Where’s the note?

A Multimodal System to Augment Affinity Diagrams

Masterthesis

supervised by

Prof Elaine Huang Ph. D.

and Gunnar Harboe

Department of Informatics

University of Zurich

to obtain the degree of

“Master of Science in Informatics”

Author:

Course of Studies:
Student ID:
Address:

E-Mail:
Closing date:

Gelek Doksam
Wirtschaftsinformatik
05-708-094
Neunbrunnenstrasse 86
8050 Zurich
gelek@doksam.ch
31.01.2012







Abstract

Qualitative data analysis is an important tool to get high level feedback from
contextual data gathering methods. One popular method is Affinity Diagramming.
While this method relies on a paper approach where data is written on notes there
are disadvantages in ordering and identifying notes once their quantity rises. In
this thesis we describe a prototype that will help identify these notes on an Affinity
wall through highlighting with a beamer and a smartphone. We will show that
this method works as an additional layer that can be switched on or off rather
than a mandatory addition. Finally we test the usability of our protoype to see
that there are strong tendencies to neglect the interaction either on the wall or

the Smartphone Client without a proper introduction.



Zusammenfassung

Die qualitative Analyse von Daten ist ein wichtiges Werkzeug um bei Datener-
fassungen die kontextabhéngig sind Riickschliisse zu ziehen und diese zu bewerten.
Eine populdre Methode dazu ist das sogenannte “Affinity Diagramming” bei der
Methode als Hauptwerkzeug Papier zum Einsatz kommt um Notizzettel mit Daten
darauf zu erstellen. Wenn aber die Anzahl dieser Zettel ansteigt wird es schwe-
rer eine Ubersicht zu behalten und einzelne Notizzettel zu identifizieren. In dieser
Arbeit wird daher ein Prototyp beschrieben der das identifizieren von Notizzettel
auf der Affinity Wand vereinfacht durch Anleuchten des entsprechenden Notit-
zettels mithilfe eines Beamers und eines Smartphones. Wir werden zeigen dass
diese Methode als zusétzliche Schicht welche jeweils ein- oder ausgeschaltet wer-
den kann realisiert wird und nicht eine obligatorische Anpassung des Prozesses
erfordert. Abschliessend werden wir die Benutzbarkeit unseres Prototypen testen
un erkennen, dass ohne ordentliche Einfithrung eine starke Tendenz besteht die
Interaktion mit der Wand zu vernachléssigen und sich nur mit dem Smartphone

zu beschéftigen.



Contents

1. Introduction

2.1.
2.2.
2.3.

3.2.

4.1.
4.2.
4.3.
4.4.
4.5.

4.6.
4.7.

5.1.
5.2.
5.3.
5.4.

. Related Works

Affinity Diagramming . . . . . . . . . ... Lo
Augmented Reality . . . . . . . . ...
Barcode recognition . . . . .. ..o
2.3.1. QR-Code . . . . . ..

. Experimental Setup

Setup . . . . . e
3.1.1. Workflow . . .. . ..
3.1.2. Server . ... e
3.1.3. Desktop Client . . . . . ... ... ... ...
3.1.4. Smartphone Client . . . . .. .. .. ... ... ... ... ...,
Issues . . . . L

. Implementation

Initial Requirements . . . . . . . . . . .o
Design . . . . . .
Proof of Concept Barcode Recognition . . . . .. ... ... ... .. ..
Component Overview . . . . . . . . . .. .
SEIVET . . . .
4.5.1. QR-Code Service Component . . . . . .. .. .. .. ... ....
4.5.2. Database Service Component . . . . . .. .. ... ... ..
4.5.3. Image Handling Service Component . . . . . . . . . ... ... ..
4.5.4. Desktop Client Output Generator . . . . . . . ... ... ... ..
Desktop Client . . . . . . . . ...
Smartphone Client . . . . . . . . .. ... ...

. Usability Tests

Preparation . . . . . .. . ..
Test Design . . . . . . . . .
Settings . . . . . . .
First run . . . . . . oo
54.1. Results. . . . . . .

10
10

11
12
13
13
13
13
17

18
18
18
18
21
23
24
25
26
26
26
27



5.4.2. Modifications . . . . . . . .
5.5. Second Run . . . . . ..
5.5.1. Results . . . . . . .

. Discussion

6.1. Further Work . . . . . . . .

. Conclusion

. Acknowledgments
. Code

. Test

34
34

36

36

38

38



1. Introduction

While todays digitally driven world provides a plethora of methods to quantitatively
analyze data there is a lack of accountability for the analysis. Using “Stats” wrong is
something that has plagued discplines such as sports and it still does today. There are
so many easy ways to “quantify” data to make it look impressive that the qualitative
judgement behind it is often forgotten. Or as one of the authors first statistics teachers
used to say: “The value of quantitive analysis is dependent on the quality of the one
doing it” Especially in a field such as HCI or Contextual Design, qualitative data analysis
is important since we want to understand the user in order to assist him. Quantifiyng
personal preferences and ones own judgement is something that psychology is spending
a great deal of effort about (think Leikert scale) but the qualitativ analysis is still an
established form to gain insights and understanding. Affinity Diagramming is a way to
get data and get a shared understanding of it. It assists interpreting qualitative data and
derriving design ideas from it. It uses a method relying on paper notes and the fact that
they are easy to move, duplicate, edit and remove. There are however disadvantages
to using paper. Affinity Diagramming is a group task, when a group of people are
handling large amounts of paper notes, there are bound to be situations where person
A is not aware where note 01 is. Since an Affinity wall can contain a lot of notes (see
figure 2 in section 2.1) locating a note can be troublesome. Those impracticalities can
be addressed with the use of present day technologies. The balancing act of addressing
problems while preserving the advantages of paper is something that presents a current
challenge to extending the Affinity Diagramming process.

In this thesis we will look at one way to tackle this challenge and try to address the
problems. We will use a layered-approach for this where we will leave the basic Affinity
Diagramming process as is. Additionally we will create a system that will not only host
our solution for the presented problems but also be ready for further challenges. Section
2 will provide an short introduction into various topics that are of relevance for this
thesis whereas section 3 will establish the requirements of the system and present the
system. Section 4 will display the implementation process for our system and Section 5
will describe usability tests for our system. Sections 6 and 7 finally will be a discussion

about our work, further opportunities and a conclusion for our thesis project.



