
Rethinking the Notion of Non-Functional Requirements H-6

II – 55

Rethinking the Notion of Non-Functional Requirements

Martin Glinz

Department of Informatics, University of Zurich
Winterthurerstrasse 190, CH 8057 Zurich, Switzerland

glinz@ifi.unizh.ch
http://www.ifi.unizh.ch/~glinz

Abstract. Requirements standards and textbooks typically classify require-
ments into functional requirements on the one hand and attributes or non-func-
tional requirements on the other hand. In this classification, requirements given
in terms of required operations and/or data are considered to be functional,
while performance requirements and quality requirements (such as require-
ments about security, reliability, maintainability, etc.) are classified as non-
functional.
In this paper, we present arguments why this notion of non-functional require-
ments is flawed and present a new classification of requirements which is based
on four facets: kind (e.g. function, performance, or constraint), representation
(e.g. operational, quantitative or qualitative), satisfaction (hard or soft), and role
(e.g. prescriptive or assumptive). We define the facets, discuss typical combi-
nations of facets and argue why such a faceted classification of requirements is
better than the traditional notion of functional and non-functional requirements.

1 Introduction

Quality, as defined by ISO 9000:2000 [8], is the “degree to which a set of inherent
characteristics fulfils requirements”, where a requirement is a “need or expectation
that is stated, generally implied or obligatory”. Hence, quality and requirements are
closely intertwined concepts.

A lot of effort has been put into classifying qualities, the quality models by Boehm
[2], McCall and Matsumoto [12] and ISO/IEC [9] being the best known ones. For
example, the ISO/IEC 9126 model classifies qualities at the top level into function-
ality, reliability, usability, efficiency, modifiability, and portability.

Analogously, there have been many efforts to classify requirements and to estab-
lish links between qualities and requirements. In every current requirements classifi-
cation, we find a distinction between functional and non-functional requirements, for
example [6], [10], [11]. Davis [3] makes the same distinction, but calls them behav-
ioral vs. non-behavioral requirements. Functional requirements are defined as those
requirements that “describe what the system should do” [14], while all other require-
ments are considered to be non-functional.

However, there is no consensus, and it is in fact not clear, what a non-functional
requirement really is. Firstly, we find rather divergent concepts for sub-classifying
non-functional requirements. Davis [3] regards them as qualities and uses Boehm’s

Proceedings of the Third World Congress for Software Quality, Munich, Germany, September 2005.

H-6 Rethinking the Notion of Non-Functional Requirements

II – 56

quality tree [2] as a sub-classification for non-functional requirements. The IEEE
standard 830-1993 on Software Requirements Specifications [6] sub-classifies non-
functional requirements into external interface requirements, performance require-
ments, attributes and design constraints, where the attributes are a set of qualities such
as reliability, availability, security, etc. The IEEE Standard Glossary of Software
Engineering Terminology [5] distinguishes functional requirements on the one hand
and design requirements, implementation requirements, interface requirements, per-
formance requirements, and physical requirements on the other hand. The term ‘non-
functional requirement’ is not listed in this glossary. Sommerville [14] uses a sub-
classification into product requirements, organizational requirements and external
requirements. Some people consider goals and non-functional requirements to be
more or less synonymous.

Secondly, in the terminology introduced above, the same requirement can be con-
sidered to be functional or non-functional, depending on the way we represent it.
Consider the following example [10]: A particular security requirement could be ex-
pressed as “Any unauthorized access to the customer data shall be prevented”, which
would be classified as a non-functional requirement. If we represent this requirement
in a more concrete form, for example as “The database shall grant access to the cus-
tomer data only to those users that have been authorized by their user name and pass-
word”, we have a functional requirement. As this requirement remains to be a security
requirement, some people regard it still as a non-functional requirement which is just
represented in a functional form.

Thirdly, we have the problem of the so-called soft requirements. A soft require-
ment is one which has a soft satisfaction criterion, i.e. satisfaction can range on a
scale from weakly satisfied to fully satisfied. Customers tend to consider soft re-
quirements and non-functional requirements to be synonymous concepts. However,
this is a flawed conceptualization. For example, response time requirements in a user
interface are typically soft, whereas response time requirements in real-time systems
can be hard.

From these examples it becomes obvious that the distinction of functional vs. non-
functional requirements and the various sub-classifications of the latter are a fuzzy
classification concept. At closer examination, we discover that this fuzziness is rooted
in the fact that the traditional classifications mix three different concepts: a classifica-
tion according to kind (e.g. whether a requirement concerns a function, a performance
need, a constraint, etc.), another according to soft or hard satisfaction and yet another
one according to representation (e.g. whether a requirement is represented operation-
ally, quantitatively or qualitatively).

