approach followed by
PROSE can be found in [11], and that of the lower-level
services adaptation approach followed by Odyssey can be
found in [12].

The detailed performance evaluation of our components
adaptation approach is given in [3]. Below are some of the
indicative results.

Figure 5 shows the time CASA requires for responding to
a change in the execution environment. This time includes
the time spent in (a) selecting the appropriate applications
to adapt based on the relative priorities and adaptation pos-
sibilities of the running applications (including deciding the
appropriate new configurations for the selected applications),
and (b) actually changing the configurations of the selected
applications. For the data in this figure, for every change in
the execution environment, only a single application needed
to be adapted and a change in configuration involved a
dynamic replacement of a single application component. In
Figure 5, the X-axis represents the number of applications
running, and the Y-axis represents the response time by
CASA. The increase in response time with respect to the
increase in number of running applications is due to the
activity (a) above.
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Fig. 5. Response time by CASA for a change in execution environment

Figure 6 shows the increase in execution time of an
application because of dynamic recomposition of application
components. In Figure 6, the X-axis represents the number of
components to be replaced during a dynamic recomposition
(time for components addition and removal was found to be
lower than that for replacement), and the Y-axis represents
the total execution time of the application. The lighter

portion of the bars indicates the normal execution time (100
ms, when no recomposition of application components is
involved), and the darker portion indicates the overhead due
to a one-time recomposition of application components. As
observed from this figure, even for a small normal execu-
tion time of 100 ms, the overhead due to a recomposition
of application components is relatively quite small (please
note that this overhead is independent of the actual normal
execution time of the application).

For the data in Figure 6, the components were stateless,
i.e. no state was transferred from an outgoing component
to its successor. However, the overhead due to the state
transfer was found to be very small – in the order of a few
microseconds (10µs for a state with a single parameter to
25 µs for 10 parameters).

The above tests were carried out on Linux, running on an
AMD Athlon XP 1900+ processor machine with 1024 MB
RAM. On a much slower machine, the overhead was around
3-4 times higher than the above values.
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Fig. 6. Overhead due to dynamic recomposition of application components

The overall performance results obtained indicate that the
overhead due to the CASA framework is tolerable for most
practical applications, and that the benefits of dynamic and
transparent adaptation, provided by CASA, far outweigh the
performance overhead.

VII. R ELATED WORK

Kephart and Chess [5] envision autonomic computing
systems to be able to deal with increasing software and
environment complexity, thanks to the self-managing char-
acteristic of these systems. Recently some approaches have
been proposed with the aim to turn this vision into reality.

White et. al. [17] propose an architectural approach to
developing autonomic systems. In this approach, an auto-
nomic system is made up of autonomic elements, where each
autonomic element is self-managing in its own behavior as
well as in its interactions with other elements. This work
describes the requirements to be satisfied by autonomic



elements and systems, but it does not give the details of
carrying out self-management.

Liu et. al. [7] present a component-based framework for
autonomic applications, where the behaviors and interactions
of application components can be adapted dynamically. The
adaptation decisions here are governed by the rules associ-
ated with every application component. However, in this ap-
proach, the number of rules for controlling the behavior and
interactions of every application component can potentially
be quite large, inducing significant performance overhead due
to the execution of these rules at runtime.

David and Ledoux [2] present an approach for runtime
adaptation of applications by activating and deactivating
certain meta-level components associated with the normal
application components, in response to changes in the ex-
ecution environment. However, the scope of adaptation is
restricted here, as the meta-level components are limited to
doing some kind of pre or post processing that can be adapted
dynamically.

Several other approaches have been proposed for adapting
the lower-level services used by applications at the middle-
ware level. Some of these approaches are reflection-based,
and thus can be integrated with CASA by applying suitable
instrumentation. Examples of such approaches are Odyssey
[12], InfoFabric [13], QuO [18] etc.

Some more work has been done in the area of context
monitoring. However, most of the approaches have been
tightly coupled with the applications for which they have
been developed. For example, some systems such as Active
Badge [15] and ParcTab [16] identify the user’s location and
activity etc., and use this information for providing context-
dependent services to the user.

The Context Toolkit [14] provides general mechanisms
for context monitoring to aid the development of context-
aware applications. It employs the concept ofcontext widgets
that can be used by an application for acquiring the data
related to contextual information. This way, the context wid-
gets insulate an application from the mechanics of context
sensing. The CM (Context Monitor) in CASA may use the
Context Toolkit for acquiring the data related to contextual
information, before interpreting and analyzing this data to
arrive at the contextual information relevant to an application.

VIII. C ONCLUSION

CASA provides a framework for enabling the development
and operation of autonomic applications. In this paper, the
design of the CASA framework and its overall working were
discussed.

The complexity involved in developing autonomic appli-
cations is significantly reduced using CASA, by virtue of
separation of the adaptation concerns of an application from
its business concerns. The decoupled architecture of CASA,
in particular the contract-based adaptation policy followed
by CASA, makes this separation possible. CASA further

provides a runtime system for dealing with the adaptation
concerns. With a view to provide a general framework that is
able to comprehensively meet the adaptation needs of a broad
and diverse set of applications executing in dynamic environ-
ments, CASA integrates a number of adaptation mechanisms
for supporting adaptation at different levels of an application.
The contract-based adaptation policy, in addition, facilitates
changes in the adaptation policy at runtime.

The implementation and evaluation of a CASA prototype
have been discussed in this paper. The implementation of a
real-world application based on CASA is a work planned for
near future.
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