2. Related Works

In this section we will shortly present some of the topics that influenced the design of
the system described in this thesis. Affinity Diagramming is a way to analyze qualitative
data while barcode recognition helps code artifacts of the data in a way that they can
be machine read. Augmented Reality finally is a concept that lies in the roots of our

system and the “layer”-approach of it.

2.1. Affinity Diagramming

An Affinity analysis is a method to analyze, organize and interpret qualitative data
or ideas based on similarities and distinctions. It is a collaborative process and will
help facilitate a shared understanding of the data. The data is usually gathered from
methods that deliver unstructured qualitative data, e.g. interviews. An interview is
transcribed and then partitioned into singular statements. Affinity diagramming is the
task of putting up sticky notes with data artifacts on a wall and try to structure them.
Those notes can be moved on the wall and should be placed in groups that share some

relevance to the data. Figure 1 shows an example for a note.

37. (P1) Ata
certain level, the
price difference is
not that big
anymore [...] and
then | go for
trustworthiness of
the store as well. |
cannot give you a real formula, it's
mostly gut feeling, #00:30:00-6#

Figure 1: A sticky note for an Affinity

Participant profiles are created alongside the notes and serve to give an additional
perspective to the statements of a participant. To identify the participants and their
profile, a code is used for both the notes and the profiles. In figure 1 the participants ID
would be “P1” while the number 37 is the ID of the note and consequently the statement
on that note.

The Affinity method follows an bottoms up approach where unstructured data is first
clustered into groups. Those groups then are clustered into higher level groups. A

procedural list for an Affinity analysis would therefore look as such:

1. Stick notes on the wall



2. Cluster

3. Group

4. Second Level

5. Additional Level
6. Walk the walls

7. Design from data

As we will see in this thesis, our system in its current state will assist during step 2-6,

the phase where actual interaction with the notes on the wall happens.

Figure 2: An example of a filled Affinity wall

2.2. Augmented Reality

Azuma (1997) has defined that augmented reality technologie has to have the following

characteristics:

e Combines real and virtual
e Interactive in real time

e Registered in 3-D



During the last couple of years many applications, that support the second point
have been introduced. While as Azuma (1997) contends a movie with virtual objects
overlayed over film such as Jurrasic Park didn’t count as augmented reality technology,
video games such as Sony’s Invizimals! are truly interactive. Augmented Reality also
allows for different layers of feature sets that can be projected upon a core landscape
freely without a need for time consuming reconstruction. This enables us to introduce
additional information in a process without taking up permanent real estate when that

resource is scarce. The system introduced in this thesis makes use of that fact.

2.3. Barcode recognition

Barcodes enable the storing of information a format that is easily understandable for
computers. As such they are used when large quantities of items are used and have
to be recognized such as in a retail store, ticketing etc. QR-Codes and other advanced
barcodes allow for the storage of higher-level information and can be used to program a
cellphone to use a certain wireless network amongst other applications. For our system
they can store an identification key on each note. Libraries like ZXing 2 allow easy access
to QR-Code recognition. Computer power has reached such a degree of sophistication

that even cell phones can decode a QR-Code in almost real time.

2.3.1. QR-Code

A QR-Code is a 2-dimensional barcode meaning the information is coded in a NxzN
matrix rather than just a list of bits. It was developed by japanese Corporation Denso
in 1994 and was standardized in 1997 (Denso Corporation 1997). Figure 3 shows an
example of a QR-Code that contains the text: “ZPAC”. The QR-Code contains a matrix
of bits that usually are represented with black and white blocks of pixels. There are
multiple “patterns” that serve to define the orientation of the barcode. Within the coded
content besides the pure content are also versioning information, the data format (there
are variants for japanese typesets amongst others), error correction and built in levels

of redundancy depending on the version of QR-Code chosen.

Thttp: //www.invizimals.com
Zhttp://code.google.com/p/zxing/

10



[=]

i

[=]

Figure 3: A QR-Code that contains the text: ZPAC

3. Experimental Setup

There was one main requirement for the system at hand: It should be augmented unto
the preexisting Affinity analysis process and enrich and facilitate the experience. At the
same time it should be designed in a way where it could possibly be omitted with a still
functioning analysis process in place. In essence we were looking to add an additional
layer of tools. The use of those tools would not be required. For that approach to work
we took a look at the existing Affinity process and looked for problems and issues that
could be solved with it. One issue was locating a note on a wall, especially once there
are a large quantitiy of notes on the Affinity wall. If those notes could be marked it
would be easier to pinpoint others towards them. Ideas such as using a smart board with
digital avatars as notes could not satisfy our requirement of leaving the core process as
is. Consequently, since our idea was to project layers of services to the Affinity analysis
we decided to project the markings unto the wall. For that we used a beamer that could
highlight areas on a wall. If we introduced a way to identify the notes and the position
of the notes on the projected wall space we could highlight the notes. To identify notes
we had to use some kind of ID, conveniently in a way that it could be recognized by a
machine. We used QR-Codes for that. These barcodes should contain an ID and could
also be used to store further information if possible and desired. Decoding the barcode
on an image also gives us the positional data of the barcode on that image. So we
decided to use a camera that takes a picture of the Affinity wall. Each note on the wall
contains a QR-Code that has its unique ID stored in it. At the corners of the wall we
also display larger QR-Codes that just contain the information UP_LEFT, UP_RIGHT,
DOWN_LEFT, DOWN _RIGHT. With these we can identify the corners of the displayer
area in a photo taken from the wall.

A second issue that arises is the movement restrictions on an Affinity. During the Affinity

11



analysis it is very inconvenient to just read through the notes. If we could make the
information on those notes available it would be much easier to just browse through them:.
Setting up such a database would also open up the system-to-be to further opportunities
of data transformation, enrichment etc. without touching the original wall.