In this paper, we present a new faceted classification of requirements which over-
comes the fuzziness of traditional classifications by classifying requirements sepa-
rately according to the three facets of kind, satisfaction, and representation. Moreo-
ver, we add the facet of role, an issue that is rather important in requirements engi-
neering, but is often neglected.

The remainder of this paper is organized as follows. In Section 2, we introduce our
faceted classification and define the facets. This is the main section of the paper. Sec-
tion 3 discusses typical combinations of facet values and maps them to other classifi-
cations. Section 4 summarizes and concludes the paper.

Rethinking the Notion of Non-Functional Requirements H-6

II – 57

2 A new faceted classification of requirements

2.1 What and why

As sketched in the introduction, we can classify requirements according to four
different criteria. Which classification(s) we choose, depends on the purpose of the
classification:
• In most cases, we want to classify requirements according to their kind, in order to

differentiate between, for example, requirements that describe a required function
or that specify a required performance behavior.

• When representing requirements, we need to differentiate between forms of repre-
sentation such as an operational or a quantitative form.

• When it comes to the question of requirements satisfaction, we must differentiate
between hard and soft requirements.

• Finally, we frequently have to distinguish requirements about a system-to-be from
both factual and assumptive requirements about its environment. This is a classifi-
cation according to the role that a requirement plays.
Figure 1 unifies these four classification aspects into a faceted classification of re-

quirements. In the next four sub-sections, we describe the facets in more detail.

Fig. 1. A faceted classification of requirements

2.2 The kind facet

Requirements can be classified according to their kind, i.e. the matter that they
concern. Firstly, a requirement can pertain to a function or to data; this is what we
traditionally call functional requirements. Secondly, a requirement can specify per-
formance in terms of speed, volume, throughput, etc. Thirdly, a requirement may
specify a specific quality such as reliability or portability. Finally, a requirement may
be a constraint, i.e. a design decision or design constraint imposed by stakeholders of

Requirement

Representation
Operational
Quantitative
Qualitative
Declarative

Satisfaction
Hard
Soft

Role
Prescriptive
Normative
Assumptive

Kind
Function
Data
Performance
Specific Quality
Constraint

H-6 Rethinking the Notion of Non-Functional Requirements

II – 58

the system-to-be. As such decisions and constraints come from stakeholders, they are
true requirements. Table 1 summarizes the classes of this classification facet.

Table 1. Requirements classified according to their kind

Kind Definition
Function A function that a system shall perform
Data A data item or data structure that shall be part of a system’s state
Performance A requirement pertaining to time (points in time, reaction time, time

intervals), speed, volume, or rates (volume per time unit)
Specific quality Qualities concerning both properties of product use (e.g. reliability,

usability) and product management (e.g. maintainability or portability)
Constraint A design decision or design constraint imposed by a stakeholder (i.e. an

item which is not under control of the system designers)

2.3 The representation facet

There are four typical forms for representing requirements. As the representation
form goes hand in hand with the way how a requirement can be verified, it makes
sense to classify requirements according to this form.

Requirements that describe what the system-to-be is supposed to do (those per-
taining to functions, see above) are typically represented in an operational form:
actions to be performed, data to be provided, states to be entered, etc. Requirements
of this type are verified by reviewing, testing or by formal verification.

Performance requirements must be specified in a quantitative form if we want
these requirements to be precise, unambiguous and verifiable. The same is true for
qualities such as availability or reliability. Quantitatively specified requirements are
verified by measuring (on a scale which is at least ordinal).

However, in particular on more abstract levels, we also want to state requirements
in a qualitative form, for example when stating business goals (“The system shall
simplify the order tracking process”) or usability goals (“The system shall be easy to
use for casual users”). Such goals can’t be verified directly. Only after deployment of
the system or with the help of prototypes, stakeholders can experience and subjec-
tively judge whether or not a qualitative requirement is satisfied.1

Finally we have requirements that just describe some required situation. This is
typically the case with data and with constraints (e.g. “The system shall run on a
Linux platform”). We call this form of representation declarative. The typical way of
verifying such requirements is by reviewing.

Table 2 summarizes the definition and the type of verification of the four repre-
sentation forms.