With these thoughts in mind we created a system as described in Section 4

3.1. Setup

D B stores:

- Table for Notes (PrimarylD:
UniquelD that is stored in
Barcode) where every note is a
relative tupel with: ID, Content
and Metatags
- Table for Note movement
Every Note has a table that
stores ForeigniD (UniquelD) from
JDBC Barcodes, the position on the

Image, the number of
movements to this point

Every tuple consists of one state
of note movement
~

— (HTTP) Request 3 Ry
(] o
% ) % y App Server running:

WebhServer Service Components Image Processing: -Barcode
Recognition and
Barcode Position calculation,

Database Editing: storage of that
information into the db

Note highlighting: calculation of the
note position on the wall with the
help of the note movement tables

and the notelD

Smariphone Client

(HTTP) Request

Desktop Client

Figure 4: The system setup

One important facet of our system was that it should keep the cost of implementation
and use as low as possible both in material value and in time consumed. Most of the
required parts should therefore be already available in offices and labs. Figure 4 shows
the system setup. We have an Android Smartphone, a Desktop Client and a Server
running an application server and a database server. In the ZPAC-Lab, the Desktop
Client is connected to a beamer which displays a computer screen on a wall. The wall

is also used for an Affinity diagram.

12



3.1.1. Workflow

There are two different flows. The first flow is how the system will be used during an
Affinity while the second flow is the setup of the system that has to be done before notes
can be highlighted correctly. The setup-flow has to be performed before the system can
be used and it should then be repeated in reasonable cycles i.e. the usability of the
system will decrease over time, because notes will no longer be at their stored position,
if this cycle is not repeated. Ideally this could be automated and be performed in short
intervalls. The action-flow will be performed repeatedly during an Affinity session. A
user can search the database for information, if he wants to he can highlight the note
to show it to others and/or locate it on the wall. This cycle can be repeated Figure 5

shows the workflow(s) of our system.

3.1.2. Server

The application server is a JBOSS-Server 3 and the database is a Postgresql-Server 4.
Currently they both run on a laptop which is connected to the internal network of the

University of Zurich. All communications to the clients are over HTTP-Requests.

3.1.3. Desktop Client

The Desktop Client is currently implemented as a Java application. It is designed as a
thin-app, only able to upload images and to display images on a screen. That screen is
a connected beamer. The camera that is connected to the Desktop Computer and takes
pictures of the wall has to be calibrated to the beamer. We assume a flat wall for the
beamer and that the camera is in an upright position to the wall. Figure 6 shows our

highlighted notes on a wall with the use of our Desktop Client.

3.1.4. Smartphone Client

The Smartphone Client is an android app that can be run on both smartphones or
tablets. It allows users to search the notes for keywords, IDs or participants. The
displayed results can then be selected to be highlighted on the wall. The selected notes
can also be read in their entirety as a digital representation and would then be highlighted

with a different color on the wall. Figure 7 shows a screenshot of the android app.

3http://www.jboss.org/
‘http://www.postgresql.org/

13



Highlight Note Calibrate System / Update System

tice notes

Update positioning

Take picture
Use Smariphone
riph Picture taken
information Upload Picture

Get Results Picture uploaded /

Database updated

heck note to
highlight

Note highlighted

Figure 5: The workflows of our system

14



Figure 6: Some highlighted notes on a wall

15



=l B 152 = nll @ 1:59

ID: 1... Let me give yo ...
Person: P1

ID: 3... Ididn't know ...
Person: P3

Please enter search term

ID: 4 ... He always look ...
Person: P2

ID: 6 ... Steve had this ...
Person: P1

ID: 8... Some of themt...
Person: P4

ID: 11 ... If you go back ...

Percnn* P1

Check Uncheck Select Current Show Check Uncheck Select Current Show
All All Screen Selected All All Screen Selected

Figure 7: Two screencaps of our Smartphone Client: left side the search mask, right side
with results for a search for the term “steve”

16



3.2. Issues

In regards to the barcode detection, the limiting factor for our system was the informa-
tion density given to the decoder. While the camera resolution was sufficient in our setup
(see section 3.1), noise like the brightness of the room (or lack thereof), the brightness
of the ‘base’ display or the pixel value issues on the border regions of a stitched image
could lead barcodes to not get recognized.

The Desktop Client in its current implementation is a thin client. To reach this goal
we send bytestreams of images and leave all image handling operations on the server.
This can have some disadvantages. First the amount of data sent can be considered
high, especially since each highlighting on the wall leads to a new image being sent to
the Desktop Client. At the same time once multiple instances are run on the server, the

server capacity could be a factor in a potential increase of waiting time.

17



4. Implementation

This section will try to give an understanding of how the system was built. An overview
of the system and its components is given and the components then discusssed seperately.

It aims to facilitate an understanding of the different system layers and their cooperation.

4.1. Initial Requirements

After determing the desired use cases, our system requirements were defined. The spe-
cific choices mentioned in section 3.1 were a mixture of preferences and convenience with
one facet being that the system could preferably become open-source. The system to be
implemented should also try to lay the groundwork for future additions and enhance-
ments so the system architecture design should account for that. Some actors of the
system would be smartphones and tablets. To account for their comparatively weak
computation power we decided to use a Client-Server architecture. So as to not restrict
future development we agreed on an architecture that should be platform independent
if possible. To achieve this, communications between the different actors in the system
would be handled with HT'TP-Requests with Java-Servlets running on the server. In
our current iteration of the system, we decided to use an Android smartphone as hard-
ware basis of the Smartphone Client. This allowed us to use one IDE, Eclipse, for the

development of all our system components.

4.2. Design

Following the requirements analysis, we started developing first paper prototypes which
we discussed with potential users in the ZPAC-Lab. Within the scope of this thesis,
only the UI of the Smartphone Client was prototyped since the Desktop Client and the
server-solution were designed to be used with minimal user input or had no UI to speak
of. Figure 8 show one draft of a flow within the Smartphone Client. From these we
started development on our Smartphone Client while at the same time developing first

protoypes of the barcode recognition and highlighting display for our Desktop Client.