1 Alternatively, a quantitative requirement can be verified indirectly by decomposing it or by

deriving metrics that (hopefully) are highly correlated with the given requirement, for exam-
ple by applying GQM [1] or Gilb’s measurement approach [4]. The NFR-framework devel-
oped by Mylopoulos et al. [13] is a typical example of a goal decomposition approach, where
a goal is refined into sub-goals and design decisions. Within the NFR-framework, one can
reason about the satisficability of a goal by recursively determining the satisficability of the
sub-goals and considering the relationships between the sub-goals and the goals.

Rethinking the Notion of Non-Functional Requirements H-6

II – 59

Table 2. A representation-based classification of requirements

Form Definition Type of verification
Operational Specification of operations or data Review, test or formal verification
Quantitative Specification of measurable prop-

erties
Measurement (at least on an ordinal
scale)

Qualitative Specification of goals No direct verification. Either by subjec-
tive stakeholder judgment of deployed
system, by prototypes or indirectly by
goal refinement or derived metrics (see
footnote on previous page)

Declarative Description of a required feature Review

2.4 The satisfaction facet

Verification of requirements means that we have to determine whether the chosen
solution satisfies the requirements. When we examine the criteria to be used for de-
ciding whether a requirement is satisfied, we find two cases: in the first case, a re-
quirement is either completely satisfied or it is not satisfied. Requirements of this kind
are called hard. In the second case, a requirement can be gradually satisfied, that
means the degree of satisfaction is measured on a scale which is at least ordinal. In
this case, we speak of soft requirements [7].

Let us assume that the value of a solution feature is proportional to the degree to
which it satisfies its requirements. When we plot this value over the effort for de-
signing and implementing a solution feature, we get a 0-1 curve for hard requirements
(Fig. 2a) and an S shaped, continuously growing curve for soft requirements (Fig. 2b).
Hence, it makes sense for soft requirements to have both a planned degree of satisfac-
tion and a minimum acceptable degree of satisfaction [4].

Fig. 2. Cost/value curves for (a) hard and (b) soft requirements

2.5 The role facet

A requirement can play three roles in a requirements specification: (1) it can spec-
ify properties of the system-to-be, (2) it can state facts or rules in the system environ-
ment that influence the design and implementation of the system-to-be, and (3) it can

1

0

value

cost

1

0

value

cost

a. Hard requirements b. Soft requirements

H-6 Rethinking the Notion of Non-Functional Requirements

II – 60

specify how an actor in the system environment should behave when interacting with
the system.

The requirements in the first role are the “classic” requirements that concern only
the system-to-be. We call these requirements prescriptive.

We call requirements in the second role normative requirements, because they
typically describe norms in the system environment that the system must be aware of
[15]. For example, if we specify a system that shall process income tax forms and
compute income taxes, we have normative requirements that describe the tax compu-
tation formulae, rules for deductibles, etc. which are given by tax laws and decrees.

The requirements in the third role describe behavior of actors that the system-to-be
can’t control. For example, in an information system that supports dispatching of am-
bulances, we have a requirement that the dispatcher has to react to an incoming emer-
gency message by sending an ambulance. The system can only control whether the
dispatcher acknowledges the message within a given interval of time, but it can’t
control if she or he actually took the appropriate action. Such requirements specify
how an actor should behave; hence we call them assumptive requirements.

2.6 Examples

Table 3 shows how a couple of sample requirements are classified in our new clas-
sification scheme.

Table 3. Sample requirements with their classification

Requirement Classification
“The system shall compute the sum of all applicable deduc-
tions.”

Kind: function
Representation: operational
Satisfaction: hard
Role: prescriptive

“The applicable deductions are computed according to the
formula D = <fff>, which is stated in income tax decree No.
<nnn> of <ddmmyy>.” [with concrete values filled in for
placeholders <fff>, <nnn>, and <ddmmyy> in a real situation]

Kind: function
Representation: operational
Satisfaction: hard
Role: normative

“The system shall be easy to use by casual users.” Kind: specific quality
Representation: qualitative
Satisfaction: soft
Role: prescriptive

“The response time shall be less than 1 s on average” Kind: performance
Representation: quantitative
Satisfaction: soft
Role: prescriptive

“The system shall run on PCs featuring at least a 500MHz
CPU and 256MB main memory.”

Kind: constraint
Representation: quantitative
Satisfaction: soft
Role: prescriptive

“The user must provide accurate data for all input fields of the
form.”

Kind: data
Representation: declarative
Satisfaction: hard
Role: assumptive

Rethinking the Notion of Non-Functional Requirements H-6

II – 61

3. Facet combinations and dependencies

In this section, we describe some typical combinations of facets and map them to
concepts in other classifications used in practice and in the literature.