4.3. Proof of Concept Barcode Recognition

Barcode recognition is an essential part of our system so we tried early to define the

requirements of our system to the barcode recognition component. These were:

e Recognize multiple barcodes on a picture

18



Figure 8: An early paper draft of the Smartphone Client

Find positional data for the detected barcodes

Be able to detect a barcode on a picture taken with a Hi-Res Camera so that the

picture contains about the displayed area of a beamer

Do it all in reasonable time

Be able to store an ID

Be able to store additional information
e Be able to determine rotation and orientation

We started out trying different barcodes and their methods to get a feel for the capa-
bilities of current hardware and software solutions. We quickly established that 1-D
barcodes such as EAN would not be sufficient for our case. We also wanted to use a
broadly established type of barcode if possible to facilitate easier support of hardware
and software. One barcode type that fit those criteria were QR-Code. With ZXing
we also had an advanced library at our disposal which could be used in JAVA and had
implementations for Android. After making the decision to pursue QR-Codes we wrote
a first simple JAVA-Application which served as proof of concept that detecting multiple
barcodes was possible. Figure 9 shows the prototype in action. We can look for an 1D
and have it highlighted or have all the detected ID’s highlighted. Of course there were
still some issues. Mainly, the way the ZXing-Algorithm works to detect color values of

matrix points in a QR-Code is prone to noise, e.g. if you stitch an image together and

19



Search Type in ID\ [ Reset ightil J L List Found Code ID's ] [ i all found Code ID's ]

2 HOHOHO

2106.5 HOHOHO 376.0
3 HOHOHO

2095.5 HOHOHO 455.0
X Startat: 2010

X Stop at: 2107

y Start at: 376

w Stan ar 2010

Figure 9: Our proof of concept prototype for Barcode Recognition and Highlighting

20



save the result in a format that will create noise along the border in the different bitchan-
nels of the image it can be hard for ZXing to detect a QR-Code there. Overall tough
the detection rate was high enough that we chose to use QR-Code, especially with the
alternatives not yielding better results °. As it is, QR-Codes storage capabilities exceed
our need but that space could be used in future iteration by adding information unto
the note, e.g. the participant profile. We also looked at developing our own barcode

solution, but quickly decided that this would be out of scope for this thesis.

4.4. Component Overview

Once all the requirements were defined and the proof of concept that the recognition
of multiple barcodes is possible was demonstrated, the system was defined. The main
points to consider were to (1) make the system as platform independent as possible, (2)
easily enhancable and (3) able to run on off-the shelf hardware. In order to satisfy (1) the
communication between the clients and the server is handled through HTTP-requests.
That way there is well defined data being transfered without relying on one specific
technology or programming language. (2) meant that we used an application server -
client architecture where the different tasks where stored as services that could be easily
accessed through a web API. (3) finally brought us to use JBOSS for our Application
Server and a Postgresql-Server for our Database since both would run on conventional
end customer hardware. Figure 10 shows the component model for our system and the

first concurrently developed addition.

5We had about .900 detection rate in different trials when establishing clear light sources and illumi-
nance settings

21



Application

. Services
Service Layer

User Interface Layer

Postgresql Database
Smartphone Client

QR-Code Recognition

JBOSS Server
Desktop Client

Image Handling

Tablet Client

Desktop Client Output
Generation

Other Services

I:l Potential Additions |:| Concurrent Development l:l This Master thesis

Figure 10: a component model of our system

22



4.5. Server

On our server hardware we had instances of Postgresql and JBOSS running. To configure
those we used Eclipse and the JBOSS Application Server 7 %. All incoming communi-
cations on our server are in the form of HTTP-Requests which are handled in servlets.
On the server there are different interfaces to the various service components. These in-
terfaces can be injected at runtime into the servlets and be used to perform the business

logic. Figure 11 shows the flow of a search-query from smartphone to server

eg:
toplevel.ch/servlet?a Servlet captures
request,

calls interface

Injection and Calling
of instance

Interface calls

Component provides Service component

Java code execution

Smartphone send
query to URL

Figure 11: Flow of a Servlet Call

For simple cases, like sending a query, we used HT'TP-syntax, in instances that were
more complex or in returns of queries we used other means such as JSON (Douglas
Crockford 2009). Since JSON allows coding a JSON-Object into a single String, we
could leave our servlet infrastructure compact and handle the conversion after transmis-
sion. In the case of the Desktop Client, we used bytestreams to send the image data to
and from the server. The interface layer was realized as conventional Java classes. It
served the purpose of structuring the interaction flows within the server so that the dif-
ferent service components could be separated. By doing so, we could decide to repackage
the service components into Enterprise Java Beans ” in further iterations which would
be a preferred design pattern (Crawford and Kaplan 2003). The interface layer will run
objects that handle the application logic and call the service components for their ser-
vices when necessary. As an example if a user wants to start the Desktop Client and get

a fresh wall image he uses the login function on the Desktop Client. Once the user has

Shttp://www.jboss.org/jbossas
Thttp://www.jboss.org/ejb3/

23



done that, a servlet is called for a login, which in turn injects the respective interface.
This interface enters data into the database, such as the username, the devicelD and
the screen resolution. It also sets a boolean update value to true. Once the runtime
thread on the Client rechecks the database for update (of course with the call of another
servlet) it will see that it needs to update the wall which is yet another servlet that gets
called. This servlet than injects an interface that will use the Database Component to
look up the screen resolution, the Image Handling Component to create a new Image,
the QR-Code Encoder to enclose the image with the boundary QR-~Codes and finally the
Desktop Output Generator that uses the saved image and transmits it to the Desktop

Client. On the following pages we take a look at the 4 service components.

4.5.1. QR-Code Service Component

The QR-Code Service has three main responsibilities:

e Decode QR-Codes
e Encode QR-Codes

e Determine Coordinates of QR-Codes

it uses the ZXing-Library to achieve those tasks. Decoding a QR-Code is used to
identify the notes on the wall-image and to define the wall boundaries with 4 Corner
QR-Codes with content UP_LEFT, UP_RIGHT, DOWN_LEFT, DOWN_RIGHT. The
settings for QR-Code detection are configured to reach the most extensive possible result
set using triggers in the ZXing-Library called TRY _ HARDER.
The encoding function is right now only used to generate the 4 corner QR-Codes on
the wall display. It can however provide the functionality for future iterations where we
might want to be able to digitally create “note-representations”.
Determining the coordinates of a QR-Note is obviously a very important feature for our
system. The ZXing library creates a Result object that stores multiple ResultPoints.
Each of those points reference the position and alignment patterns of a QR-Code. Our
system uses this points and an algorithm to calculate the midpoint of a QR-Code pattern.
The coordinates of that QR-Code pattern normalized to 1000 are then returned so that
they can be saved in the database. A special case are the coordinates of the four
corner QR-Codes. Their coordinates will be returned by a different method that will be
invoked whenever an photo is uploaded from the Desktop Client to get the coordinates

of a subimage that represents the displayed wall.

24



4.5.2. Database Service Component

The database service component enables the server to access and modify our database.
It does so over a set of JDBC ® statements that are sent with the use of a postgresql-
java driver. The database itself is run on an postgresql-server instance and can also
be modified through the use of tools such as psql. We initially created a draft of the
database in play and consulted with experts in the field of database design. Their verdict
was, that for the scope of our current project and most of its iterations, the current

database design should be sufficient. Currently there are 6 tables in the database:

1. affinityrecord
2. analysts

3. beamerclients
4. clientdevices
5. informants

6. notes

(1) serves as a stamp of the actions on the Affinity wall, e.g. there is an entry for every
note on every frame (each time a picture of the wall is taken and uploaded to the server)
with its coordinates, rotation, the timecode and an event number that defines wheter
this note is new, has been moved etc. (2) the analyst table stores the login information
for an analyst which is not used right now but will be needed once user accounts are
created to store features like highlight color etc. (3) and (4) serve as a way to keep track
of all client devices that are currently interacting with the Affinity process. (3) has the
columns of (4) as foreign keys with the addition of attributes for the screen resolution.
There is also an update trigger in this table which is used to tell the Desktop Client
that there has been an update on the Affinity wall (caused by the Smartphone Client
users highlighting notes or uploads of new frames) (5) is needed to create a participant
profile but has no further use for this thesis apart from the identification code which is
referenced in (6). (6) finally is a digital archive for the notes where attributes such as
text content, creation time, creator, owners, references to files and also wheter or not the
note is currently highlighted or not is saved. All in all with this database we have the
option of accessing additional information and notes of Affinity processes with a large

quantitiy of notes quicker than if we just used paper.

8http: //www.oracle.com/technetwork/java/javase/jdbc/index.html

25



4.5.3. Image Handling Service Component

The Image Handling Service Component is tasked with image modifications. Mainly
this will mean changing the pixel color value for an array corresponding with highlighted
notes. There are however other methods that can be used for other tasks such as creating
a new image, changing the RGB-Type of an image, handling and saving an uploaded
Image and others. One of the current deficiencies of the system is the usage of JPEG ? as
a compression format for the history of images saved on the Server. These pictures are
as of this thesis not further used, but could potentially be used for history functions and
traversion highlighting of notes. To circumvent a potential Bug in the ImageIQ library
of the Java SDK. This component is also responsible to cut an uploaded image once the
caller delivers the x- and y- values of the resulting subimage. To do that, the caller will

need to use the QR-Code Service Component.

4.5.4. Desktop Client Output Generator

In its current implementation, the system uses singular “screen shots” for the display
of the Affinity wall. This means that there is a relatively high load between Server and
Desktop Client. The repackaging of images into conventional outputstreams is handled
by this component. It will take the current frame (the ID of that frame has to be handed
over by the caller since there is a need to look it up in the database) and use a bytearray
to create the outputstream. This component is the most likely to undergo large changes

in further iterations if the Desktop Client is redone.

4.6. Desktop Client

Figure 12 shows us the two main screens of the Desktop Client Ul It is implemented
for now as a Java application running SWING °. There is a small grid of buttons that
can change its visibility state by simple mouseclick anywhere on the screen and that
has the basic functions: login, load frame and exit display. Once the user has logged
in with a preapproved screen name, the screen resolution and the login information are
sent to the server. The server stores these, creates a new Affinity wall image and sets
the update trigger. Once the Desktop Client App reaches its next cycle, the new wall
image is requested and displayed.The right screen in figure 12 shows an empty screen

where no notes have been highlighted thus far. Since HT'TP-Requests do not provide for

Yhttp://www.jpeg.org/jpeg/index.html
OPart of the standard JAVA SDK

26



Figure 12: The Desktop Client after starting (left) and after login (right)

an easy and standard way to keep communication channels open indefinately we used
the aforementioned update trigger in the database. Our Desktop Client application runs
in a while loop that is true as long as the application has not been exited. The while
loop condition is a boolean variable that gets its value from the application method
isRunning (). Every time the loop is run, the application checks for updates, verifies its
running state and then sends the loop-thread to sleep for a second. If the application is
exited, the isRunning () method will change the running variable to false. The Desktop
Client currently consists of 3 classes: the executing class with a main method and the
while loop, the BeamerClient class consisting of a JFrame extension and HTTPHandler,
a class that is used for all communications with the server. HTTPHandler has methods

to check for updates, send login data and to receive and send picture data.

4.7. Smartphone Client

The Smartphone Client was built with the Android Development Kit ' and Eclipse.
Android applications are a set of activities that can be executed (Burnette 2008). As
such the main screen of our application (see figure 7) was StartActivity, the class that
is called first. Within this activity there are multiple views that can contain elements
such as the searchbox or a scrollable list. We also used classes to handle JSON and string
actions and had another activity to start an image representation of a singular note
called NoteActivity. KEvery time you call a new activity from one activity and you
want to keep accessing data you have to bundle it and hand it over to a class called
intent. In our system we also had to handle outside events such as the state of the

highlights once you enter the NoteActivity and once you leave it, since this would mean

Uhttp: //developer.android.com/sdk /index.html

27



different highlighting of notes.