3.1 Typical combinations

Some combinations of facet values occur more frequently than others and consti-
tute typical sorts of requirements found in practice and in the literature. For example,
the classic notion of a functional requirement is (function or data, operational or
declarative, hard, prescriptive or undetermined), where ‘prescriptive or undetermined’
means that such a requirement typically is either prescriptive or the role facet is un-
determined. Table 4 lists some typical combinations.

Table 4. Some typical facet combinations

Faceted Classification Traditional
Classification Kind Representation Satisfaction Role

Function Operational Hard Prescriptive or
undetermined

“Classic” functional
requirement Data Declarative Hard Prescriptive or

undetermined
Good (i.e. quantified)
performance or quality
requirement

Performance
or specific
quality

Quantitative Soft Prescriptive or
undetermined

a. Goal
b. Bad performance or

quality requirement

Performance
or specific
quality

Qualitative Soft Prescriptive or
undetermined

“Classic” constraint Constraint Declarative Hard Prescriptive
“Classic” goal Any except

constraint
Any Soft Prescriptive or

assumptive
Softgoal [13] Specific

quality
Qualitative (also
quantitative or
operational)

Soft Prescriptive or
assumptive

– Function Operational Soft Prescriptive
– Performance Quantitative Hard Prescriptive
– Function Operational Hard Normative or

assumptive
– Data or

Constraint
Declarative Hard Normative or

assumptive

Table 4 demonstrates once again that, with a faceted classification, we also can

characterize requirements beyond the traditional taxonomy of functional vs. non-
functional requirements. For example, requirements with functional kind and opera-
tional representation are traditionally assumed to be hard. However, this is not always
the case. The requirement “The system shall monitor all essential events” concerns a

H-6 Rethinking the Notion of Non-Functional Requirements

II – 62

function (monitoring) and is represented operationally, but “all essential events”
typically will have a range of satisfaction, thus yielding a soft requirement.

As another example, in real-time systems we typically have both hard and soft
performance requirements, while in a traditional view, performance requirements are
non-functional requirements, which in turn are considered to be soft.

On the other hand, we also have combinations that never or almost never occur, for
example, a function is never stated in quantitative form.

3.2 Goals vs. requirements

Goal-driven approaches [11], [13] advocate a hierarchical AND/OR decomposition
of goals. Goals are ultimately refined into operationalized requirements. Upper level
goals in such goal decompositions are typically classified as (specific quality, qualita-
tive, soft, –), where “–” means that no value has been assigned to the role facet yet.
On medium and lower goal levels, one would also use ‘function’, ‘data’ or ‘perform-
ance’ in the kind facet, and ‘declarative’ in the representation facet. On the lowest
level, where everything is operationalized, we have a classification of (function or
data, operational, hard, –). When such lowest level goals are assigned to actors in the
system or in the environment, the role facet is correspondingly set to ‘prescriptive’ or
‘assumptive’.

4 Conclusions

Summary. In this paper, we have rethought the classic notion of non-functional
requirements. We have demonstrated that this is a fuzzy concept, because it mixes
elements that should be considered separately. In order to do this separation properly,
we have defined a new faceted classification which distinguishes four facets: kind,
representation, satisfaction and role.

Benefits. The traditional notion of non-functional requirements is a fuzzy concept:

something that has to do with quality, somehow soft, mostly qualitative, but better
quantitative (or even better operationalized?), etc. Our new classification has the
benefit of separating concerns clearly, which allows us to characterize a requirement
much more precisely. For example, we avoid the problem that a requirement is con-
sidered to be non-functional if it is stated in qualitative form, while the same require-
ment becomes a functional one when stated operationally.

The representation facet of the classification helps us identify the proper type of
verification for a given requirement – as this is primarily determined by the way how
a requirement is represented. For example, an operational requirement will typically
be verified by acceptance testing, while a quantitative requirement is verified by
measurement. Moreover, the satisfaction facet provides information whether the veri-
fication is discrete (i.e. either completely satisfied or not satisfied), or whether we
have a range of acceptable behavior.

Rethinking the Notion of Non-Functional Requirements H-6

II – 63

As another advantage, the classification provides us with precision and complete-
ness criteria: the more qualitative requirements we have, the less precise and (in an
evolutionary sense) the less complete a requirements specification is.

Finally, the role facet helps us shaping (and sharpening) the boundary between the
system and its environment.

Related work. Some other classifications, in particular the traditional ones, have

been described in the introduction.
Van Lamsweerde [11] uses another classification with a restricted notion of re-

quirements. He uses goals (which are objectives of a composite system), requisites
(goals that are controllable by some individual agent), requirements (requisites as-
signed to system agents) and assumptions (requisites assigned to environment agents).
Requisites must eventually be operationalized. All concepts can be expressed by a
corresponding combination of facet values in our classification; for example, an op-
erationalized assumption would be classified as operational in the representation facet
and assumptive in the role facet. It will most probably concern a function and be hard
with respect to satisfaction.

Mylopoulos et al. [13] have defined the so-called NFR (non-functional require-
ments) framework. It is based on softgoals which are structured hierarchically with
AND/OR graphs. Softgoals are soft requirements in our classification. Softgoals may
be stated qualitatively, quantitatively, or in operationalized form, which is covered by
our representation facet.

Gilb [4] uses a classification with two facets: functions, qualities, costs, and con-
straints on the one hand and quantifiable vs. non-quantifiable on the other hand. In his
classification, functions are always non-quantifiable, while qualities and costs are
quantifiable. Constraints may be of either kind. Gilb believes that qualities and costs
always should be quantified and that qualitative statements such as “high usability”
constitute ‘false’ requirements. He does not distinguish hard and soft requirements.
However by stating that functions tend to be either present or absent, he makes clear
that he considers functions to be hard requirements. Furthermore, he distinguishes two
satisfaction levels for quantifiable requirements: “must” (the lowest acceptable level)
and “plan” (the planned level). However, our classification reveals that this distinction
is in fact a feature of soft requirements, not of quantitatively represented ones: there
exist quantitatively represented requirements which are hard, i.e. they are either com-
pletely satisfied or not satisfied at all. In this case, a distinction of “must” and “plan”
does not make sense.

We are not aware of any other comprehensive approach to the problem of require-
ments classification.

Open issues and next steps. While the new classification is clearly better than tra-

ditional ones from a conceptual standpoint (see above), it has yet to stand the test of
practical usefulness in the daily life of requirements engineering.

From a research standpoint, experience from practical application will have to be
evaluated, in particular with respect size vs. usefulness: should the classification be
simplified, or on the contrary, should it be extended by additional facets (a priority
facet, for example).

H-6 Rethinking the Notion of Non-Functional Requirements

II – 64

Acknowledgements

I thank Jochen Ludewig (University of Stuttgart) for his valuable comments on the
classification concept presented in this paper.

References

1. Basili, V., G. Caldiera, D. Rombach (1994). Goal Question Metric Paradigm. In J. J. Mar-
ciniak (ed.): Encyclopedia of Software Engineering 1. New York: John Wiley&Sons. 528-
532.

2. Boehm B. et al. (1976). Quantitative Evaluation of Software Quality. Proceedings of the
2nd IEEE International Conference on Software Engineering. 592-605.

3. Davis, A. (1992). Software Requirements: Objects, Functions and States. Prentice Hall.
4. Gilb, T. (1997). Towards the Engineering of Requirements. Requirements Engineering 2, 3

165-169.
5. IEEE (1990). Standard Glossary of Software Engineering Terminology. IEEE Standard

610.12-1990.
6. IEEE (1993). IEEE Recommended Practice for Software Requirements Specifications.

IEEE Standard 830-1993.
7. Irvine, C., T. Levin (2000). Quality of Security Service. Proceedings of the 2000 Workshop

on New Security Paradigms. 91-99.
8. ISO 9000 (2000). Quality Management Systems – Fundamentals and Vocabulary. Interna-

tional Organization for Standardization.
9. ISO/IEC 9126-1 (2001). Software engineering – Product quality – Part 1: Quality model.

International Organization for Standardization.
10. Kotonya, G., I. Sommerville (1998). Requirements Engineering: Processes and Tech-

niques. John Wiley & Sons.
11. Van Lamsweerde, A. (2001). Goal-Oriented Requirements Engineering: A Guided Tour.

Proceedings of the 5th International Symposium on Requirements Engineering (RE’01),
Toronto. 249-261.

12. McCall, J.A., Matsumoto, M.T. (1980). Software Quality Measurement Manual, Vol. II.
Rome Air Development Center, RADC-TR-80-109-Vol-2.

13. Mylopoulos, J., L. Chung, B. Nixon (1992). Representing and Using Nonfunctional Re-
quirements: A Process-Oriented Approach. IEEE Transactions on Software Engineering
18, 6 (June 1992). 483-497.

14. Sommerville, I. (2004). Software Engineering, Seventh Edition. Pearson Education.
15. Wieringa, R.J. (2000). The Declarative Problem Frame: Designing Systems that Create and

Use Norms. Proceedings of the Tenth International Workshop on Software Specification
and Design. San Diego. 75-85.