28



5. Usability Tests

After implementing the system as described in the previous chapter, this chapter will
focus on the usability tests that we undertook once a early prototpye was done. We
wanted to follow the iterative development scheme (Rosson and Carroll 2002) so testing
was an important part of this development step. The test form that we chose were the
“think-aloud” tests (Lewis and Riemand 1993) where user are voicing their thought
process so that we can get insightful input as to what led a user to perform a task a
certain way. Because of the scope of our thesis, the tests where of the “Friends and

Family”- scenarios described by Kuniavsky (2003).

5.1. Preparation

Before beginning with the tests, we started preparations. That meant that we had
to recruit users, create scenarios, create testcontent and write a test protocol. For
recruiting, because of the limited availability of schooled Affinity users, we decided
to widen the search parameter to extensive computer users. These users are using
computers and smartphones every day and are handling tasks on an advanced basis
where they are familiar with basic Ul-Ascpects such as scarcity of screen real estate.
To somewhat counteract the lack of Affinity experience, the users were given short
introductions into the Affinity Diagramming process. The scenarios that we designed
tried to emulate the need for some of the use cases that we wanted, mainly trying to
show a note on the wall to colleagues, searching for notes etc. As content we decided
against creating own customized content and instead used interviews on the world wide
web about a subject (Steve Jobs in this case) where the interview was fractioned into

singular statements.

5.2. Test Design

Our initial test design consisted of a set of 5 questions which were directed towards a

user of an Affinity. An example question was

You'd like to know which notes mentioned the name Steve try to find them all on the wall

To plan for the flow of the test session, we drafted a framework and a step-by-step
protocol of the test where we outlined the goals for these sessions and the settings in

which the tests took place.

29



5.3. Settings

The tests where all held in the ZPAC-Lab at the Institute for Informatics of the Univer-
sity of Zurich. Users were lead to the ZPAC-Lab where they got a short introduction
into Affinity Diagramming and think-aloud testing, if they so desired this part was done
in Swiss-German so as to make certain that there would not be any communication
problems in understanding the setting. The sessions were all audiorecorded (for some
of them, photos were shot) and the users were required to sign a consent form declaring

their acceptance of such measures. The tests we're done one user at a time.

5.4. First run

The questions for this first run of tests were as following:

1. Try to start the Android App and browse through the database, search for a term

like “framework”. Show which notes you have found on the wall to a third person.

2. You want to know which notes mentioned the name Steve, try to find them all on
the wall

3. Show all notes about Steve at the same time to a third person. One of the notes

about Steve mentions game machines, try to set that one apart from the others.
4. You'd like to know which notes were from P1, show them.

5. You think there’s something odd with the statement on note 11, so you show it to
your colleague and have him read it to you from the wall so that you can check

the statement

This list of questions were read out by the person conducting the tests. All users had

to solve all questions.

5.4.1. Results

As per the test format, a think-aloud test would not deliver quantifiable results, but more
facets and aspects that gave insights into user behaviour. As such one interesting aspect
was that users seemed to stick to the Smartphone. They were usually concentrating on
interacting with the cell phone and interpreted tasks such as showing notes in a way
where they would show the cell phone and its screen display. This might actually have

to do with the lack of Affinity Diagramming experience but was seen even if further

30



emphasis was put on the wall during the introductions. Another aspect was the fact,
that our search query function was case-sensitive, something that caused confusion when
users were asked to search for “Steve” in the database. As one user put it, he also didn’t
like the fact, that the start screen of the Smartphone application had the text “Please
enter search term” under the text box since he assumed that he could enter something
in this field or at least press the checkbox next to it (check figure 7 left). Aside from
one user that made it a point to try out all possible buttons and options there was also
the point that the fact that there were different highlighting colors was something that
no one noticed. Rather the standard behaviour was to check one note after the other
and uncheck them. Also, currently our system is implemented in a way that if you don’t
explicitly uncheck a note, it stays highlighted even if you start a new search. Only when
the Desktop Client is exited will all note states be reset in the database. This lead to
some confusion as to why certain notes were highlighted even tough they contained no
relevance to the search. To summarize, the aspects that we would spent further work

on would be
e Remove unneeded buttons / menu options
e Make search case-insensitive (this was already done for the second run)
e Find a better workflow-solution to highlighting notes when a new search is started

e Try to emphasize that checking a search result will result in highlighting a note on
the wall

e clarify the test procedure so that inconsistencies such as reading something to a

user who interprets it as something else can’t happen

5.4.2. Maodifications

After taking the input from the first run into consideration we decided to change some
things in our test design. Mainly, the question set was altered and was made nonlinear
in that it was no longer necessary to answer every task in order to finish. Also we made
it a point to demonstrate the collaboration between Smartphone and Desktop Client-
Affinity wall before starting the test. We also introduced more data, i.e. created more
notes so that the Affinity wall would look more impressive. And finally we shortened
the Affinity Diagramming introduction into the parts that were necessary for our test

design.

31



5.5.

Second Run

For our second run, we had the following list of tasks:

1.

8.

9.

Look at the group of notes in the lower left corner. Pick a label you think fits
[from a selection of 2-3 pre-written labels|, and add the label to the group.

. Start the Android app and find the first note from the group you labeled. Use the

app to highlight it on the wall.

. You think you remember a note that mentions ”Steve” that could fit in this group.

Show all the notes that talk about Steve.

(If they haven’t shown it on the wall) You want others to help you look through the
notes that talk about Steve. Highlight all of the notes that use the word ”Steve”

on the wall.

Of the notes that mention Steve, pick out the one note that talks about ”game

machines”. Indicate it on the wall.

(If they don’t use the prototype) Can you think of a way to use the prototype to
set it apart from the other highlighted notes?

You want to see where all the notes from the interview with P1 are placed. Show

where they all are.
Get Gelek to read you note number 11. (You may have to help him find it!)

Clear all the highlighted notes and close the Android app.

Different from the first run, the users were now given paper notes with the task

instructions. Each note contained one task and was put onto a wall so that the user could

reread the assignment if (s)he so desired. We also introduced some small interactions

with the Affinity wall that weren’t intended to test our system but rather give the user

a way to familiarize with the process (there were still users that made use of our system
for it).

5.5.1. Results

As with the first run, one point of contention was the search function. Users wanted to

search for non-consecutive terms, something that would not be possible with the current

32



implementation since it checks the database for a statement that contains the query term
as a sequence. Users were also a bit confused about the coding scheme of an Affinity
note where they had trouble to identify a note because they used the participant code,
something that should be made more clear during the instructions. One user formulated
multiple times that he was checking for ways to filter the search content, so that he would
be able to only search for names or ID or text. Another thing that came up was the fact
that users expected realtime updates, e.g. one user for task (2) wanted to search for the
group label that he chose in task (1). Sometimes users tried cross-referencing methods
to get to information instead of using intended features such as the singular highlighting
of a selected note. Also apparent was, that users were still having trouble using both the
wall and the Smartphone in combination to look for information for example showing
us the Smartphone with the selected notes to solve task (3) instead of highlighting. In
any case the interface wasn’t intuitive enough that it could be used without a manual
or instructions. Omne problem that will prove the limiting factor in having too many
additions to the UI is the fact that Smartphone Screens are not that large. It could be
interesting to see if the Ul on a tablet could be more sophisticated while still being clear

enough to handle. So amongst the points taken from this second run were:

e Enhance search capabilities to allow filtering and searching for non-consecutive

terms

e Have some way to emphasize that checking a box results in highlighting a note,
maybe introduce an audio representation of the fact or have a more elaborate

animation.
e Maybe introduce a way to bookmark searches
e Create a manual with example flows and conscise instructions.

e Create a larger data set so that the advantages of our system can be more accen-

tuated (some users tried to find a note by reading through all of them)

33



6. Discussion

The current state of the system is that of a very early prototype. Still the ability to
highlight a note on the wall is for the lack of a scientifically appropriate word, “cool”. We
proved that with current technologies it is possible to create a layer that is able to help
locate notes on a wall and to browse through note content without changing the Affinity
Diagramming process. Of course, there are some limitations, mainly that the Affinity
wall is restricted to the displayed areas that a beamer can reach and the fact that you
need to take new photos to update the note movement. These are things that can benefit
from technological progress. What is apparent is that there is still a need for manual
instructions. Something that could be made less important if the Ul went through
further design iterations but will still be necessary since the introduced interaction is
not grown “organically” from the existing Affinity Diagramming process. But our system
has also another evaluation aspect in that there are multiple potential additions to it
that will rely on some of those basic service components. There is currently already a
second master thesis in progress that tackles another use case but roots on the same

technological basis.

6.1. Further Work

When talking about further work there are two categories: Addition to the underlying
system that fullfil other use cases and enhancements and improvments to the current
system to improve productivity and usability of the current end user implementations.
The possible developments of the first category are somewhat out of scope for this master
thesis yet they might prove especially intriguing. As for the current system, there are
naturally multiple ways to improve the system. From our perspective the most fruitful

improvements are:

1. Adapting the UI of the Smartphone Client to address some of the feedback of the

test run (mainly search features).
2. Building a UI for Tablets that make use of higher screen resolutions

3. Building a new Desktop Client that is “smarter” than the current thin client and

significantly reduces bandwidth load

4. Introducing security measures to protect and encode content that is sent through
HTTP-Requests and stored on the database

34



5. Capsulating the Service Components into Enterprise Beans so that they can be

used project independent on the server

6. Introduce a way to bookmark searches so that a user can load the bookmarked

notes configuration onto the wall to show it to others

7. Introduce a way to have multiple Affinity processes on the same server instance
/ or find a way to automatically create multiple instances and assign everyone to

the correct one
8. Introduce a way to ammend notes or to create tags/comment to them

Of course there are still more points but these would address most of the needs that

arose during the thesis timeframe.

35



7. Conclusion

In this thesis we looked at the Affinity Diagramming process and its weaknesses. We
then addressed some of them by formulating use cases that we wanted to solve with
an additional layer of tools that would provide optional assistance. After introducing
this system and showing its components we looked at its implementation and how the
usability was tested. Affinity Diagramming is a method that makes use of paper and
its advantages. In this way it is something of an oxymoron in that one tool to get to
design ideas for digitally driven design is to use paper. If you accept that fact and its
elegance, the way that an Affinity can help structure data is impressive. The concept of
not touching the underlying Affinity Diagramming process and adding additional layers
is the consequently driven conclusion of that. And having an additional layer to look for
a note is certainly a useful feature, having a convenient way to browse through the notes
is too. It will however be most intriguing to see how future developments will interact
with one another. There may even lie a potential trap in that too many layers will start
to create a noise such that the Affinity Diagramming processes biggest gains of using
paper will no longer be valid. In any case, the never-ending search for an ideal system

to assist a method to find design improvements is surely a fitting analogy!

8. Acknowledgments

The author would like to thank everyone involved for the cooperation mainly Gunnar
Harboe and Prof. Elaine Huang for the supervision and Lukas Keller for always being
available to throw around implementation ideas and concepts. Special thanks also to
Prof. Elaine Huang for building and leading a spirited group of people that were always
willing to invest time and effort to be helpful. Furthermore everyone else at the ZPAC-
Lab from Christian, Sarah, Silke and Simon for their great attitudes and willingness to
always provide assistance and ideas (and of course the great food every wednesday). Also
further thanks go to Dietrich Christopeit for taking the time to look at the Database

design and for all test users who shall not be named to honor the consent form.

36



References

Azuma, Ronald T., 1997. “A Survey of Augmented Reality” In Presence: Teleoperators
and Virtual Environments, 6,4 (August 1997): 355-385

Beyer, H, and Holtzblatt K., 1998. Conteztual design: defining customer-centered sys-

tems. Morgan Kaufmann

Burnette, Ed, 2008. Hello, Android; Introducing Google’s Mobile Development Platform
The Pragmatic Bookshelf.

Crawford, William and Kaplan Jonathan, 2003 J2EE Design Patterns; Patterns in the
Real World O’Reilly

Denso  Corporation, 1997.  QR-Code  Standardization, http://www.denso-
wave.com/qrcode/qrstandard-e.html, retrieved on January 27th 2012.

Douglas Crockford, 2009. Introducing JSON, http://json.org, retrieved on January 27th
2012.

Kuniavsky, Mike, 2003 Observing The User Experience; a practitioner’s quide to user

research Morgan Kaufmann.

Lewis, Clayton and Rieman, John, 1993. Task-Centered User Interface Design: A
Practical Introduction, http://grouplab.cpsc.ucalgary.ca/saul/hcitopics/tcsd-book/,
retrieved on January 27th 2012.

Rosson, Mary Beth, and Carroll, John M., 2002. Usability Engineering; Scenario Based

Development of Human Computer Interaction Morgan Kaufmann

37



A. Code

The source code of the components and javadoclets for our project can can be found on
the attached CD. The script for the database creation is also on the CD.

B. Test

The consent form and the Test protocols for the two test runs are on the following pages,

the audio recordings can be found on the attached CD.

38



Consent form

Data collecting
During the test, data will be collected either by hand written notes or by voice recording or by both

methods. The collected data are basically observations about the interaction with the app that is tested.

Confidentiality
The data collected during this test will be analysed by researchers from the ZPAC Research Group at
the University of Zurich. If the data will be shown to outside persons, it will always be anonymised.

Participation
The participation in this test is voluntary and any participant can withdraw from the test at any time.

I have read and understood the consent form:

Name (Block letters)

Signature

Place and Date




Think-aloud Usability Test:

Framework:

The system is trying to support and enhance the affinity analysis with visual feedback and
simplified searching through content. As such there is a smartphone android app and a
beamer-client which are both connected to a database in which the affinity data is stored.

Setting up the system (getting the affinity-data into the db and capturing gr-codes with a
camera and uploading them is not part of this test run).

Users will be skilled in usage of common computer systems and have a background in CS.
Users be familiarized with an affinity during the test and a short demonstration of the main
use cases but will not be given any further training / documentation or help in how to use
the system.

We want to see if using the test system is something that the user prefer to other means
(e.g. do they use the highlighting of a note with their smartphone client or do they point
with their fingers towards the note)

Usability Goals: We want all test groups to be able to fulfill all tasks

Infrastructure:

ZPAC Lab, camera, beamer, laptop with Server (JBOSS Server / Postgres Server) +
Desktop Client /recording device / Instructions for test (Tasks etc) /



Usability Test:
You have volunteered to take part in this Usability Test. Thank you. As Part of this test,
you’re actions will be recorded on an audio recorder.

The test will contest of 2 phases, first you will get a quick introduction into affinity
diagrams, then you will be asked to do a couple of tasks with the help of a system

You just have been given a quick introduction into affinity diagrams and how to use them.

For the following tasks you should try to use the Android App that you were just shown:

- Try to start the Android App and browse through the database, search for a term like
“framework”. Show which notes you have found on the wall to a third person.

- You want to know which notes mentioned the name Steve, try to find them all on the wall.

- Show all of the notes about Steve at the same time to a third person. One of the notes
about Steve mentions game machines, try to set that one apart from the others.

- You'd like to know which notes were from P1, show them.

- You think there’s something odd with the statement on Note 11, so you show it to your
colleague and have him read it to you from the wall so that you can check the statement.



Step-by-step program:

Before test:

- Prepare System (connect Server, Desktop Client beamer, Smartphone Client)
- Prepare Affinity wall

- Prepare Room (check lightning etc.)

- Check recording device and materials

Test

- introduction

- overview of test / test method

- affinity diagrams

- (if necessary) prototype demonstration/ android demonstration
- 2nd round of tasks

- conclusion

After test:
- check if recordings ok
- check notes if made



Think-aloud Usability Test Run 2:

Framework:

The system is trying to support and enhance the affinity analysis with visual feedback and
simplified searching through content. As such there is a smartphone android app and a
beamer-client which are both connected to a database in which the affinity data is stored.

Setting up the system (getting the affinity-data into the db and capturing gr-codes with a
camera and uploading them is not part of this test run).

Users will be skilled in usage of common computer systems and have a background in CS.
Users be familiarized with an affinity during the test and a short demonstration of the main
use cases but will not be given any further training / documentation or help in how to use
the system.

We want to see if using the test system is something that the user prefer to other means
(e.g. do they use the highlighting of a note with their smartphone client or do they point
with their fingers towards the note)

Usability Goals: We want all test groups to be able to fulfill all tasks by using our system.

Infrastructure:

ZPAC Lab, camera, beamer, laptop with Server (JBOSS Server / Postgres Server) +
Desktop Client /recording device / Instructions for test (Tasks etc) /



Usability Test:

You have volunteered to take part in this Usability Test. Thank you. As Part of this test,
you’re actions will be recorded on an audio recorder.

The test will contest of 2 phases, first you will get a quick introduction into affinity
diagrams, then you will be asked to do a couple of tasks with the help of a system

You just have been given a quick introduction into affinity diagrams and how to use them.

For the following tasks you should try to use the Android App that you were just shown:

1. Look at the group of notes in the lower left corner. Pick a label you think fits [from a
selection of 2-3 pre-written labels], and add the label to the group.

2. Start the Android app and find the first note from the group you labeled. Use the app to
highlight it on the wall.

3. You think you remember a note that mentions "Steve" that could fit in this group. Show
all the notes that talk about Steve.

3b. [If they haven't shown it on the wall] You want others to help you look through the
notes that talk about Steve. Highlight all of the notes that use the word "Steve" on the wall.
4. Of the notes that mention Steve, pick out the one note that talks about "game
machines". Indicate it on the wall.

4b. [If they don't use the prototype] Can you think of a way to use the prototype to set it
apart from the other highlighted notes?

5. You want to see where all the notes from the interview with P1 are placed. Show where
they all are.

6. Get Gelek to read you note number 11. (You may have to help him find it!)

7. Clear all the highlighted notes and close the Android app.



Step-by-step program:

Before test:

- Prepare System (connect Server, Desktop Client beamer, Smartphone Client)
- Prepare Affinity wall

- Prepare Room (check lightning etc.)

- Check recording device and materials

Test

- introduction

- overview of test / test method

- affinity diagrams

- (if necessary) prototype demonstration/ android demonstration
- 2nd round of tasks

- conclusion

After test:
- check if recordings ok
- check notes if made



